I - Semester M. Tech. (Energy Management Systems)

		Т	eachi	ing Sc	heme				E	xaminat	ion Schen	ne					
		Hours per week		Hours per No. of week Credits		Theory					Practical						
Course Code	Course Title	L	Т	Р		Duration of Paper	Max. Marks	Max. N	/larks	Total	Min. Passing	Max. Marks	Max. Marks	Total	Min. Passing		
couc						(Hrs.)			Internal Assessment				Marks				Marks
							ESE	MSE	IE			тw	POE				
911	Energy Scenario & Policies	3	1	0	4	3	70	10	20	100	50	-	-	-	-		
912	Alternate Energy Systems - I	4	1	-	5	3	70	10	20	100	50	-	-	-	-		
913	Alternate Energy Systems - II	4	1	-	5	3	70	10	20	100	50	-	-	-	-		
914	Elective – I (i) Energy Conservation (ii) Advanced Power Electronics (iii) MHD Power Generation	3	1	-	4	3	70	10	20	100	50	-	-	-	-		
	Laboratory																
915	Energy Lab - I	-	-	3	2	-	-	-	-	-	-	50	50	100	50		
	Total			03	20	400			100								
	Semester Total				20						500	•					

II - Semester M. Tech. (Energy Management Systems)

		Г	eachi	ing Scheme Examination Scheme								ne			
			ours p week		No. of Credits			Theor	у			Practical			
Course Code	Course Title	L	Т	Р		Duration of Paper	Max. Marks	Max. N	/larks	Total	Min. Passing	Max. Marks	Max. Marks	Total	Min. Passing
Coue						(Hrs.)			Internal Assessment		Marks				Marks
								Assess	Assessment						
							ESE	MSE	IE			тw	POE		
1011	Integrated Energy Systems	4	1	0	5	3	70	10	20	100	50	-	-	-	-
1012	Energy Modeling & Project	4	1	-	5	3	70	10	20	100	50	-	-	-	-
	Management														
1013	Energy Audit & Management	3	1	-	4	3	70	10	20	100	50	-	-	-	-
1014	Elective – II	3	1	-	4	3	70	10	20	100	50	-	-	-	-
	(i) Project, Planning & Design of														
	Renewable Energy Systems														
	(ii) Environmental Science and														
	Engineering														
	(iii) Energy Analysis														
	Laboratory														
1015	Energy Lab - II	-	-	3	2	-	-	-	-	-	-	50	50	100	50
		14													
	Total		04 21	03	20		Ζ	100					10	00	
	Semester Total				20					Į	500				

III - Semester M. Tech. (Energy Management Systems)

		Teaching Scheme							E	xaminat	tion Schem	ne			
			ours p		No. of			Theor	у			Practical			
Course Code	Course Title	L	week T	Р	Credits	Duration of Paper (Hrs.)	Max. Marks	Max. Marks Internal Assessment		Total	Min. Passing Marks	Max. Marks	Max. Marks	Total	Min. Passing Marks
							ESE	MSE	IE			TW	POE		
1108	Self Study Course - I	-	1	-	04	3	70	10	20	100	50	-	-	-	-
1109	Self Study Course - II	-	1	-	04	3	70	10	20	100	50	-	-	-	-
1110	Pre Dissertation	-	1	-	06	-	-	-	-	-	-	100	50	150	75
1111	Industrial Energy / Environment Audit Training	-	1	-	06	-	-	-	-	-	-	100	50	150	75
	Tota		04	-	20		2	200					30	00	
	Semester Total				20	500									

IV - Semester M. Tech. (Energy Management Systems)

		Т	eachi	ing Sc	heme	Examination Scheme									
	Hours pe week		Hours per No. of week Credits			Theory						Practical			
Course Code	Course Title	L	Т	P		Duration of Paper (Hrs.)	Max. Marks	Max. Marks Internal Assessment		Total	Min. Passing Marks	Max. Marks	Max. Marks	Total	Min. Passing Marks
							ESE	MSE	IE			TW	POE		
1203	Final Dissertation *	-	06	-	20	-	-	-	-	-	-	250	250	500	250
	Tota		06	-	20			-					50	00	
	Semester Total 06 20					500									

* The marks in Term Work (TW) shall be awarded on the basis of Candidate's performance in carrying out the overall work & Submission Seminar delivered by him/her. However, the marks allotted for POE shall be granted on the basis of his/her performance in Viva Voce to be conducted by the University appointed External Examiner.

