	d in the sentence.	. Choose the word win	en dest expresses the m	canning of the underfined
1.	She is a very <u>sensible</u>	nerson		
1.	(1) rational	(2) cunning	(3) educated	(4) sensitive
2.	I am on the horns of di	ilemma these days.		
	(1) confusion		(2) clear	
	(3) difficult situation		(4) favourable situatio	n
	(0)		()	_
3.	The musicians found of	out that they do not have	ample time to go there.	
	(1) some	(2) enough	(3) much	(4) abundant
	, ,	. ,	. ,	
4.	The minister's speech	was not comprehensible	to the public.	~0
	(1) complement		(2) confident	
	(3) able to be understo	ood	(4) comprehensive	*
5.	Man is mortal.			
	(1) ever growing	(2) constantly active	(3) imperishable	(4) subject to death
	, , ,	•		•
Dire	ctions (Questions 6-1	0): Choose the word wh	nich is closest to the op	posite in meaning of the
	erlined word in the sente			
6.	The Ganga is a pious r	river.		
	(1) impure	(2) terrible	(3) common	(4) pure
		_(/)		
7.	Bravery is a good qual	lity.		
	(1) Audacity	(2) Fearful	(3) Heroism	(4) Cowardice
8.	A unanimous decision	was taken by the organi	zation.	
	(1) great	(2) one-sided	(3) fair	(4) unfair
		*		
9.	She was very cheerful	on her wedding day.		
	(1) overjoyed	(2) emotional	(3) happy	(4) cheerless
10.	Educated parents make	e a <u>virtuous</u> circle.		
	(1) vicious	(2) long	(3) alternative	(4) good
Dire	ctions (Questions 11-1	(5): Choose the option w	hich best expresses the n	neaning of the underlined
idior	n/phrase in the sentence	2.		
11.	Peter was put in cold s	storage in the party.		
	(1) sadness	(2) ignored	(3) grief	(4) sympathy
15/1	/2K 15/05	า		
43/A	Download	From: http://	<u>indiaexampo</u>	rtal com/
	Download	<u> </u>	<u>maiachampo</u>	TIGITOOTII/

12.	. Ravish showed <u>crocodile tears</u> at the death of his employee.				
	(1) happiness	(2) fake mourning	(3) weeping	(4) mourning	
13.	The President did away	with the unpopular act.			
	(1) retain	(2) abolish	(3) distribute	(4) consider	
14.	A good weather friend	is not a true friend.			
	(1) attentive friend	(2) faithful friend	(3) selfish friend	(4) caring friend	
15.	He cannot praise you un	nnecessarily because he_	calls a spade a spade.		
	(1) states clearly	(2) pretends	(3) makes things vague	(4) absconds	
	ctions (Questions 16-20 he given sentence/words	0): In each of these ques	stions, choose the word	which can be substitute	
16.	A book or work of art v	whose creator is not know	vn.	*	
	(1) Unknown	(2) Unanimous	(3) Unidentified	(4) Anonymous	
17.	A disease which spread	s by physical contact.			
	(1) Non infectious	(2) Contagious	(3) Untouchable	(4) Fatal	
18.	One who eats too much		UK		
	(1) Fat	(2) Obese	(3) Glutton	(4) Gorge	
19.	One who knows many	languages.			
	(1) Bi-lingual	(2) Decoder	(3) Linguist	(4) Cryptologist	
20.	Happening at the same	time.			
	(1) Simultaneous	(2) Co-happening	(3) Coexistent	(4) Identical	
	ctions (Questions 21-24	·			
21.		ent is the most serious and			
	(1) dubious	(2) profound	(3) unpopular	(4) intractable	
22.	His logic eve	eryone, including the exp	perts.		
	(1) surprised	(2) teased	(3) mocked	(4) confounded	
23.	The unruly behaviour of	of the students	_ their teacher.		
	(1) tempered	(2) clashed	(3) impeached	(4) incensed	
24.	The children	crackers to celebrate	e the victory of their team	n.	
	(1) burst	(2) fired	(3) shot	(4) broke	

^{45/A/2K}15/05 Download From: http³://indiaexamportal.com/

Directions (Questions 25-30): Study the passages below and answer the questions that follow each passage.

Passage-I

Complementary and alternative medicine, which includes a range of practices outside of conventional medicine such as herbs, homeopathy, massage therapy, yoga, and acupuncture, hold increasing appeal for Americans. In fact, according to one estimate, 42% of Americans have used alternative therapies. In all age groups, the use of unconventional healthcare practices has steadily increased in the last 30 years, and the trend is likely to continue, although people born before 1945 are the least likely to turn to these therapies. Why have so many patients turned to alternative therapies? Many are frustrated by the time constraints of managed care and alienated by conventional medicine's focus on technology. Others feel that a holistic approach to healthcare better reflects their beliefs and values. Others seek therapies that relieve symptoms associated with chronic disease; symptoms that mainstream medicine cannot treat. Some alternative therapies have even crossed the line into mainstream medicine, as scientific investigation has confirmed their safety and efficacy. For example, physicians may currently prescribe acupuncture for pain management or to control the nausea associated with chemotherapy. Additionally, many U.S. medical schools teach courses in alternative therapies, and many health insurance companies offer some alternative medicine benefits.

- 25. What is the main idea of this passage?
 - (1) Alternative medicine is now a big business in the United States with more Americans seeking it out than ever before.
 - (2) Today, it is not unusual for mainstream doctors to incorporate alternative therapies into their practice.
 - (3) Over the last few decades, alternative medicine has become more popular, accepted, and practised in the United States.
 - (4) People are tired of conventional medicine's focus on technology.
- 26. According to the passage, which practice would not be defined as alternative medicine?
 - (1) Pain management

- (2) Acupuncture
- (3) Taking herbal garlic supplements
- (4) Massage therapy
- 27. Based on the passage, what kind of person would be least likely to seek out alternative medical treatment?
 - (1) A senior citizen suffering from chemotherapy induced nausea.
 - (2) A young woman suffering from chronic fatigue syndrome.
 - (3) A 45-year-old man who believes that his body and mind must be treated together.
 - (4) A 25-year-old track star with chronic back pain.

