Subject: PHYSICS & CHEMISTRY

(Booklet Number)

Duration: 2 Hours

Maximum Marks: 100

INSTRUCTIONS

- 1. This question Paper contains only MCQ type objective questions having three categories namely category-I, category-II and category-III. Each question has four answer options given, viz. A, B, C and D.
- 2. Category-I: Only one answer is correct. Correct answer will fetch full marks 1. Incorrect answer or any combination of more than one answer will fetch ¼ marks. No answer will fetch 0 marks.
- 3. Category-II: Only one answer is correct. Correct answer will fetch full marks 2. Incorrect answer or any combination of more than one answer will fetch ½ marks.
- 4. Category-III: One or more answer(s) is (are) correct. Correct answer(s) will fetch full marks 2. Any combination containing one or more incorrect answer will fetch 0 marks. Also no answer will fetch 0 marks. If all correct answers are not marked and also no incorrect answer is marked then score = 2 x number of correct answers marked ÷ actual number of correct answers.
- 5. Questions must be answered on OMR sheet by darkening the appropriate bubble marked A, B, C or D.
- 6. Use only Black ball point pen to mark the answer by complete filling up of the respective bubbles.
- 7. Mark the answers only in the space provided. Do not make any stray mark on the OMR.
- 8. Write question booklet number and your roll number carefully in the specified locations of the **OMR**. Also fill appropriate bubbles.
- Write your name (in block letter), name of the examination centre and put your full signature in appropriate boxes in the OMR.
- 10. The OMRs will be processed by electronic means. Hence it is liable to become invalid if there is any mistake in the question booklet number or roll number entered or if there is any mistake in filling corresponding bubbles. Also it may become invalid if there is any discrepancy in the name of the candidate, name of the examination centre or signature of the candidate vis-a-vis what is given in the candidate's admit card. The OMR may also become invalid due to folding or putting stray marks on it or any damage to it. The consequence of such invalidation due to incorrect marking or careless handling by the candidate will be sole responsibility of candidate.
- 11. Mobile phones, calculators, Slide Rules, Log tables and Electronic Watches with facilities of calculator, charts Graph sheets or any other form of Tables are not allowed in the Examination hall. Possession of such devices during the examinations shall lead to cancellation of the paper besides seizing of the same.
- 12. Rough work must be done on the question paper itself. Additional blank pages are given in the question paper for rough work.
- 13. Hand over the OMR to the invigilator before leaving the Examination Hall.

Subject: PHYSICS & CHEMISTRY

সময়: ২ ঘন্টা

সর্বাধিক নম্বর: ১০০

নিৰ্দেশাবলী

- ১. এই প্রশ্নপত্রে Physics & Chemistry এই দুইভাগে MCQ ধরনের প্রশ্ন দেওয়া আছে। প্রত্যেক ভাগেই Category-I, Category-II এবং Category-III এই তিন ধরনের প্রশ্ন আছে। প্রতিটি প্রশ্নের A,B,C,D এই চারটি সম্ভাব্য উত্তর দেওয়া আছে।
- ২. Category-I :- একটি উত্তর সঠিক। সঠিক উত্তর দিলে ১ নম্বর পাবে। ভুল উত্তর দিলে অথবা যে কোন একাধিক উত্তর দিলে -১/৪ নম্বর পাবে। কোন উত্তর না দিলে শূন্য পাবে।
- ৩. Category-II :- একটি উত্তর সঠিক। সঠিক উত্তর দিলে ২ নম্বর পাবে। ভুল উত্তর দিলে অথবা যে কোন একাধিক উত্তর দিলে -১/২ নম্বর পাবে। কোন উত্তর না দিলে শান্য পাবে।
- 8. Category-III :- এক বা একাধিক উত্তর সঠিক। সব কটি সঠিক উত্তর দিলে ২ নম্বর পাবে। ভুল উত্তর দিলে অথবা কোন একটি ভুল উত্তর সহ একাধিক উত্তর দিলে শূন্য পাবে। এবং কোন উত্তর না দিলে ও শূন্য পাবে। যদি কোন ভুল উত্তর না থাকে এবং সঠিক উত্তরও সব কটি না থাকে তাহলে পাবে ২ x যে কটি সঠিক উত্তর দেওয়া হয়েছে তার সংখ্যা ÷ আসলে যে কটি সঠিক উত্তর সঠিক তার সংখ্যা।
- ৫. OMR পত্রে A,B,C,D চিহ্নিত সঠিক ঘরটি ভরাট করে উত্তর দিতে হবে।
- ৬. OMR পত্রে উত্তর দিতে তথুমাত্র কালো বল পয়েন্ট পেন ব্যাবহার করবে।
- OMR পত্রে নির্দিষ্ট স্থান ছাড়া অন্য কোথাও কোন দাগ দেবে না।
- b. OMR পত্রে নির্দিষ্ট স্থানে প্রন্নপত্রের নম্বর এবং নিজের রোল নম্বর অতি সাবধানতার সাথে লিখতে হবে এবং প্রয়োজনীয় ঘরগুলি পূরণ করতে হবে।
- ৯. OMR পত্রে নির্দিষ্ট স্থানে নিজের নাম ও পরীক্ষা কেন্দ্রের নাম লিখতে হবে এবং নিজের সম্পূর্ণ সাক্ষর দিতে হবে।
- ১০. OMR উত্তরপত্রটি ইলেকট্রনিক যন্ত্রের সাহায্যে পড়া হবে। সূতরাং প্রশ্নপত্রের নম্বর বা রোল নম্বর ভুল লিখলে অথবা ভুল ঘর ভরাট করলে উত্তরপত্রটি অনিবার্য কারণে বাতিল হতে পারে। এছাড়া পরীক্ষার্থীর নাম, পরীক্ষা কেন্দ্রের নাম বা সাক্ষরে কোন ভুল থাকলেও উত্তর পত্র বাতিল হয়ে যেতে পারে। OMR উত্তরপত্রটি ভাঁজ হলে বা তাতে অনাবশ্যক দাগ পড়লেও বাতিল হয়ে যেতে পারে। পরীক্ষার্থীর এই ধরনের ভুল বা অসর্তকতার জন্য উত্তরপত্র বাতিল হলে একমাত্র পরীক্ষার্থী নিজেই তার জন্য দায়ী থাকবে।
- ১১. মোবাইলফোন, ক্যালকুলেটর, স্লাইডরুল, লগটেবল, গণনাক্ষম ইলেকট্রনিক ঘড়ি, রেখাচিত্র, গ্রাফ বা কোন ধরণের তালিকা পরীক্ষা কক্ষে আনা যাবে না। আনলে সেটি বাজেয়াপ্ত হবে এবং পরীক্ষার্থীর ওই পরীক্ষা বাতিল করা হবে।
- ১২. প্রশ্নপত্রের শেষে রাফ কাজ করার জন্য ফাঁকা জায়গা দেওয়া আছে। অন্য কোন কাগজ এই কাজে ব্যবহার করবে না।
- ১৩. পরীক্ষা কক্ষ ছাড়ার আগে OMR পত্র অবশ্য ই পরিদর্শককে দিয়ে যাবে।

SPACE FOR ROUGH WORK

a top and the standards.

PHYSICS

Category – I (Q.1 to Q.30)

Only one answer is correct. Correct answer will fetch full marks 1. Incorrect answer or any combination of more than one answer will fetch -1/4 marks. No answer will fetch 0 marks.

একটি উত্তর সঠিক । সঠিক উত্তর দিলে ১ নম্বর পাবে । ভুল উত্তর দিলে অথবা যে কোন একাধিক উত্তর দিলে –১/৪ নম্বর পাবে । কোন উত্তর না দিলে শূন্য পাবে ।

Unless otherwise specified in the question, the following values should be used

Mechanical equivalent of heat, $J = 4.2 \text{ J cal}^{-1}$

Acceleration due to gravity, $g = 9.8 \text{ ms}^{-2}$

Absolute zero temperature = -273 °C

The following symbols usually carry meaning as given below:

 ε_0 : electric permittivity of free space

 μ_0 : magnetic permeability of free space

R: universal gas constant

প্রশ্নে অনারকম বলা না থাকলে, নীচের মানগুলি ব্যবহার করতে হবে ।

তাপের যান্ত্রিক তুল্যাঙ্ক, $J = 4.2 \text{ J cal}^{-1}$

অভিকর্ষজ ত্বরণ, $g = 9.8 \text{ ms}^{-2}$

পরমশ্না উষ্ণতা = -273 °C

নীচের চিক্নগুলি সাধারণভাবে নীচে প্রদত্ত অর্থে ব্যবহৃত:

ε₀ : শ্নাস্থানের তড়িৎ-ডেদ্যতা

μ₀ : শ্নাস্থানের চৌম্বক ভেদাতা

R : সর্বজনীন গ্যাস-ধুবক

- 1. The velocity of a particle executing a simple harmonic motion is 13 ms⁻¹, when its distance from the equilibrium position (Q) is 3 m and its velocity is 12 ms⁻¹, when it is 5 m away from Q. The frequency of the simple harmonic motion is
 - $(A) \quad \frac{5\pi}{8}$

(B) $\frac{5}{8\pi}$

(C) $\frac{8\pi}{5}$

(D) $\frac{8}{5\pi}$

সরল দোলগতি সম্পন্ন একটি কণা সাম্যাবস্থা (Q) থেকে যখন 3 m দূরে থাকে তখন তার বেগ হয় $13~{
m ms}^{-1}$ এবং যখন Q থেকে 5 m দূরে থাকে তখন তার বেগ হয় $12~{
m ms}^{-1}$ । সরল দোলগতিটির কম্পাঙ্ক হল

 $(A) \quad \frac{5\pi}{8}$

(B) $\frac{5}{8\pi}$

(C) $\frac{8\pi}{5}$

- (D) $\frac{8}{5\pi}$
- 2. A uniform string of length L and mass M is fixed at both ends while it is subject to a tension T. It can vibrate at frequencies (ν) given by the formula (where n = 1, 2, 3,)
 - (A) $v = \frac{n}{2} \sqrt{\frac{T}{ML}}$

(B) $v = \frac{n}{2L} \sqrt{\frac{T}{M}}$

(C) $v = \frac{1}{2n} \sqrt{\frac{T}{ML}}$

(D) $v = \frac{n}{2} \sqrt{\frac{TL}{M}}$

L দৈর্ঘা এবং M ভরের একটি সুষম তার দুই প্রান্তে T টানে আবদ্ধ । এটি যে কম্পাঙ্কগুলিতে (ν) কম্পিত হতে পারে তার গাণিতিক সূত্রটি হল (যেখানে n=1,2,3,....)

