CHEMISTRY

Atomic numbers: Mn = 25, Fe = 26, Co = 27, Ni = 28Atomic masses: C = 12, O = 16, Cl = 35.5, K = 39, Mn = 55**Universal gas constant,** $R = 0.0821 L atm mol^{-1} K^{-1} = 8.314 J mol^{-1} K^{-1}$ The bond order in NO is 2.5 while that in NO⁺ is 3. Which of the following statements is true 81. for these two species? Entrance

- (a) Bond length in NO^+ is greater than in NO
- (b) Bond length is unpredictable
- (c) Bond length in NO^+ is equal to that in NO
- (d) Bond length in NO is greater than in NO^+

Which one of the following has the regular tetrahedral structure? 82.

- $\operatorname{Ki}(\mathbb{C}\mathbb{N})^{2}$ (a) XeF_4 (b) (c) BF_4 (d) SF₄
- For the reaction, $CO(g) + Cl_2(g) \Longrightarrow COCl_2(g)$ the $\frac{K_p}{K_c}$ is equal to 83.
 - (a) $\frac{1}{RT}$ (c) \sqrt{RT}

84.

- (a) Cu_2I_2 is formed
- (c) $Na_2S_2O_3$ is oxidised

- (b) Evolved I_2 is reduced
- (d) CuI_2 is formed

(b) 1.0

(d) **R**T

Excess of KI reacts with CuSO₄ solution and then Na₂S₂O₃ solution is added to it. Which of

Which one of the following complexes is an outer orbital complex? 85.

- (a) $[Fe(CN)_6]^{4-}$
- (c) $[Co(NH_3)_6]^{3+}$

- (b) $[Ni(NH_3)_6]^{2+}$
- (d) $[Mn(CN)_6]^4$
- The IUPAC name of the compound 86.

is

(a) 3, 3-dimethyl-1-hydroxy cyclohexane

the statements is incorrect for this reaction?

- (c) 3, 3-dimethyl-1- cyclohexanol
- 87. Consider the acidity of the carboxylic acids. (I) PhCOOH

(III) $p - NO_2C_6H_4COOH$

Which of the following order is correct?

- (a) (I) > (II) > (III) > (IV)
- (c) (II) > (IV) > (I) > (III)

- (b) 1,1-dimethyl-3-cyclohexanol
- (d) 1,1-dimethyl-3-hydroxy cyclohexane

(II) $o - NO_2C_6H_4COOH$ $(IV) m - NO_2C_6H_4COOH$

- (b) (II) > (III) > (IV) > (I)
- (d) (II) > (IV) > (III) > (I)

- (a) rotation of the electron in clockwise and anticlockwise direction respectively
- (b) rotation of the electron in anticlockwise and clockwise direction respectively
- (c) magnetic moment of the electron pointing up and down respectively
- (d) two quantum mechanical spin states which have no classical analogue
- 89. The equivalent weight of an element is 29.4. The electrochemical equivalent of this element is $(1) = 4.5 c = 10^{-4}$
- (a) 3.04×10^{-4} (b) 4.56×10^{-4} (b) 6.08×10^{-4} (d) 1.52×10^{-10} 90. The number of O–O bonds in (CrO_5) is (a) three (b) two (d) zero (c) one CH=CH-COOH 91. -CHO Identify the compound (X). (a) CH₃COOH (b) $(CH_3CO)_2O$ (c) BrCH₂COOH (d) CHO-COOH The order of reactivity of the following compounds with PhMgBr is 92. (II) CH₃CHO (I) PhCOPh (III) CH₃COCH₃ (a) (I) > (II) > (III)(b) (III) > (I) > (II)(c) (II) > (I) > (III)(d) (II) > (III) > (I)93. Which of the following compound will not give a positive iodoform test? (a) CH₃–CH–COOH I OH (b) CH_3 -CH- CH_3 (c) C_6H_5 -CH-CH₃ (d) C_6H_5 - $-CH_2I$ OH 94. The appropriate reagent for the following transformation is COCH₃ CH₂CH₃ ÓН OH (a) Zn-Hg, HCl (b) NH₂NH₂, KOH (c) $LiAlH_4$ (d) HI, P_4 95. Which of the following dicarboxylic acid gives cyclic ketone on heating?
 - (a) $CH_2(COOH)_2$ (b) $|_{CH_2COOH}_{CH_2COOH}$