Passage-II

Sprouts not only contain a full spectrum of minerals, but during the process of soaking, germination and sprouting the mineral salts present undergo significant changes. The changed compounds are of the water soluble variety, easily assimilated by the body. The quantum of nutrient present also increases in multiples. For example, sprouted moong has an 8.3% increase in water content over the seed. Its energy content decreases by 15%, its carbohydrates content decreases by 9% and its protein availability increases by 30%. All this makes it an ideal food for those who desire to lose weight. At the same time, it provides a more than ample supply of vitamins, minerals and amino acids. Another benefit of becoming a sproutarian is the fact that sprouts have a lot of fibre and water and hence they drive away constipation. The reduction in carbohydrate content indicates that many carbohydrate molecules are broken down during sprouting: and these react with atmospheric nitrogen to form amino acids. The resultant protein has a simple molecular structure, and is the most digestible protein available in all foods. Also, during sprouting much of the starch gets broken down by enzymatic action into simple, pre-digested sugars such as glucose and sucrose. The proteins are converted into amino acids and amides, and this reduction in the amount of complex proteins ingested prevents ageing and the degenerative diseases. A handful of common moong seeds can blossom and provide the most complete of meals. After the seed has been sprouted, the calcium content increases by 34%, potassium content increases by 80%, the iron content increases by 40%, the phosphorous content increases by as much as 690%. Sprouted sesame seeds too, are excellent for providing the body with easily assimilable minerals. They contain 10 times more calcium than cow's milk.

- 28. Why is sprout most easily digestible in terms of its protein content?
 - (1) Protein has a simple molecular structure.
 - (2) Calcium content is low, hence digestion is easy.
 - (3) There is an increase in complex proteins.
 - (4) Fats and oils are eliminated.
- 29. Why is sprout an ideal choice of food for those who want to lose weight?
 - (1) It contains digestive acids.
 - (2) It is rich in calories.
 - (3) It is rich in protein content.
 - (4) It contains vitamins, minerals and amino acids.
- 30. In which process do the minerals in sprouts undergo significant changes?
 - (1) Spectral changes
 - (2) Soaking, germination and sprouting
 - (3) Assimilation
 - (4) Radiation and Germination

	(3) perpendicular to the acceleration for one instant only.(4) perpendicular to the acceleration for two instants.			
32.	the highest point of its path it breaks into two parts of equal masses. One of the parts retraces the initial path of the ball. The speed of the second part immediately after explosion in <i>m/s</i> will			
	be $(1) \frac{3}{2} v \cos \theta$	$(2) \sqrt{\frac{3}{2}}v\cos\theta$	(3) $2v\cos\theta$	(4) $3v\cos\theta$
33.	receiver on the goal lin	the 67.4 m away in the distribute ust be his speed so that he	rection of the kick starts ne could catch the ball be	projection angle 45°. As running to meet the ball efore hitting the ground?
	(1) 2.82 <i>m/s</i>	(2) $2/\sqrt{2} m/s$	(3) 39.2 <i>m/s</i>	(4) 10 <i>m/s</i>
34.				between the road and the proportional to
	(1) μ	(2) $\sqrt{\mu}$	$(3) \sqrt{\frac{1}{\mu}}$	$(4) \ \frac{1}{\sqrt{\mu}}$
35.		ne in the process is	_	uence of a force given by
	(1) zero	(2) $x_2^2 - x_1^2$	$(3) \ 2x_2(x_2 - x_1)$	$(4) \ 2x_1(x_1 - x_2)$
36.	The speed v reached by	y a car of mass <i>m</i> , driven	with constant power P ,	is given by
	$(1) \ \ v = \frac{3xp}{m}$	$(2) v = \left(\frac{3xP}{m}\right)^{1/2}$	$(3) v = \left(\frac{3xP}{m}\right)^{1/3}$	$(4) v = \left(\frac{3xP}{m}\right)^2$
37.	A convex and a concave the combination	ve lens separated by dista	ance d are then put in co	ntact. The focal length of
	(1) decreases	(2) increases	(3) becomes 0	(4) remains the same
38.	3. Two discs of same thickness but of different radii are made of two different materials such that their masses are same. The densities of the materials are in the ratio 1:3. The moments of inertia of these discs about the respective axes passing through their centres and perpendicular to their planes will be in the ratio			
	(1) 1:3	(2) 3:1	(3) 1:9	(4) 9:1
Download From: http://indiaexamportal.com/				

In a projectile motion, the velocity is

(1) always perpendicular to the acceleration.(2) never perpendicular to the acceleration.

31.

39. A body weighs <i>W Newton</i> at the surface of the earth. Its weigh radius of the earth will be			nt at a height equal to h	alf the	
	$(1) \ \frac{W}{2}$	(2) $\frac{2W}{3}$	(3) $\frac{4W}{9}$	(4) $\frac{8W}{27}$	
40.	-	satellite orbiting a few		t of radius 36000 km. The ove the earth's surface (F	
	(1) 1/2 h	(2) 1 h	(3) 2 h	(4) 4 h	
41.	weight. The diame (1) smallest at the	eter of the rod is top and gradually incre op and gradually decrea	eases down the rod.	ort. It is stretched by it	ts own
	(4) maximum in the		×	⊘ `	
42.	On bisecting a soa part will be	<u> </u>	eter, the force due to su	arface tension on any of	its half
	(1) $4\pi RT$	$(2) \frac{4\pi R}{T}$	(3) $\frac{T}{4\pi R}$	$(4) \ \frac{2T}{R}$	
		1	17/41	A	
43.	In a seconds pend period will be		is 30 gm. If it is replace	ed by 90 gm mass, then i	ts time
	(1) 1 sec.	(2) 2 sec.	(3) 4 sec.	(4) 3 sec.	
44.	The potential energy of a particle executing S.H.M. is 2.5 J, when its displacement is half of amplitude. The total energy of the particle is				
	(1) 18 J	(2) 10 J	(3) 12 J	(4) 2.5 J	
45.		m has a metal bob, who charged metallic plate,		ed. If it is allowed to or	scillate
	(1) increase.	(2) decrease.	(3) become zero	. (4) remain the sa	ime.
46.	A cylindrical bar its axis, then	magnet is kept along th	e axis of a circular coil	. If the magnet is rotated	l about
	` '	be induced in the coil.			
	` '	l be induced in the coil. will be induced in the c	oil		
		d current will be induced			
45/A	/2K15/05 Downloa	ad From: httr	ɔ ^ʒ ://indiaexan	nportal.com/	

A body weighs W Newton at the surface of the earth. Its weight at a height equal to half the