(A) $v = \frac{n}{2} \sqrt{\frac{T}{ML}}$

(B) $v = \frac{n}{2L} \sqrt{\frac{T}{M}}$

(C) $v = \frac{1}{2n} \sqrt{\frac{T}{ML}}$

(D) $v = \frac{n}{2} \sqrt{\frac{TL}{M}}$

3,	A uniform capillary tube of length <i>l</i> and inner radius r with its upper end sealed is submerged vertically into water. The outside pressure is p _o and surface tension of water
	is γ . When a length x of the capillary is submerged into water, it is found that water levels inside and outside the capillary coincide. The value of x is

(A)
$$\frac{l}{\left(1 + \frac{p_o r}{4\gamma}\right)}$$
 (B) $l\left(1 - \frac{p_o r}{4\gamma}\right)$ (C) $l\left(1 - \frac{p_o r}{2\gamma}\right)$ (D) $\frac{l}{\left(1 + \frac{p_o r}{2\gamma}\right)}$

উপর প্রান্ত বন্ধ এমন একটি l দৈর্ঘ্য এবং r ব্যাসার্ধের কৈশিক নলকে জলের মধ্যে উল্লম্বভাবে নিমচ্জিত করা হল । বাইরের চাপ p_0 এবং জলের পৃষ্ঠটান γ । যখন কৈশিক নলটির x দৈর্ঘ্য জলের মধ্যে নিমচ্জিত করা হয়, দেখা যায় কৈশিক নলের ভিতরের এবং বাইরের জলতল একই হয়েছে । x এর মান হল

(A)
$$\frac{l}{\left(1 + \frac{p_o r}{4\gamma}\right)}$$
 (B) $l\left(1 - \frac{p_o r}{4\gamma}\right)$ (C) $l\left(1 - \frac{p_o r}{2\gamma}\right)$ (D) $\frac{l}{\left(1 + \frac{p_o r}{2\gamma}\right)}$

- 4. A liquid of bulk modulus k is compressed by applying an external pressure such that its density increases by 0.01%. The pressure applied on the liquid is
 - $(A) \quad \frac{k}{10000}$
- (B) $\frac{k}{1000}$
- (C) 1000 k
- (D) 0.01 k

k আয়তন বিকার গুণাঙ্কের একটি তরলকে বাইরে থেকে চাপ প্রয়োগ করে এমনভাবে সংকুচিত করা হল যাতে তরলটির ঘনত্ব 0.01% বৃদ্ধি পায় । তরলটির উপর প্রযুক্ত চাপ হল

- (A) $\frac{k}{10000}$
- (B) $\frac{k}{1000}$
- (C) 1000 k
- (D) 0.01 k
- 5. Temperature of an ideal gas, initially at 27 °C, is raised by 6 °C. The rms velocity of the gas molecules will,
 - (A) increase by nearly 2%

(B) decrease by nearly 2%

(C) increase by nearly 1%

(D) decrease by nearly 1%

প্রাথমিকভাবে 27 °C উষ্ণতায় থাকা একটি আদর্শ গ্যাসের উষ্ণতা 6 °C বৃদ্ধি করা হল । গ্যাস অণুগুলির rms বেগ

(A) প্রায় 2% বৃদ্ধি পাবে

(B) প্রায় 2% হ্রাস পাবে

(C) প্রায় 1% বৃদ্ধি পাবে

(D) প্রায় 1% হ্রাস পাবে

6.		ne path in a P-V diagram	· · · · · · · · · · · · · · · · · · ·	V_0) to a state $(2P_0, 2V_0)$ osorbed by the gas in the
	(A) $3 P_0 V_0$	(B) $\frac{9}{2} P_0 V_0$	(C) $6 P_0 V_0$	(D) $\frac{3}{2}P_0V_0$

2 মোল পরিমাণ এক-পরমাণুক আদর্শ গ্যাসকে একটি P-V লেখচিত্রের (P_0 , V_0) - অবস্থা থেকে ($2P_0$, 2Va) অবস্থায় একটি সরলরেখা বরাবর নিয়ে যাওয়া হল । এই প্রক্রিয়াটিতে গ্যাসটি যে পরিমাণ তাপ শোষণ করে তা হল

(A) $3 P_0 V_0$ (B) $\frac{9}{2} P_0 V_0$ (C) $6 P_0 V_0$ (D) $\frac{3}{2} P_0 V_0$

A solid rectangular sheet has two different coefficients of linear expansion α_1 and α_2 along its length and breadth respectively. The coefficient of surface expansion is (for α_1 t << 1, α_2 t << 1)

(A) $\frac{\alpha_1 + \alpha_2}{2}$

(C) $\frac{4\alpha_1\alpha_2}{\alpha_1+\alpha_2}$

একটি কঠিন আয়তাকার পাতের দৈর্ঘ্য এবং প্রস্থ বরাবর রৈখিক প্রসারণ গুণাঙ্কদৃটি ভিন্ন এবং যথাক্রমে $lpha_{\scriptscriptstyle I}$ এবং α_2 । ক্ষেত্র প্রসারণ গুণাঙ্কটি হল (যেখানে α_1 t << 1, α_2 t<<1)

(A) $\frac{\alpha_1 + \alpha_2}{2}$

(B) $2(\alpha_1 + \alpha_2)$

(C) $\frac{4\alpha_1\alpha_2}{\alpha_1+\alpha_2}$

(D) $\alpha_1 + \alpha_2$

A positive charge Q is situated at the centre of a cube. The electric flux through any face 8. of the cube is (in SI units)

(A) $\frac{Q}{6\varepsilon_0}$

(C) $\frac{Q}{4\pi\epsilon_0}$ (D) $\frac{Q}{6\pi\epsilon_0}$

একটি ধনাত্মক আধান Q একটি ঘনকের কেন্দ্রে রয়েছে । ঘনকটির যে-কোনো তলের মধ্য দিয়ে তড়িৎ ফ্লাক্স হবে (SI এককে)

(A) $\frac{Q}{6\varepsilon_0}$

(B) $4\pi Q$

(C) $\frac{Q}{4\pi\epsilon_0}$ (D) $\frac{Q}{6\pi\epsilon_0}$

9. Three capacitors of capacitance 1.0, 2.0 and 5.0 μF are connected in series to a 10 V source. The potential difference across the 2.0 μF capacitor is

(A)
$$\frac{100}{17}$$
 V

(B)
$$\frac{20}{17}$$
 V

(C)
$$\frac{50}{17}$$
 V

 $1.0,\,2.0$ এবং $5.0\,\mu\text{F}$ -এর তিনটি ধারক একটি $10\,V$ উৎসের সঙ্গে শ্রেণি সমবায়ে যুক্ত $\pm 2.0\,\mu\text{F}$ ধারকটির দুইপ্রান্তের বিন্তব পার্থক্য হল

(A)
$$\frac{100}{17}$$
 V

(B)
$$\frac{20}{17}$$
 V

(C)
$$\frac{50}{17}$$
 V

10. A charge of 0.8 coulomb is divided into two charges Q_1 and Q_2 . These are kept at a separation of 30 cm. The force on Q_1 is maximum when

(A)
$$Q_1 = Q_2 = 0.4 C$$

(B)
$$Q_1 \approx 0.8 \text{ C}, Q_2 \text{ negligible}$$

(C)
$$Q_1$$
 negligible, $Q_2 \approx 0.8$ C

(D)
$$Q_1 = 0.2 \text{ C}, Q_2 = 0.6 \text{ C}$$

0.8 কুলম পরিমাণ একটি আধানকে Q_1 এবং Q_2 মানের দুটি আধানে বিজ্ঞ করা হল এবং তাদেরকে পরস্পরের থেকে $30~{
m cm}$ দুরে রাখা হল । Q_1 আধানের উপর বলের মান সবের্বাচ হয় যখন

(A)
$$Q_1 = Q_2 = 0.4 \text{ C}$$

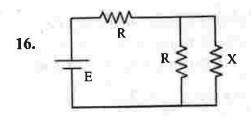
(D)
$$Q_1 = 0.2 \text{ C}, Q_2 = 0.6 \text{ C}$$

			Pe	C-2017		
11.		magnetic field due t endicular bisector a			ire segment of	length L at a point on its
	(A)	decreases as $\frac{1}{r}$	46 4			
	(B)	decreases as $\frac{1}{r^2}$.				100 100
		1				

decreases as $\frac{r^3}{r}$. approaches a finite limit as $r \rightarrow \infty$.

একটি তড়িৎবাহী ঋজু তারের L দৈর্ঘ্যের একটি অংশের জন্য তারটির লম্বসমদ্বিখন্ডকের উপরিস্থিত r দূরবর্তী (r >> L) কোনো বিন্দুতে চৌশ্বক ক্ষেত্র

I freque for two contributions of making the beginning

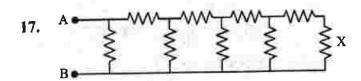

no no em vi dos sontines en consultantes

- (A) ¹ অনুযায়ী হ্রাস পায় !
- (B) 1/2 অনুযায়ী হ্রাস পায়।
- (C) <u>1</u> অনুযায়ী হ্রাস পায় ।
- (D) একটি সসীম মানের নিকটবর্তী হয়, যখন $r \to \infty$ ।
- The magnets of two suspended coil galvanometers are of the same strength so that they 12. produce identical uniform magnetic fields in the region of the coils. The coil of the first one is in the shape of a square of side a and that of the second one is circular of radius $a/\sqrt{\pi}$. When the same current is passed through the coils, the ratio of the torque experienced by the first coil to that experienced by the second one is
 - (B) 1:1 (C) $\pi:1$ (D) 1: π

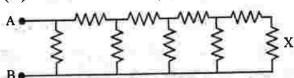
দুটি প্রলম্বিত-কুন্ডলী গ্যালভানোমিটারের চুম্বকদুটি সমক্ষমতা বিশিষ্ট হওয়ায় কুন্ডলীর স্থলে তারা অভিন, সুষম চৌম্বক ক্ষেত্র সৃষ্টি করে । প্রথমটির কুন্ডলী বগাকার, যার বাহুর দৈর্ঘ্য a এবং দ্বিতীয়টির কুন্ডলী বৃত্তাকার, যার ব্যাসার্ধ $a/\sqrt{\pi}$ । সমমানের তড়িৎ-প্রবাহ কুন্ডলীদূটির মধ্য দিয়ে প্রবাহিত হলে প্রথম ও দ্বিতীয় কুন্ডলীর উপর ক্রিয়াশীল টর্কের অনুপাত হবে

