
Extending and Enhancing GT-ITM

K. Calvert*, J. Eagan†, S. Merugu†, A. Namjoshi*, J. Stasko†, E. Zegura†
*University of Kentucky †Georgia Institute of Technology
{calvert, aditya }@netlab.uky.edu {eaganj,merugu,stasko,ewz }@cc.gatech.edu

ABSTRACT
GT-ITM is a collection of software tools for creation, manipulation,
and analysis of graph models of internet topology. It has been used
by networking researchers in a variety of ways, most often to cre-
ate topologies for use in simulation studies. This paper describes
the features of a new release of GT-ITM, including enhanced vi-
sualization capabilities; a routing and forwarding module for use
with large graphs; and support for modeling of interdomain routing
policies.

1. INTRODUCTION
GT-ITM is a widely-used facility for creation and analysis of

graph models of network topology. Such models are widely used in
simulation based evaluation and comparison of new protocols and
algorithms, and also as a tool to understand the topological charac-
teristics of the Internet. We have developed a new release of GT-
ITM, which includes a number of new features and enhancements,
including: a visualization capability; support for routing/forwarding
in very large graphs (up to hundreds of thousands of nodes); and
the ability to specify and use interdomain routing policies on a per-
domain basis. The next section presents a brief overview of GT-
ITM, followed by a section describing each of the major enhance-
ments. Section 6 describes some other features being considered
for inclusion, on which we would like to get feedback at the work-
shop.

2. OVERVIEW OF GT-ITM
The original GT-ITM [2] comprises:

• A command-line program that controls the creation of ran-
dom graphs according to various models (including thetransit-
stubmodel [9]) and parameters.

• A command-line program that controls the evaluation of var-
ious characteristics of graphs, e.g. diameter.

• Various example graphs and parameter files for creating them.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGCOMM 2003 Workshops, August 25&27, 2003, Karlsruhe, Ger-
many.
Copyright 2003 ACM 1-58113-748-6/03/0008 ...$5.00.

All tools are built on the Stanford GraphBase (SGB) [5] platform
for general graph representation and manipulation. Nodes in a GT-
ITM SGB graph represent routers; bidirectional links are repre-
sented by edges (pairs of arcs). SGB was designed to be completely
portable and very efficient; this gives the GT-ITM tools an advan-
tage in that area as well.

GT-ITM has been used by many researchers in comparisons of
routing, caching, peer-to-peer and other algorithms and services. It
has been included as part of the “ns2” network simulator package
for several years.

However, the state of the art in topology modeling has advanced
since the initial release of GT-ITM. The topology of the Internet
has been studied a good deal over the last five years, and more is
known about its structure. For example, BGP data has provided a
more accurate picture of the way domains are interconnected [1].
Other researchers have developed topology-generation tools that at-
tempt to mimic this domain-level structure [7, 6, 8]. While GT-ITM
can produce graphs with a discernible domain structure (and edge
weights ensuring that shortest paths will respect that structure), the
domain-interconnection structure of those graphs is not designed
to reflect the “power-law-like” distributions seen in the high-level
structure of the Internet.

In addition, the limits of what is feasible in topology-related sim-
ulation studies have increased dramatically; it is now possible to
deal with much larger graphs for high-level simulations. How-
ever, the some of the tools in GT-ITM and the Stanford Graph-
Base are inadequate for graphs of more than a few thousand nodes.
As an example, consider the problem of comparing the paths fol-
lowed by packets, say, for different multicast routing algorithms.
For moderate-sized graphs, it suffices to run an all-nodes shortest
paths algorithm and build anO(n2)-sized next-hop table so the
next hop from any node to any other node can be determined in
constant time. However, for a graph with105 nodes, the size of the
table alone is prohibitive (never mind the time required to compute
it) for current platforms. For graphs of this size, different route-
computation methods are needed.

