CHENDU COLLEGE OF ENGINEERING & TECHNOLOGY
(Approved by AICTE, New Delhi and Affiliated to Anna University)
Zamin Endathur, Madurantakam, Kancheepuram District — 603311.

CCET

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

VLSI LAB MANUAL

VI SEMESTER ECE

Stepl:

Start the Xilinx Project Navigator by using the desktop shortcut or by using the Start >
Programs > Xilinx ISE (8.1i).
S ek pAVEDIE S CODESviiErom hileirom ihle e

SOURCE
WINDOW

No project is open

Select
File-»Open Project
o
File-»Mew Project

TRANSCRIPT

PROCESS
WINDOW

No flow available.

iﬁ Fiocesses

[pg Find in Files

Step 2

Create a new project
In the window go to FILE - New project.
Specify the project name and location and say NEXT

No project is open

Select
File->Open Project

o
File-» Mew Project

Eg Sources

2f! Processes

Corrole

Select Device. Use the pull-down arrow to select the Value for each Property Name. Click
in the field to access the pull-down list

- Xilinx . ISE . E:¥H

No project is open

Select:
File->Open Project

o
File->Mew Project

No flow available.

2f Processes

Console

Say FINISH. Project summary is seen.

Step 3:

Creating a new VHD file

Click on the symbol of FPGA device and then right click—> Click on new source ->VHDL
module and give the File name
R ey

File Edit View Project Source Process Window Help

DPHF LD AN BUARL AR AW L BB oo @GRk

imHE D v

Sources

Sources far: | Synth
ﬁ HALHADDE q IP [Coregen & Architecture 'wizard)
S £ w3 A00-4p

[£] S chematic

Yerlog Maodule Eile name:
B Sources 8 m Werlog Test Fisture half adder
P Pgl YHOL Moduls =
10CEssEs i i
WHDL Library Location:
Processes: [¢]YHDL Package |
~E0 AddExis [filyDL Test Bench EHALHADDER L
[Create M~
VHDL

Add to project

e [

MODULE

i [LCancel

Transcript X

[i T i
[Z] Corwsole | @Enors | A\v\u"amlng | Lpg Find in Files |

| caPs [NUM | ScrL

Y untitle., % 10:54 &M

it] gpohot.. | Hwea. | Dweb.. | B,
Then say Next->Define ports.In this case

e aand b are the input ports defined as in

e sum and carry are output ports defined as out
after this say Next twice and then Finish

:.Eile Edit Miew Project Source Process Window Help
IDPHS S0 EFD SUKLN NE LR XDE 9o Mgk
= =l ¢

Sources

Sources for | Synth —
HALHADDE

Entity Mame éhalf_adder

£ xo3e400-4p :
Architecture Name | Behavioral
Port Mame Direction | MSB LSB
RIS
Frocesses SUM
Processes: CARRY
ST Add B
[Create
E!-ﬁ‘ Dresign L

El—t Processes

T

i [LCancel

[T
Console | QErmrs |

Step 4:

Writing the Behavioural VHDL Code in VHDL Editor

Sample code is given below for this experiment.

File Edit Wiew Project Source Process Window Help

B £ c3e400-4pq208

DPHA LD D B@HAET AR LR X DR Ba iR
BB IO VAR =

= AstopProcessfy 3¢ M W0 B o b= b AR

é’ﬁ half_adder - Behavioral (h

Add Existing Source
Create New Source

Wiew Design Summary

Dresign Utilties
Uszer Constraints
Synthesize - 5T

half_adder | £ Desian Surmary

———— any Hilinx primitives in this code. @
——library UNISIM;
——uze UNISIN.VComponents.all;

entity half adder is
Port (& : in STD_LOGIC:
B : in STD_LOGIC:
SUM : out 3TD_LOGIC:
CARRY : out 3STD LOGIC):
end half adder;

architecture Behavioral of half adder is
begin
3UM <= AL xor B;

CARRYT <= L and E;

end Behavioral;

SGtarted : "Launching Design Sumary™.

Step 5

Check Syntax

Run the Check syntax = Process window - synthesize >check syntax >, and remove

errors if present.

Step 6

Creating a test bench file

Verify the operation of your design before you implement it as hardware. Simulation
can be done using ISE simulator. For this click on the symbol of FPGA device and then

right click = Click on new source ->Test Bench Waveform and give the name - Select
entity 2Finish.

. File Edit Wiew Project Source Process ‘Window Help

DAHZ B EER @}@t@{@t@tlj@ LW ix @B oo Mo
= n =, Q,@B

Sources

Sources for. | Synlh' e eI EE TG

- ":1 HALHADDE E. . BMME. ;
= EE wc3z400-4pe | 47 P [Coregen & Architecture wWizard) |
o [iglefishalll | [B) MEM File

|| &] Schematic:

e Implementation Constraints File |
State Diagram | File name:

o] Test Bench 'WaveForm |

||2] User Document |

||w] werilog Madule | Location:

m ‘erlog Test Fikture |

B Sources

Frocesses

Frocesses:

AddExist | [VHDL Module “WHALHADDER | 2
Create M| I[YHDL Library

b iew De n WHDL Package

E\g‘ Diesign L [y YHOL Test Bench

i User Con
- c}@ Synthesi

Add to project

i Processes | <Besk New> | [Cons

Process "Synthesize™ completed successfully

Transcript X

Conzole | @Errors _ﬁ\v\u’amings

g Find in Files |

Ln41 Col18 | CAPS MUM | SCRL|WHDL

.ﬁIMﬁQ--.-..F% 11:19 AM

short... | Egipa.. | (web_.. | E)osp_.

Select the desired parameters for simulating your design. In this case combinational
circuit and Simulation time.

ile Edit Wiew Pre

DEEHS &) » Minimum
e = e Mtaﬂ'”g“'l”” ; b NPT
ou elay H
Sources B v . ! setup
| Synthesis! .
_ Clack —— Clock -
= £ xc3s400-4pg205 i high for ey for
2
ﬁﬁha"—add Clock Timing Information Clock Information
Inputs are azsigned at "'lnput Setup Time'! and &) Singls Clock
outputs are checked at "Output Yalid Delay'’ :
B3 Sources | gy 51 (5 Rising Erge © Falling Edge £ buple Lo
.................. b
T () Dusl Edgs (DDA or DET) () Combinatarial (or internal clack)
Processes: Clock High Time 100 | ns Combiratorial Timing [nformation

Add Existing Clook Lo Tive Iriputs are assigned, outpuls are decoded then
Create Mew 5 checked. & delay between inputs and outputs avoids
View Design Input Setup Time azsignment/checking conflicts.

Dresign Utilitie Olutput Yalid Delay
Uszer Constrai

ms After Inputs are Assigned

Offzet iz After Dutputs are Checked
]@Synthesme
Global Signals
Initial Length of Test Bench:
E‘-I: Processes [] PRLD [CPLD) [] G5R [FPGA] :

Time Scale:
High far Initial: 1

[] Add Asynchranous Signal Support

Tranzcript X

< Back Z’ Finizh] ’ LCancel]

i E = I, F@ 11;20 A1

Step 7:

-

SIMULATION

Simulate the code

Simulation Tools

ISE tool supports the following simulation tools:

e HDL Bencher is an automated test bench creation tool. It is fully integrated with
Project Navigator.

e ModelSim from Model Technology, Inc., is integrated in Project Navigator to
simulate the design at all steps (Functional and Timing). ModelSim XE, the Xilinx
Edition of Model Technology, Inc.’s ModelSim application, can be installed from
the MTI CD included in your ISE Tool

In source Window from the Drop-down menu select Behavioural Simulation to view
the created test Bench file.