(A)
$$1:\frac{1}{\sqrt{\pi}}$$
 (B) $1:1$ (C) $\pi:1$ (D) $1:\pi$

(A) 0.5 m (B) 0.2 m								
তড়িৎক্ষেত্রের যৌথ ক্রিয়ায় একটি প্রোটন $10^6~{ m ms}^{-1}~{ m Tg}$ ম বেগে Y-অক্ষ অভিমুখে গতিশ্বতি তড়িৎক্ষেত্রটি বন্ধ করলে প্রোটনটি বৃত্তকার পথে গতিশীল হয় । বৃত্তটির ব্যাসার্থ হল প্রায় $\left({ m পrg}:{ m CM}$ টনের ${ m e}\over{ m m}$ অনুপাত $pprox 10^{ m K}~{ m Ckg}^{-1} ight)$ (A) $0.5~{ m m}$ (B) $0.2~{ m m}$ (C) $0.1~{ m m}$ (D) 0	.05 m							
তড়িৎক্ষেত্রটি বন্ধ করলে প্রোটনটি বৃত্তকার পথে গতিশীল হয় । বৃত্তটির ব্যাসার্থ হল প্রায় $\left(\text{প্রদন্ত} : \text{প্রোটনের } \frac{e}{m} \text{ wনুপাত } \approx 10^8 \text{ Ckg}^{-1} \right)$ (A) 0.5 m (B) 0.2 m (C) 0.1 m (D) 0	মানের একটি							
$\left($ প্রদন্ত : প্রোটনের $\frac{e}{m}$ অনুপাত $pprox 10^{8}~{ m Ckg^{-1}} ight)$ (A) $0.5~{ m m}$ (B) $0.2~{ m m}$ (C) $0.1~{ m m}$ (D) 0	শীল আছে ।							
(A) 0.5 m (B) 0.2 m (C) 0.1 m (D) 0								
(A) 0.5 m (B) 0.2 m								
	0.05 m							
14. When the frequency of the AC voltage applied to a series LCR circuit is increased from a low value, the impedance of the circuit	When the frequency of the AC voltage applied to a series LCR circuit is gradually increased from a low value, the impedance of the circuit							
(A) monotonically increases (B) first increases and then d	lecreases							
(C) first decreases and then increases (D) monotonically decreases								
যখন একটি শ্রেণি LCR বর্তনীতে প্রযুক্ত AC ভোল্টেজ-এর কম্পাঙ্ক ক্রমান্বয়ে স্কল্প মান থেকে বৃদ্ধি করা হয়,								
তখন বর্তনীর প্রতিবাধা (impedance)								
(A) ক্রমবর্ধমান। (B) প্রথমে বৃদ্ধি পায় এবং পরে ছা	স পায়।							
(C) প্রথমে ছাস পায় এবং পরে বৃদ্ধি পায় । (D) ক্রমন্থসমান ।								
15. Six wires, each of resistance r, are connected so as to form a tetrahedron. The resistance of the combination when current enters through one corner and leasome other corner is	aves through							
(A) r (B) 2r (C) $\frac{r}{3}$ (D) $\frac{1}{2}$	$\frac{\mathbf{r}}{2}$							
প্রতিটির রোধ r-এরকম ছ-টি তারকে সংযুক্ত করে একটি চতুন্তলক গঠন করা হল । চতুন্ত একটি কৌণিক বিন্দু দিয়ে তড়িৎ-প্রবাহ প্রবেশ করে অপর কোনো একটি কৌণিক বিন্দু দি	ঙ্গকটির কোনো য়ে নির্গত হলে							
সমবায়টির তুল্য রোধ হবে								
	$\frac{\Gamma}{2}$							
(A) r (B) $2r$ (C) $\frac{3}{3}$	2 PΤΩ							


Consider the circuit shown in the figure. The value of the resistance X for which the thermal power generated in it is practically independent of small variation of its resistance is

- $(A) \quad X = R$
- (B) $X = \frac{R}{3}$
- (C) $X = \frac{R}{2}$
- (D) X = 2R


চিত্রে প্রদর্শিত বর্তনীটি লক্ষ করো । X রোধের যে মানের জন্য এর মধ্যে উৎপন্ন তাপীয় ক্ষমতা বাস্তবে ওই রোধের স্কল্প পরিবর্তনের উপর নির্ভরশীল নয় তা হল

- $(A) \quad X = R$
- (B) $X = \frac{R}{3}$
- (C) $X = \frac{R}{2}$
- (D) X = 2R

Consider the circuit shown in the figure where all the resistances are of magnitude 1 $k\Omega$. If the current in the extreme right resistance X is 1 mA, the potential difference between A and B is

- (A) 34 V
- (B) 21 V
- (C) 68 V
- (D) 55 V

চিত্রে প্রদর্শিত বর্তনীটি লক্ষ করো । যেখানে সকল রোধের মান l kΩ । যদি দক্ষিণপ্রান্তবর্তী রোধ X-এর মধ্য দিয়ে প্রবাহিত তড়িং l mA হয় তাহলে A এবং B এর মধ্যে বিভবপার্থক্য হয়

- (A) 34 V
- (B) 21 V
- (C) 68 V
- (D) 55 V

- The ratio of the diameter of the sun to the distance between the earth and the sun is 18. approximately 0.009. The approximate diameter of the image of the sun formed by a concave spherical mirror of radius of curvature 0.4 m is
 - $4.5 \times 10^{-6} \text{ m}$

(B) 4.0×10^{-6} m

 $3.6 \times 10^{-3} \text{ m}$ (C)

(D) 1.8×10^{-3} m

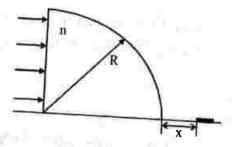
সূর্যের ব্যাস এবং পৃথিবী ও সূর্যের দূরত্বের অনুপাত প্রায় 0.009 । তাহলে 0.4 m বক্রতা-ব্যাসার্ধ বিশিষ্ট একটি গোলীয় অবতল দর্পণে গঠিত সর্যের প্রতিবিশ্বের ব্যাস প্রায়

(A) 4.5×10^{-6} m

(B) 4.0×10^{-6} m

(C) 3.6×10^{-3} m

- (D) 1.8×10^{-3} m
- Two monochromatic coherent light beams A and B have intensities L and $\frac{L}{4}$ respectively. 19. If these beams are superposed, the maximum and minimum intensities will be
 - (A) $\frac{9L}{4}$, $\frac{L}{4}$
- (B) $\frac{5L}{4}$, 0
- (C) $\frac{5L}{2}$, 0
- (D) $2L, \frac{L}{2}$

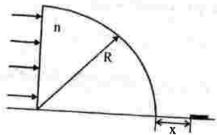

দুটি সুসংগত আলোক রশ্মিণ্ডচ্ছ A এবং B-এর তীব্রতা যথাক্রমে L এবং $\frac{L}{4}$ । রশ্মিণ্ডচ্ছদুটি উপরিপাতিত করা হলে, সর্বাধিক এবং সর্বনিম্ন তীব্রতা হবে ।

- (A) $\frac{9L}{4}$, $\frac{L}{4}$ (B) $\frac{5L}{4}$, 0 (C) $\frac{5L}{2}$, 0 (D) 2L, $\frac{L}{2}$
- 20. A point object is held above a thin equiconvex lens at its focus. The focal length is 0.1 m and the lens rests on a horizontal thin plane mirror. The final image will be formed at
 - infinite distance above the lens.
 - 0.1 m above the center of the lens.
 - infinite distance below the lens. (C)
 - 0.1 m below the center of the lens.

একটি বন্ধু-বিন্দুকে একটি পাতলা সমোত্তল লেন্সের উপরে তার ফোকাস বিন্দুতে রাখা হল । লেন্সটির ফোকাস দৈর্ঘ্য 0.1 m এবং লেন্সটি অনুভূমিকভাবে রাখা একটি পাতলা সমতল দর্পণের উপর রয়েছে । চড়ান্ত প্রতিবিশ্বটি গঠিত হবে

- লেন্সের উপরে অসীম দূরত্বে । (A)
- লেন্সের উপরে লেন্সের কেন্দ্র থেকে 0.1 m দূরত্বে (B)
- লেন্সের নীচে অসীম দূরত্বে । (C)
- (D) লেন্ডের নীচে লেন্ডের কেন্দ্র থেকে 0.1 m দূরত্বে

21.


A parallel beam of light is incident on a glass prism in the shape of a quarter cylinder of radius R = 0.05 m and refractive index n = 1.5, placed on a horizontal table as shown in the figure. Beyond the cylinder, a patch of light is found whose nearest distance x from

(A) $(3\sqrt{3}-4) \times 10^{-2} \text{ m}$

(B) $(2\sqrt{3}-2) \times 10^{-2} \text{ m}$

(C) $(3\sqrt{5}-5) \times 10^{-2} \text{ m}$

(D) $(3\sqrt{2}-3)\times 10^{-2} \text{ m}$

একটি সমান্তরাল আলোক রশ্মিগুচ্ছ একটি অনুভূমিক টেবিলের উপর রাখা (চিত্রে প্রদর্শিত) একটি কাচের সিকি (এক চতুর্থাংশ) বেলনাকৃতি প্রিজমের উপর আপতিত হল । প্রিজমটির ব্যাসার্ধ R = 0.05 m এবং প্রতিসরাঙ্ক n = 1.5 । বেলনের অপরদিকে একটি ক্ষুদ্র আলোকিত অঞ্চল পাওয়া যায়, বেলনটি থেকে যার

(A) $(3\sqrt{3}-4) \times 10^{-2} \,\mathrm{m}$

(B) $(2\sqrt{3}-2)\times 10^{-2} \text{ m}$

(C) $(3\sqrt{5}-5) \times 10^{-2} \text{ m}$

- (D) $(3\sqrt{2}-3) \times 10^{-2} \text{ m}$
- The de Broglie wavelength of an electron is 0.4×10^{-10} m when its kinetic energy is 22. 1.0 keV. Its wavelength will be 1.0×10^{-10} m, when its kinetic energy is (A) 0.2 keV
- (B) 0.8 keV
- (C) 0.63 keV

একটি ইলেকটনের গতিশক্তি $1.0~{
m keV}$ হলে তার ডি ব্রগলি (de Broglie) তরঙ্গদৈর্ঘ্য হয় $0.4 imes 10^{-10}~{
m m}$ । এটির তরঙ্গদৈর্ঘ্য $1.0 imes 10^{-10} \, \mathrm{m}$ হবে যখন তার গতিশক্তি

- (A) 0.2 keV
- (B) 0.8 keV
- 0.63 keV
- (D) 0.16 keV

When light of frequency v_1 is incident on a metal with work function W 23. (where $hv_1 > W$), the photocurrent falls to zero at a stopping potential of V_1 . If the frequency of light is increased to v2, the stopping potential changes to V2. Therefore, the charge of an electron is given by

