MATHEMATICS

- If $A^2 A + I = O$, then the inverse of A is 1.
 - (a) A-I
- (b) I-A
- (c) A+I
- (d) A
- If C is the mid-point of AB and P is any point outside AB, then 2.
 - (a) $\overrightarrow{PA} + \overrightarrow{PB} + 2\overrightarrow{PC} = \overrightarrow{0}$

(b) $\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = \overrightarrow{0}$

(c) $\overrightarrow{PA} + \overrightarrow{PB} = 2\overrightarrow{PC}$

- (d) $\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{PC}$
- If (-p) is a root of quadratic equation $x^2 + px + (-p) = 0$, then its roots are **3.**
 - (a) 0, 1
- (b) -1, 1
- (c) 0, -1
- Let $f: R \to R$ be a differentiable function having f = 6, f' = 6. 4.

Then $\lim_{x\to 2} \int_{6}^{f} \frac{4t^3}{x-2} dt$ equals

(a) 12

- (b) 18
- (d) 36

- If $A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$ and $A^2 = \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix}$, then **5.**
 - (a) $\alpha = a^2 + b^2$, $\beta = 2ab$

(b) $\alpha = a^2 + b^2$, $\beta = a^2 - b^2$

- (c) $\alpha = 2ab$, $\beta = a^2 + b^2$ (d) $\alpha = a^2 + b^2$, $\beta = ab$ The lines $\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{-k}$ and $\frac{x-1}{k} = \frac{y-4}{2} = \frac{z-5}{1}$ are coplanar if **6.**
 - (a) k = 1 or -1

(b) k = 0 or -3

(c) k = 3 or -3

- (d) k = 0 or -1
- If the coefficients of rth, (+1)th and (+2)th terms in the binomial expansion of (+y)7. are in arithmetic progression, then m and r satisfy the equation
 - (a) $m^2 m(r+1) + 4r^2 2 = 0$
- (b) $m^2 m(r-1) + 4r^2 + 2 = 0$
- (c) $m^2 m (r-1) + 4r^2 2 = 0$
- (d) $m^2 m (r+1) + 4r^2 + 2 = 0$
- In $\triangle ABC$, $\tan \frac{A}{2} = \frac{5}{6}$, $\tan \frac{C}{2} = \frac{2}{5}$, then 8.
 - (a) *a, c, b* are in A.P.

(b) *a, b, c* are in A.P.

(c) *b*, *a*, *c* are in A.P.

- (d) *a, b, c* are in G.P.
- The equation of the chord joining two points (x_1, y_1) and (x_2, y_2) on the rectangular 9. hyperbola $xy = c^2$ is

(a)
$$\frac{x}{x_1 + x_2} + \frac{y}{y_1 + y_2} = 1$$

(b)
$$\frac{x}{x_1 - x_2} + \frac{y}{y_1 - y_2} = 1$$

(c)
$$\frac{x}{y_1 + y_2} + \frac{y}{x_1 + x_2} = 1$$

(d)
$$\frac{x}{y_1 - y_2} + \frac{y}{x_1 - x_2} = 1$$

A and B are two independent events such that $P \triangleleft = \frac{1}{5}$, $P \triangleleft \cup B = \frac{7}{10}$. Then $P \triangleleft = \frac{7}{10}$ is

(a)
$$\frac{3}{8}$$

(a) $\frac{3}{8}$ (b) $\frac{2}{7}$

(c) $\frac{7}{9}$

(d) none of these

If a circle passes through the point (a, b) and cuts the circle $x^2 + y^2 = p^2$ orthogonally, then 11. the equation of the locus of its centre is

(a)
$$x^2 + y^2 - 2ax - 3by + (2^2 - b^2 - p^2) = 0$$
 (b) $2ax + 2by - (2^2 + b^2 + p^2) = 0$ (c) $x^2 + y^2 - 3ax - 4by + (2^2 + b^2 - p^2) = 0$ (d) $2ax + 2by - (2^2 - b^2 + p^2) = 0$