.. File Edit Wiew P[ojéc.t. §0u.rc.e .Erocx.es.s Test Bench. .Si;'nglation ‘window .Ij.elp
DAEHY 2D G D 8L EAT AN
%EIEDEO“"”‘ 19..031}{..‘»—

End Time:
1000 ns

A

e

M CarRY

HMsum

100 ns 300 ns 500 ng 700 ns

‘o
Lo

]
o

U Sources

w of hal fadder thiw:
half_adder

half_adder !E & Design Summary ‘ = hal fadder th

Entity <half adder> (Architecture <behavioral>) compiled.

| igg FindinFilss |

: . | Epea., | Gweb.. | Bose.,
Click on test bench file. Test bench file will open in main window. ASS|gn aII the
signals and save File. From the source of process window. Click on Simulate
Behavioral Model in Process window.

112 ! i v AL ELEULE R

BB Fle Edit Yew Project Source Process TestBench Simuation Window Help

DPHD O EFD BT B 4 X0 oo @ak

BEOOV F&C 2L HEHE D e i

Sources for: | Behavioral Simulation End Time:

) 1000 ns 100 ng 300ns
ans . [|
e 1
M CARRY 0
R SUm 0

Create New Source

View Generated Test Ber
Add Test Bench To Proje
iling 1SE Simulator

HE
| half_adder I: & Design Summary I = hal fadder thw

Verify your design in wave window by seeing behaviour of output signal with respect

to input signal. Close the ISE simulator window

BB Fle Edit View Project Source Process TestBench Simulation Window Help

OPHE 2D G0 BUEAAL(ANE LW XDE @ ph el

iBmEDD 9 A 2AKER e B B
X

Now:
1000 ns ‘DHS Z?D 400 ns
=} ﬂ *:252005pq208 Ha
® halfaddar [halfadder.tbw)

b

ol sum

Bl carry

o o o o

i

@ Libraries

Erd Souces

Hierarchy of haltadder:
4 halladder halfadder testbench_aich

i i
‘ [half_adder H ¥ Design

| Bf Processes ‘ B Sim Hierarchy - halladder T

Surmary | BB haltadder BB Simulation

SIMULATED
OUTPUT

User (VHDL) Code Called Simulation Stop

Simulation stopped when executing proeess: halfadder.vhi:59
on line 141 in file "E:/HALFADDER/halfadder.vhu'™

| g Find in Files ‘ BB Sim Consale - halfadder |

_!\Wam\ngs i

W #1) DocS3DSP_SANTHI ... l@wtexj_ﬁna\lrMi‘.. l@a Windows Explorer = e iR ER ST

w untitled - Paint M

7 12:45PM

Step 8: Synthesize the design using XST.
Translate your design into gates and optimize it for the target architecture. This is the
synthesis phase.
Again for synthesizing your design, from the source window select,
synthesis/Implementation from the drop-down menu
File Edit Wiew Projec rocess Window Help
iDPHA LA
IBEID 9RL
---— any Hilinx primitives in this code. @
--library UNISIN;
HAL —-uze TNISIM.VComponents.all;
= £3 ne3sd00-4pg203 .
ﬁ%ha\l:_qadder - Behavioral (h entl;gr:atfiac}d:i IZTD_LOGIC;
B : in &TD_LOGIC
SUM ¢ out STD LOGIC:
E[:Sources Chapshots - CARRY : out 3TD_LOGIC);
SYNTHES'S] i end half adder;

Processes architecture Behavioral of half adder is
. E add Esisting Source
[Create New Source
B Wiew Design Summary
@g Design Utilities

@g User Constraints

hegin
SUM <= L xor B;
CAREY <= L and E;

end Behavioral;

BB bl th |

ol 18 | CAPS NUM | SCRL | WHDL
i . ﬁlmo _f@nagnm
nghllght file in the Sources in PI’OjeCt Wlndow Torun synthe5|s rlght -click on
Synthesize, and the Run option, or double-click on Synthesize in the Processes for
Current Source window. Synthesis will run, and
e agreen check v'will appear next to Synthesize when it is successfully
completed.

e ared cross ¥indicates an error was generated and

e ayellow exclamation ! mark indicates that a warning was generated, (warnings
are OK).
Check the synthesis report.
If there are any errors correct it and rerun synthesis.

.. Fil.e. E;lit Yiew Project Sou‘rc‘e Process Window Help
NP HF B 5D MU (AE LN
= = m e =B s E e

26 primitives in this code. @:
27 14 Cumment Selectlun -

'\"ﬂHALHADDEH 25 ——usze UNISIM. VComponencs.all:

= €7 xc3s800-4pg208 =

o ol halt_adder - Bshaviaral fh 2} =ntity half adder is
el g 31 Port (A : in ®TD_LOGIC:

az B : in STD_LOGIC;
33 SUM : out STD LoOGIC)
a4 CARRY : out STD_LOGIC):

E§ Sources Lﬂ Snapshots

35 end half adder;

37 architecture Behavioral of half adder is=s

F'rucesses

=] E)@Syntheslze ®5T
i E@VIEW Synthesiz Report
- @ “iew RTL Schematic

; @ “iew Technology Sch

39 begin
40 SUM <= L xor B
41 CARRY <= A and E:

43 end Behavioral:

...... SYNTHESIS
| half_adder 5 Diesign Surnmary™ T COMPLETED

|~ i
Process "Check SIyntax™ completed successiully QZCESSFULLY

Step 9:

Create Constraints File(UCF)

Click on the symbol of FPGA device and then right click-> Click on new source

- Implementation Constraints File and give the name - Select entity—>Finish.

Click on User Constraint and in that Double Click on Assign Package Pins option in
Process window. Xilinx PACE window opens. Enter all the pin assignments in PACE.,
depending upon target device and number of input and outputs used in your design.
(sample code is given below for given design.)

= =[Ex]
[Fle Edit View Project Source Process ‘Window Help 15 [X]

DPEHS EAIEE"I @}Etc”{g'tat\ﬁ\l AR G B we e
e = nm f L

Sources
Sources for: | Synthesis/|
- EIHALFADDER o (ml 5 "
: = o LR
= £ xe25200 5pg208 _‘
[l By halt_adder| [
(+-1=3 14D Pins —
{2 Global Logic =
£ Logic
B3 Sources e 5n|
Processes - i
Y g i
[Add Esisting 5 170 Name]1/0 Direction] Loc_|Bank| 140 Std. |Vref]
[CreateMew S & Input [T
SOE View Design 5| | B3] gAHHY ‘Sﬂut i i - bl
C ulput |
®-&F Design Utiitie S Bt = : . =
EJ B User Constrai
&5 Create Ti
Assign Pax
Create fie
[2] Edit Const
o o
(23] 1| [N Package iew h Architecture View £ 1 | 1l
e =
PIN gped when executing process: halfadder.whw:59 8)
ile M"E:/HALFADDER/halfadder.vhu'
B

L\ Warnings | g FindinFiles | BB Sim Console - halfacider |

m DOCS30SP_SA.]) virtex_4_Final. . I 133 Windows E... v] o] Wilinx - ISE - Ex... I 14 untitled - Paint

[ln1Coll | CAPS|NUM|SCAL UCF

W8 Py 100 PM

10

Step 10:

Implementing a Design

Once synthesis is complete, you can place and route your design to fit into a Xilinx
device, and you can also get some post place-and-route timing information about the
design. The implementation stage consists of taking the synthesized netlist through
translation, mapping, and place and route.

To check your design as it is implemented, reports are available for each stage in the
implementation process. Use the Xilinx Constraints Editor to add timing and location
constraints for the implementation of your design. This procedure runs you through the
basic flow for implementation.