(A)
$$\frac{W(v_2 + v_1)}{v_1 V_2 + v_2 V_1}$$
 (B) $\frac{W(v_2 + v_1)}{v_1 V_1 + v_2 V_2}$

(B)
$$\frac{W(v_2 + v_1)}{v_1 V_1 + v_2 V_2}$$

(C)
$$\frac{W(v_2 - v_1)}{v_1 V_2 - v_2 V_1}$$

(D)
$$\frac{W(v_2 - v_1)}{v_2 V_2 - v_1 V_1}$$

W কার্য-অপেক্ষকযুক্ত একটি ধাতুর উপর যখন $v_{\rm l}$ কম্পাঙ্কের (যেখানে $hv_{\rm l}>W$) আলো আপতিত হয়, তখন আলোক-তড়িত-প্রবাহ হ্রাস পেয়ে ${
m V_1}$ নিরোধী বিভবে শূন্য হয় । আলোক কম্পাঙ্ক বৃদ্ধি করে ${
m v_2}$ করা হলে নিরোধী বিভব পরিবর্তিত হয়ে ${f V}_2$ হয় । তাহলে একটি ইলেকট্রনের আধান হবে

(A)
$$\frac{W(v_2 + v_1)}{v_1 V_2 + v_2 V_1}$$

(B)
$$\frac{W(v_2 + v_1)}{v_1 V_1 + v_2 V_2}$$

(C)
$$\frac{W(v_2 - v_1)}{v_1 V_2 - v_2 V_1}$$

(D)
$$\frac{W(v_2 - v_1)}{v_2 V_2 - v_1 V_1}$$

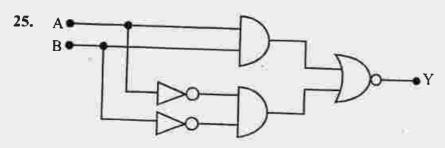
Radon-222 has a half-life of 3.8 days. If one starts with 0.064 kg of Radon-222, the 24. quantity of Radon-222 left after 19 days will be

(A) 0.002 kg

(B) 0.062 kg

0.032 kg(C)

(D) 0.024 kg

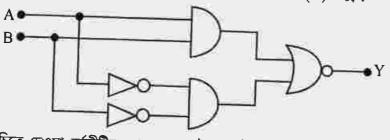

রেডন-222 এর অর্ধায় 3.8 দিন । শুরুতে 0.064 kg রেডন-222 থাকলে 19 দিন পর রেডন-222 এর যে পরিমাণ অবশিষ্ট থাকবে তা হল

0.002 kg(A)

(B) 0.062 kg

(C) = 0.032 kg

(D) 0.024 kg


In the given circuit, the binary inputs at A and B are both 1 in one case and both 0 in the next case. The respective outputs at Y in these two cases will be:

(A) = 1, 1

(B) 0, 0

(C) = 0, 1

(D) 1, 0

চিত্রে দেওয়া বর্তনীটিতে, A এবং B উভয় বাইনারি ইনপুট-ই প্রথম ক্ষেত্রে । এবং পরের ক্ষত্রে 0 । এই দুই ক্ষেত্রে Y-তে আনুষঙ্গিক আউটপুট হবে যথাক্রমে

(A) 1, 1

(B) 0, 0

(C) = 0, 1

(D) 1,0

- 26. When a semiconducting device is connected in series with a battery and a resistance, a current is found to flow in the circuit. If, however, the polarity of the battery is reversed, practically no current flows in the circuit. The device may be
 - (A) a p-type semiconductor

- (B) a n-type semiconductor
- (C) an intrinsic semiconductor
- (D) a p-n junction

একটি অর্ধপরিবাহী সরঞ্জাম-কে একটি ব্যাটারি এবং একটি রোধের সঙ্গে শ্রেণি বর্তনীতে যুক্ত করলে বর্তনীটিতে একটি তড়িং-প্রবাহ হয় । কিন্তু ব্যাটারিটির মেরু উলটে দেওয়া হলে বর্তনীটিতে বাস্তবে প্রায় কোনো তড়িং প্রবাহিত হয় না । সরঞ্জামটি হতে পারে

(A) একটি p-টাইপ অর্ধপরিবাহী

(B) একটি n-টাইপ অর্ধপরিবাহী

(C) একটি বিশুদ্ধ অর্ধপরিবাহী

- (D) একটি p-n সংযোগ
- 27. The dimension of the universal constant of gravitation, G, is
 - (A) [ML²T⁻¹]

(B) [M-1L3T-2]

(C) [M-1L2T-2]

(D) [ML3T-2]

সর্বজনীন মহাকর্ষীয় ধুবক, G-এর মাত্রাটি হল

(A) $[ML^2T^{-1}]$

(B) $\int M^{-1}L^3T^{-2}$

(C) $[M^{-1}L^2T^{-2}]$

(D) $[ML^3T^{-2}]$

28.	mutu	al force of attrac	B (both initially at rest				
	2v, u	ie speed of the ce	entre of mass is				
ub	(A)	Zero	(B) v	(C)	$\frac{3v}{2}$	(D)	$-\frac{3v}{2}$
	দুটি ক	না A এবং B (উড	সয়েই প্রাথমিক অবস্থায় স্থির)	পারত	ারিক আকর্ষণ বলের	প্রভাবে	পরস্পরের দিকে
	যাত্রা (শুরু করল । যে মুছু	র্ত A-এর দুতি v এবং B-এর	ৰ দুতি 2	থ হয়, তখন ভরকেন	দটির দুতি	হয়
	(A)	Zero	(B) v	(C)	$\frac{3\mathbf{v}}{2}$	(D)	$-\frac{3v}{2}$
29.	Thre	e vectors $\overrightarrow{A} =$	$\overrightarrow{ai} + \overrightarrow{j} + \overrightarrow{k}; \overrightarrow{B} = \overrightarrow{i} + 1$	oj+ Ī	\vec{c} and $\vec{C} = \vec{i} + \vec{j}$	j+ ck	are mutually
		endicular ($\overrightarrow{i}, \overrightarrow{j}$ and ective values of a	\overrightarrow{k} are unit vectors and \overrightarrow{k} are	along	X, Y and Z axi	s respe	ctively). The
	(A)	0, 0, 0	Old Control	(B)	$-\frac{1}{2}$, $-\frac{1}{2}$, $-\frac{1}{2}$		
	(C)	1,-1,1		(D)	$\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$		
			$\vec{j} + \vec{k}; \vec{B} = \vec{i} + \vec{b} \vec{j} + \vec{k}$				
	হল য	াথাক্রমে X, Y ও Z	অক্ষ বরাবর একক ভেক্টর) ।	a, b	এবং c-এর মান ছল	যথাক্রমে	
	(A)	0, 0, 0	be a fail of	(B)	$-\frac{1}{2}$, $-\frac{1}{2}$, $-\frac{1}{2}$		
	(C)	1,-1,1		(D)	$\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$		g in.
	23		WANTED TO SEE THE				
30.			starts from rest at $x = 0$ here t is time and $k = 1$				
		conds is	and the state of t				
		36 m	(B) 72 m		108 m	(D)	18 m
	1 kg	হু ভরের একটি ব্লক .	$_{X}=0$ তে স্থিৱাবস্থা থেকে চ	লতে শু	রু করল এবং F =	kt বলের	ৰ প্ৰভাবে x-অক্ষ
	_		খানে t হল সময় এবং k =				
	তা হ	ল					
	(A)	36 m	(B) 72 m	(C)	108 m	(D)	18 m

Category - II (Q.31 to Q.35)

Only one answer is correct. Correct answer will fetch full marks 2. Incorrect answer or any combination of more than one answer will fetch -1/2 marks. No answer will fetch 0 marks.

একটি উত্তর সঠিক । সঠিক উত্তর দিলে ২ নম্বর পাবে । ভুল উত্তর দিলে অথবা যে কোন একাধিক উত্তর দিলে -১/২ नम्बत्र भारत । कान উত্তর না দিলে भূনা भारत ।

A particle with charge Q coulomb, tied at the end of an inextensible string of length R meter, revolves in a vertical plane. At the centre of the circular trajectory there is a fixed charge of magnitude Q coulomb. The mass of the moving charge M is such that $Mg = \frac{Q^2}{4\pi\epsilon_* R^2}$. If at the highest position of the particle, the tension of the string just vanishes, the horizontal velocity at the lowest point has to be

(A) 0

(B) $2\sqrt{gR}$

(C) $\sqrt{2gR}$

(D) $\sqrt{5gR}$

R মিটার দৈর্ঘ্যের একটি অপ্রসার্য দড়ির একপ্রান্তে বাঁধা Q কুলম্ব আধানের একটি কণা উল্লম্ব তলে ঘ্ণায়মান । বৃত্তাকার পথের কেন্দ্রে Q কুলস্ব মানের একটি স্থির আধান আছে । গতিশীল আধানটির ভর M এমন যে, $Mg = rac{Q^2}{4\pi\epsilon_{\kappa}R^2}$ হয় । কণাটি সর্বোচ্চ অবস্থানে পৌঁছানো মাত্র যদি দড়ির টান শূন্য হয়, তবে সর্বনিশ্ন অবস্থানে অনুভূমিক বেগ হতে হবে

(A) 0

- (C) $\sqrt{2gR}$ (D) $\sqrt{5gR}$

A bullet of mass 4.2×10^{-2} kg, moving at a speed of 300 ms⁻¹, gets stuck into a block with a mass 9 times that of the bullet. If the block is free to move without any kind of friction, the heat generated in the process will be

(A) 45 cal

(B) 405 cal

(C) 450 cal

(D) 1701 cal

 $300~{
m ms^{-1}}$ বেগে গতিশীল $4.2 imes 10^{-2}~{
m kg}$ ভরের একটি বুলেট, বুলেটের ভরের 9 গুণ ভরবিশিষ্ট একটি ব্রকে গেঁথে গেল । ব্রকটি যদি ঘর্ষণহীন ভাবে অবাধে গতিশীল হতে সক্ষম হয়, প্রক্রিয়াটিতে উৎপন্ন তাপের পরিমাণ হবে প্রায়