47.	A body of mass 4 kg is accelerated upon by a constant force, travels a distance of 5 m in the first second and a distance of 2 m in the third second. The force acting on the body is				
	(1) 2 N	(2) 4 N	(3) 6 N	(4) 8 N	
48.	In a double slit experiment, instead of taking slits of equal widths, one slit is made twice as wide as the other. Then in the interference pattern the (1) intensities of both the maxima and the minima increase. (2) intensity of maxima increases and the minima has zero intensity. (3) intensity of maxima decreases and that of the minima increases. (4) intensity of maxima decreases and the minima has zero intensity.				
49.	Which of the following statements is incorrect? (1) Half-life of a neutron is 13 minutes. (2) The stability of a nucleus is determined by the number of neutrons present in it. (3) Both fast and slow neutrons are capable of penetrating a nucleus. (4) A free neutron decays into a proton, an electron and positron.				
50.		in silicon diode is 1 pepletion layer will be _ (2) 0.6 Vm ⁻¹	um wide and the knee $\frac{1}{3}$ 6×10 ⁴ V/m	potential is 0.6 V, then the $(4) 6 \times 10^5 \text{ V/m}$	
51.	Which of the following (1) Impulse	ng is a scalar quantity? (2) Current	(3) Torque	(4) Momentum	
52.	Human eye is most see (1) 680 nm.	ensitive to the colour h (2) 720 nm.	aving wavelength of nea (3) 480 nm.	(4) 550 nm.	
53.	A double converse lens of focal length 15 cm produces a distinct real image of an object on a screen kept at 150 cm away from the object. On moving the lens alone, how many other distinct images of the same object can be produced on the same screen? (1) Zero (2) One (3) Ten (4) Two				
54.					
45/A	Download	l From: http:	://indiaexamp	oortal.com/	

55.	A vehicle with 4 vehicle are turnir		moving with a speed of	f 18 m/s. Then, wheels of the
	(1) 90 revolution	s/second.	(2) 45 m/s.	
	(3) 18 revolution	s/second.	(4) $45/\pi$ revolut	ions/second.
56.	The kinetic energe $(1) p^2 m^2$	gy E of an object of mass (2) p^2/m^2	m, having linear momen (3) p ² /2m	ntum p, will be (4) p ² /m
57.	The capacitance	across the terminal A and $C_1=1$ $C_2=10\mu F$.0μF 	iit, given below, is
	(1) 6µF	(2) 10μF	(3) 15μF	(4) 5μF
58.				of 0.16 kg m ² , decreases from the flywheel during this period
	(1) 2.0 Nm	(2) $2.6 \text{ kg m}^2/\text{s}^2$	(3) $3.9 \text{ kg m}^2/\text{s}^2$	(4) 1.6 Nm
59.	(1) moment of in			d, suddenly folds his arms, his ity remains constant. entum increases.
60.	The intensity rati (1) 9:1	~ \ *	is 1:9. Then, the ratio of (3) 1:3	their amplitudes will be (4) 3:1
61.	The total energy (1) its period. (3) the square of	of a particle, executing si	imple harmonic motion (2) its phase angl (4) None of these	e.
62.	-	apacitance 900 pF is che capacitor will be		100 V. Then, the electrostatic
	(1) 4.5 μJ		(3) 4.5 J	(4) 9 μJ

63.	The initial velocity of a body travelling along a straight line is 20 ms ⁻¹ . If the retardation of the body is 4 ms ⁻¹ , the distance moved by the particle in the 5 th second is					
	(1) 2 m	(2) 19 m	(3) 75 m	(4) 100 m		
64.	If the change in the v depth 'x' below its su	2	'above the surface of the	ne earth is the same as at		
	$(1) x = h^2$	(2) $x = 0.5 h$	(3) $x = 2 h$	(4) x = h		
65.	Terminal velocity of	a body of a radius 'R' is	directly proportional to			
	(1) R2	(2) R^{-2}	(3) R	(4) R ⁻¹		
66.	The temperature at w	hich Celsius and Fahrenh	neit scale have the same	reading is		
	$(1) -10^{\circ} \mathrm{C}$	$(2) -20^{\circ} \mathrm{C}$	(3) –30° C	$(4) -40^{\circ} C$		
67.	The masses of two radioactive substances are same and their half lives are 1 year and 2 year respectively. The ratio of their activities after 6 years will be					
	(1) 1:4	(2) 1:2	(3) 1:3	(4) 1:6		
68.	Which of the following statements is incorrect?					
	(1) Work done in the adiabatic process is greater than the work done in isothermal process.					
	(2) Work done in the adiabatic process is directly proportional to the gas.					
	(3) Work done in the adiabatic process is directly proportional to the temperature difference.					
	$(4) \frac{nR(T_2 - T_1)}{\gamma - 1}$	9/10				
69.	Work that must be do	one by a force on 100 kg	body in order to accele	erate it from 0 to 20 m/s is		
	(1) $2 \times 10^4 \mathrm{J}$	(2) $4 \times 10^3 \mathrm{J}$	(3) $4 \times 10^4 \text{ J}$	(4) $0.2 \times 10^3 \text{ J}$		
70.		operates in Carnot cycle temperature. Calculate the		327° C. It absorbs $6 \times 10^{\circ}$ rted into work.		
	(1) 1×10^4 calories	(2) 1.6×10^4 calories	(3) 2×10^4 calories	(4) 3×10^4 calories		
71.	How many times more intense is a 90 dB sound compared to 40 dB sound?					
	$(1) 10^5$	(2) 100	(3) 1000	$(4) 10^4$		
45/A	^{/2K15/05} Download	I From: http://	<u>/indiaexamp</u>	ortal.com/		