(b)
$$2ax + 2by - (2 + b^2 + p^2) = 0$$

(c)
$$x^2 + y^2 - 3ax - 4by + (x^2 + b^2 - p^2) = 0$$

(d)
$$2ax + 2by - (2^2 - b^2 + p^2) = 0$$

Let z, w be complex numbers such that $\overline{z} + i \overline{w} = 0$ and $\arg zw = \pi$. Then $\arg z$ equals

(a)
$$\frac{\pi}{4}$$

(c)
$$\frac{3\pi}{4}$$

Let T_r be the rth term of an arithmetic progression, whose first term is a and common difference is d. If for some positive integers m, n, $m \neq n$, $T_m = \frac{1}{n}$ and $T_n = \frac{1}{m}$, then a - d

(c)
$$\frac{1}{mn}$$

(a) 0 (b) 1 (c) $\frac{1}{mn}$ (d) $\frac{1}{m} + \frac{1}{n}$ 14. Let $\frac{d}{dx} F \blacktriangleleft = \left(\frac{e^{\sin x}}{x}\right), x > 0$. If $\int_{1}^{4} \frac{3}{x} e^{\sin x^{3}} dx = F \blacktriangleleft - F \blacktriangleleft$, then one of the possible value of *k*, is

(a) 16

- (b) 63
- (c) 64

(d) 15

The equation of the common tangent touching the circle $(-3)^2 + y^2 = 9$ and the parabola $y^2 = 4x$ above the x-axis is

$$(a) \quad \sqrt{3}y = 3x + 1$$

(b)
$$\sqrt{3}y = -(x+3)$$

$$(c) \quad \sqrt{3}y = x + 3$$

(d)
$$\sqrt{3}y = -\mathbf{6}x + 1$$

If the letters of the word SACHIN arranged in all possible ways and these words are written out as in dictionary, then the word SACHIN appears at serial number

- (b) 602

(d) 600

17. If $\cos^{-1} x - \cos^{-1} \frac{y}{2} = \alpha$, then $4x^2 - 4xy \cos \alpha + y^2$ is equal to

	(a) $4\sin^2\alpha$	(b)	$-4\sin^2\alpha$	(c)	$2\sin 2\alpha$	(d) 4	
18.	****		then the solution o				
	(a) $\log\left(\frac{y}{x}\right) =$	=cx (b)	$\log\left(\frac{x}{y}\right) = cy$	(c)	$y \log \left(\frac{x}{y}\right) = cx$	(d) $x \log \left(\frac{y}{x} \right) = cy$	
19.	(1) Mode car(2) Median i(3) Variance	-	rom histogram nt of change of sca of change of origin		cale		
	(a) only (1)	(b)	only (2)	(c)	only (2)	(d) (1), (2) and (3))
20.		he first five give	t of 13 questions in questions. The n 280	umber	of choices availab		ıt
	(a) 190 3	(0)	280	. (c)	346	(d) 140 point in the horizonta	
21.							
	plane through pole is	its foot and at	a distance 40 m fo	orm the	e foot. A possible	height of the vertical	ιl
	(a) 40 m	(b)	60 m	(c)	80 m	(d) 20 m	
22.	The radius of centre at (0, 3		ing through the fo	oci of	the ellipse $\frac{x^2}{16} + \frac{y}{16}$	$\frac{y^2}{9}$ = 1 and having it	S
	(a) 4	(b)	3	(c)	$\sqrt{12}$	(d) 7/2	
23.	` '	` '		1010	Ulli	ession with commo	n
			e is $\frac{2\pi}{3}$, then num				
	(a) 9		7			(d) 20	
24.		` '		` '		$6x + a^2 - 4 = 0$ is a	n
	identity in x , i		v ioi winen				
	(a) 0	(b)		(c)	2	(d) 3	
25.	For a non-zero	o complex numb	per z , $\left \frac{\left \bar{z}^2 \right }{z \bar{z}} \right $ is equ	ual to		1	
	(a) $\left \frac{\overline{z}}{z}\right $	(b)	2	(c)	$ \bar{z} $	(d) none of these	
26.	Let $f = m$	$[ax. \cancel{x}, 2-x]$ for	all $x \in R$. Then		REIL		
						able everywhere	
			= 1 but not differen				
	(u) $\int \mathbf{q} \int \mathbf{l} \mathbf{s} \mathbf{r}$	icitiici continuo	us nor differentiabl	ic at X	- 1		