Another change related to routing is the recognition ofpolicy as
an important factor in understanding interdomain route selection [4,
3]. Packets in the Internet do not always follow “shortest” path be-
tween two domains in terms of distance or number of hops; rather,
their paths are determined by business or other relationships. For
simulations involving interdomain traffic, we would like to be able
to compute and use routes that reflect this fact. Given this capa-
bility, we would like to use GT-ITM to study the effects of such
policies on routing protocols. Finally, the ability to visualize topol-
ogy models can be very useful, both as a sanity-check and as a way
to detect features that might be relevant to the topic under study.

With these and other motivations, we have extended and en-

Forwarding Lookup

Routing TablesPoliciesGT−ITM Graph

Algorithm

Figure 1: Routing/Forwarding tool structure

hanced GT-ITM. The next few sections describe the enhancements
motivated by the above observations.

3. ROUTING AND FORWARDING CAPA-
BILITIES

GT-ITM’s graph-construction tool can produce graphs with ran-
dom interconnections exhibiting various types of high-level struc-
ture. One type, thetransit-stubgraph, imposes a domain structure,
distinguishes between transit and stub domains, and assigns edge
weights in such a way that traditional shortest-path routing pro-
duces paths that respect the domain structure of the graph: Once a
path leaves a domain, it does not return to that domain. Also, paths
do not traverse stub domains except those containing the source
or destination. However, GT-ITM does not provide any special
tools for construction and use of routing/forwarding tables for con-
structed graphs.1 The absence of such support can be a significant
drawback for graph models with tens or hundreds of thousands of
nodes. Because path computing can be rather expensive for large
graphs, it is important to support offline computation and storage
of the results for later re-use.

In particular, we want to:

• Support construction of forwarding tables for very large transit-
stub graphs.

• Be able to store computed forwarding information in a for-
mat that is independent of the particular routing algorithm
and separate from the graph itself, so that the same graph
can be used with different forwarding tables, and the effects
of different routing algorithms and policies can be compared.

• Provide a way to use these precomputed forwarding tables
efficiently to determine the next hop to a given destination.

Figure 1 shows the general structure of this approach, which
has two software components. We provide a run-time API which,
given a graph, and forwarding tables, encapsulate the “forwarding

1The Stanford GraphBase includes an implementation of Dijkstra’s
algorithm, but it finds the shortest path betweentwo nodes.

lookup” function, which returns the next hop from a given node
to a given destination, according to the given tables. The other
component runs off-line, constructing forwarding tables according
to selected routing algorithms and storing them in a standard for-
mat. To implement these components in a manner suitable for use
with large graphs, we resort to the same method used in the In-
ternet: we split the problem into two parts, namely computation of
intradomainrouting information for each domain, and computation
of inter-domain pathsbetween domains.

Associated with each domain in a transit-stub graph are two rout-
ing tables, an intradomain table and an interdomain table. The in-
tradomain table is a simple two-dimensional array shared by all
nodes in the domain; entryi, j in the array contains the index (in
the domain graph) of the first hop on the path fromi to j. This ar-
ray is constructed by running the Floyd-Warshall all-nodes shortest
path algorithm on the domain graph with edges to other domains re-
moved. Each interdomain routing table is an array of entries, each
of which consists of a string denoting a destination and forwarding
information for that destination. The destinations represented in
this table are domains. For each destination domain, we store the
egressnode in the same domain, that is, the node from which an
edge connects to the next domain in the domain-level path to that
destination. In addition, we storedomain-level path(correspond-
ing to the “AS path” BGP attribute) for that destination. The table
contains one entry for each transit domain, plus one entry for each
stub domain to which the domain is directly connected. The way
nodes are identified in transit-stub graphs2 makes it possible to do
a kind of longest-matching-prefix lookup on this table to find the
destination domain.