72.	A small particle carrying a negative charge of 2×10^{-19} C is suspended in equilibrium between the horizontal plates 10 cm apart, having a potential difference of 2000 V across them. The mass of the particle is (assuming g ~ 10 ms ⁻²)				
	$(1) \ 4 \times 10^{-16} \mathrm{Kg}$	(2) $5 \times 10^{-16} \mathrm{Kg}$	(3) $3 \times 10^{-16} \mathrm{Kg}$	(4) $2 \times 10^{-16} \mathrm{Kg}$	
73.	A wire is stretched t (1) 0.2%	o make it 0.1% longer. ' (2) 0.1%	The percentage change i (3) 0.4%	n its resistance is (4) 0.8%	
74.		centration of electrons to en the ratio of their drift (2) 3/4		conductor is 9/5 and the ratio (4) 1/3	
75.	(1) Ferromagnetic d(2) Ferromagnetic d(3) Ferromagnetic d	terial is heated above its omains are perfectly arr lomains become random omains are not influence naterials changes into di	anged ed	ch one is correct statement?	
76.	potential $E = E_o \sin \theta$		hen power consumption	reuit across which an A.C in the circuit will be (4) 0	
77.	Which of the follow (1) Heat Waves (3) Radio frequency		ves has the longest wave (2) Visible Light (4) Microwaves	elength?	
78.	0	A = A	at gains (\(\delta\), \(\hat{\alpha}\) in a transis (3) $\alpha = \frac{\beta}{1-\beta}$	etor is $(4) \ \alpha = \frac{\beta}{2+\beta}$	
79.	Operating point of a (1) zero signal value (3) zero signal value	e of I_c and V_{CE}	(2) zero signal valu(4) zero signal valu	•	
80.	The GATE representation in the GATE representation in the control of the GATE representation in the GA	ited by block diagram is			
	(1) AND gate.	(2) OR gate.	(3) NOR gate.	(4) NAND gate.	

If A and B are square matrices of the same order r, then (A+B)(A-B) =

(1)
$$A^2$$
-BA-AB-B²

(2)
$$A^2 - B^2 + BA - AB$$

(3)
$$A^2 - B^2$$

 $(4) A^2 - BA + B^2 + AB$

 $\begin{vmatrix} 2 & a & -1 \\ 0 & 4 & 2a \end{vmatrix} = 86$, then the sum of these numbers is There are two values of 'a' which makes 82.

$$\frac{}{(1)}$$
 7

$$(3) -4$$

(4) 4

For the function $f(x) = x^3 - 3x$, the value of c in the interval $\left[-\sqrt{3},0\right]$ by Rolle's theorem is 83.

$$(2) -1$$

$$(3) \frac{-3}{2}$$

$$(4) \frac{-1}{3}$$

84. If $x = t^2$, $y = t^3$, then $\frac{d^2y}{dx^2} =$ _____.

$$(1) \frac{3}{4t}$$

(2)
$$\frac{3}{2t}$$

$$(3) \frac{3}{2}$$

$$(4) \frac{3t}{4}$$

85. $\int_{a+c}^{b+c} f(x)dx = \underline{\qquad}.$ $(1) \int_{a-c}^{b-c} f(x)dx \qquad (2) \int_{a}^{b} f(x-c)dx$

$$(1) \int_{a}^{b-c} f(x) dx$$

$$(2) \int_{a}^{b} f(x-c)dx$$

$$(3) \int_{a}^{b} f(x+c)dx$$

$$(4) \int_{a}^{b} f(x) dx$$

86. $\int e^{x} \left(\frac{1-x}{1+x^{2}}\right)^{2} dx = \underline{\qquad}$ $(1) \frac{-e^{x}}{1+x^{2}} + c \qquad (2) \frac{e^{x}}{1+x^{2}} + c$

(1)
$$\frac{-e^x}{1+x^2}+c$$

(2)
$$\frac{e^x}{1+x^2}$$
 +

(3)
$$\frac{e^x}{(1+x^2)^2}$$

(4)
$$\frac{-e^x}{(1+x^2)^2}+c$$

The angle between the vectors $\hat{i} - \hat{j}$ and $\hat{j} - \hat{k}$ is _____. 87.

$$(1) - \frac{\pi}{3}$$

(2)
$$\frac{\pi}{6}$$

$$(3) \ \frac{\pi}{3}$$

(4)
$$\frac{2\pi}{3}$$

Distance of point (α, β, r) from y-axis is _____ 88.

$$(1) |\beta|$$

$$(2) \sqrt{\alpha^2 + r^2}$$

$$(3)$$
 α

$$(4) \ \left| \beta \right| + \left| r \right|$$

If A and B' are independent events then $P(A \cup B) = 1$ _____.

(1)
$$P(A)P(B')$$

(2)
$$P(A')P(B')$$

(3)
$$P(A' \cap B')$$

$$(4) P(A')P(B)$$

90. A man is known to speak truth 3 out of 4 times. He throws a dice and reports that it is a si probability that it is actually a six is				eports that it is a six. The
	$(1) \frac{3}{4}$	(2) $\frac{1}{6}$	(3) $\frac{3}{8}$	$(4) \frac{1}{4}$
91.	The domain and range	of the real function f def	Fined by $f(x) = \frac{5-x}{x-5}$ is §	given by
	(1) Domain = R, Rang (3) Domain = R-{5}, l		(2) Domain = R-{1}, F (4) Domain = R-{5}, I	-
92.	If $\sin \theta + \cos ec \theta = -2$, then	hen $\sin^2 \theta + \cos ec^2 \theta = $	·	
	(1) 2	(2) 4	(3) –4	(4) –1
93.	The sum of the series i	$+i^2+i^3++$ up to 100	terms is	C
	(1) i	(2) –i	(3) 0	(4) 1
94.	For a real number x if $ $	x < 2, then	X, O	
	(1) $x > 2$	(2) $x < -2$	(3) -2 < x < 2	(4) -2 < x < 2
95.	The number of ways of excluding 4 of them is $(1)^{20}C_{11}$	of selecting 11 players f		including 2 of them and
	$(1)^{20}C_{11}$	$(2)^{16}C_{11}$	$(3)^{20}C_9$	$(4)^{16}C_9$
96.	to radius is		de the circle $x^2+y^2=a^2$ or	n a chord of length equal
	(1) $x^2 + y^2 = a^2(\sqrt{3} + 1)$		(2) $x^2 + y^2 = a^2 (\sqrt{3} + 1)$,
	(3) $x^2 + y^2 = a^2 \left(\sqrt{3} / 2 \right)$	+1)	(4) $x^2 + y^2 = a^2 \left(\sqrt{3} / 2 \right)$	+2)
97.			of radius r hasa	
	(1) 2r	$(2) \sqrt{3}r$	$(3) \ 2r/\sqrt{3}$	(4) None of these
98.	For $x = 2$, which of the	e following statement is	false?	
	(1) x is prime and x is		(2) x is odd or x is even	
	(3) x is not prime and x	x is even	(4) x is odd or x is prir	ne
99.	The diagonal of square	made touching the hype	erbola $x.y = 2$ tangentially	y is
	(1) $4\sqrt{2}$	(2) $4\sqrt{3}$	(3) $3\sqrt{3}$	(4) 4
100.	The image of the point	(1, 2, 3) in a plane is (3,	2, 1). The plane passes	through the point
	(1) (4,5,6)	(2) (5,4,6)	(3) (4,5,4)	(4) (4,5,5)
45/A/	^{/2K15/05} Download	From: http ¹³ //	<u>indiaexampo</u>	rtal.com/