(A) 45 cal

405 cal

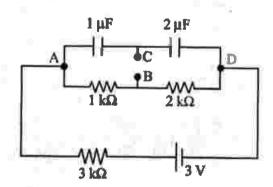
(C) 450 cal

(D) 1701 cal

- 33. A particle with charge e and mass m, moving along the X-axis with a uniform speed u, enters a region where a uniform electric field E is acting along the Y-axis. The particle starts to move in a parabola. Its focal length (neglecting any effect of gravity) is
- (B) $\frac{eE}{2mu^2}$ (C) $\frac{mu}{2eE}$
- (D) $\frac{\text{mu}^2}{2e\text{F}}$

e আধানযুক্ত এবং m ভরের একটি কণা X-অক্ষ বরাবর u সৃষমবেগে গতিশীল হয়ে Y-অক্ষ বরাবর ক্রিয়াশীল একটি সুষম তড়িৎক্ষেত্র E-তে প্রবেশ করল । কণাটি অধিবৃত্তাকার পথে গতিশীল হলে (অভিকর্মজনিত প্রভাব উপেক্ষা করে) অধিবৃত্তটির নাভি দৈর্ঘা (focal length) হবে

- (A) $\frac{2mu^2}{eF}$ (B) $\frac{eE}{2mu^2}$ (C) $\frac{mu}{2eE}$ (D) $\frac{mu^2}{2eE}$


- A unit negative charge with mass M resides at the midpoint of the straight line of length 34. 2a adjoining two fixed charges of magnitude +Q each. If it is given a very small displacement $x(x \ll a)$ in a direction perpendicular to the straight line, it will
 - (A) come back to its original position and stay there
 - execute oscillations with frequency $\frac{1}{2\pi} \sqrt{\frac{Q}{4\pi\epsilon_0 Ma^3}}$
 - (C) fly to infinity
 - (D) execute oscillations with frequency $\frac{1}{2\pi} \sqrt{\frac{Q}{4\pi\epsilon_0 Ma^2}}$

M ভরের একটি একক ঋণাত্মক আধান দুটি +Q মানের ্স্থির আধানের সংযোগকারী 2a দৈর্ঘ্যের সরলরেখার মধ্যবিন্দুতে অবস্থান করছে । যদি ঋণাত্মক আধানটিকে সংযোগকারী সরলরেখাটির লম্ব অভিমুখে খুব অল্প সরণ x(x << a) দেওয়া হয়, তাহলে এটি

- প্রাথমিক অবস্থানে ফিরে আসে এবং সেখানে অবস্থান করে
- $\frac{1}{2\pi} \sqrt{\frac{Q}{4\pi\epsilon_0 Ma^3}}$ কম্পাঙ্কে আন্দোলিত হয়
- (C) অসীমে চলে যায়
- (D) $\frac{1}{2\pi}\sqrt{\frac{Q}{4\pi\epsilon_0 Ma^2}}$ কম্পাঙ্কে আন্দোলিত হয়

Consider the circuit given here. The potential difference V_{BC} between the points B and C is

- (A) 1 V
- (B) 0.5 V
- (C) 0 V
- (D) -1 V

চিত্রে দেওয়া বর্তনীটি বিবেচনা করো । ${f B}$ এবং ${f C}$ বিস্কুন্মের মধ্যে বিভব প্রভেদ ${f V}_{BC}$ হবে

- (A) 1 V
- (B) 0.5 V
- (C) 0 V
- (D) -1 V

Category - III (Q.36 to Q.40)

One or more answer(s) is (are) correct. Correct answer(s) will fetch full marks 2. Any combination containing one or more incorrect answer will fetch 0 marks. Also no answer will fetch 0 marks. If all correct answers are not marked and also no incorrect answer is marked then score = 2 × number of correct answers marked + actual number of correct answers.

এক বা একাধিক উত্তর সঠিক । সব কটি সঠিক উত্তর দিলে ২ নম্বর পাবে । ভুল উত্তর দিলে অথবা কোন একটি ভুল উত্তর সহ একাধিক উত্তর দিলে শূন্য পাবে । এবং কোন উত্তর না দিলে শূন্য পাবে । যদি কোন ভুল উত্তর না থাকে এবং সঠিক উত্তরও সব কটি না থাকে তাহলে পাবে ২ × যে কটি সঠিক উত্তর দেওয়া হয়েছে তার সংখ্যা ÷ আসলে যে কটি সঠিক উত্তর সঠিক তার সংখ্যা ।

- 36. If the pressure, temperature and density of an ideal gas are denoted by P, T and ρ , respectively, the velocity of sound in the gas is
 - (A) proportional to \sqrt{P} , when T is constant.
 - (B) proportional to \sqrt{T} .
 - (C) proportional to \sqrt{P} , when ρ is constant.
 - (D) proportional to T.

যদি একটি আদর্শ গ্যামের চাপ, উষ্ণতা, এবং ঘনত যথাক্রমে P, T এবং ρ হয়, তবে ওই গ্যামে শব্দের বেগ হয়

- (A) √P-এর সমানুপাতিক, যখন T শ্বির ।
- (B) √T-এর সমানুপাতিক ।
- (C) √P-এর সমানুপাতিক, যখন ρ হির ।
- (D) T-এর সমানুপাতিক।

- 37. Two long parallel wires separated by 0.1 m carry currents of 1 A and 2 A respectively in opposite directions. A third current-carrying wire parallel to both of them is placed in the same plane such that it feels no net magnetic force. It is placed at a distance of
 - (A) 0.5 m from the 1st wire, towards the 2nd wire.
 - (B) 0.2 m from the 1st wire, towards the 2nd wire.
 - (C) 0.1 m from the 1st wire, away from the 2nd wire.
 - (D) 0.2 m from the 1st wire, away from the 2nd wire.
 - 0.1 m ব্যবধানে থাকা দুটি সুদীর্ঘ সমান্তরাল তার যথাক্রমে 1 A এবং 2 A মানের দুটি বিপরীতমুখী তড়িং-প্রবাহ বহন করছে । উভয় তারের সঙ্গে সমান্তরাল তৃতীয় একটি তড়িংবাহী তারকে একই তলে এমনভাবে রাখা হল যাতে এটি মোটের ওপর কোনো চৌশ্বক বল অনুভব না করে । এটিকে যে দূরত্বে রাখা হয়েছে তা হল
 - (A) দ্বিতীয় তারের দিকে, প্রথম তারটি থেকে 0.5 m দূরে
 - (B) দ্বিতীয় তারের দিকে, প্রথম তারটি থেকে 0.2 m দ্রে
 - (C) দ্বিতীয় তারের উপ্টোদিকে, প্রথম তারটি থেকে 0.1 m দূরে
 - (D) দ্বিতীয় তারের উন্টোদিকে, প্রথম তারটি থেকে 0.2 m দরে
- 38. If χ stands for the magnetic susceptibility of a substance, μ for its magnetic permeability and μ_0 for the permeability of free space, then
 - (A) for a paramagnetic substance : $\chi > 0$, $\mu > 0$
 - (B) for a paramagnetic substance : $\chi > 0$, $\mu > \mu_0$
 - (C) for a diamagnetic substance : $\chi < 0$, $\mu < 0$
 - (D) for a ferromagnetic substance : $\chi > 1$, $\mu > \mu_0$ কোনো পদার্থের চৌম্বক প্রবণতা χ , চৌম্বক ভেদ্যতা μ এবং শ্ন্যমাধ্যমের চৌম্বক ভেদ্যতা μ_0 হলে
 - (A) কোনো পরাচুম্বকীয় পদার্থের ক্ষেত্রে : $\chi > 0, \, \mu > 0$
 - (B) কোনো পরাচুম্বকীয় পদার্থের ক্ষেত্র : $\chi > 0$, $\mu > \mu_0$
 - (C) কোনো তিরস্টোম্বকীয় পদার্থের ক্ষেত্রে : $\chi < 0, \, \mu < 0$
 - (D) কোনো অয়শ্চৌম্বকীয় পদার্থের ক্ষেত্রে : $\chi > 1$, $\mu > \mu_0$

- 39. Let v_n and E_n be the respective speed and energy of an electron in the n^{th} orbit of radius r_n , in a hydrogen atom, as predicted by Bohr's model. Then
 - (A) plot of $E_n r_n / E_1 r_1$ as a function of n is a straight line of slope 0.
 - (B) plot of $r_n v_n / r_1 v_1$ as a function of n is a straight line of slope 1.
 - (C) plot of $\ln \left(\frac{r_n}{r_1}\right)$ as a function of $\ln (n)$ is a straight line of slope 2.
 - (D) plot of $\ln \left(\frac{r_n E_1}{E_n r_1} \right)$ as a function of ln (n) is a straight line of slope 4.

ধরা যাক, বোরের মডেল অনুসারে একটি হাইড্রোজেন পরমাণুর ${
m r}_{
m n}$ ব্যাসার্ধের ${
m n}$ -তম কক্ষপথে একটি ইলেক্ট্রনের বেগ এবং শক্তি যথাক্রমে ${
m v}_{
m n}$ এবং ${
m E}_{
m n}$ । তাহলে

- (A) n-এর অপেক্ষক হিসাবে $E_n r_n / E_1 r_1$ -এর লেখচিত্র একটি সরলরেখা যার নতি 0 ।
- (B) n-এর অপেক্ষক হিসাবে $r_n v_n / r_1 v_1$ –এর লেখচিত্র একটি সরলরেখা যার নতি 1 ।
- (C) $\ln{(n)}$ -এর অপেক্ষক হিসাবে $\ln{\left(\frac{r_n}{r_1}\right)}$ -এর লেখচিত্র একটি সরলরেখা যার নতি 2 ।
- (D) $\ln{(n)}$ -এর অপেক্ষক হিসাবে $\ln{\left(\frac{r_n E_1}{E_n r_1}\right)}$ -এর লেখচিত্র একটি সরলরেখা যার নতি 4 ।
- 40. A small steel ball bounces on a steel plate held horizontally. On each bounce the speed of the ball arriving at the plate is reduced by a factor e (coefficient of restitution) in the rebound, so that

 $V_{upward} = eV_{downward}$

If the ball is initially dropped from a height of 0.4 m above the plate and if 10 seconds later the bouncing ceases, the value of e is

(A)
$$\sqrt{\frac{2}{7}}$$

(B) $\frac{3}{4}$

(C)
$$\frac{13}{18}$$

(D) $\frac{17}{18}$

একটি ছোটো ইস্পাতের বল অনুভূমিকভাবে রাখা একটি ইস্পাতের পাতের উপর লাফাচ্ছে । প্রতিটি লাফে প্লেট স্পর্ম করার পরমুহূর্তে বলটির দুতি e (শ্বিতিস্থাপক গুণাঙ্ক) গুণ হ্রাস পায়, অর্থাৎ

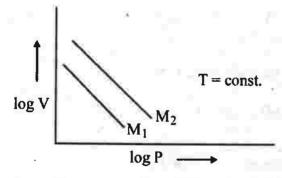
V_{upward} = eV_{downward} (upward : ঊর্ধমুখী ; downward : নিম্নমুখী) শুরুতে বলটিকে যদি 0.4 m উচ্চতা থেকে ফেলা হয় এবং 10 সেকেন্ডে পর যদি বলটির লাফানো থেমে যায়, তাহলে e এর মান হয়

(A)
$$\sqrt{\frac{2}{7}}$$

(B) $\frac{3}{4}$

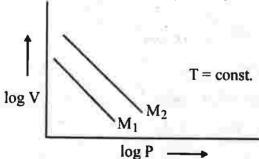
(C)
$$\frac{13}{18}$$

(D) $\frac{17}{18}$


CHEMISTRY

Category - I (Q.41 to Q.70)

Only one answer is correct. Correct answer will fetch full marks 1. Incorrect answer or any combination of more than one answer will fetch $-\frac{1}{4}$ marks. No answer will fetch 0 marks.