Right-click on Implement Design, and choose the Run option, or double left-click on
Implement Design.

. M File Edit “iew Project Source Process ‘Window Help
DA2Hg & B Ei&fl ﬁ!}@tgﬁﬁtﬁﬁ
2L AAAN NN

—=library UNIZIM:
—-use UNISIM.VComponents.all:

B ou b=

entity half adder is
Porc (A : in 3TD_LOGIC:
B : in STD_LOGIC:
SUM : out STD_LOGIC:
CARRY : out STD_LOGIC):
end half adder;

architecture Behavioral of half adder is

begin

3UM <= L xor B:
e CARRY <= A and B:
P 2D Translate

QM
- @D Place & Route

; erate Programming

end Eehavioral;

Bf Processes half_ocider

% Design Surmmary T

IMPLEMENTATION

Process "Generate Post-FPlace & Route 3tatic Timing™

Console g Find in Files |

uh“hmﬁ@ It

[Ln4Col19 | CaPs | UM | 5CRL | WHDL

" Epshor.. | Eewa. | Cgweb . | Ejow .

Step 11: | Generating Programming File
Right-click on Generate Programming File, choose the Run option, or double left-click
on Generate Programming File. This will generate the Bit stream

Step 12 Downloading in Boundary Scan Mode.

Note : Xilinx provides 2-tools for downloading purpose, viz.
¢ iIMPACT - is a command line and GUI based tool
e PROM File Formatter

11

. File Edit Yisw Pr

D HG

:E‘éﬁﬁ-%%@lﬁl = p E
——library UNIZIM:
——use UNISIM.VComponents.all:

Sources for

entity half adder is
Port | 4 i in STD _LOGIC:
B : in STD_LOGIC:
SUM @ out STD_LOGIC;
CARRY : out STD LOGIC);
end half adder:

architecture Behavioral of half adder is

........... hegin
3UM <= A xor EB:
CARRY <= A and E:

{]@ Place & Hou

-@@Programmmg File Gene end Behavioral;

@ Generate PROM, ACE.

B

E‘—f' Processes

Corfigure Device [iMP:

half_adder | T Design Surmary

Process "Generate Programming File™ completed successfully

| Lo Find in Files

. File Edit Yiew Project Source Process Window Help

DARE B A BEEANAE LK
imy EBy

Sources File Edit View Oper

i B E f x % @ Flease select an action from the list below

s) Configure devices uzing Boundany-Scan [JTAG)

sRE B éﬁrﬂ"'

Flows

“BalBoundary S can
“BalSlaveSeral
BolSelectAP
“BalDesktop Canfig
[2) SustemarE
[E] PROM File Forn

Process

Process

| using Slave Serial md

BOUNDARY
SCAN MODE

MPACT Modes

x

i
Welcowe to

Einigh i [LCancel

ig6 Findin Files |

[awebpag.. | @losss.. |

12

Procedure for downloading using iMPACT
1. Boundary Scan Mode
1. Right click on “Configure Device (iMPACT)” -> and Say RUN or Double
click on “Configure Device (iMPACT) .
2. Right click in workspace and say Initialize chain .The device is seen.
3. Right click on the device and say Program

D]
ﬂEiIe Edit W¥iew Operations Options Output Debug Window Help

PH £ BX sggx: {3: 2|20 o N2

= o]x]

(=115 <]

B SlaveSerial
| EESelecttaP
i ‘BalDesktap Configuration
| ESyslemACE verify

Mt %e3l Get Device ID
half_z Get Device Signature/Usercode

Assign Mew Configuration File. ..

\Avvailable Operations are:

e Program

= ety

= Get Device 1D

;*Get Device Signature/Usercode
= Check |dcode

;*F\ead Status Reaqister

iMPACT Process Operations % Boundary Scan

Output | Eror [WWarning

11:58 aM

[y Web _pag... E B DSp 53 .

If the device is programmed properly, it says Programming Succeeded or else.
Programming Failed. The DONE Led glows green if programming succeeds.

Note:
Before downloading make sure that Protoboard is connected to PC's parallel port with
the cable provided and power to the Protoboard is ON.

Step 13:

Apply input through DIP Switches, output is displayed on LEDs

Step 14:

Configuration through PROM: Generating PROM file:
FPGA can also be configured in Master Serial Mode through PROM. For this you need
to program the PROM through a .mcs file.

13

Right click on “Generate PROM,ACE or JTAG file” -> and Say RUN or Double click
on “Generate PROM,ACE or JTAG file”

X
File Edit View Project Source Process Window Help

DR LD AR BTN (AE LK
i BED
Sources File Edit View Operations C.

Please select an action from the list below
Sources i
Sorcet 3 X DX |

[Confrgure devices using Boundary-Scan [JTAG]

=&]

) Flows
o BEEpundary Scan
= SlaveSerial Frepare a PROK File
Tl ®

- el SelectMaP

B Desktop Configuration
- [E] 5ystemalE (> Prepare a Boundary-Scan Flle
- [£] PROM File Formatter

() Prepare a System ACE File

Process

: F_‘r_ocz_a_s_s_ () Configure devices

slng Slave Serial mode

5 Q.:(MPACT Modes

i
Welcome to iMPL

e Back = ﬂex‘l 5] | Cancel

Findin Fles |

! Ble Edt Miew Insert Format Tools Table Window Help
P g5 Sl AL 2n .

Type & question For help - X

[5]i[a7] 1o

| want to target a

(=) Kilins PROM

=B oundary Sean € Genetic Parallel PROM B

Sal5laveSerial 3 3rd-Paity SPI PROM
SaSelecttAP

‘SalDesktop Canfiguration

SystemaCE PROM File Format

[£]PROM File Formatter @MS O TEK O UFPC fomal

3 ExD (O BIN () I5C
) HEX Siwap Bits

MPALCT Modes

x Uelcome to iMPL Checkzum Fill Yalue [2 Hex Digitz): | FF

PROM File Hame: Half_adder

-

Tranzcript
Bse
o
o
"
b=}
=
m
L
=
T
I=
—
T
I
=}
=}
m
o
=
o
| =1
z
&
@

Q@
i ¥
=mla|=
iDraw= lp | Agtoshapes~ N N [O A EE g A==
Page 62 Sec 1 62/69 HE Li ol RECETERRS T e

- - . | Bose_.. | = A
Specify the desrred parameters of the PROM on board and say ADD then FINISH

12:01 PM

14

i File Edt Wew Insert Formab Tools Table Window Help

DY A e A

[] #uta Select PROM
[] Enable R evisianing d
Mumnber of Revisions:
GalSlaveSerisl [] Enable Compressian
o SalSelecttAP S
- BDesktop Configuration Select aPROM: [wcf | Add
+ - [E]systemace
a - [£]PROM File Formatter
- iMPACT Modes _D elete All
T b 4 Welcome to iMPL
BEl -
N = .44 I
o =
- i et W (0 s e e e e R SR R
. =

iDraws L Autoshapess N N DO f 8 @]l S-2-A-=

BE

CEiEREC R

Caol 2

Ln 1

Page &2 Sec 1 62169 Ak Zem

DHYOBXSENE B £50 ¥ K
x

3B oundary Scan

BR5laveSerial

SalSelecttaP

“BaIDesktop Configuiation

E SpstemACE xcti2s

[=]PROM File Formater 81.02 % Ful %c35400

half_adder bit

MPACT Modes

PROM File Generation Succeeded

IMPACT Process Operations g From Fila Forma

Uriting file "E:\HALFADDER://HALF_ADDER.sig". ~
Total configuration bit size = 1699136 bits.Total configuration byte size = 212392 bytes.// *%% BATCH CHD : setCurrentDes
/¢4 ##% BATCH CHMD : serCurrentDesign —version 0

Insert Clipboard contents \ PROM File Generation | Targst Xlinz PROM | 1,699,136 Bits used | Fils: HALF_ADDER in Location: E:\HALFADDERYS

w W2 Microsaft Offce... +| ()8 Windons Explorer ~| ¥ untted - Paint | s s - 1o -EAHAL ., Bt A

PROGRAMMING THE PROM

Note: Check the Jumper setting on the board. Refer the Chapter jumper Setting

Similar to Step 12.Initialize chain through iMPACT. PROM and FPGA devices on
board are seen .Assign the generated mcs file and bit file as desired.