101.	sphere $x^2 + y^2 + z^2 = 1$. The normal to the plane passing through $(2, 3, 5)$ also passes through				
	<u>(1) (3,2,6)</u>	(2) (6,3,2)	(3) (3,2,4)	(4) (3,2,5)	
102.		1/2, 0, $\sqrt{3}$ /2) has distary the plane to sphere is _		of unit sphere at origin.	
	(1) $\pi\sqrt{3}/4$	(2) $\pi/3$	(3) $\pi/2$	(4) $\pi/4$	
103.	A largest sphere is mad $(1)^2 + z^2 = 1$. The volum	the inside the sphere x^2 + the of the sphere is	$y^2 + z^2 = 1$ and outside t	the sphere $(x-1)^2 + (y-1)^2$	
	(1) $\pi\sqrt{2}/3$	(2) $\pi\sqrt{3}/2$	(3) $\pi \sqrt{4}/3$	(4) $\pi\sqrt{3}/4$	
104.	passes through the poir	nt .		ht angle. The plane now	
	(1) (1,1,1)	(2) (2,3,2)	(3) (1,1,-1)	(4) (3,2,3)	
105.		its components $2a+1$ and	coordinate. If the plane and 1. The value of a is(3) -1, -7/3		
106.	The vector $\mathbf{w} = (2 - a)$	$i + (2 + a) j + a^2 k$ is par	allel to plane containing	the vector $\mathbf{u} = 4\mathbf{i} + \mathbf{j} + \mathbf{k}$	
	(1) $\frac{2}{7}(3+3\sqrt{11})$	(2) $\frac{2}{7}(2+3\sqrt{11})$	$(3) \ \frac{2}{7} \Big(3 + 2\sqrt{11} \Big)$	(4) $\frac{2}{7}(2+2\sqrt{11})$	
107.	·			α are coplanar. Then α is	
	(1) $\frac{2}{5} \left(1 + 3\sqrt{39} \right)$	(2) $\frac{2}{5} \left(3 - 3\sqrt{39} \right)$	(3) $\frac{3}{5} \left(1 + 3\sqrt{39} \right)$	$(4) \ \frac{2}{5} \Big(1 - 5\sqrt{39} \Big)$	
108.	dices are rolled, what is	s probability of getting a	sum 9?	odd number. If two such	
	(1) 10/81	(2) 18/81	(3) 1/12	(4) 8/81	
109.	-	<u> </u>	rds and if it is not a quee his probability of getting (3) 8	en, he replaces and again g queen is at least 0.5? (4) 9	
110.		and III are 5:3:2 and Sh	¥ ±	I, II, and III. If the ratio omly, what is probability	
	(1) 0.25	(2) 0.33	(3) 0.66	(4) 0.5	
45/A/	45/A/2K15/05 Download From: http://indiaexamportal.com/				

111.	The probability of a sar	me birth date of at least t	two students in a class of	20 students is
	(1) 0.411	(2) 0.588	(3) 0.25	(4) 0.114
112.	The number of solution	as of $10^{\text{Sec}^2(x)} + 10^{\text{Ta}}$	$an^2(x) = 110 \text{ for } x \text{ in } [0, 2]$	2π] is
	(1) 0	(2) 1	(3) 2	(4) ∞
113.	The number of values of	of x in $[0, 2\pi]$ for which	Cos(x/2), $Sin(x)$ and Ta	n(x/2) are in G.P. is
	(1) 0	(2) 2	(3) 4	(4) 6
114.	If $20 \ \alpha = \pi$, then val	ue of $Cot(\alpha).Cot(2\alpha)$.Cot(9 α) is	
	(1) –1	(2) ∞	(3) 1	(4) -∞
115.	If $\frac{11z_1}{17z_2}$ is purely imaginary	inary, then $\left[\frac{3z_1 + 5z_2}{3z_1 - 5z_2}\right]$ is	s equal to	ĊO.
	$(1) \frac{11}{17}$	(2) $\frac{13}{19}$	(3) $\frac{33}{85}$	(4) None of these
116.	Let $z_1 = 1 - i$ and $z_2 =$	$3+\sqrt{2}i$, then the curve re	epresented by $\left \frac{z - z_1}{z - z_2} \right = 2$	7 is a
	(1) straight line.	(2) circle.	(3) parabola.	(4) None of these
117.			<u> </u>	uch that O, A and B are the point B is given by
	$(1) \ \frac{1}{\bar{z}}$	(2) z	$(3) \ \frac{1}{z}$	(4) None of these
118.				sented by $\sqrt{7} + 3i$. Then
	$(1) -\frac{\sqrt{7}}{3} - i$	(2) $1+i\frac{\sqrt{7}}{3}$	$(3) \ \frac{\sqrt{7}}{3} + i$	$(4) -1 - \frac{\sqrt{7}}{3}$
119.	-	n which 11 different florever separated is	_	form a garland so that 5
	(1) 5!.6!	(2) 5!.7!	(3) 76400	(4) None of these
120.	The number of ways atleast one banana is	_	as among 5 children so	that each child receives
	(1) 21	(2) 35	(3) 15	(4) 7
45/A	^{/2K15/05} Download	From: http://i	indiaexampo	rtal com/