The forwarding lookup function computes next-hop information
for a destination in a different domain as follows. First the inter-
domain table for the origin domain is consulted to determine the
egress node to get to the destination domain; the intradomain ta-
ble for that domain is then consulted to determined the next hop
to the egress node. At the egress node a different procedure must
be used: first the next domain along the path to the destination is
determined, using the AS path attribute from the interdomain ta-
ble; then the neighbors of the egress node are examined until one is
found that belongs to that domain; it is returned as the next hop.

Although this approach results in a more complex forwarding
computation, it reduces the size of the forwarding table fromO(n2)
toO(DT +DM2), whereD is the total number of domains,T is
the number of multihomed domains, andM is the size of each do-
main. As an example, we have constructed a transit-stub graph
with 15,000 domains (approximately 40 transit domains) and over
300,000 nodes total. The routing information for this graph oc-
cupies about 18 Megabytes (without compression); the simple all-
to-all (n2) table would provide constant-time lookup, but would
require 90 Gigabytes of space.

We have created atraceroute -style program to demonstrate
the use of the routing utilities. Figure 2 shows sample output on the
300K-node graph mentioned above.

We use an algorithm that simulates BGP operation to generate
the interdomain forwarding tables. Our implementation algorithm
supports the specification and enforcement of path-selection (im-
port and export) policies for each multihomed domain, as described
in the next section. (The interdomain tables of single-homed do-
mains are trivial.) Once the routing tables have been computed, the

2Each node in a stub domain is identified by a string that encodes
a transit domain, transit node relative to that transit domain, stub
domain relative to that transit node, and node in that stub domain.
Names of nodes in a transit domain only have the first two compo-
nents.

laurel> gtitmtr ts300504-0.gb ts300504-0-3.rt 100000 300000
Source = S:8.8/13.2 Destination = S:24.20/5.12
Intradomain routing table loaded
Interdomain table loaded
Routing tables loaded in memory
1: S:8.8/13.4
2: S:8.8/13.14
3: S:8.8/13.17
4: T:8.8
5: T:8.11
6: T:8.9
7: T:16.13
8: T:16.8
9: T:16.18
10: T:24.0
11: T:24.2
12: T:24.20
13: S:24.20/5.19
14: S:24.20/5.12
Lookup time: 90077 microseconds

Figure 2: Output of GT-ITM “traceroute” command

routing information is stored in a file (whose name is derived from
that of the input graph file). To ensure that the routing information
is used with the same graph for which it was generated, the check-
sum from the graph file is stored along with the table information.

4. INTERDOMAIN POLICY
Routing based strictly on shortest paths is not “realistic” in the

sense that the paths followed by packets in the real Internet are de-
termined as much bypolicy as by distance, hops, or other metrics.
For example, given a choice between a route advertised by a service
provider and another route to the same destination advertised by a
provider who is a customer, in general the customer route will be
preferred (because it generates income). The interdomain protocol
BGP is designed to support selection of paths based on domain-
level policies of this kind. This means that the path followed by
packets between two nodes may not be the “shortest” one by any
of the usual metrics. To achieve realistic routing in simulations, it
is therefore desirable that the GT-ITM routing/forwarding facility
support specification and enforcement of routing policies.

The new release supports a simple language for specifying poli-
cies, and allows policies to be specified for particular domains. If
no policy is explicitly stated for a domain the default policy is used.
Policies are of two kinds:Import policies assign local preference
values to routes based on the domain-level path associated with the
route. Such policies can be used to favor routes through particular
domain-level neighbors (e.g. the above-mentioned preference for
customer routes over provider routes).Export policies allow the
user to define rules for exporting the route information for a par-
ticular domain to its neighbor. A general example of the need for
such policies is that routes learned frompeers(i.e. neighbor do-
mains that are not customers and not providers) may or may not be
advertised to other domains.