GONDWANA UNIVERSITY, GADCHIROLI

Name of the Program: Course Code: Course Title:

I Semester M. Tech. (Energy Management Systems) 911 ENERGY SCENARIO & POLICIES

Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes duration)	Credits
03	01	-	04	04

Evaluation System										
	Theory Practical									
MSE	IE	ESE	TOTAL	TW	POE	TOTAL				
10	20	70	100	-	-	-				

Contents

Global and National level energy issues. Role of energy in socio-economic developments. Energy, GDP, GNP and their interrelations. Energy sources, demand and availability. Energy Consumption in various sectors, its changing pattern in present, past and future. Sector-wise energy consumption pattern. Conventional and non – conventional energy sources, their importance and utilization pattern.

Energy Pricing & Impact of Global Variations. Energy Productivity (National & Sector wise productivity). Energy security, Vision and Crisis issues.

Impact of Energy on Economy and Environment. Energy Policies of G-8 Countries, G-20 Countries, OPEC Countries, EU Countries. International Energy Treaties (Rio, Montreal, Kyoto), INDO-US Nuclear Deal.

Power sector reforms & Energy policies in India, Energy Conservation Act-2001 & its features, Electricity Act-2003 & its features. Framework of Central Electricity Authority (CEA), Central & States Electricity Regulatory Commissions (CERC & ERCs), National & State Energy Policy, Industrial Energy Policy.

Reference Books

1. Energy for a sustainable world: Jose Goldenberg, Thomas Johansson, A. K. N. Reddy, Robert Williams (Wiley Eastern).

- 2. Energy policy: B. V. Desai (Wiley Eastern),
- 3. TEDDY Year Book Published by Tata Energy Research Institute (TERI),
- 4. World Energy Resources: Charles E. Brown, Springer2002.
- 5. 'International Energy Outlook' -IEA annual Publication

Name of the Program: Course Code: Course Title:

I Semester M. Tech. (Energy Management Systems) 912 ALTERNATE ENERGY SYSTEMS - I

Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes duration)	Credits
04	01	-	05	05

	Evaluation System										
	Theory Practical										
MSE	IE	ESE	TW	POE	TOTAL						
10	20	70	100	-	-	-					

Contents

Sun as Source of Energy, Availability of Solar Energy, Nature of Solar Radiation, Global, Beam and Diffuse Radiation, Hourly, Daily and Seasonal variation of solar Radiation, Estimation of Solar Radiation, Measurement of Solar Radiation, Solar Energy & Environment. Various Methods of using solar energy – Thermal, Photovoltaic, Photosynthesis. SPV principle and basics. P-V cell, module and their different characteristics. Introduction to different SPV systems.

Solar thermal devices principles and applications. Box type cooker, flat plate collector, concentrators, air heater, thermal energy storage, Solar pond, their Economic Analysis. Present & Future Scope of Solar energy technology.

Fuel cell - Principle of working, construction and applications. Introduction to mini and micro hydro system.

Reference Books

1. Solar Photovoltaic: Fundamentals, Technologies & Applications – Chetan Singh Solanki (PHI Publication)

2. Solar Energy, Principal of thermal collection and storage – Suhas P.Sukhatme. (Tata McGraw Hill Publication)

3. Solar Energy – J.P.Garg & Prakash (Tata McGraw Hill Publication)

4. Solar thermal energy systems – Sodha, Mathur, Malik Wielly (Eastern Ltd)

5. Terrestrial Solar Photovoltaic - Tapan Bhattacharya (Narosa Publishing House)

Name of the Program:	I Semester M. Tech. (Energy Management Systems)
Course Code:	913
Course Title:	ALTERNATE ENERGY SYSTEMS - II

Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes duration)	Credits
04	01	-	05	05

	Evaluation System										
Theory Practical											
MSE	IE	ESE	TW	POE	TOTAL						
10	20	70	100	-	-	-					

Contents

Wind Energy fundamentals & power analysis, wind resource assessment, Power Conversion Technologies and applications, Wind energy fundamentals, Principles of Aerodynamics of wind turbine blade, Wind turbine type, Wind turbine technology & components of WTG, Modern wind turbine control & monitoring system, Wind farm basics, selection and economics.

Energy Generation and utilization through Bio-mass, biofuels Principles & Application. Importance of biogas technology, Different Types of Biogas Plants. Aerobic and anaerobic bioconversion processes. Tidal, ocean and wave energy systems.

Reference Books

1. Wind Energy Systems – G.L.Johnson (Prentice Hall, 1985)

2. Wind Energy Conversion System –Freris L.L (Prentice Hall, 1990)

3. Wind turbine Technology : Fundamental concepts of wind turbine technology- Spera D.A.(ASME Press NY,1994)

4. Wind Machines - frank Eldridge (Van Nostrand Reinold International company Londan)

5. Wind Turbine Engineering Design –David M.Eggleston & Forrest S.Stoddare (Van Nostrand Reinold International company Londan)

6. Energy Technology –S.Rao & Dr.B.B.Parulekar.

7. Biomass as fuel –L.P.White (Academic Press 1981)

8. Thermo chemical processing of Biomass - Bridgurater A.V.

9. Biomass Gasification Principles and Technology ,Energy technology review No.67 – T.B.Read (Noyes Data Corp. 1981)

10. Biomass Gasification And Pyrolysis: Practical Design And Theory, Prabir Basu ISBN: 0123749883 ISBN-13: 9780123749888, Academic Press.