Right click the PROM symbol and say PROGRAM.

15

&} Fie Edit View Operstions Options Outpub Debug lindow Help

H#%pBX &=x o280 BN

=35 laveSerial
L BESdectAP
- ESiDeskiop Configuration
- [E)5vstemecE
* [Z]PROM File Formatter Yofi2s Xc35400
half_adder mes - filg ?

MPACT Modes

Verify
Erase...
(Awalatle Dperations ar
Blank Check
= Frogram
Readback,..
ey
Get Device ID
= Erase ot Bovie chacks
= Blank Check GEl DE”‘[E - E“t o T
o Readback et Device SignaturefUsercods
=P Get Device 1D Assign New Configuration Fle. ..

= Gt Device Checksum

= Get Device Signature/Usercade
=Pislidale Usercode

= Check Idcode

MPACT Process Operations % Boundary Goan

"1': Loading file 'E:/HALFADDER/HALF_ADDER.mcs'
done.
/7 **% BATCH CHMD :

setittribute -position 1 -attr packageName -value " {null)"

3 Windows E... -l Y urtitled - Paink l] Kl - ISE - Er... l EgivpacT

Now, whenever the board is powered on in master serial mode, FPGA is configured
through PROM automatically.

%) File Edit View Operations Options Output Debug Window Help

PH ARBX =2x% #i 20wk

=3B oundary Sean

235 veSerial
TalSelecthaP

28 Dasktap Configustion
[E) SustemaCE
[Z]PROM File Famnatter

xcil2s xc3z400
half_zdder mcs - filg 7 -

MPACT Modes

= Program

=ity

=pErase

= Blank Check

= Feadback

= Get Device D

= Get Device Checksum

= Get Device Signature/Usercade
=V alidate L sercode

= Check |dcode

Program Succeeded

iMPACT Process Operatians g Boundsry Scan

Programming completed successfully.
PROGREZS_END - End Operation.
Elapsed time = 30 =ec.

Select all devices in the chain

KHz

s 5 AR

W W] 2 Microsoft ... vl 13 Windows E. . v] Y untitled - Paint l 5] Wil - 1SE = Ex.0: l £F impacT

16

Expt.No: 1
Date :

Full Adder

Aim:

Realize the full adder using Verilog.

Apparatus Required:

Synthesis tool: Xilinx ISE.

Simulation tool: ModelSim Simulator

Theory:

A combinational circuit that performs the addition of three bits is called a half-adder. This circuit
needs three binary inputs and produces two binary outputs. One of the input variables designates the
augend and other designates the addend. Mostly, the third input represents the carry from the previous
lower significant position. The output variables produce the sum and the carry.

The simplified BooIéS fun&isns of the two outputs can be obtained as below:

y z

Sum S =X

CarryC=xy+xz+yz

Where X, y & z are the two input variables.

Procedure:

N =

Program:

The full-adder circuit is designed and the Boolean function is found out.
The Verilog Module Source for the circuit is written.

It is implemented in Model Sim and Simulated.

Signals are provided and Output Waveforms are viewed.

/IGate-level description of Full Adder using two Half Adder

/[Description of Half Adder
module halfadder(s,co,X,y);
input x,y;

output s,co;

/lnstatiate primitive gates
xor (s,X,Y);

and (co,x,y);

endmodule

/[Description of Full Adder
module fulladder(s,co,X,y,ci);
input Xx,y,ci;

17

output s,co;

wire s1,d1,d2; //Outputs of first XOR and AND gates
/lnstantiate Half Adder
halfadder ha_1(s1,d1,x,y);
halfadder ha_2(s,d2,s1,ci);

or or_gate(co,d2,d1);
endmodule

/[Stimulus for testing Full Adder
module simulation;

reg X,y,cCi;

wire s,co;

/lnstantiate Full Adder
fulladder fa_test(s,co,x,y,ci);
initial

begin

x=1'00; y=1'b0; ci=1'b0;

#100 x=1'b0; y=1'b0; ci=1'b1;
#100 x=1'b0; y=1'b1; ci=1'b0;
#100 x=1'00; y=1'b1; ci=1'b1;
#100 x=1'b1; y=1'b0; ci=1'b0;
#100 x=1'b1; y=1'b0; ci=1'b1;
#100 x=1'b1; y=1'b1; ci=1'b0;
#100 x=1'b1; y=1'b1; ci=1'b1;
end

endmodule

Diagram:

S ——

18

Cl:uut

Waveform:

/full/a 00O Yoo Yo10 ¥Yo11 Y100 X101 Y110 Y111

[2]1 |

Mul/sum L 1 |
ffull/ecarry | | I |
fullzd [] [I
/fullie | 1 |
rFull/g I 1 I
Waveform:

Now:
1000 ns

O
o [0

Result:

Thus the logic circuit for the Full adder is designed in Verilog HDL and the output is
verified.

19

E . No: 2 . .
Dxft ° Design of 8 Bit Adders
ate :
1. DESIGN of RIPPLE CARRY ADDER using VERILOG HDL
Aim

To Design Ripple Carry Adder using Verilog HDL

Apparatus Required:

Synthesis tool: Xilinx ISE.
Simulation tool: ModelSim Simulator

Theory:

The n-bit adder built from n one —bit full adders is known as ripple carry adder because of the
carry is computed. The addition is not complete until n-1™" adder has computed its Sn.1 output; that results
depends upon ci input, n and so on down the line, so the critical delay path goes from the 0-bit inputs up
through ci’s to the n-1 bit.(We can find the critical path through the n-bit adder without knowing the exact
logic in the full adder because the delay through the n-bit adder without knowing the exact logic in the full
adder because the delay through the n-bit carry chain is so much longer than the delay from a and b to s).
The ripple-carry adder is area efficient and easy to design but it is when n is large.lt can also be called as
cascaded full adder.

The simplified Boolean functions of the two outputs can be obtained as below:
Sum s;i = a; Xor bj Xor i
Carry ci+1 = aibi +bi Ci +a; Ci
Where X, y & z are the two input variables.
Procedure:
1The full-adder circuit is designed and the Boolean function is found out.
2.The Verilog Module Source for the circuit is written.

3.It is implemented in Model Sim and Simulated.
4.Signals are provided and Output Waveforms are viewed.