একটি উত্তর সঠিক । সঠিক উত্তর দিলে ১ নম্বর পাবে । ভূল উত্তর দিলে অথবা যে কোন একাধিক উত্তর দিলে –১/৪ নম্বর পাবে । কোন উত্তর না দিলে শূন্য পাবে ।

For same mass of two different ideal gases of molecular weights M_1 and M_2 , Plots of log V vs log P at a given constant temperature are shown. Identify the correct option:

- (A) $M_1 > M_2$
- (B) $M_1 = M_2$
- (C) $M_1 < M_2$
- (D) Can be predicted only if temperature is known

দুটি আদর্শ গ্যাসের আণবিক গুরুত্ব যথাক্রমে M_1 এবং M_2 । একটি নির্দিষ্ট তাপমাত্রায় একই ভরের ঐ দুটি গ্যাসের $\log V$ vs $\log P$ এর লেখচিত্র দুটি প্রদন্ত । সঠিক উত্তরটি সনাক্ত কর :

- (A) $M_1 > M_2$
- (B) $M_1 = M_2$
- (C) $M_1 < M_2$
- (D) তাপমাত্রার মান জানা থাকলেই উত্তর দেওয়া সম্ভব ।

- 42. Which of the following has the dimension of the ?7-2?
 - (A) Coefficient of viscosity
- (B) Surface tension

(C) Vapour pressure

(D) Kinetic energy

শীচের কোন রাশিটির মাত্রা ML°T-2 হবে ?

(A) সান্দ্রতা গুণাঙ্ক

(B) পৃষ্ঠটান

(C) বাষ্পচাপ

- (D) গতিশক্তি
- 43. If the given four electronic configurations
 - (i) n = 4, l = 1

n=4, l=0

(iii) n = 3, l = 2

(iv) n = 3, l = 1

are arranged in order of increasing energy, then the order will be

(A) (iv) < (ii) < (iii) < (i)

(B) (ii) < (iv) < (i) < (iii)

(C) (i) < (iii) < (ii) < (iv)

(D) (iii) < (i) < (iv) < (ii)

নীচে প্রদত্ত চারটি ইলেকটন বিন্যাস, শক্তির ক্রমবর্জমান রালে, সাজানো আছে।

(i) n = 4, l = 1

- (ii) n = 4, l = 0
- (iii) n ≠ 3, / = 2.
- -1.4(v) n = 3, l = 1

সঠিক ক্রমটি হবে

- (A) (iv) < (ii) < (iii) < (ij)
- (B) (ii) < (iv) < (i) < (iii)
- (C) (i) < (iii) < (ii) < (iv)
- (D) (iii) < (i) < (iv) < (ii)
- 44. Which of the following sets of quantum numbers represents the 19th electron of Cr (Z = 24)?
 - (A) $\left(4, 1, -1, \pm \frac{1}{2}\right)$
- (B) $\left(4, 0, 0, +\frac{1}{2}\right)$

(C) $\left(3, 2, 0, -\frac{1}{2}\right)$

(D) $\left(3, 2, -2, +\frac{1}{2}\right)$

Cr (Z = 24) এর 19 তম ইলেক্টনের চারটি কোয়ান্টাম সংখ্যার সঠিক সেট কোনটি ?

(A) $\left(4, 1, -1, +\frac{1}{2}\right)$

(B) $\left(4, 0, 0, +\frac{1}{2}\right)$

(C) $\left(3, 2, 0, -\frac{1}{2}\right)$

(D) $\left(3, 2, -2, +\frac{1}{2}\right)$

45.		26 g of an a ivalent weig				omplete	ely neutral	ize 20 ml	0.1(N) NaOl		
	(A)	53		(B)	40		(C)	45	(D)	63	
	20	ml 0.1(N) N	VaOH 1	ব্বশের	সম্পূর্ণ	প্রশমনে	র জন্য 0.1	26 g একটি	আাসিড প্রয়ে	জন । অ্যা	সিডের
		াঙ্ক ভার হল									
	(A)	53		(B)	40		(C)	45	(D)	63	
46.	In a	flask, the w	veight r	atio c	f CH ₄	(g) and	SO ₂ (g) a	t 298 K and	d 1 bar is 1 :	2. The ra	tio of
-	the	number of n	nolecui	es of	SO ₂ (g	and C	H ₄ (g) is				
	(A)	1:4	4	(B)	4:1		(C)	1:2	(D)	2:1	
	298	K উষ্ণতা এব	R I bar	চাপে,	একটি	ফ্রাস্কে রণি	ক্ষত দুটি গ্যা	স CH ₄ এবং	SO ₂ এর ওয	গন অ নুপা ত	1:2
		SO ₂ & CH		_					- "		
	(A)	1:4		(B)	4:1		(C)	1:2	(D)	2:1	
									(-)		
47.	C ₆ H	I ₅ F ¹⁸ is a I	F ¹⁸ rad	io-isc	tope	labelle	l organic	compound	I. F ¹⁸ decay	s by pos	itron
		ssion. The p						•	1,2		
	(A)	C ₆ H ₅ O ¹⁸					(B)	C ₆ H ₅ Ar ¹⁵	On age		
	(C)	B ¹² C ₅ H ₅ F					(D)	C ₆ H ₅ O ¹⁶			
	C ₂ H	ুF ¹⁸ হল এক	টি তেজ	ক্রিয় স	মস্ত্ৰনি	ক জৈব		0 5	করণ দারা ক্ষয়	FT 1 07	100-2
		ন বন্ধ হল		ii					איז וווו איז	ୟର । ଘଣ	करन
2		C ₆ H ₅ O ¹⁸					(D)	C 11 A 10			
											•
	(C)	B ¹² C ₅ H ₅ F					(D)	C ₆ H ₅ O ¹⁶		3.4	
									. draw		
48.		olving NaCl	N in de	-ioniz	ed wa	ter will	result in a	solution h	aving		
		pH < 7		•	pH =			pOH = 7	(D)	pH > 7	
	আয়ন	মুক্ত জলে Na	ıCN দ্বী	ভূত ক	রলে যে	I দ্বন উ	ংপন হয় তা	র ক্ষেত্রে			
	(A)	pH < 7		(B)	pH =	7	(C)	pOH = 7	(D)	nH > 7	

24

49.	. An	nong Me ₃ N, C_5H_5N and MeCN (Me = order:	methyl	group) the electronegativity of N is in
	(A)		(B)	CHN Ma Na Macay
	(C)		(D)	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	N-এ পর্যা	রর ভ ড়িং ঋণাত্বকতা (অপরাধর্মিতা) অনুযায়ী Me য়ক্রম হল :	, -	H ₅ N এবং MeCN (Me = মিখাইল পুঞ্জ)-এর
	(A)	$MeCN > C_5H_5N > Me_3N$	(B)	$C_5H_5N > Me_3N > MeCN$
	(C)	$Me_3N > MeCN > C_5H_5N$	(D)	সবার ক্ষেত্রেই তড়িং-ঝশাড়কতা সমান
50,	The	shape of XeF ₅ will be:		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
	(A)	Square pyramid	(B)	Trigonal bipyramidal
	(C)	Planar	(D)	Pentagonal bipyramid
	XeF	5-এর আকৃতি হল :		and the second of the
	(A)	বর্গ পিরামিড	(B)	ত্রিকোণিক দ্বিপিরামিড
	(C)	সমতলীয়	(D)	শব্যক্তজীয় দ্বিপিরামিড
		5.0854	-96	in facilities, ng. 1.
51.	The	ground state magnetic property of B2 and	I C ₂ mo	ofecules will be
J	(A)	B ₂ paramagnetic and C ₂ diamagnetic		المراجع المراج
	(B)	B ₂ diamagnetic and C ₂ paramagnetic		
	(C)	Both are diamagnetic	49	and the state many and the
	(D)	Both are paramagnetic		
	B ₂ এर	বং C ₂ অণুর ভূমিকার তৌষক ধর্ম হল	2	a few control of the second
	(A)	B ₂ উপচুষ্বকীয় ও C ₂ অচুষ্বকীয়	·. 5	Consulter was to Debuggion 12
	(B)	B ₂ অচুষ্কীয় ও C ₂ উপচুষ্কীয়		Billion in the Control of the Contro
		দুটিই অচুস্বকীয়		The second secon
	(D)	দৃটিই উপচুম্বকীয়		Mary and Committee of the Committee of t

52.	The	number of un	paired ele	ectrons in	[NiCl ₄]	^{2–} , Ni	(CO) ₄ aı	nd [Cu(N	H ₃) ₄] ²	2+ respective
	are:									
	(A)	2, 2, 1	(B)	2, 0, 1		(C)	0, 2, 1	44	(D)	2, 2, 0
	[NiC	[1 ₄] ^{2–} , Ni(CO)	₄ এবং [Cu	(NH ₃) ₄] ²⁺	-এর মধে	বিজে	াড় ইলেকা	নের সংখ্যা	যথাত্র	K.
	(A)	2, 2, 1	(B)	2, 0, 1	, dili.	(C)	0, 2, 1		(D)	2, 2, 0
										1000
53.	Whi	ch of the follo	wing aton	ns should h	nave the	highe	est 1 st ele	ctron affi	nity?	Mr. III.
	(A)	F	(B)	O		(C)	N		(D)	C
٠	নিচের	পরমানুগুলির ম	ধ্যে কোনটির	প্রথম ইলেব	ষ্ট্ৰৰ আস	জি সং	গিধিক ?	- 7		
	(A)	F	(B)	0		(C)	N		(D)	C
					45			2.1		
54.	PbCl	2 is insoluble	in cold w	ater. Addit	ion of H	ICl in	creases i	ts solubili	ty due	e to
	(A)	Formation of								439
	(B)	Oxidation of	Pb(II) to	Pb (IV)						
	(C) Formation of [Pb(H ₂ O) ₆] ²⁺									
	(D)·	Formation of	polymeri	c lead com	ntexes					
	PbCl	₂ শীতল জলে ত			100	হার দা	ব্যতা বাড়ে	কারণ		
	(A)	- [PbCl ₃] ⁻ ইত্য								
	(B)	Pb(II) জারিত						30	,	at In
	(C)	[Pb(H ₂ O) ₆] ²⁺	তৈরী হয়							900
	(D)	লেড-এর বহুলকী	ग्र (polym	ieric) জটিল	টোৰ হৈ	হুৱী হয়				
				,					d.	
55.	Of the	e following on?	compound	ls, which	one is (the st	rongest	Bronsted	acid	in a aqueous
	(A)	HClO ₃	(B)	HClO ₂		(C)	HOCI	160	(D)	HOBr
	নিশ্বলি	খিত যৌগগুলির	মধ্যে কোর্না	ট জলীয় দ্বব	ণে সর্বাধি	ক শং	উদ্যালী ব্ৰন	ণ্টেড আহি	ন্ড (B	ronsted acid)
	তৈরী ব							4.0		7 6
	(A)	HClO ₃	(B)	HClO ₂	80	(C)	HOC1		(D)	НОВг
A				Δ.	26					