Name of the Program:I Semester M. Tech. (Energy Management Systems)Course Code:914Course Title:ENERGY CONSERVATION (ELECTIVE – I)

Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes duration)	Credits
03	01	-	04	04

Evaluation System						
Theory					Practical	
MSE	IE	ESE	TOTAL	TW	POE	TOTAL
10	20	70	100	-	-	-

Contents

Fundamentals of Electric Energy and their principles. Load Management, Power Factor improvement in the context of energy conservation. Electricity tariff and its structure, Electric Drive efficiency and factors affecting performance. Energy efficient drives, VSDs, VFDs. Fans and blowers, Pumps and Pumping Systems, Cooling Towers. Illumination fundamentals, Polar Curves, Light sources, lighting schemes, luminance requirements. Street, factory and flood lighting.

Concepts of Energy, Heat and Work, Ideal gas law, 1st and 2nd law of thermodynamics (Closed and Open Systems). Thermal energy using fossil fuels. Conversion of Thermal Energy to Mechanical Energy & Power. Role of boilers & turbines in energy conservation. Waste Heat Recovery concept, advantages and applications. Predictive and preventive maintenance in energy conservation

Reference Books

- 1. Power Plant Engineering by Damkodwar.
- 2. Utilization of Electrical Power by R.K.Rajput, Laxmi Publications
- 3. Energy Conservation guide book Patrick/Patrick/Fardo (Prentice hall1993)
- 4. BEE Reference book: no.1/2/3/4.
- 5. Energy Conversion systems: Begamudre, Rakoshdas
- 6. The Watt Committee on Energy (Reports), Edited by M.A. Laughton CRC Press
- 7. Heat and Thermodynamics M.W. Zemansky (McGraw Hill Publication)
- 8. Principles of Energy Conversion: A.W. Culp (McGraw Hill International edition.)
- 9. Industrial Energy Conservation Manuals, MIT Press, Mass, 1982

I Semester M. Tech. (Energy Management Systems) 914 ENERGY EFFICIENT LIGHTING (ELECTIVE – I)

Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes duration)	Credits
03	01	-	04	04

Evaluation System						
Theory Practical						
MSE	IE	ESE	TOTAL	TW	POE	TOTAL
10	20	70	100	-	-	-

Contents

Introduction, Need for Energy Management program; Illumination, requirements for various tasks, Activities/Locations; Basic Terms in Lighting System and Features, System Elements, Light Sources, Luminaries, Ballasts; Lamp Types and their Features and Methodology of Lighting System, Day lighting, lighting system controls, system maintenance, operating schedule, psychology of changeover.

Lighting energy management in buildings: Case Studies Some Good Practices in Lighting, Light Emitting Diodes, Principle, working and Fabrication of Light emitting diodes, Materials development, status of, R and D in light emitting diodes, Fiber Optics, Types of Fibers, fabrication technology, Materials development for fiber optic, Transmission, losses, Use of fiber in lighting, Solid State Lighting, Florescence, Phosphorescence. Electroluminescence, development of electroluminescent, materials and thin film devices, solid state display devices

Reference Books

1. Energy Efficiency in Household Appliances and Lighting: - <u>Paolo Bertoldi</u>, <u>Andrea Ricci</u>, <u>Aníbal T. de</u> <u>Almeida</u> (Springer 2001)

2. Energy Management and Conservation: - Dale R. Patrick, Stephen W. Fardo (Prentice Hall -1982)

3. Energy conservation in buildings and industrial plants: - Milton Meckler McGraw-Hill, 1981

4. Energy Management handbook:-Steve Doty, Wayne C.Turner

Name of the Program:I Semester M. Tech. (Energy Management Systems)Course Code:914Course Title:MHD POWER GENERATION (ELECTIVE – I)

Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes duration)	Credits
03	01	-	04	04

Evaluation System							
Theory					Practical		
MSE	IE	ESE	TOTAL	TW	POE	TOTAL	
10	20	70	100	-	-	-	

Contents

Principle of MHD power generation, Properties of working fluids, MHD equation and types of MHD duct, Losses in MHD generators, Diagnostics of parameters, MHD cycles, MHD components (air heater, combustion chamber, heat exchanger, diffuser, insulating materials and electrode walls, magnetic field etc.) Economics and

applications of MHD, Liquid metal MHD generators.