20

Circuit diagram:

b3 h2
a3 bl | a1 hO | a0
i * c3 * * c2 l l cl l cin
FA + FA " FA " FA —
1 ¥ ' '
cd
4
228 SN I SN T JENE S
FA N— FA — FA . FA —
¥ * + ¥

Ripple carry adder using verilog code:

module ripplecarryadder(s,cout,a,b,cin);

output[7:0]s;
output cout;
input[7:0]a,b;
input cin;

wire ¢1,c2,c3,¢4,¢5,¢6,c7,;
fulladd fa0(s[0],c1,a[0],b[0],cin);

fulladd fal(s[1],c2,a[1],b[1],c1);
fulladd fa2(s[2],c3,a[2],b[2],c2);
fulladd fa3(s[3],c4,a[3],b[3],c3);
fulladd fa4(s[4],c5,a[4],b[4],c4);
fulladd fa5(s[5],c6,a[5],b[5],c5);
fulladd fa6(s[6],c7,a[6],b[6],c6);

fulladd fa7(s[7],cout,a[7],b[7],c7);

endmodule
module fulladd(s,cout,a,b
output s,cout;
input a,b,cin;
wire s1,c1,c2;
xor(sl,a,b);
Xor(s,s1,cin);
and(cl,a,b);
and(c2,s1,cin);
xor(cout,c2,cl);
endmodule

,cin);

21

Waveform of ripple carry adder:

Now: I
1000 ns -‘

i
o
L
L
om0
gm 1|
i

I

N

| oln |
]

Test bench wave form of ripple carry adder:

End Time:
1000 ns 100 300 500 700 300

Wo 0 [—— [—1 1 []

- phalr 78 gmo X BNF1 b 8h0C ¥ #hFe ¥ Bn38 /D
| |
| |
|
|
|

inamn

Aalm

g

0
1

1

g 1
N 1
0

0

0

iz
il
a0
- ol =TT Bn4 b 8n33 ¥ 8hl ¥ #hoB i
e 1 \ | |
TG i
TG 1
Al bl 1 \ |
1
0
0

!

CILLE)
CILLE)
L)

RESULT:

Thus the logic circuit for the Ripple carry adder is designed in Verilog HDL and the output is
verified.

22

Expt.. No: 3 Design of 8 Bit Adders

Date :

2.DESIGN CARRY SAVE ADDER USING VERILOG HDL

To design Carry Save Adder using Verilog HDL

Apparatus Required:

Synthesis tool: Xilinx ISE.
Simulation tool: ModelSim Simulator

Theory:

Carry save adders are suitable when three or more operands are to be added, as in

some multiplication schemes. In this adder a separate sum and carry bit is generated for
partial results , except when the last operand is added. For example, when three numbers are

added,

the first two are added using a carry save adder. The partial result is two numbers

corresponding to the sum and the carry .The last operand is added using a second carry save
adder stage. The results become the sum and carry numbers. Thus a carry save adder reduces
the number of operands by one for each adder stage. Finally the sum and carry are added
using an adder with carry propagation- for example carry look ahead adder.

Procedure;

el N =

The carry save adder is designed.

The Verilog program source code for the circuit is written.
It is implemented in Model Sim and Simulated.

Signals are provided and Output Waveforms are viewed.

Carry save adder using Verilog:

module carrysaveadder(d,a,b,e);
output [4:0]d;
input e;
input [3:0]a,b;

wire s1,s2,s3,c0,c1,c2,c3,c4,c5,c6,c7;

fulladder a1(d[0],c7,a[0],b[0] e);
fulladder a2(s3,c6,a[1],b[1],e);

23

fulladder a3(s2,c5,a[2],b[2],e);
fulladder a4(s1,c4,a[3],b[3],e);
fulladder a5(d[1],c3,c7,s3,¢e);
fulladder a6(d[2],c2,c6,c3,52);
fulladder a7(d[3],c1,c5,51,c2);
fulladder a8(d[4],c0,c4,cl,e);
endmodule

module fulladder(s,c, x,y,2);
output s,c;
input X,y,z;
xor (s,X,Y,2);
assignc = (X & y)I(y & 2)[(z & X)) ;
endmodule

Logic Diagram:

B S T S P R
[P
T 5T L

24

Waveform carry save adder:

Now:
1000 ns

LT R
I
I

Test bench waveform carry-save adder:

End Time:
1000 hs 100 | 300 | 500 | Too ‘ 900
ans o — o/ @ o1 I
= g al3:0] 4hg 4'hi 4'ha 4'ha 4'h@ 4'h5 4
fNa 1 | \ \
AN 0 \ \ |
AN ai] o
N am 0 [\ |
= i bl3:0] 4'h0 4'h0 4'hB 4'hi 4'hB 4
Y e 0 \ \ \
BT Tl i
N bl 0 \ \ | [
AN k(] 0 \ \ | (I
= o di4:0] 500 &h00
M) 0
3 di3) i
A4 0
M) 0
b BT} o
RESULT:

Thus the logic circuit for the carry save adder is designed in Verilog HDL and the output is
verified.

25

E .No: 4 . .
oo Design of 8 Bit Adders
ate :
3.DESIGN CARRY SELECT ADDER USING VERILOG HDL
Aim

To design a Carry Select Adder using Verilog HDL

Apparatus Required:

Synthesis tool: Xilinx ISE.
Simulation tool: ModelSim Simulator

Theory:

Carry-select adders use multiple narrow adders to create fast wide adders. A
carry-select adder provides two separate adders for the upper words, one for each
possibility. A MUX is then used to select the valid result. Consider an 8-bit adder that
is split into two 4-bit groups. The lower-order bits and are fed into the 4_bit adder |
to produce the sum bits and a carry-out bit .the higher order bits and are used as
input to one 4_bit adder and and »11Y10¥sYe are used as input of the another 4_bit
adder. Adder UO calculates the sum with a carry-in of C3=0.while U1 does the same
only it has a carry-in value of C3=1.both sets of results are used as inputs to an array
of 2:1 MUXes .the carry bit from the adder L is used as the MUX select signal. If =0
then the results UO are sent to the output, while a value of =1 selects the results of

U1 for 115105352 . The carry-out bit is also selected by the MUX array.

Procedure:

The carry-select adder circuit is designed and the Boolean function is found out.
The Verilog Module Source for the circuit is written.

It is implemented in Model Sim and Simulated.

Signals are provided and Output Waveforms are viewed.

Eall el

carry-select adder using verilog:

module project2(s, m, X, Y, z);

output [0:3]s;

output [1:5]m;

input [0:11]x;

input [0:11]y;

input z;

wire c0,c1,c2,c3,c4,c5,c6,c7,¢8,¢9,c10,c11,54,55,56,57,58,59,510,511;

26

fulladder f1(s[0],c0,x[0],y[0],2);
fulladder f2(s[1],c1,x[1],y[1],c0);
fulladder f3(s[2],c2,x[2],y[2],c1);
fulladder f4(s[3],c3,x[3],y[3].c2);
fulladder f5(s4,c4,x[4],y[4],c3);
fulladder f6(s5,c5,x[5],y[5],c4);
fulladder 7(s6,c6,x[6],y[6],c5);
fulladder f8(s7,c7,x[7],y[7],c6);
fulladder f9(s8,c8,x[8],y[8],~C3);
fulladder f10(s9,¢9,x[9],y[9],c8);
fulladder f11(s10,¢10,x[10],y[10],c9);
fulladder f12(s11,c11,x[11],y[11],c10);
muxer mul(m[1],s4,s8,c3);

muxer mu2(m[2],s5,59,c3);

muxer mu3(m|[3],s6,s10,c3);

muxer mu4(m[4],s7,s11,c3);

muxer mu5(m[5],c7,c11,c3);
endmodule

module fulladder (s,c,x,y,z);

output s,c;

input x,y,z;

xor (s,X,Y,2);

assignc = (X & y) [(y & 2) | (z & X));
endmodule

module muxer (m,s1,s2,c);
output m;

input s1,s2,c;

wire f,g,h;

not (f,c);

and (g,s1,c);

and (h,s2,f);

or (m,g,h);

endmodule

27

Logic Diagram:

y1l1x11 yl0x10 y9x9 y8 x8 y7 X7 y6 x6 y5 x5 y4 x4
_ C3=0
cil | 4-bit ADDER U1 &L 4-bit ADDER U0 -~

| I
s11 s10 s9 s8 s7 S6 s5 s4
y3 x3 y2 x2 ylxl1 y0 x0

v VY v VY VY V v VY l, l l, l, l,,l l, l
C3 =
MUX MUX MUX MUX MUX |« 4-bit ADDER L <_T

mb5 m4 m3 m2 mil 3 q2 51 50

Waveform of carry-select adder:

Now:
1000 ns

600

o e sl g

M)

10 Mmoo

12ha04

il

Ahg

120041

41E

28

Test bench waveform of carry-select adder:

End Time:

400

17ha04 iy 17h141

5'han

RESULT:
Thus the logic circuit for the carry select adder is designed in Verilog HDL and the output is verified.