(c) HOOC(CH₂)₃COOH (d) HOOC(CH₂)₄COOH For a hypothetical reaction, $A + B \longrightarrow C + D$, the rate = $k[A]^{-1/2} [B]^{3/2}$. On doubling 96. the concentration of A and B, the rate will be (assume that the concentration of A & B Entranc initially were same) (a) 4 times (b) 2 times (c) 3 times (d) none of these Entrance 97. If the equilibrium constant for the reaction, $2N_2O_5(g) \implies 4NO_2(g) + O_2(g)$ is $x M^{-3}$. The equilibrium constant for the reaction $2NO_2(g) + \frac{1}{2}O_2(g) \implies N_2O_5(g)$ is (b) $\sqrt{x^{-1}}$ (a) \sqrt{x} (c) x^2 (d) *x* 98. For the combustion reaction at 298 K. Entrance $2Ag(s) + \frac{1}{2}O_2(g) \longrightarrow 2Ag_2O(s)$ which of the following relation will be true? (a) $\Delta H = \Delta U$ (b) $\Delta H > \Delta U$ (c) $\Delta H < \Delta U$ (d) ΔH and ΔU bear no relation with each other 99. For which of the following equation, will ΔH be equal to ΔU ? (a) $H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(l)$ (b) $H_2(g) + I_2(g) \longrightarrow 2HI(g)$ (c) $2NO_2(g) \longrightarrow N_2O_4(g)$ (d) $4NO_2(g) + O_2(g) \longrightarrow 2N_2O_5(g)$ 100. For a system, $A(g) + 2B(g) \implies 3C(g) + D(g)$ at equilibrium, if volume is doubled, the reaction shifts in (a) forward direction (b) backward direction (c) equilibrium will not be disturbed (d) none of these 101. The degree of dissociation for a reaction, $N_2O_4(g) \implies 2NO_2(g)$ is 0.01. What would be K_c for the reaction assuming initial concentration of N_2O_4 is 1 M. (a) 0.4×10^{-3} M (b) 0.5×10^{-3} M (c) $0.3 \times 10^{-3} \,\mathrm{M}$ (d) $0.2 \times 10^{-3} \,\mathrm{M}$ 102. When a poly atomic gas undergoes an adiabatic expansion, its temperature and volume are related by the equation $TV^n = constant$, the value of n will be (b) 0.33 (a) 1.33 Entrance (c) 2.33

103. Concentration of NaOH at 25° C is 10^{-3} M. pH at this temperature is

- (a) 7
- (c) 9

104. In a mixture of two volatile liquids A and B, the mole fraction of A is 0.4. What would be the mole fraction of A in the vapour phase if the vapour pressure of pure components are given as

- $P_A^o = 100 \text{ mm Hg and } P_B^o = 100 \text{ mm Hg}.$
- (a) 0.4(c) 0.25

- (b) 0.6
- (d) none of these

(d) C_3A_2

(b) 8

(d) 11

- **105.** The molal depression constant for water is 1.86 K kg/mol. What will be, the freezing point of 0.1 M KCl in water assuming molality is same as molarity?
 - (a) $+1.86^{\circ}$ C (b) -0.186° C (c) -0.372° C (d) -0.093° C
- 106. If the anions (A) form hexagonal closed packing and cations (C) occupy only 2/3 of the octahedral voids in it, then the general formula of the compound would be (a) CA(b) CA₂
 - (a) CA (c) C_2A_3
 - A_3
- **107.** A solid has a structure in which tungsten (W) atoms are located at the corners of a cubic lattice, O atoms at the center of edges and Na atom at the center of cube. The formula for the compound is
 - (a) NaWO2(b) NaWO3(c) Na2WO3(d) NaWO4
- **108.** The amount of $KMnO_4$ required to prepare 100 ml of 0.1 N solution in alkaline medium when $KMnO_4$ is reduced to K_2MnO_4 is
 - (a) 1.58 g
 - (c) 3.16 g

(b) 0.52 g (d) 0.31 g

- **109.** In Bohr's hydrogen atom, the electronic transition emitting light of longest wavelength among the following is
 - (a) n = 5 to n = 4
 - (c) n = 3 to n = 2
- (b) n = 4 to n = 3(d) n = 4 to n = 2
- **110.** If E_1 , E_2 and E_3 represent respectively the kinetic energies of an electron, α -particle and a proton, each having same de-Broglie's wave length, then
- (a) $E_1 > E_3 > E_2$ (b) $E_2 > E_3 > E_1$ (c) $E_1 > E_2 > E_3$ (d) $E_1 = E_2 = E_3$ 111. To transform O_2N , initial steps could be
 - (a) Nitration followed by Friedel–Crafts alkylation.
 - (b) Friedel–Crafts alkylation followed by nitration.
 - (c) Nitration followed by Friedel–Crafts acylation.
 - (d) Friedel-Crafts acylation followed by Clemmensen's reduction followed by nitration.

(a) true solution. (b) suspension. (c) heterogeneous sol. (d) homogenous sol. 120. To make E_{cell} of the following concentration cell positive, what should be the relative concentration of Cl^{-} ions in the two half cells? $Pt \mid Cl_2 (1 \text{ atm}) \mid Cl^{-}(C_1) \parallel Cl^{-}(C_2) \mid Cl_2 (1 \text{ atm}) \mid Pt$ (a) $C_1 > C_2$ (b) $C_1 < C_2$ (c) $C_1 = C_2$ (d) E_{cell} cannot be positive Entrance Entrance Entrance Entrance Entrance Entrance Entrance Entrance