Reference Books

1 .M.H.D. power generation: engineering aspects [Unknown Binding]:-Gerard Joseph. Womack (Taylor & Francis, 1975)

2. Magneto hydrodynamic electrical power generation: - Hugo K. Messerle (J. Wiley, 08-Aug-1995)

3. MHD power generation: selected problems of combustion MHD Generators: - <u>Rolf Bünde</u>, <u>Jürgen Raeder</u> (Springer-Verlag)

4. Magneto hydrodynamic Energy Conversion, by Richard J. Rosa, McGraw-Hill, 1968.

5. MHD Power Generation, by G.J. Womack, Chapman and Hall Ltd London, 1968.

6. Direct Energy Conversion, by Sutton, McGraw-Hill, 1966.

Name of the Program:	I Semester M. Tech. (Energy Management Systems)
Course Code:	915
Course Title:	ENERGY LAB - I

Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes duration)	Credits
-	-	03	03	02

Evaluation System							
Theory			Practical				
MSE	IE	ESE	TOTAL	TW	POE	TOTAL	
-	-	-	-	50	50	100	

The following Experiments shall be performed during the Term Work of this Laboratory:

- 1) Determination of power transformer efficiency
- 2) Loss estimation of Induction motor
- 3) Loss estimation of Synchronous Machine
- 4) V & Inverted V characteristics of Synchronous Machine
- 5) Study of Illumination of different luminaries and their comparative analysis
- 6) Determination of efficiency of boiler
- 7) Study of heat exchangers.
- 8) Study of variable speed drives
- 9) Study of diesel generator set.
- 10) Measurement of load and power factor for the electrical utilities.

***** The evaluation for TERM WORK (TW) shall be as mentioned below :

	Total	:	25
(iii)	Internal Viva Examina	tion:	10
(ii)	Attendance	:	05
(i)	Timely completion	:	10

***** The evaluation for Performance & Oral Examination (POE) shall be based on Candidate's performance in performance of the experiment and/ or Viva Voce to be conducted in the presence of External Examiner.

Name of the Program: Course Code: Course Title: II Semester M. Tech. (Energy Management Systems) 1011 INTEGRATED ENERGY SYSTEMS

Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes duration)	Credits
04	01	-	05	05

Evaluation System						
Theory			Practical			
MSE	IE	ESE	TOTAL	TW	POE	TOTAL
10	20	70	100	-	-	-

Contents

National and rural level energy consumption pattern. Projection of energy demands, Energy consumption pattern in Agriculture and Industry. Substitution of conventional sources by alternative sources and more efficient modern technologies. Potential, availability as well as capacity of non-conventional sources of energy and other modern applications. Integration of different energy systems.

Energy storage devices, battery sizing. Stand alone and grid connected, Decentralized Distributed Generation of electricity,

Reference Books

- 1. Solar Photovoltaic : Fundamentals, Technologies & Applications Chetan Singh Solanki (PHI Publication)
- 2. Solar Energy, Principal of thermal collection and storage Suhas P.Sukhatme. (Tata McGraw Hill Publications).
- 3. Energy Technology S.Rao & Dr.B.B.Parulekar
- 4. Laurie Barrtom, Renewable Energy Sources for fuels and Electricity, Island Press 1993.
- 5. R. Hunter and G. Elliot Wind-Diesel Systems, Cambridge University Press, 1994.
- 6. Renewable Energy: Sources for Fuels and Electricity by Thomas B Johansson

Name of the Program:II Semester M. Tech. (Energy Management Systems)Course Code:1012Course Title:ENERGY MODELING & PROJECT MANAGEMENT

Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes duration)	Credits
04	01	-	05	05

Evaluation System						
Theory			Practical			
MSE	IE	ESE	TOTAL	TW	POE	TOTAL
10	20	70	100	-	-	-

Contents

Basic concept of econometrics and statistical analysis, Econometric techniques used for energy analysis and forecasting with case studies from India; Input – Output Analysis Basic concept , concept of energy multiplier and implication of energy multiplier for analysis of regional and national energy policy. Energy Modeling Interdependence of energy-economy-environment;

Modeling concept, and application, Methodology of energy demand analysis; Methodology for energy forecasting; Energy demand forecasting,

Energy Economics and Policies: National and regional energy planning; Integrated resource planning; Energy pricing, Project Evaluation & Management.

Reference Books

1. Chandhok, H. L. (1990): India Data Base: The Economy, Living Media Books, New Delhi.

2. Brahmananda, P. R. (1982): *Productivity in the Indian Economy: Rising Inputs for Falling Outputs*, Himalaya Publishing House, Delhi.

3. Goldar, B. N. (1986): Productivity Growth in Indian Industry Allied Publishers, New Delhi.

4. Brahmananda, P. R. and V. R. Panchamukhi (eds.), *The Development Process of Indian Economy*, Himalaya Publishing House, Mumbai.