29

=Pt NosS Design of 8 Bit Adders

Date :
4.BCD ADDER REALIZATION IN VERILOG HDL

Aim:

To design a BCD adder circuit using Verilog HDL

Apparatus Required:

Synthesis tool: Xilinx ISE.
Simulation tool: ModelSim Simulator

Theory:

A BCD adder is the circuit that adds two BCD digits in parallel and produces a sum digit also in
BCD. The input digit does not exceed 9,the output sum cannot greater than 9+9+1=19, the 1 in the sum
being an input carry. Suppose we apply two decimal digits, together with the input carry, are first added in
the top 4-bit binary adder to produce the binary sum. When the output carry is equal to zero, nothing is
added in the binary sum . When it is equal to one, binary 0110 is added to binary sum through the bottom
4-bit binary adder. Output generated from bottom binary adder can be ignored.
The output carry can be expressed in Boolean function

k =c4 +s3s2 +s3s1
Procedure:
The BCD adder circuit is designed and the Boolean function is found out.
The VHDL program source code for the circuit is written.

It is implemented in Model Sim and Simulated.
Signals are provided and Output Waveforms are viewed.

el el

Bcd adder using Verilog :

module bcdadder(s,k,a,b,c,d,e);
output [4:7] s;
inout k;
input [0:3]a,b;
input ¢,d,e;
wire c1,c2,c3,c4,s50,s1,52,53,el,e2,e3,e4;

fulladder f1(s0,c1,a[0],b[0],c);

fulladder f2(s1,c2,a[1],b[1],c1);
fulladder f3(s2,c3,a[2],b[2],c2);
fulladder f4(s3,c4,a[3],b[3],c3);

30

assign k=((s3 & s2) | (s3 & s1)| c4);

fulladder f5(s[4],e1,50,d,e);
fulladder f6(s[5],e2,s1,k,el);
fulladder 7(s[6],e3,52,k,e2);
fulladder f8(s[7],e4,s3,d,e3);
endmodule

module fulladder(s,ca,a,b,c);

output s,ca;

input a,b,c;

Xor(s,a,b,c);

assign ca=((a & b)|(b & ¢)| (c & a));
endmodule

Logic Diagram:

b0 a0 ¢

!

FAl

sO

d=0| e=0

FAS

b3 a3 c3 b2 a2 c2 bl al cl
L ey L
c4
FA4 FA3 FA2
K < s3 s2 sl
d=0 e3 k _e2 k el
* \ 4 \ 4 * \ 4 l l \ 4
FAS FA7 FAG
s7 s6 s5

s4

31

Waveform:

eda 1001 10 il
Iedh {010 it 1]
ode
ik
s 100 10 it

Waveform of bcd adder:

Mo i 4hD
4hE I ¢hE

32

Test bench waveform of bcd adder:

End Time:
1000 ns 500

N

AN ap
a2

RESULT:

Thus the logic circuit for the BCD adder is designed in Verilog HDL and the output is verified.

33

Expt. No: 6
Date :

Design of Multiplexers

Aim:
Design a 4 to 1 multiplexer circuit in Verilog.

Apparatus Required:

Synthesis tool: Xilinx ISE.
Simulation tool: ModelSim Simulator

Theory:

A digital multiplexer is a combinational circuit that selects binary information from one of many

input lines and directs it to a single output line. Multiplexing means transmitting a large number of
information units over a smaller number of channels or lines. The selection of a
particular input line is controlled by a set of selection lines. Normally, there are 2" input lines and n
selection lines whose bit combinations determine which input is selected. A multiplexer is also called a
data selector, since it selects one of many inputs and steers the binary information to the output lines.
Multiplexer ICs may have an enable input to control the operation of the unit. When the enable input is in
a given binary state (the disable state), the outputs are disabled, and when it is in the other state (the enable
state), the circuit functions as normal multiplexer. The enable input (sometimes called strobe) can be used
to expand two or more multiplexer ICs to digital multiplexers with a larger number of inputs.
The size of the multiplexer is specified by the number 2" of its input lines and the single output line. In
general, a 2" — to — 1 line multiplexer is constructed from an n — to 2" decoder by adding to it 2" input
lines, one to each AND gate. The outputs of the AND gates are applied to a single OR gate to provide the
1 — line output.

Procedure:

1. The multiplexer circuit is designed and the Boolean function is found out.
2. The Verilog Module Source for the circuit is written.

3. It is implemented in Model Sim and Simulated.
4,

Signals are provided and Output Waveforms are viewed.

Truth table:

INPUT OUTPUT

y
D[0]
D[1]
D[2]
D[3]

)
]
[EE
—
)
—
(=)
—_

Rk O|IO
R OO

34

Logic Diagram:
4 to 1 Multiplexer:

411 0] d[0] a[1] d[2] a[3]

v [y

a b

Multiplexer using verilog code:
module multiplexer(y,d,s);
output y;

input [3:0] d;

input [1:0] s;

wire a,b,c,e,f,g,h,i;
/lInstantiate Primitive gates
not (a,s[1]);

not (b,s[0]);

and (c,d[0],b,a);

and (e,d[1],s[0],a);

and (f,d[2],b,s[1]);

and (9,d[3],s[01.s[1]);

or (h,c,e);

or (i,f,9);

or (y,h,i);

endmodule

/[Stimulus for testing 4 to 1 Multiplexer
module simulation;

reg [3:0]d;

reg [1:0]s;

wirey;

35

/lnstantiate the 4 to 1 Multiplexer
multiplexer mux_t(y,d,s);

initial
begin
s=2'p00;d[0]=1'b1;d[1]= 1'b0;d[2]= 1'b0;d[3]= 1'bO;
#100
s=2'b00;d[0]= 1'b0;d[1]= 1'b1;d[2]= 1'b1;d[3]= 1'b1,;
#100
s=2'b01;d[0]= 1'b0;d[1]= 1'b1;d[2]= 1'b0;d[3]= 1'b0;
#100
s=2'b01;d[0]= 1'b1;d[1]= 1'b0;d[2]= 1'b1;d[3]= 1'b1,;
#100
s=2'010;d[0]= 1'b0;d[1]= 1'b0;d[2]= 1'b1;d[3]= 1'b0;
#100
s=2'010;d[0]= 1'b1;d[1]= 1'b1;d[2]= 1'b0;d[3]= 1'b1,;
#100
s=2'b11;d[0]= 1'b0;d[1]= 1'b0;d[2]= 1'b0;d[3]= 1'b1,;
#100
s=2'b11;d[0]= 1'b1;d[1]= 1'b1;d[2]= 1'b1;d[3]= 1'bO;
end
endmodule
Waveform:
/multipexer/s 00 Yo1) §1=] X111
[o1 I
[11 | | [
/multipexer/e 1000 Yoioo Yooio Yooo1

o] f |

[11 | 1

21 | [1

31 | I

/multipexer/y | |

/multipexer/k [|

/multipexer/c | | [|

/multipexer/c | |

/multipexer/e | | |

/fmultipexer/ | | 1

/multipexer/c | |

36

Waveform of multiplexers

Now:
1000 ns
olly
1L k)
ol [l
ol [
ol l1]
o/l [0
-1 B
olll1]
ol 0]

Test bench waveform of multiplexers:

End Time:
1000 ns
My 0
= g d2:0]
AN a3
andiz
i dp
) Gl
= Rk s[1:0]
s
A s(o)

RESULT:
Thus the multiplexer is designed in Verilog HDL and the output is verified.

