Q1. Determine the three mesh currents in Fig. 1.

Fig. 1
Q2. In Fig. 2, for the circuit voltage across 6Ω resistor is 6 V and current through 4Ω resistor $3 / 4 \mathrm{~A}$. Determine the the source voltage V and the value of resistance R.

Fig. 2

Q3. Find out the voltage, current, and power associated with each element of the circuit of Fig3..

Fig. 3

Q4. Determine the voltage V_{x} in the following circuit.

Fig. 4

Q5. Find the current through the 2Ω resistor and voltage across 10Ω resistor.

Fig. 5
Q6. (a) Calculate the value of current I in Fig. 6(a)
(b) Calculate V_{AB} in Fig. 6(b). Also calculate the current through the 5V source.

(a)

(b)

Fig. 6

Q7. Calculate the value of I_{1} of Fig. 7 using (a) Mesh Analysis and (b) Node Analysis.

Fig. 7

Q8. Calculate the current through the 4Ω resistance of Fig. 8 using three network theorems (Superposition, Thevenin's and Norton's). Also, calculate the power delivered/received by the 2 V and the 1 A sources.

Fig. 8

Q9. Determine the amount of power delivered/received by the voltage source and the current source in the circuit of Fig. 9.

Fig. 9

Q10 Solve the circuit shown in Fig. 10 using mesh method of analysis and determine the mesh currents $\mathrm{I}_{1}, \mathrm{I}_{2}$ and I_{3}. Determine the power associated with the 10 V voltage source.

Fig. 10
Q11. Determine the current i_{x} in Fig. 11.

Fig. 11
Q12. Find the Thevenin equivalent voltage as viewed by the resistance R. Find the value of R for maximum power dissipation in it.

Fig. 12