	that the origin z_1 and z_2	form an equilateral to	riangle. Then	
	(a) $a^2 = 2b$	(b) $a^2 = 3b$	(c) $a^2 = 4b$	(d) $a^2 = b$
29.	If $1, \frac{1}{2}\log_3 4^{1-x} + 2 \log_3 \frac{1}{2}\log_3 \frac{1}{2}$	$4.3^{x} - 1$ are in A.P.	, then x equals	
	(a) $\log_3 4$	(b) $1 - \log_3 4$	(c) $1 - \log_4 3$	(d) $\log_4 3$
30.				o 25. If the two numbers in a prize in a single trial
	(a) 1/25	(b) 24/25	(c) 2/25	(d) none of these
31.	$\lim_{n \to \infty} \frac{1}{n} \sqrt[n]{e} + \sqrt[n]{e^2} + \sqrt[n]{e^3} +$	$+ \sqrt[n]{e^n}$ is equa	l to	
	(a) $e + 1$	(b) $e - 1$	(c) <i>e</i>	(d) none of these
32.	Given the statement: If x	x is an integer and x^2		
	(a) false	(b) true	(c) unpredictable	(d) none of these
33.	The value of a for $x^2 - (a-2)x - a - 1 = 0$	which the sum of	the squares of the	roots of the equation
	x - y - 2x - a - 1 = 0	assume the least value	e is	
	(a) 3	(b) 2	(c) 1	(d) 0
34.	(a) 3 A spherical iron ball 10	(b) 2 cm in radius is coate 3/min. When the thic	(c) 1 ed with a layer of ice of	(d) 0 of uniform thickness that nen the rate at which the
34.	(a) 3 A spherical iron ball 10 melts at a rate of 50 cm	(b) 2 cm in radius is coated 3/min. When the thices, is	(c) 1 ed with a layer of ice of kness of ice is 5 cm, the	of uniform thickness that nen the rate at which the
34. 35.	(a) 3 A spherical iron ball 10 melts at a rate of 50 cm thickness of ice decrease (a) $\frac{1}{54\pi}$ cm/min. A circle touches the <i>x</i> -a	(b) 2 cm in radius is coated $\frac{3}{min}$. When the thices, is (b) $\frac{5}{6\pi}$ cm/min.	(c) 1 ed with a layer of ice of kness of ice is 5 cm, th (c) $\frac{1}{36\pi}$ cm/min.	of uniform thickness that nen the rate at which the
	(a) 3 A spherical iron ball 10 melts at a rate of 50 cm thickness of ice decrease (a) $\frac{1}{54\pi}$ cm/min. A circle touches the <i>x</i> -at locus of the centre of the	(b) 2 cm in radius is coated a min. When the thices, is (b) $\frac{5}{6\pi}$ cm/min.	(c) 1 ed with a layer of ice of kness of ice is 5 cm, th (c) $\frac{1}{36\pi}$ cm/min.	of uniform thickness that then the rate at which the $(d) \frac{1}{18\pi} \text{ cm/min.}$ $(0, 3) \text{ and radius 2. The}$
	(a) 3 A spherical iron ball 10 melts at a rate of 50 cm thickness of ice decrease (a) $\frac{1}{54\pi}$ cm/min. A circle touches the <i>x</i> -at locus of the centre of the (a) a hyperbola Three houses are availab one house without cons	(b) 2 cm in radius is coated a set of the	 (c) 1 ed with a layer of ice of kness of ice is 5 cm, the control of the cont	of uniform thickness that then the rate at which the $ (d) \frac{1}{18\pi} \text{ cm/min.} $ $ (0, 3) \text{ and radius 2. The } $ $ (d) \text{ a circle } $ thouses. Each applies for three apply for the same
35.	(a) 3 A spherical iron ball 10 melts at a rate of 50 cm thickness of ice decrease (a) $\frac{1}{54\pi}$ cm/min. A circle touches the <i>x</i> -at locus of the centre of the (a) a hyperbola Three houses are availat one house without cons	(b) 2 cm in radius is coated a set of the	 (c) 1 ed with a layer of ice of kness of ice is 5 cm, the complex cm/min. (c) 1/36π cm/min. che circle with centre at (c) an ellipse et persons apply for the 	of uniform thickness that then the rate at which the $ (d) \frac{1}{18\pi} \text{ cm/min.} $ $ (0, 3) \text{ and radius 2. The } $ $ (d) \text{ a circle } $ thouses. Each applies for three apply for the same
35.	(a) 3 A spherical iron ball 10 melts at a rate of 50 cm thickness of ice decrease (a) $\frac{1}{54\pi}$ cm/min. A circle touches the <i>x</i> -at locus of the centre of the (a) a hyperbola Three houses are availab one house without conshouse is	(b) 2 cm in radius is coate $\frac{3}{2}$ min. When the thices, is (b) $\frac{5}{6\pi}$ cm/min. Exist and also touches to circle is (b) a parabola pole in a locality. Three sulting others. The property of the control of the c	 (c) 1 ed with a layer of ice of kness of ice is 5 cm, the control of the cont	of uniform thickness that then the rate at which the $ (d) \frac{1}{18\pi} \text{ cm/min.} $ $ (0, 3) \text{ and radius 2. The } $ $ (d) \text{ a circle } $ thouses. Each applies for three apply for the same