Clearly it would be cumbersome to specify policies for graphs
with thousands of domains. We therefore provide a mechanism for
automatically generating policies that reflect the customer-provider
and peer-peer relationships found in the Internet [3]. This mecha-
nism is based on the observation that provider domains in the In-
ternet can viewed as organized intiers, with a fully-connected core
of domains that are not customers of any other domain forming

“Tier 1”, “Tier 2” domains being the customers of Tier 1 providers,
etc. For any given transit-stub graph it is possible to assign customer-
provider relations automatically by considering the domain-level
graph. First a clique is found and designated as the core (Tier 1).
Then a breadth-first search is performed, with neighbors of Tier 1
domains becoming their customers or Tier 2 domains, neighbors of
Tier 2 become Tier 3, and so on.

Once customer-provider relationships are assigned in this way,
it is straightforward to generate import (local route preference) and
export (which routes are advertised) policies consistent with those
relationships. We have created programpolicytool to auto-
mate the process. It takes a graph file as input, generates the policy
information as described above, and then stores the information as
a policy file. (In assigning domains to tiers, the desired size of the
core is given as input; a fast constraint-satisfaction system is used
to find a clique of the given size.) The resulting policies are stored
in a file, which can be provided as input to the routing table compu-
tation described in the previous section. Policy files can of course
also be modified or created by hand. Thus the user can generate
different policies for the same graph and see the effect on forward-
ing.

5. VISUALIZATION FEATURES
One of the most commonly-requested additional features is sup-

port for visualization of the graphs generated by GT-ITM. Based on
our own experience and interactions with other researchers, we find
that visualizations are desired for several different purposes. First,
a pictorial representation of a topology can provide some high-level
intuition about the structure of the graph. Such intuition may allow
a coarse-grain sanity check on the correctness of simulation code
and/or the ability to trace “by hand” the intermediate expected re-
sults as a form of debugging. Second, a visualization may help
identify locations in the topology that have particular properties,
so they can be used as sites for particular entities (e.g., servers,
clients, content distribution caches), in simulation runs. Third, as
researchers have attempted to evaluate topology generators, they
have generally applied standard graph theory metrics. Visualiza-
tion may help shed light on alternative graph features that are par-
ticularly discriminating in a generator. Finally, for documentation

(a) Traditional Graph View (b) Spurred Graph View

Figure 3: A comparison ofNetVizor output using (a) the traditional graph view and (b) the spurred graph view.

purposes, it is useful to be able to include pictures of topologies in
papers describing research results.

Working with colleagues in information visualization, we have
build an interactive tool—NetVizor —for the layout of transit-
stub graphs. The tool provides several options for layout, including
two options that involve the user in the layout process. By involving
the user, the intent is to develop and strengthen the mental model
of the structure. Once an initial layout is complete, the tool allows
interactivity of several types, intended to enhance the mental model
and support more scalable versions of visualization. We describe
the layout and interactivity features in more detail below.

5.1 Layout and Interactivity
Several layout features are common to all views. A domain is

represented by a circle, with nodes on the circumference. The size
of the circle is automatically chosen based on the number of nodes
in the domain. In all cases, the intra-domain structure is automati-
cally generated by the tool.

Three options for initial layout are provided. Thefully-automatic
mode will construct the entire topology automatically, placing tran-
sit domains on a circle and fairly far apart from one another, then
surrounding a transit domain with its associated stub domains3.
The partially automatic or manu-matic mode combines manual
layout with automatic layout. The goal is to involve the user in
the high-level details of the layout, while automating the tedious
aspects (e.g., of intra-domain connectivity). The user is responsi-
ble for the placement of transit domains; the system automatically
places the associated stub domains in a circle around each transit
domain. In thefully-manual mode, the user places all domains.

After initial layout, the user may interact with the graph. This
interactivity can be used to improve the layout to be more visually
pleasing or to increase intuitive understanding of structure. Nodes
and domains support selection and dragging, with some under-
standing of domain-level semantics. For example, moving a transit
domain causes all of its stub domains to move as well.
3Multihoming of stub domains complicates the task of layout. If
many domains are multi-homed, layout with some user involve-
ment is probably appropriate.