5. Project Evaluation Criteria and Cost – Benefit Analysis (Edited), Oxford & IBH Publishing Co., New Delhi, Second Revised and enlarged edition. 1989

6. Econometric - Models – Techniques and Applications, 'Foreword' by Jan Tinbergen, Indus Publishing Co., New Delhi. 1994

7. Munasinghe M., Meier P., "Energy Policy Analysis and Modeling", Cambridge University Press, New York, 2008.

James Stock, Mark Watson, "Introduction to Econometrics", 2nd ed., Pearson Education, New Delhi, 2006.
 Ashok V. Desai (Editor) Energy Models, Wiley Eastern Ltd. (1990).

10. Jyoti Parikh, Energy Models for 2000 and Beyond, Tata McGraw Hill Publishing Company Limited (1997). 11. Ashok V. Desai (Editor) Energy Economics and Planning, Wiley Eastern Ltd. (1990).

12. Modeling approach to long term demand and energy implication: J.K.Parikh. Tata McGraw Hill Publishing Company Limited .

Name of the Program: Course Code: Course Title:

II Semester M. Tech. (Energy Management Systems) 1013 ENERGY AUDIT & MANAGEMENT

Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes duration)	Credits
03	01	-	04	04

Evaluation System						
	Theory Practical					
MSE	IE	ESE	TOTAL	TW	POE	TOTAL
10	20	70	100	-	-	-

Contents

General Philosophy and need of Energy Audit and Management. Definition and Objective of Energy Management, General Principles of Energy Management, Energy Management Skills, Energy Management Strategy. Energy Audit: Need, Types, Methodology and Approach. Energy Management Approach, Understanding Energy Costs, Bench marking, Energy performance, Matching energy usage to requirements, Maximizing system efficiency, Optimizing the input energy requirements, Fuel and Energy substitution

Level of responsibilities, energy sources, control of energy and uses of energy get Facts, figures and impression about energy /fuel and system operations, Past and Present operating data, Special tests, Questionnaire for data gathering.

Incremental cost concept, mass and energy balancing techniques, inventory of Energy inputs and rejections, Heat transfer calculations, Evaluation of Electric load characteristics, process and energy system simulation.

Determining the savings in Rs, Noneconomic factors, Conservation opportunities, estimating cost of implementation.

The plant energy study report- Importance, contents, effective organization, report writing and presentation.

Force Field Analysis, Energy Policy-Purpose, Perspective, Contents and Formulation.

Location of Energy Manager, Top Management Support, Managerial functions, Role and responsibilities of Energy Manager, Accountability. Motivating – Motivation of employees, Requirements for Energy Action Planning.

Instruments for Audit and Monitoring Energy and Energy Savings, Types and Accuracy

Reference Books

- 1. Energy Management: W.R.Murphy, G.Mckay (Butterworths).
- 2. Energy Management Principles: C.B.Smith (Pergamon Press).
- 3. Efficient Use of Energy: I.G.C.Dryden (Butterworth Scientific)
- 4. Energy Economics -A.V.Desai (Wieley Eastern)
- 5. Industrial Energy Conservation: D.A. Reay (Pergammon Press)
- 6. Energy Management Handbook W.C. Turner (John Wiley and Sons, A Wiley Interscience Publication)
- 7. Industrial Energy Management and Utilization L.C. Witte, P.S. Schmidt, D.R. Brown (Hemisphere Publication, Washington)

8. Industrial Energy Conservation Manuals, MIT Press, Mass, 1982

- 9. Energy Conservation guide book Patrick/Patrick/Fardo (Prentice Hall)
- 10. Handbook on Energy efficiency -
- 11. ASHRAEE Energy Use (4 Volumes)
- 12. CIBSI Guide –Users Manual (U.K.)
- 13. CRC Handbook of Energy Efficiency CRC Press.

Name of the Program:II Semester M. Tech. (Energy Management Systems)Course Code:1014Course Title:PROJECT, PLNNING & DESIGN OF RENEWABLE
ENERGY SYSTEMS (ELECTIVE – II)

Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes duration)	Credits
03	01	-	04	04

Evaluation System						
Theory				Practical		
MSE	IE	ESE	TOTAL	TW	POE	TOTAL
10	20	70	100	-	-	-

Contents

Photovoltaic system design, mathematical modeling. Converter topologies, buck, boost type. Their salient features. Battery system designing, charge controller designing and Battery controller designing.

Application wise change in design parameters,

Wind Power estimation techniques, Principles of Aerodynamics of wind turbine blade, Various aspects of wind turbine design, Wind Turbine Generators: Induction, Synchronous machine, constant V & F and variable V & F generations, Reactive power compensation.

Concept of non-conventional system project planning, designing, cost analysis, pre feasibility analysis and environmental analysis.