121.	repetition such that all	the digits on the left of t	_	the digits 1 to 9 without re less than it and all the the middle is (4) None of these	
122.	The number of 7 digit n (1) 9.8 ⁶	numbers in which no two $(2) 9^2.8^5$	adjacent digits are ident (3) 9 ³ .8 ⁴	tical is (4) 9 ⁷	
123.	If <i>X</i> is a singular matrix (1) Identity matrix	of order n, then <i>X</i> . (<i>adj</i> 2 (2) Null matrix	X) is (3) Scalar matrix	(4) None of these	
124.	If A and B are square m (1) -60	atrices of order 3 such th (2) 120	nat $ A = -3$ and $ B = 5$, the (3) -120	hen 2 <i>AB</i> is (4) 60	
	solutions of this system (1) 0	of equations is(2) 1	(3) 2	z + z = 4. The number of (4) Infinitely many	
126.	Let $a \neq x, b \neq y$ and $c \neq$	z and $\begin{vmatrix} a & b & z \\ x & b & c \\ x+a & y+b & 2c \end{vmatrix} =$	= 0, then $\frac{x}{x-a} + \frac{y}{y-b} + \frac{z}{a}$	$\frac{z}{z-c} = \underline{\qquad}$	
	(1) 0	(2) 1	(3) 2	(4) 3	
127.	The range of function for (1) $(-\infty,3]$	$f(x) = \log^3(9 - x^2)$ is	(3) [0,3]	(4) (-3,3)	
128.	The function $f(x) = 2\sin 3x + 3\cos \sqrt{5}x$ is (1) periodic function with period 2π (2) periodic function with period $\frac{2\pi}{3}$ (3) periodic function with period $\frac{2\pi}{\sqrt{5}}$ (4) not a periodic function				
129.	If $f(x) = \sin x - \cos x$ and (1) $\left[0, \frac{\pi}{2}\right]$		(3) $\left[-\frac{\pi}{4}, \frac{\pi}{2} \right]$		
130.	Let $f: [-3,0] \rightarrow \mathbb{R}$ be	given by $f(x) = e^x + cc$	$\cos x$, then its extension	to [-3,3] is given by	
	$\frac{1}{(1) - e^{ x } - \cos x }$	$(2) e^{- x } - \cos x $	$(3) e^{- x } + \cos x $	$(4) - e^{ x } + \cos x $	

131.	The Principal buffer present in human blood is				
	(1) NaH2PO4 + Na2HPO4		(2) H3PO4 + NaH2	(2) H3PO4 + NaH2PO4	
	(3) $H_2CO_3 + HCO_3^-$		$(4) \text{ CH}_3\text{COOH} + 0$	CH₃COONa	
132.	Number of moles M	nO ₄ required to oxidize	e one mole of ferrous	oxalate in acidic medium will	
	(1) 2.5 mol.	(2) 0.2 mol.	(3) 0.6 mol.	(4) 0.4 mol.	
133.	At a temperature of about 20K (very low), which allotropes form of molecular hydrogen is more stable?				
	(1) Ortho hydrogen		(2) Para hydrogen		
	(3) Both Ortho and P	ara hydrogen	(4) None of these		
134.	The order of increa	asing bond dissociation	n enthalpy of H-H,	D-D and F-F molecules is	
	(1) $H-H < D-D < F-$	-F (2) $F-F < H-H < D-F$	-D (3) $F-F < D-D < 1$	H–H (4) D–D < H–H < F–F	
135.	Which of the following	Which of the following anions is present in the chain structure of silicates?			
	$(1) \left(Si_2 O_5^{2-} \right)_n$	$(2) \left(SiO_3^{2-} \right)_n$	$(3) SiO_n^{4}$	(4) $Si_2O_7^{6-}$	
126	HDO :	1	0.		
130.	H_3BO_3 is	l. Ti i d	(2) Manaharia an	11- D - 44 - 11 1	
	(1) Monobasic and weak Lewis acid.		` '	(2) Monobasic and weak Brφnsted acid.(4) Tribasic and weak Brφnsted acid.	
	(3) Monobasic and st	crong Lewis acid.	(4) Tribasic and w	eak Br φ nsted acid.	
137.	Percentage of lead in lead Pencil is				
	(1) Zero	(2) 20	(3) 80	(4) 70	
138.	On mixing certain alkane with chlorine and irradiating it with U.V light, it forms only one monochloroalkane. The alkane is				
	(1) Isopentane.	(2) Neopentane.	(3) Propane.	(4) Pentane.	
139.	The chemical reagent used to detect the presence of phenol in a given sample of organic compound is				
	(1) Tollen's reagent in presence of alkali.				
	(2) Neutral ferric chloride solution.				
	(3) (NaOH+I ₂) solution.				
	(4) Sodium Hydroge	n Carbonate (Bicarbona	te Test).		

140.	(1) Carbon Dioxide, Ox(2) Carbon dioxide, Su(3) Nitrous oxide, Oxy	mosphere that causes Groxygen and Nitrogen. Iphur dioxide and Methagen, and Water vapours. pours and Carbon dioxid	ine.	
141.	Structurally a biodegrae	dable detergent should co	ontain a	
	(1) Normal alkyl chain		(2) Branched alkyl cha	
	(3) Phenyl side chain.		(4) Cyclohexyl side ch	ain.
142.	-	ises in a B.C.C structuration atomic radius of the lithin	re. If the length of the side of the unit cell of um will be	
	(1) 151.8 pm.	(2) 75.5 pm.	(3) 300.5 pm.	(4) 240.8 pm.
143.	in the same solvent. If	the densities of both the	e solution are assumed to	molar mass = 60 g mol^{-1} to be equal to 1.0 g cm^{-3}
	(1) 105.0 g mol ⁻¹	(2) 210.0 g mol ⁻¹	$(3) 90.0 \text{ g mol}^{-1}$	(4) 115.0 g mol ⁻¹
144.	The correct order of ed	quivalent conductance a	t infinite dilution among	g LiCl, NaCl and KCl is
	(1) LiCl > NaCl > KCl	(2) NaCl > KCl > LiCl	(3) KCl > NaCl > LiCl	(4) LiCl > KCl > NaCl
145.	(2) a plot of reciprocal(3) the time taken for the	ciation is equal to (1-e ^{-kt}) concentration of the reacher completion of 75% re	otant Vs. time gives a straction is thrice the $t_{1/2}$ of equation has the dimensi	the reaction.
146.		barium salts is soluble i (2) Barium Carbonate		(4) Barium Phosphate
147.	A gas can be liquefied (1) below its critical temper (3) at its critical temper	=	(2) above its critical ter(4) at any temperature.	-
148.	Fac-Mer isomerism is metal)?	associated with which	n one of the following	complexes (M=central
	*	(2) $[MA_3B_3]$	$(3) [M(AA)_3]$	$(4) [MA_4B_2]$
149.	(CH ₃) ₃ CMgBr on react (1) (CH ₃) ₃ CD	ion with D ₂ O produces _ (2) (CH ₃)COD		(4) (CD ₃) ₃ COD
45/A/	Download	From: http://i	<u>ndiaexampo</u>	rtal.com/