The user can also alternate between two different views of the
graph. Thetraditional view uses one node per router, with an edge
between each pair of connected routers. Thespur view aggregates
the edges from multiple stub domains to the same transit node by
providing a single “spur edge” from the transit node with branches
to each stub domain. This view is intended to reduce visual clutter,
while preserving visualization of domain-level connectivity. Fig-
ure 3 shows an example graph in traditional and spur views. This
is a 600 node topology with three transit domains.

5.2 Implementation and Extensions
NetVizor is implemented in C++ using the GNOME libraries.

It runs on any system supporting GNOME, including Linux, Mac
OS X, and Solaris. The basic implementation is extensible. Support
exists for additional views (e.g., bar charts, histograms), though
these views are not currently implemented. The data format allows
arbitrary nominal or quantitative values to be added to the graph
topology to encode additional information.

6. OTHER ENHANCEMENTS
In addition to the enhancements described above, we have made

some other changes to the tools that make up GT-ITM. Included
below are possible additional enhancements that we could make if
desired by the research community.

Alternative specification of domain-level graph. It is known that
the domain-level structure of transit-stub graphs produced by
GT-ITM does not reflect some of the structural characteris-
tics of the “real” AS-graph as seen by interdomain routing
protocols [1, 7]. Other topology generators (e.g. Brite [6]
and Inet [8]) have focused on constructing models that more
accurately reflect the Internet’s AS-level structure. In order
to provide this capability in GT-ITM, we have separated con-
struction of the domain-level graph from the rest of the pro-
cess of generating a transit-stub graph; the domain graph is
now given as an input to the latter part of the process. This
makes it possible to construct the domain-level graph using

any method desired—including other topology generators—
and expand it into a transit-stub graph.

More efficient route computation. We have implemented a piece-
wise route computation that greatly improves the efficiency
of all-to-all route computation for graphs in which many stub
domains are single-homed. The scheme computes routes in-
dependently within each stub domain and in a graph consist-
ing of the border router for each stub and all the transit nodes.
A complete end-to-end route is then constructed by piecing
together routes in each stub domain with the route from ori-
gin domain border router to destination domain border router.
The efficiency gains are considerable; for example, an all-
pairs computation which took hours to run now takes 10s of
minutes. An additional enhancement would involve correct
operation in graphs with multi-homed stub domains.

Bug Fixes. We have fixed some errors in the program, including
one that caused input parameters to be interpreted differently
than the specification indicated. A “bug-compatibility mode”
is included for those who need to preserve past behavior.

7. CONCLUSION
We believe the improvements we have made to GT-ITM will en-

hance its utility for the research community. The authors welcome
feedback on these features and suggestions for others to be added.

Acknowledgment
The authors are grateful for the support of the US National Science
Foundation under grants ANI-0081557 and ANI-0082318.

8. REFERENCES
[1] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On Power-law

Relationships of the Internet Topology. InSIGCOMM, 1999.
[2] http://www.cc.gatech.edu/projects/gtitm/.
[3] L. Gao and J. Rexford. Stable Internet Routing Without

Global Coordination.IEEE/ACM Transactions on
Networking, 2001.

[4] T. Griffin, F. B. Shepherd, and G. T. Wilfong. Policy Disputes
in Path-Vector Protocols. InICNP, 1999.

[5] D. E. Knuth.The Stanford GraphBase: A Platform for
Combinatorial Computing. ACM Press, 1993.

[6] A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: An
Approach to Universal Topology Generation. InInternational
Workshop on Modeling, Analysis and Simulation of Computer
and Telecommunications Systems- MASCOTS, 2001.

[7] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, and
W. Willinger. Network Topology Generators: Degree-Based
vs. Structural. InACM SIGCOMM, 2002.

[8] J. Winich and S. Jamin. Inet-3.0:internet topology generator.
Technical Report CSE-TR-456-02, University of Michigan,
2002.

[9] E. W. Zegura, K. Calvert, and S. Bhattacharjee. How to Model
an Internetwork. InIEEE INFOCOM, 1996.