- 56. The correct basicity order of the following lanthanide ions is
 - (A) $La^{3+} > Lu^{3+} > Ce^{3+} > Eu^{3+}$
- (B) $Ce^{3+} > Lu^{3+} > La^{3+} > Eu^{3+}$
- (C) $Lu^{3+} > Ce^{3+} > Eu^{3+} > La^{3+}$
- (D) $La^{3+} > Ce^{3+} > Eu^{3+} > Lu^{3+}$

নিম্মলিখিত ল্যান্থানাইড আয়নগুলির মধ্যে ক্ষারকীয়তার সঠিক পর্যায়ক্রম হল

- (A) $La^{3+} > Lu^{3+} > Ce^{3+} > Eu^{3+}$
- (B) $Ce^{3+} > Lu^{3+} > La^{3+} > Eu^{3+}$
- (C) $Lu^{3+} > Ce^{3+} > Eu^{3+} > La^{3+}$
- (D) $La^{3+} > Ce^{3+} > Eu^{3+} > Lu^{3+}$
- 57. When BaCl₂ is added to an aqueous salt solution, a white precipitate is obtained. The anion among CO₃²⁻, SO₃²⁻ and SO₄²⁻ that was present in the solution can be:
 - (A) CO₃²⁻ but not any of the other two
 - (B) SO₃²⁻ but not any of the other two
 - (C) SO₄²⁻ but not any of the other two
 - (D) Any of them

একটি লবনের দ্বণে $BaCl_2$ যোগ করলে সাদা অধঃক্ষেপ উৎপন্ন হল । CO_3^{2-} , SO_3^{2-} এবং SO_4^{2-} -এর মধ্যে যে ঋণাত্মক আয়ন দ্বণটিতে ছিল তা হল :

- (A) CO₃²⁻ কিন্তু অন্য দূটির কোনটি নয়
- (B) SO₃²⁻কিন্তু অন্য দুটির কোনটি নয়
- (C) SO₄²-কিন্তু অন্য দৃটির কোনটি নয়
- (D) যে কোনটি
- 58. In the IUPAC system, PhCH₂CH₂CO₂H is named as
 - (A) 3-phenylpropanoic acid

(B) benzylacetic acid

(C) carboxyethylbenzene

(D) 2-phenylpropanoic acid

IUPAC নামকরণের পদ্ধতি অনুসারে PhCH2CH2CO2H এর নাম

- (A) 3-ফিনাইলপ্রোপানোয়িক অ্যাসিড
- (B) বেন্জাইলঅ্যাসিটিক অ্যাসিড

(C) কাবক্সিইথাইল বেঞ্চিন

(D) 2-ফিনাইলপ্রোপানোয়িক অ্যাসিড

59.	The	isomerisation of 1-butyne to 2-butyne c	an be ac	chieved by treatment with			
	(A)	hydrochloric acid					
	(B)	ammoniacal silver nitrate	i.				
	(C)	ammoniacal cuprous chloride	116				
	(D)	ethanolic potassium hydroxide					
	1-বিউ	টটাইনের সমাবয়বীকরণের (isomerisation) মাধ	ধ্যমে 2-বি	বউটাইনে রূপান্তরের জন্য সম্ভাব্য বিকারক			
	(A)	হাইড্রোক্লোরিক অ্যাসিড ।					
	(B)	অ্যামোনিয়াকৃত সিলভার নাইটেট ।		and the first of			
	(C)	অ্যামোনিয়াকৃত কিউপ্রাস ক্লোরাইড ।		a pagilar a dan palapaja			
	(D)	পটাশিয়াম হাইডুক্সাইড়ের ইথানলীয় দবণ ।		almostration report the par-			
				and the second and the first of			
60.		correct order of acid strengths of berrobenzoic acid (Z) is	nzoic a	cid (X), peroxybenzoic acid (Y) and			
	(A)	Y > Z > X	(B)	Z > Y > X			
	(C)	Z > X > Y	(D)	Y > X > Z			
		ায়িক অ্যাসিড (X), পারক্সিবেনজয়িক অ্যাসিড াত্রার সঠিক ক্রম	(Y),	এবং প্যারানাইটোবেনজয়িক অ্যাসিড (Z) এর			
	(A)	Y > Z > X	(B)	Z > Y > X			
	(C)	Z > X > Y	(D)	Y > X > Z			
				2.00			
61.	The yield of acetanilide in the reaction (100% conversion) of 2 moles of anilial mole of acetic anhydride is						
	(A)	270 g	(B)	135 g			
	(C)	67.5 g	(D)	177 g			
	2 mc	্ le অ্যানিলিনের সাথে 1 mole অ্যাসিটিক অ্যা	নহাইড়াই	ডের বিক্রিয়ায় যদি 100% রূপান্তর ঘটে, তবে			
	উৎপা	দিত অ্যাসিটানিলাইডের পরিমাণ হল		1,000			
	(A)	270 g	(B)	135 g			
•	(C)	67.5 g	(D)	177 g			
Α		20					

PC-2017-

62. The structure of the product P of the following reaction is

নীচে প্রদর্শিত বিক্রিয়ার ফলে উৎপন্ন বস্তু P-এর গঠন হল

PE32017

63.	ADI	and ATP differ in the number of	દેશનુંદ ક		แบบระชาการไม่ไ
	(A)	phosphate units			- 50
	(B)	ribose units	Service -		THE G
	(C)	adenine base			
	(D)	nitrogen atom			
	ADI	² এবং ATP-র মধ্যে পার্থকা বিদ্যমান			T.F.
	(A)	ফসফেট এককের সংখ্যায়	3		Mark.
	(B)	রাইবোজ এককের সংখ্যায়			
	(C)	অ্যাডিনিন ক্ষারকের সংখ্যায়	de ,		
	(D)	নাইটোজেন পরমাণুর সংখ্যায়	100	agraer.	
			1121		- 50 Lui
64.	The	compound that would produce	a nauseating	smeil/odour	with a hot mixture of
		roform and ethanolic potassium hy			: "Y" - 5" -
	(A)	PhCONH ₂	(B)	PhNHCH ₃	. 2~0
	(C)	PhNH ₂	(D)	PhOH	April 1
	নিশ্বলি	খিত যে যৌগটি ক্লোক্লোফর্ম ও পটাশিয়াম	হাইডুক্সাইডের	মিশ্রণের উত্তপ্ত ইং	ধানলীয় দ্রবদের সংস্পর্শে কটু
		উদ্রেক করে তা হল			
	(A)	PhCONH ₂	(B)	PhNHCH ₃	mad.
72	(C)	PhNH ₂	(D)	PhOH	ail-mi
A			30		

65. For the reaction below

$$\begin{array}{c}
(i) \quad PhMgBr, THF \\
(ii) \quad H_3O^*
\end{array}$$

the structure of the product Q is

$$(B)$$
 Ph

নিম্নলিখিত বিক্রিয়ায় উৎপ**ন বড়ু** Q-এর গঠন হল

$$\begin{array}{c|c}
 & (i) & PhMgBr, THF \\
\hline
 & (ii) & H_3O^*
\end{array}$$

$$(D)$$
 Ph NH_2

- 66. You are supplied with 500 ml each of 2N HCl and 5N HCl. What is the maximum volume of 3M HCl that you can prepare using only these two solutions?
 - (A) 250 ml

(B) 500 ml

(C) 750 ml

(D) 1000 ml

500 ml করে 2N HCl এবং 5N HCl দ্ববণ দুটি তোমাকে দেওয়া হল । শুধুমাত্র ঐ দুটি দ্ববণ ব্যবহার করে সর্বাধিক কত আয়তনের 3M HCl দ্ববণ তৈরি করতে শারবে ?

(A) 250 ml

(B) 500 ml

(C) 750 ml

- (D) 1000 ml
- 67. Which one of the following corresponds to a photon of highest energy?
 - (A) $\lambda = 300 \text{ nm}$

(B) $v = 3 \times 10^8 \,\mathrm{s}^{-1}$

(C) $\bar{v} = 30 \text{ cm}^{-1}$

(D) $\varepsilon = 6.626 \times 10^{-27} J$

নিম্নলিখিত গুলির মধ্যে কোনটি সর্বাধিক শক্তির আলোক কণা (ফোটন) হবে ?