1.50	II 1 ' 1'				
150.	Hybridization of nitrog (1) sp^3d	gen in pyridine is $\underline{}$ (2) sp^3	$(3) sp^2$	(4) <i>sp</i>	
151.	The IUPAC name of the	ne compound show	n in the figure is CH ₃		
	(1) 1-methylcyclohex-(3) 1-methylcyclohex-		(2) 6-methyl cy (4) 3-methylcy		
152.	The function of AlCl ₃ i	in Friedal Craft's re	eaction is to		
	(1) produce nucleophil(3) absorb water.			acking electrophile.	
153.	If two compounds have same empirical formula but different molecular formulae, they muhave				
	(1) same viscosity.(3) different percentage composition.			(2) same vapor pressure.(4) different molecular weights.	
154.	The C-H bond length is (1) C ₂ H ₂	s longest in (2) C ₂ H ₄	· (3) C ₂ H ₆	$(4) C_2H_2Br_2$	
155.	The final product in the (1) Ethylene glycol.	e recation $CH_2 = C$ (2) Ethanol.			
156.	Among the following t (1) C ₂ H ₅ CHO		(3) Epoxyethar dehyde is (3) CH ₃ CHO	(4) HCHO	
	$(1) C_2 \Pi_5 C \Pi O$	(2) C6115C110	(3) CH3CHO	(4) Hello	
157.	In the following reaction $CH_3COOH + X \xrightarrow{Conc.H_2SO_4} Y + CO_2 + N_2$, X and Y are respectively				
	(1) NH ₃ and CH ₃ CONH ₂		(2) NH ₃ and CI	(2) NH ₃ and CH ₃ NH ₂	
	(3) HN ₃ and CH ₃ NH ₂		(4) HN_3 and CI	H ₃ CONH ₂	
158.	Ethyl isocyanide on hy (1) Methylamine salt a (2) Ethanoic acid and a (3) Propanoic acid and (4) Ethylamine salt and	nd ethanoic acid. ammonium salt. ammonium salt.	edium generates		

159.	Natural rubber is a poly	mer of		
	(1) Isoprene.	(2) Phenol.	(3) Ethylene.	(4) Vinyl chloride.
160.	Ester used as a medicin	e is		
	(1) Methyl salicylate.	(2) Ethyl benzoate.	(3) Methyl acetate.	(4) Ethyl acetate.
161.	Which of the following	has largest number of a	toms?	
	(1) 1g of Cu	(2) 0.5 mole of Cu	(3) 0.635 g of Cu	(4) 0.25 mole of Cu
162.	The spin magnetic mon	nent of the cobalt in the	compound Hg[Co(SCH)	₄] is
	(1) $\sqrt{24}$	(2) $\sqrt{14}$	$(3) \sqrt{15}$	(4) $\sqrt{8}$
163.	The correct order of the table is	e electron affinity of th	e elements of the oxyge	en family in the periodi
	(1) S > Se > O	(2) O > S > Se	(3) Se> S >O	(4) S > O > Se
164.	The number of the coor	dinate bond in HF_2^- is/	are	
	(1) 1	(2) 0	(3) 2	(4) 1 or 2
165. In the reaction A (g) + 3 B (g) ⇔ 4 C (g), initial concentration of A is equal to equilibrium concentration of A and C are equal. The equilibrium constant (K _c) is				
	(1) 8	(2) 0.8	(3) 0.008	(4) 1/8
166.	Which of the following	is a compound whose 0	.1 M solution is basic?	
	(1) Sodium Acetate.		(2) Ammonium Acetat	e.
	(3) Ammonium Chlorid	de.	(4) Ammonium Sulpha	ite.
167.	The critical temperature	re of water is higher the	han that of O_2 because	the H_2O molecule ha
	(1) V-shape		(2) Fewer electrons that	$n O_2$
	(3) Dipole-moment		(4) Two covalent bond	-
168	Glass is a			
100.	(1) gel.		(2) polymeric Mixture.	
	(3) microcrystalline sol	id.	(4) super cooled liquid	
169.	Which is not a colligati	ve property?		
- 1	(1) Elevation of boiling		(2) Osmotic pressure	
	(3) Depression of freez	•	(4) Lowering of vapor	pressure

170.	The highest electrical c	conductivity of the follow	ving aqueous solution is	of	
	(1) 0.1 M Fluoroacetic		(2) 0.1 M Chloroacetic		
	(3) 0.1 M Acetic acid.		(4) 0.1 M Difluoroacetic acid.		
171.	Hydrogen bomb is base	ed on the principle of			
	(1) natural radioactivity		(2) nuclear fusion.		
	(3) nuclear fission.	•	(4) artificial radioactiv	ity.	
172.	The bond angle and dir	pole moment of water are	e respectively .		
	(1) 109.5° and 1.84 D		(2) 104.5° and 1.84 D		
	(3) 102.5° and 1.56 D		(4) 107.5° and 1.56 D		
173.	Which of the following	g ore contains both Cu an	d Fe?	-0)	
	(1) Malachite	(2) Cuprite	(3) Chalcopyrites	(4) Chalcocite	
174	The H-O-H angle in wa	ater molecule is		•	
1/7.	(1) 45°	(2) 105°	(3) 90°	(4) 115°	
175	C 111 1 C				
1/5.	•	nesium are fixed to the bo			
	(1) prevent puncturing	•	(2) prevent action of water and salt.		
	(3) make the ship light	er.	(4) keep away the shar	ks.	
176. The correct order of increasing C-O bond length of CO,CO_2 ,			n of CO, CO_2, CO_3^{2-} is _	·	
	(1) $CO > CO_2 > CO_3^{2-}$	at a	(2) $CO > CO_3^{2-} > CO_2$		
	(3) $CO_2 > CO_3^{2-} > CO$		$(4) CO_3^{2-} > CO_2 > CO$		
177.	Boiling/melting point of	of following hydride follo	ow the order		
	(1) $SbH_3 > AsH_3 > PH_3$		(2) $SbH_3 > NH_3 > AsH_3$	> PH ₃	
	(3) SbH3 < AsH3 < PH3 <		(4) $AsH_3 > SbH_3 > PH_3 > P$	$> NH_3$	
170	Which of the following	is nonomognatic commo	un 49		
1/0.		g is paramagnetic compo		(4) N O	
	(1) KO ₂	(2) Na2O2	(3) O ₃	(4) N ₂ O	
179.	Shape and hybridizatio	n of IF ₅ respectively are	·		
	(1) Pentagonal pyramic	dal, sp^3d^3	(2) Square pyramidal,	sp^3d^2	
	(3) See saw, sp^3d	•	(4) Trigonal bipyramid		
180.		acts with Silica to form	to Xenon Compound 'X	. The oxidation state o	
	Xenon in 'X' is		(2) 2	(4) 0	
	(1) +6	(2) +4	(3) +2	(4) 0	