=P No Design of Multipliers

Date :
1. ARRAY MULTIPLIER REALIZATION IN VERILOG HDL

To design an array multiplier circuit for 4 inputs and 8 outputs using VHDL.

Apparatus required:

Synthesis tool: Xilinx ISE.
Simulation tool: ModelSim Simulator

Theory:

Binary multiplication can be accomplished by several approaches. The approach presented
here is realized entirely with combinational circuits. Such a circuit is called an array multiplier.
The term array is used to describe the multiplier because the multiplier is organized as an array
structure. Each row, called a partial product, is formed by a bit-by-bit multiplication of each operand.
For example, a partial product is formed when each bit of operand ‘a’ is multiplied by b0,
resulting in a3b0, a2b0,a1b0, aOb0. The binary multiplication table is identical to the AND truth table.
Each product bit {o(x)}, is formed by adding partial product columns. The product equations,
including the carry-in {c(x)}, from column c(x-1), are (the plus sign indicates addition not OR).
Each product term, p(x), is formed by AND gates and collection of product terms needed for
the multiplier. By adding appropriate p term outputs, the multiplier output equations are realized, as
shown in figure.

4X 4 Array Multiplier:

a3 a2 al a0
b3 b2 bl b0
a3b0 a2b0 alb0 albo
a3bl a2bl albl aObl
a3b2 az2b2 alb2 alb2
a3b3 a2b3 alb3 alb3

o7 06 05 04 03 02 ol

a0b0 = p0 alb2 =p8
alb0 =pl alb3 =p9
albl = p2 a3bl =pl10
a2b0 = p3 azb2 =pll

38

albl =p4
alb2 = p5
a3b0 = p6
az2bl = p7

Truth Table:

Program:

alb3 =pl2
a3b2 = pl13
azb3 =pl4
a3b3 = pl15

AXB

module mmmm(m,a,b);

input [3:0]a;
input [3:0]b;
output [7:0]m;
wire [15:0]p;
wire [12:1]s;
wire [12:1]c;

and(p[0],a[0],b[0]);
and(p[1],a[1],b[0]);
and(p[2],a[0],b[1]);
and(p[3],a[2],b[0]);
and(p[4],a[1],b[1]);
and(p[5],a[0],b[2]);
and(p[6],a[3],b[0]);
and(p[7],a[2],b[1]);
and(p[8],a[1],b[2]);
and(p[9],a[0],b[3]);

and(p[10],a[3],b[1]);
and(p[11],a[2],b[2]);
and(p[12],a[1],b[3]);
and(p[13],a[3],b[2]);
and(p[14],a[2],b[3]);
and(p[15],a[3],b[3]);

39

half hal(s[1],c[1],p[1].p[2]);
half ha2(s[2],c[2].p[4].p[3]);
half ha3(s[3],c[3],p[7].p[6]);

full fa4(s[4],c[4],p[11],p[10],c[3]);
full fa5(s[5],c[5],p[14],p[13].c[4]);
full fa6(s[6],c[6],p[5].s[2].c[1]);
full fa7(s[7],c[7],p[8].s[31].c[2]);
full fa8(s[8],c[8],p[12],s[4],c[7]);
full fa9(s[9],c[9],p[9].s[71.c[6]);

half ha10(s[10],c[10],s[8],c[9]);
full fa11(s[11],c[11],5[5],c[8],c[10]);
full fa12(s[12],c[12],p[15],s[5],c[11]);

buf(m[0],p[0]);
buf(m[1],s[1]);
buf(m[2],s[6]);
buf(m[3],s[9]);
buf(m[4],s[10]);
buf(m[5],s[11]);
buf(m[6],s[12]);
buf(m[7],c[12]);

endmodule

module half(s,co,x,y);
input x,y;

output s,co;

/lInstatiate primitive gates
xor (s,X,y);

and (co,x,y);

endmodule

/[Description of Full Adder

module full(s,co,x,y,ci);

input X,y,ci;

output s,co;

wire s1,d1,d2; //Outputs of first XOR and AND gates
/lInstantiate Half Adder

half ha_1(s1,d1,x,y);

half ha_2(s,d2,s1,ci);

or or_gate(co,d2,d1);

endmodule

40

Logic Diagram:

P14 P13

P15 P11.P10 P7 PR P4 PR P2 P1 PO
| Y A Y
| FA [FA ¢ HA HA HA
P O N Iy
FA ¢ FA ¢ FA ¢
v v v v v pq l v
FA [+ FA [FA [* HA
v v v
v
07 (@]3) (@13 04 (@) 02 01 00
Wave Form:

Now:
1000 ns

EEEC
.
.

- BOERI|

RESULT:
Thus an array multiplier circuit for 4 inputs and 8 outputs using VHDL is designed and the output
is verified.

41

Expt. No: 8 . . :
Dxf ° Design of Multipliers
ate :
2. BRAUN MULTIPLIER REALIZATION IN VERILOG HDL
Aim

To design the Braun multiplier in verilog HDL

Apparatus Required:

Synthesis tool: Xilinx ISE.
Simulation tool: ModelSim Simulator

Theory:

The entire partial product A.bk are computed in parallel, and then collected through a cascaded
array of carry save order. At the bottom of the array, an adder is used to convert the carry save from the
required form of output.

Completion time is fixed by the depth of the array, and by the carry propagation characteristics
of the adder. In multiplier is suited only to positive operands.

4 X 4 Braun Multiplier:

a3 a2 al a0
b3 b2 bl b0
a3b0 a2b0 alb0 albOo
a2bl albl aObl
alb2 a0b2
a0b3

a3bl
a3b2 a2b2
a3b3 a2b3 alb3

o7 06 05 04 03 02 ol

a0b0 = p0 alb2 =p8

alb0 =pl alb3 =p9

albl = p2 a3bl =p10
a2b0 = p3 azb2 =pll
albl =p4 alb3 =pi12
alb2 = p5 a3b2 =pl3
a3b0 = p6 a2b3 = pl4
azbl = p7 a3b3 =pl5

42

Truth Table:

P2 P1 PO

'y
HA

A

A B AXB
0 0 0
0 1 0
1 0 0
1 1 1
Logic Diagram:
P14 P13
P15 l l P11.P10 P7 P6 P4 P3
—| FA < FA [¢ HA HA
P12 i v_ P8 l v l v
FA [¢ FA [¢ FA
P9
\4 \4 \4 \4 \4 l \4
FA ¢ FA ¢ FA ¢ HA
v v
o7 06 05 04 03 02
Wave Form:

43

01 00

braun /xand |[1111

braun /xier [0

braun /op 00001111

RESULT:

Thus an Braun multiplier in verilog HDL is designed and the output is verified.