27. Let $f(\mathbf{C})$ be a function satisfying $f'(\mathbf{C}) = f(\mathbf{C})$ with $f(\mathbf{C}) = 1$ and $f(\mathbf{C})$ be a function that

(a) $e + \frac{e^2}{2} - \frac{3}{2}$ (b) $e - \frac{e^2}{2} - \frac{3}{2}$ (c) $e + \frac{e^2}{2} + \frac{5}{2}$ (d) $e - \frac{e^2}{2} - \frac{5}{2}$

28. Let z_1 and z_2 be two roots of the equation $z^2 + az + b = 0$, z being complex. Further, assume

satisfies f + g + g + g + g. Then the value of the integral $\int_{0}^{1} f + g + g + g$, is

- If the angle θ between the line $\frac{x+1}{1} = \frac{y-1}{2} = \frac{z-2}{2}$ and the plane $2x y + \sqrt{\lambda}z + 4 = 0$ is such that $\sin \theta = \frac{1}{3}$ the value of λ is

Entrance

- (a) $\frac{3}{4}$ (b) $-\frac{4}{3}$ (c) $\frac{5}{3}$ (d) $-\frac{3}{5}$ The range of the function $f = 7^{-x}P_{x-3}$ is

 (a) $\{1, 2, 3\}$ (b) $\{1, 2, 3, 4, 5, 6\}$ (c) $\{1, 2, 3, 4\}$ (d) $\{1, 2, 3, 4, 5\}$ Let $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{pmatrix}$ and $(10)B = \begin{pmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{pmatrix}$. If B is the inverse of matrix A, then α is

 (a) -2 (b) -1 (c) 2 (d) 5

- **40.** If $\int_{0}^{\pi} x f \sin x dx = A \int_{0}^{\pi/2} f \sin x dx$, then A is
 - (a) 0 Entrance
- (b) π