(A) $\lambda = 300 \text{ nm}$

(B) $v = 3 \times 10^8 \,\mathrm{s}^{-1}$

(C) $\bar{v} = 30 \text{ cm}^{-1}$

- (D) $\varepsilon = 6.626 \times 10^{-27} J$
- 68. Assuming the compounds to be completely dissociated in aqueous solution, identify the pair of the solutions that can be expected to be isotonic at the same temperature:
 - (A) 0.01 M Urea and 0.01 M NaCl
 - (B) 0.02 M NaCl and 0.01 M Na₂SO₄
 - (C) 0.03 M NaCl and 0.02 M MgCl,
 - (D) 0.01 M Sucrose and 0.02 M glucose

একই তাপমাত্রায়, সম-অভিসারক (আইসোটোনিক) দ্ববশ-জোড়া টি কে সনাক্ত কর । জলীয় দ্ববশে প্রতিটি যৌগ সম্পূর্ণ বিয়োজিত আছে ।

- (A) 0.01 M ইউরিয়া এবং 0.01 M NaCl
- (B) 0.02 M NaCl এক 0.01 M Na₂SO₄
- (C) 0.03 M NaCl এ국 0.02 M MgCl₂
- (D) 0.01 M সুক্রোজ এবং 0.02 M গ্রুকোজ

PG-2017

How many faradays are required to reduce 1 mol of $Cr_2O_7^{2-}$ to Cr^{3+} in acid medium? (A) (B) (C) 5 (D): 6 অ্যাসিড মাধ্যমে 1 mol Cr₂O₇²⁻ আয়ন Cr³⁺ আয়নে বিজারিত হতে কত ফারোডে তড়িতের প্রয়োজন ? (A) 2 (C) 5

Equilibrium constants for the following reactions at 1200 K are given:

$$2H_2O(g) \rightleftharpoons 2H_2(g) + O_2(g); K_1 = 6.4 \times 10^{-8}$$

$$2\text{CO}_2(g) \rightleftharpoons 2\text{CO}(g) + \text{O}_2(g); \ \text{K}_2 = 1.5 \times 10^{-6}$$

The equilibrium constant for the reaction

 $H_2(g) + CO_2(g) \rightleftharpoons CO(g) + H_2O(g)$ at 1200 K will be

(A) 0.05 (B) 20

(C) 0.2

(D) 5.0

1200 K উষ্ণতায়, নিম্নলিখিত বিক্রিয়া দুটির সাম্য ধ্বকের মান দেওয়া আছে :

$$2H_2O(g) \rightleftharpoons 2H_2(g) + O_2(g); K_1 = 6.4 \times 10^{-8}$$

$$2\text{CO}_2(g) \rightleftharpoons 2\text{CO}(g) + \text{O}_2(g); \ \text{K}_2 = 1.6 \times 10^{-6}$$

একই তাপমাত্রায়, $H_2(g) + CO_2(g) \rightleftharpoons CO(g) + H_2O(g)$ বিক্রিয়াটির সাম্য-ধ্রকের মান হবে

(A) 0.05 (B) 20

0.2

(D) 5.0

Category – II (Q.71 to Q.75)

Only one answer is correct. Correct answer will fetch full marks 2. Incorrect answer or any combination of more than one answer will fetch $-\frac{1}{2}$ marks. No answer will fetch 0 marks. একটি উত্তর সঠিক । সঠিক উত্তর দিলে ২ নম্বর পারে । ভূল উত্তর দিলে অথবা যে কোন একাম্বিক উত্তর দিলে -5/२ नम्बत भारत । कान উত্তর ना দিলে শূন্য পাবে ।

In a close-packed body-centred cubic lattice of potassium, the correct relation between the atomic radius (r) of potassium and the edge-length (a) of the cube is

(A) $r = \frac{a}{\sqrt{2}}$ (B) $r = \frac{a}{\sqrt{3}}$ (C) $r = \frac{\sqrt{3}}{2}a$

(D) $r = \frac{\sqrt{3}}{4}a$

পটাসিয়ামের ক্লোজ-প্যাক্ট দেহকেন্দ্রিক ঘনকাকার ল্যাটিসে পরমাণুর ব্যাসার্ধ (r) এবং ঘনকের একক সেলের বাহুর দৈর্ঘ্য (a) -এর মধ্যে সঠিক সম্পর্কটি হল

(A) $r = \frac{a}{\sqrt{2}}$ (B) $r = \frac{a}{\sqrt{3}}$ (C) $r = \frac{\sqrt{3}}{2}a$ (D) $r = \frac{\sqrt{3}}{4}a$

Which of the following solutions will turn violet when a drop of lime juice is added to it?

(A) A solution of NaI

(B) A solution mixture of KI and NaIO,

(C) A solution mixture of NaI and KI (D) A solution mixture of KIO₃ and NaIO₃ নিম্নলিখিত দ্রবণ গুলির কোনটির মধ্যে এক ফোঁটা **লেবুর রস** (lime juice) যোগ করলে দ্রবণটি বেণ্ডনী বর্ণ ধারণ করবে ?

(A) Nal-এর দ্রবণ

(B) KI এবং NaIO3-এর মিশ্রিত দ্ববণ

Nal একং KI-এর মিশ্রিত দ্রবণ (C)

(D) KIO3 এবং NaIO3 -এর মিশ্রিত দ্ববণ

The reaction sequence given below gives product R. 73.

 $CO_2Me \xrightarrow{\text{(i)}} Ag_2O \longrightarrow R$ HO,0

The structure of the product R is

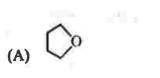
(A) CO₂H

CO₂Me HO₂C

(D)

নীচে বর্ণিত বিক্রিয়ায় উৎপন্ন বন্ধু R-এর গঠন হ'ল

 $CO_2Me \xrightarrow{\text{(i)}} Ag_2O \longrightarrow R$ HO₂C

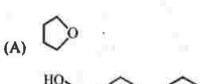

CO₂H

Br (B)

CO₂Me (C)

MeO₂C

74. Reduction of the lactol S OH with sodium borohydride gives



(C) HO OH

ল্যাকটল S OH S সাভিয়াম ঝোরোহাইডাইডের সাহায্যে বিজ্ঞারিত হয়ে যে পদার্থ উৎপন্ন করে তার

গঠন হল

(C) HO OH

- (D) OH
- 75. What will be the normality of the salt solution obtained by neutralizing x ml y (N) HCl with y ml x (N) NaOH, and finally adding (x + y) ml distilled water?

(A)
$$\frac{2(x+y)}{xy}$$
 N

$$\frac{xy}{2(x+y)}N$$

(C)
$$\left(\frac{2xy}{x+y}\right)N$$

(D)
$$\left(\frac{x+y}{xy}\right)N$$

x ml y (N) HCl হারা y ml x (N) NaOH প্রশমিত করা হল, এবং পরে (x+y) ml পাতিত জল মেশানো হল । উৎপন্ন লবণের জলীয় দ্বণের নরম্যালিটি কত হবে ?

(A)
$$\frac{2(x+y)}{xy}$$
 N

(B)
$$\frac{xy}{2(x+y)}$$
 N

(C)
$$\left(\frac{2xy}{x+y}\right)N$$

(D)
$$\left(\frac{x+y}{xy}\right)N$$

Category - III (Q.76 to Q.80)

One or more answer(s) is (are) correct. Correct answer(s) will fetch marks 2. Any combination containing one or more incorrect answer will fetch 0 marks. Also no answer will fetch 0 marks. If all correct answers are not marked and also no incorrect answer is marked then score = 2 × number of correct answers marked + actual number of correct answers.

এক বা একাধিক উত্তর সঠিক । সব কটি সঠিক উত্তর দিলে ২ নম্বর পাবে । ভুল উত্তর দিলে অথবা কোন একটি ভুল উত্তর সহ একাধিক উত্তর দিলে শূন্য পাবে । এবং কোন উত্তর না দিলে শূন্য পাবে । যদি কোন ভুল উত্তর না থাকে এবং সঠিক উত্তরও সব কটি না থাকে তাহলে পাবে ২ × যে কটি সঠিক উত্তর দেওয়া হয়েছে তার সংখ্যা ÷ আসলে যে কটি সঠিক উত্তর সঠিক তার সংখ্যা ।

- 76. During electrolysis of molten NaCl, some water was added. What will happen?
 - (A) Electrolysis will stop.
 - (B) Hydrogen will be evolved.
 - (C) Some amount of caustic soda will be formed.
 - (D) A fire is likely.
 - গলিত NaCl-এর তড়িৎ-বিশ্লেষণের সময় কিছুটা জল যোগ করা হলে তার ফল কী হবে ?
 - (A) বিশ্লেষণ বন্ধ হয়ে যাবে
 - (B) হাইড্রোজেন নির্গত হবে
 - (C) কিছু পরিমাণ কষ্টিক সোডা তৈরী হবে
 - (D) আগুন লেগে যেতে পারে
- 77. The role of fluorspar, which is added in small quantities in the electrolytic reduction of alumina dissolved in fused cryolite, is
 - (A) as a catalyst
 - (B) to make fused mixture conducting
 - (C) to lower the melting temperature of the mixture
 - (D) to decrease the rate of oxidation of carbon at anode আালুমিনার গলিত ক্রায়োলাইটের (cryolite) দ্রবনের তড়িং-বিশ্লিষ্ট বিজারণে সামান্য পরিমাণ ফ্লুওস্পার (fluorspar) যোগ করা হয়
 - (A) অনুঘটক হিসেবে
 - (B) গলিত মিশ্রণটিকে পরিবাহী করার জন্য
 - (C) মিশ্রণটির গলনের তাপমাত্রা কমাবার জন্য
 - (D) অ্যানোডে কার্বনের জারণের গতি কমাবার জন্য

PC-2017T

- 78. The reduction of benzenediazonium chloride to phenyl hydrazine can be accomplished by
 - (A) SnCl₂, HCl
- (B) Na₂SO₃
- (C) CH,CH,OH
- (D) H₂PO₂

বেঞ্জিনভায়াজোনিয়াম ক্রোরাইডের বিজারণের মাধ্যমে ফিনাইল হাইড্রাজিন উৎপাদনের জন্য প্রয়োজন

- (A) SnCl₂, HCl
- (B) Na_2SO_3
- (C) CH,CH,OH
- (D) H₃PO₂
- 79. The major product(s) obtained from the following reaction of 1 mole of hexadeuteriobenzene is/are

(A) $D \longrightarrow D$ D

(B) Br Br

(C) $D \rightarrow D \rightarrow D$

 $(D) \quad D \qquad D \qquad D$

নীচে বিবৃত । মোল হেব্রাডয়টোরিওবেঞ্জিনের রাসায়নিক বিক্রিয়ার ফলে যে সুখ্য পদার্ঘটি/পদার্থগুলি উৎপন্ন হয় তার / তাদের গঠনসংকেত হল

(A) $D \longrightarrow D$ D

(B) Br D

(C)
$$D$$
 D D D D

(D) $D \longrightarrow D$

80. Identify the correct statement(s):

The findings from the Bohr model for H-atom are

- (A) Angular momentum of the electron is expressed as integral multiples of $\frac{h}{2\pi}$
- (B) The first Bohr radius is 0.529 A°
- (C) The energy of the n-th level E_n is proportional to $\frac{1}{n^2}$
- (D) The spacing between adjacent levels increases with increase in 'n'

সঠিক বিবৃতি বা বিবৃতিগুলি নিবাঁচন কর :

বোর মঞ্জে থেকে H-পরমাণু সম্পর্কিত ভরতব্য বিষয়গুলি হল

- (B) প্রথম বোর কক্ষের ব্যাসার্থ 0.529 A° হবে ।
- (C) n-তম কক্ষের ইলেকটনীয় শক্তি, E_n , $\frac{1}{n^2}$ এর আলুগাতিক হবে ।
- (D) দুটি গালাগালি ককের মধ্যে ইলেকট্রনীয় শক্তির ব্যবহান n-এর মান বৃদ্ধির সাথে বৃদ্ধি পাবে ।

SPACE FOR ROUGH WORK

A 39