Reference Books

- 1. Rene Codoni, Hi-Chun Park and K.V. Ramani (Editors) Integrated Energy Planning: A Manual, Vols. I, II & III. Asian and Pacific Development Centre, Kuala Lumpur (1985).
- 2. M.S. Kumar (Editor) Energy Pricing Policies in Developing Countries: Theory and Empirical Evidence, International Labour Organisation (1987)

- 3. Mohan Munasinghe and Peter Meir, Energy Policy Analysis and Modeling, Cambridge University Press (1993).
- 4. Harry Campbell and Richard Broron, Benefit- Cost Analysis, Cambridge University Press (2003)

5. Chan S. Park, Contemporary Engineering Economics, Prentice Hall Inc (2002)

Name of the Program:II Semester M. Tech. (Energy Management Systems)Course Code:1014Course Title:ENVIRONMENTAL SCIENCE & ENGINEERING
(ELECTIVE – II)

Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes duration)	Credits
03	01	-	04	04

Evaluation System						
Theory			Practical			
MSE	IE	ESE	TOTAL	TW	POE	TOTAL
10	20	70	100	-	-	-

Contents

Environmental degradation due to energy production and utilization, Primary and Secondary pollution such as SOx, NOx, SPM in air, depletion of ozone layer, global warming, biological damage due to environmental degradation. Potential sources of pollution in thermal power plant, air, water, land pollution and their due estimation.

Environmental pollution limits guidelines for thermal power plant pollution control. Various pollution control equipments. Their working principle and selection criteria, designing the pollution control system, methods and limitation. Water pollution in thermal power plant, physical and chemical methods of pollution Control. Land pollution. Effect of land pollution, measurement of land pollution. Limitations and advantages of pollution control systems.

Hydrothermal plant environmental assessment and rehabilitation measures. Nuclear power plants and environmental pollution, pollution control measures. International Standards for Quality of air and norms for exhaust gases. Industrial waste and effluent treatment, as a source of energy.

Reference Books

1. Management of Energy Environment Systems -W.K.Foell (John Wiley and Sons).

- 2. Energy Management and Control Systems -M.C.Macedo Jr. (John Wiley and Sons).
- 3. Environmental Impact Analysis Handbook -J.G.Rau, D.C.Wood (McGraw Hill).
- 4. Energy & Environment J.M. Fowler, (McGrawHill)
- 5. Energy and Environment: Modeling and Simulation: Bilas Kanti Bala, Nova Publishers, 1998

Name of the Program:	II Semester M. Tech. (Energy Management Systems)
Course Code:	1014
Course Title:	ENERGY ANALYSIS

Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes duration)	Credits
03	01	-	04	04

Evaluation System						
Theory Practical						
MSE	IE	ESE	TOTAL	TW	POE	TOTAL
10	20	70	100	-	-	-

Co	ont	en	ts
Co	ont	en	ts

Energy theory of value: Principles and systems of energy flows, Methods of energy analysis, Energy intensity method, Process analysis input-output method based energy accounting, Energy cost of goods and services energy to produce fuels: Coal, Oil, Natural Gas, Energy to produce electricity, Energy cost of various modes of passenger & freight transportation.

Industrial energy analysis: Aluminum, Steel, Cement, Fertilizers, Energetics of materials recycling, Energetics of renewable energy utilization (case studies), General energy equation, Energy loss, Reversibility & irreversibility, Pictorial representation of energy.

Energy analysis of simple processes, Expansion, Compression, Mixing and separation, Heat transfer, Combustion, Energy analysis of thermal and chemical plants, Thermo economic applications of energy analysis and national energy balance.

Reference Books

- 1. A.G. Thomas (editor), Energy Analysis, IPC Science and Technology Press Ltd. 1977.
- 2. I. Bousted and G.F. Hancock, Handbook of Industrial Energy Analysis, Ellis Horwood 1979.
- 3. A. Bejan, Entropy Generation through Heat and Fluid Flow, John Wiley & Sons 1982.

Name of the Program:II Semester M. Tech. (Energy Management Systems)Course Code:1015Course Title:ENERGY LAB - II

Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes duration)	Credits
-	-	03	03	02

	Evaluation System						
Theory			Practical				
MSE	IE	ESE	TOTAL	TW	POE	TOTAL	
-	-	-	-	50	50	100	

The following Experiments shall be performed during the Term Work of this Laboratory:

- 1) Study of solar collector.
- 2) Study of solar hot water systems
- 3) Study of solar box type cooker
- 4) Performance evaluation of box type and concentrating type solar cooker.
- 5) Characteristics of SPV system.
- 9) Study of Lead Acid Battery as a energy storage.
- 10) Study of Performance of Solar Lamp.
- 11) Measurement of Intensity of solar radiation
- 12) Energy Content in Wind (Prototype Wind Mill of 500W)
- 13) Bio-gas Production from Kitchen waste.