181.	World Cancer Day is held on		every year to raise awareness of cancer.		
	(1) February 4	(2) March 4	(3) April 4	(4) May 4	
182.	Whom did Serena Williams defeat in the final to win the Australian Open 2015 Women's Singles title?				
	(1) Venus Williams	(2) Maria Sharapova	(3) Ekaterina Makaro	va(4) None of these	
183.	Which technology giant became the first company in the world to reach a market value of \$700 billion?				
	(1) Microsoft	(2) Google	(3) Apple	(4) Facebook	
184.	Which Indian Golfer ha	as won the Malaysian O	pen 2015?	-0),	
	(1) Jeev Milkha Singh	(2) Arjun Atwal	(3) Anirban Lahiri	(4) Jyoti Randhawa	
185.	Saina Nehwal won the Syed Modi International India Grand Prix Gold badminton title 2015 in the women's singles category by defeating world champion Carolina Marin of				
	(1) Spain.	(2) Denmark.	(3) Malaysia.	(4) Taiwan.	
100.	(1) Rajiv Gandhi Interr	lion passengers per ann national Airport, Hydera onal Airport, Bengaluru pelhi	um (MPPA) category fo	world's best performing or the year 2014.	
187.	became the (1) Chris Gayle	first batsman to hit doub (2) Rohit Sharma	ole century in Cricket W (3) Virender Sehwag		
188.	Senior Journalist Vinod Mehta who passed away on 8 March 2015 was associated with which of the following magazines?				
	(1) Outlook	(2) India Today	(3) The Week	(4) Tehelka	
189.			to raterially viable infrastru (3) State Bank of Indi	= -	
190.		wing has been selected	•	sador for the North Eas	
	(1) Baichung Bhutia		(2) Mary Kom		
	(3) Sarita Devi		(4) Somdev Devvarm	an	

191.	The mass nesting of Olive Ridley sea turtles, an endangered species happens in which Indian state?					
	(1) Odisha	(2) West Bengal	(3) Andhra Pradesh	(4) Tamil Nadu		
192.	has acquired the shopping search engine TheFind.					
	(1) Facebook	(2) Google	(3) Yahoo	(4) Twitter		
193.	National Photography Awards in India are given by Ministry of					
	(1) Information & Broa	adcasting.	(2) Human Resource I	Development.		
	(3) Skill Development	& Entrepreneurship.	(4) Tourism.			
194.	Who has authored the b	oook "Indian Parliament	ary Diplomacy – Speake	er's Perspective"?		
	(1) Meira Kumar		(2) Shivraj Patil			
	(3) Somnath Chatterjee	e	(4) Manohar Joshi			
195.	India's indigenously developed Beyond Visual Range (BVR) air-to-air missilewa successfully tested in March 2015 from a Sukhoi-30 fighter aircraft.					
	(1) Astra	(2) Shastra	(3) Prithvi	(4) Agni		
196.	National Green Tribunal (NGT) has announced a fine of ₹on individuals spotted littering or throwing waste on the railway platforms and tracks.					
	(1) 500	(2) 1000	(3) 3000	(4) 5000		
197.	Who among the following won the best actress award in the 62nd National Film Award announced in March 2015?					
	(1) Kangana Ranaut	(2) Alia Bhatt	(3) Tabbu	(4) Baljinder Kaur		
198.	In March 2015, NASA	's curiosity rover has fo	und evidence of	on Mars.		
	(1) Oxygen	(2) Nitrogen	(3) Hydrogen	(4) plutonium		
199.	9. Which is the only country in the world where the Prime Minister, Parliament speaker, Lead the opposition, Deputy Leader of the house, and a major opposition leader are all women?					
	(1) Denmark	(2) Bangladesh	(3) Spain	(4) None of these		
200.	Who is the richest man	of India as per the Forb	es Rich list 2015?			
	(1) Anil Ambani	(2) Mukesh Ambani	(3) Shiv Nadar	(4) Lakshmi Mittal		

INSTRUCTIONS TO CANDIDATE

- 1. Please do not open this Question Booklet until asked to do so.
- 2. Do not leave the examination hall until the test is over and permitted by the invigilator.
- **3.** Fill up the necessary information in the space provided on the cover of the Question Booklet and the Answer Sheet before commencement of the test.
- **4.** Check for the completeness of the Question Booklet immediately after opening. There are 24 pages including the cover pages.
- 5. The duration of the test is 3 hours.
- **6.** There are **200 questions**. Each question has four answer options marked (1), (2), (3) and (4).
- 7. Answers are to be marked on the OMR Answer Sheet, which is provided separately.
- **8.** Choose the most appropriate option and darken the oval/circle completely, corresponding to (1), (2), (3) or (4) against the relevant question number.
- 9. Use only **HB pencil** to darken the oval/circle for answering.
- **10.** Do not darken more than one oval/circle against any question, as scanner will read such marking as wrong answer.
- 11. If you wish to change any answer, erase completely the one already marked and darken the fresh oval/circle with an **HB** pencil.
- 12. All questions carry equal marks. There is No Negative Marking.
- **13.** Rough work, if any, is to be done on the Question Booklet only. No separate sheet will be provided/used for rough work.
- 14. Calculator, Mobile, Electronic Gadgets, etc., are not permitted inside the examination hall.
- 15. Candidate using unfair means in the test will be disqualified.
- **16.** Appropriate civil/criminal proceedings will be instituted against the candidate taking or attempting to take this Question Booklet or part of it outside the examination hall, besides cancellation of his/her candidature.
- 17. The right to exclude any question(s) from final evaluation rests with the testing authority.
- **18.** Do not seek clarification on any item in the question booklet from the test invigilator. Use your best judgment.