***** The evaluation for TERM WORK (TW) shall be as mentioned below :

aruanon n) shan be t	is month
(iv)	Timely completion	:	20
(v)	Attendance	:	10
(vi)	Internal Viva Examin	nation :	20
	Total	:	50

***** The evaluation for Performance & Oral Examination (POE) shall be based on Candidate's performance in performance of the experiment and/ or Viva Voce to be conducted in the presence of External Examiner.

Name of the Program:III Semester M. Tech. (Energy Management Systems)Course Code:1108Course Title:SELF STUDY COURSE - I

Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes duration)	Credits
-	01	-	01	04

Evaluation System						
Theory				Practical		
MSE	IE	ESE	TOTAL	TW	POE	TOTAL
10	20	70	100	-	-	-

Contents

Future Energy Options: Sustainable development, Energy Crisis, Transition from carbon rich & nuclear to Carbon free technologies, Significant parameters of these Transitions, Energy Tariffs & subsidies, Private Sector participation in Power Generation, State role & fiscal policy, National Energy Plan & Energy investment Planning.

Recent trends in PV cell designing. SPV Balance of System, Battery sizing. Fuel cell design aspects.

Salient features and different WTGs: SFIG, DFIG and PMSG type. Wind electricity development in India. Removal of CO2 and H2O from bio gas. Biogas Compression techniques. Energy Plantation.

Diesel generating systems, Factors affecting selection, energy performance assessment of diesel generating systems, its environmental & economic issues. Co-generation & Tri-generation.

Reference Books

The students are advised to refer the text books mentioned for all the theory courses of First Semester M.Tech (EMS) program.

Name of the Program:	III Semester M. Tech. (Energy Management Systems)
Course Code:	1109
Course Title:	SELF STUDY COURSE - II

Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes duration)	Credits
-	01	-	-	04

	Evaluation System						
Theory				Practical			
MSE	IE	ESE	TOTAL	TW	POE	TOTAL	
10	20	70	100	-	-	-	

Contents

Integrated Renewable Energy System and Hybrid Renewable Energy System. Grid connected and off grid R.E. Systems. Their economic and environmental assessment.

Financial analysis of energy system: Project cash flows, time value of money, life cycle approach; Project appraisal criteria; Risk analysis; Aims oriented project planning; Social cost benefit analysis.

Sociological and Economical problems due to Thermal and other energy projects. Methods of Environmental Impact assessment. United Nations Framework Convention on Climate Change (UNFCC), Protocol, Conference of Parties (COP), Clean envelopment Mechanism (CDM), Prototype Carbon Funds (PCF), Carbon Credits and its trading.

General Principles & Strategy of Energy Management, Methods for preparing process flow, Materials and Energy Balance diagram, Identification of losses and Improvements. Energy Balance sheet and Management Information System (MIS).

Reference Books

The students are advised to refer the text books mentioned for all the theory courses of Second Semester M. Tech (EMS) program.

Name of the Program:III Semester M. Tech. (Energy Management Systems)Course Code:1110Course Title:PRE DISSERTATION

Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes duration)	Credits
-	01	-	-	06

Evaluation System						
Theory				Practical		
MSE	IE	ESE	TOTAL	TW	POE	TOTAL
-	-	-	-	100	50	150

WORK EXPECTED TO BE CARRIED OUT

The Pre Dissertation is the preliminary work required to be carried by the Candidate, under the supervision of his/ her allotted Supervisor, towards acquiring the goals of his/ her targeted Dissertation work.

The PRE DISSERTATION work shall involve (but not limited to) the categories of preparation as mentioned below, as far as possible :

- Discussing the proposed work with his/ her Guide in the period allotted during the week.
- Finalizing broad topic to be taken for Dissertation work.

- Extensive literature Survey on the related topic & collection of hard copies of the research papers.
- Securing permission from the Company, if the work is to be experimented/ investigated in Company.
- Developing outline of Model/ Experiment(s)/ investigations/ analysis to be carried out.
- If model is to be fabricated, the list of required materials/ equipments/ instruments shall be prepared. Their suppliers / manufacturers shall be contacted & the quotations shall be kept ready.
- Related Computer software shall be mastered, if computer simulation is there.
- Presentation of work.
- Any other specific preparation.

The above mentioned tentative preparation(s) may change partially depending on the individual's need & requirements. However, the PRE DISSERTATION work shall be assessed with respect to all such preparation categories only for award of marks in Term Work. However, the marks in POE shall be awarded in the presence of EXTERNAL EXAMINER based on Candidate's performance in Presentation and/or viva voce.

Name of the Program:III Semester M. Tech. (Energy Management Systems)Course Code:1111Course Title:INDUSTRIAL ENERGY / ENVIRONMENTAL
AUDIT TRAINING

Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes duration)	Credits
-	01	-	-	06

Evaluation System						
Theory				Practical		
MSE	IE	ESE	TOTAL	TW	POE	TOTAL
-	-	-	-	100	50	150

WORK EXPECTED TO BE CARRIED OUT

The **INDUSTRIAL ENERGY** / **ENVIRONMENTAL AUDIT TRAINING** is included in the syllabus to give practical feel of understanding/ assessing/ investigating/ applying the contents of the subjects which they have studied during their first year of the course. As mentioned in the title itself, the Training may be carried out in either of the field of Industrial Energy Audit or Environmental Audit Training.

Following are the important points that shall govern this Training

• The Training shall be undertaken individually by the Students in Industries, Organizations, Plants or Multi storied Buildings.

•

- The students shall report weekly to the allotted Supervisor (same as Pre Dissertation) to apprise him/ her about the progress of the work.
- To undertake extensive training for ONE MONTH, as envisaged in the Course scheme.
- To submit TRAINING CERTIFICATE from the competent authority from Industry/ Organization/ Plant, in respect of satisfactory completion of the Training.

The Training carried out by the Candidate shall be assessed & evaluated by the Department to award suitable marks/ grades to the Candidate, in Term Work. However, the marks shall be granted on the basis of candidate's performance in VIVA VOCE to be conducted in the presence of External Examiner for POE.

Name of the Program: Course Code: Course Title:

IV Semester M. Tech. (Energy Management Systems) 1203 FINAL DISSERTATION

Lectures	Tutorial(s)	Practical	Total periods/week (each of 60 minutes duration)	Credits
-	06	-	-	20

Evaluation System								
Theory			Practical					
MSE	IE	ESE	TOTAL	TW	POE	TOTAL		
-	-	-	-	250	250	500		

WORK EXPECTED TO BE CARRIED OUT

The AICTE envisages expanding the research attitude/ thinking/ potential/ interest of the Candidate while pursuing his/her Post Graduate Course in Engineering & Technology. This reflection is observed in the **FINAL DISSERTATION** work carried out by the Candidate.

The following points shall govern the procedure & quality of Final Dissertation work to be carried out by the Candidates:

- The Candidate shall work under the SUPERVISOR appointed by the Department, to whom he/ she shall be reporting every week, as per time table schedule.
- The Supervisor shall monitor the progress of work.
- The FINAL DISSERTATION shall be carried out as per Topic & Plan prepared during the PRE DISSERTATION work.
- The work carried out shall meet the standard & quality as defined by the Department.
- The final Dissertation shall be allowed to be submitted only after successful & satisfactory deliver of the GRAND SEMINAR in the Department.

The FINAL DISSERTATION carried out by the Candidate shall be assessed & evaluated by the Department for TERM WORK to award suitable marks to the Candidate on the basis of performance in following areas :

(i)	Quality of Work & Innovativeness	:	100	
(ii)	Publications based on the Work	:	100	
(iii)	Grand Seminar	:	050	
	TOTAL		:	250

However, the marks shall be granted on the basis of candidate's performance in PRESENTATION and/ or VIVA VOCE to be conducted in the presence of External Examiner for POE.

M. Tech. (Energy Management Systems)

DETAILED EVALUATION PROCEDURE

EXAMINATION	PROCEDURE OF EVALUATION			
MSE (MID SEMESTER EXAMINATION) (10-MARKS)	The Mid Semester Examination marks shall be awarded by the concerned Subject Teacher on the basis of candidate's performance in the written examination conducted by the Department. Usually, the MSE's of two subjects shall be held on the same day. This will be ONE HOUR examination.			
(IE) INTERNAL EVALUATION (20-MARKS)	 The marks allotted for IA shall be awarded by the concerned Subject Teacher on the basis of Candidates performance in: Alertness/ response in the Class (05) Attendance (05) Assignments/ Tutorials (10) 			
(ESE) END SEMESTER EXAMINATION (70-MARKS)	The ESE shall be conducted by the University, as per schedule floated by it, as per its governing rules & regulations. This will be THREE HOURS written examination. The Theory paper of ESE shall comprise of EIGHT questions in all, out which the Candidate shall be required to answer ANY FIVE. All the Questions shall carry equal marks (14).			
(TW) TERM WORK	The TERM WORK (TW) shall be there for the practical passing head and other passing Heads, for which theory evaluation is not there. The procedure of evaluation is already mentioned under the syllabus of respective head.			
POE (PERFORMANCE & ORAL EXAMINATION)	The POE shall be there for all the passing heads where TW is there. The procedure of evaluation is already mentioned under the syllabus of respective head.			