44

Expt. No: 9 1
) f Design of Counters
ate :
1. RIPPLE COUNTER REALIZATION IN VERILOG HDL
Aim:

To realize an asynchronous ripple counter in Verilog

Apparatus required:

Synthesis tool: Xilinx ISE.
Simulation tool: ModelSim Simulator

Theory:

In a ripple counter, the flip-flop output transition serves as a source for triggering other
flip-flops. In other words, the Clock Pulse inputs of all flip-flops (except the first) are triggered not by the
incoming pulses, but rather by the transition that occurs in other flip-flops. A binary ripple counter
consists of a series connection of complementing flip-flops (JK or T type), with the output of each flip-
flop connected to the Clock Pulse input of the next higher-order flip-flop. The flip-flop holding the LSB
receives the incoming count pulses. All J and K inputs are equal to 1. The small circle in the Clock Pulse
/Count Pulse indicates that the flip-flop complements during a negative-going transition or when the
output to which it is connected goes from 1 to 0. The flip-flops change one at a time in rapid succession,
and the signal propagates through the counter in a ripple fashion. A binary counter with reverse count is
called a binary down-counter. In binary down-counter, the binary count is decremented by 1 with every
input count pulse.

Procedure:

1. The 4 bit asynchronous ripple counter circuit is designed.
2. The Verilog Module Source for the circuit is written.

3. It is implemented in Model Sim and Simulated.

4. Signals are provided and Output Waveforms are viewed.

//Structural description of Ripple Counter

module ripplecounter(A0,A1,A2,A3,COUNT,RESET);
output A0,A1,A2,A3;

input COUNT,RESET;

/lInstantiate Flip-Flop

FF FO(AO,COUNT,RESET);

FF F1(A1,A0,RESET);

FF F2(A2,A1,RESET);

FF F3(A3,A2,RESET);

endmodule

45

/IDescription of Flip-Flop

module FF(Q,CLK,RESET);

output Q;

input CLK,RESET;

reg Q;

always @(negedge CLK or negedge RESET)

if(~RESET)
Q=1'h0;
else
Q=(~Q);

endmodule

/[Stimulus for testing Ripple Counter

module simulation;
reg COUNT;

reg RESET;

wire A0,A1,

A2,A3;

/lInstantiate Ripple Counter
ripplecounter rc_t(A0,A1,A2,A3,COUNT,RESET);

always

#5 COUNT=~COUNT,;

initial
begin

COUNT=1'n0;
RESET=1'h0;
#10 RESET=1'b1;

end
endmodule

LOGIC DIAGRAM:

4-Bit Ripple Counter:

L

AD Al A2

FO F1 2 F3
ol Q- Qe 0

—oop CLK o> LK of> CLK L o> CLK

COUNT
RESET RESET RESET RESET
RESET
+ 5%

46

L

TRUTH TABLE:

COUNT

>
o
>
H
>
N
>
w

o

O O N| O O | W N -

=
o

-
-

[N
N

[EY
w

[EEY
EaN

R o | o | o | o r| o r| o | o | o
R | o o | | o o r| | o o r| | o o
R | | | o o o o r| k| R R o o o o
R R R, R R R R R o o o o o o o o

[EY
ol

Waveform of ripple counter:

il Wl

47

Testbenchwaveform of ripple counter:

End Time:
1000 ns
AMcount
A RESET
i

Jl4
147
|4

1
1
1

LOGIC DIAGRAM:

MOD-10 Ripple Counter:

COUNT

AD Al Al A3
4

| D

Fi F1 F F3

— e — Q
p (LK —> (LK — (LK —op (LK

REMET RESET RESET RESET

RESET

48

TRUTH TABLE:

COUNT A0 Al A2 A3
0 0 0 0 0
1 1 0 0 0
2 0 1 0 0
3 1 1 0 0
4 0 0 1 0
5 1 0 1 0
6 0 1 1 0
7 1 1 1 0
8 0 0 0 1
9 1 0 0 1

10 0 0 0 0

/Structural description of MOD10 Counter
module MOD10(A0,A1,A2,A3,COUNT);
output A0,A1,A2,A3;

input COUNT;

wire RESET;

/lnstantiate Flip-Flop

FF FO(AO,COUNT,RESET);

FF F1(A1,A0,RESET);

FF F2(A2,A1,RESET);

FF F3(A3,A2,RESET);

/lInstantiate Primitive gate

nand (RESET,A1,A3);

endmodule

/[Description of Flip-Flop

module FF(Q,CLK,RESET);

output Q;

input CLK,RESET;

reg Q=1'00;

always @(negedge CLK or negedge RESET)
if(~RESET)

Q=1'b0;

else

Q=(~Q);

endmodule

49

/[Stimulus for testing MOD10 Counter
module simulation;

reg COUNT,;

wire A0,A1,A2,A3;

/lInstantiate MOD10 Counter

MOD10 MOD10_TEST(A0,A1,A2,A3,COUNT);
always

#10 COUNT=~COUNT;

initial

begin

COUNT=1'h0;

end

endmodule

Waveform of mod 10:

End Time:
1000 ns

A counT

Il

50

LOGIC DIAGRAM:

MOD-12 Ripple Counter:

COUNT

TRUTH TABLE!

AD A2 A3
O
FO F1 F2 F3
— Q QI —
> CLK —Op> CLEK > CLK —> CLK
RESET RESET RESET RESET
RESET
COUNT A0 Al A2 A3
0 0 0 0 0
1 1 0 0 0
2 0 1 0 0
3 1 1 0 0
4 0 0 1 0
5 1 0 1 0
6 0 1 1 0
7 1 1 1 0
8 0 0 0 1
9 1 0 0 1
10 0 1 0 1
11 1 1 0 1
12 0 0 0 0

51

//Structural description of MOD12 Counter

module MOD12(A0,A1,A2,A3,COUNT);
output A0,A1,A2,A3;

input COUNT;

wire RESET;

/lnstantiate Flip-Flop

FF FO(AO,COUNT,RESET);
FF F1(A1,A0,RESET);

FF F2(A2,A1,RESET);

FF F3(A3,A2,RESET);
/lInstantiate Primitive gates
nand (RESET,A2,A3);
endmodule

/[Description of Flip-Flop

module FF(Q,CLK,RESET);

output Q;

input CLK,RESET;

reg Q=1'b0;

always @(negedge CLK or negedge RESET)
if(~RESET)

Q=1'h0;

else

Q=(~Q);

endmodule
/[Stimulus for testing MOD12 Counter

module simulation;

reg COUNT;

wire A0,A1,A2,A3;
/lInstantiate MOD12 Counter

MOD12 MOD12_TEST(AO0,A1,A2,A3,COUNT);

always

#10 COUNT=~COUNT;
initial

begin

COUNT=1'h0;

end

endmodule

52

Waveform of mod 12 counter :

Testbenchwaveform of mod 12 counter:

End Time:
KOs 10 l

Mo 0
I

=

==
—

= =

—x—
—
[—1

=
S
=

RESULT:

Thus the ripple counter is designed in Verilog HDL and the output is verified.

53

=Xt Not 10 Design of Counters

Date :
2. RING COUNTER REALIZATION IN VERILOG HDL

To realize a ring counter in Verilog and VHDL.

Apparatus required:

Synthesis tool: Xilinx ISE.
Simulation tool: ModelSim Simulator

Theory:

A ring counter is a circular shift register with only one flip-flop being set at ay particular time; all
others are cleared. The single bit is shifted from one flip-flop tot the other to produced the
sequence of timing signals.

Procedure:

The 4 bit ring counter circuit is designed.

The Verilog Module Source for the circuit is written.

It is implemented in Model Sim and Simulated.

Signals are provided and Output Waveforms are viewed.

PonNbdRE

Binary Ring Counter Design in Verilog

module my_ringcentvlog (q,clk,reset);
output [O : 3]q;
input clk,reset;
reg [0 : 3] q;
always @ (negedge clk or reset)
begin
if (~reset)
q = 4'b 1000;
else if (reset)
begin
q[0] <= q[3];
q[1] <= q[O];
q[2] <= q[1];
q8] <= q[2};
end
end
endmodule

54

Logic Diagram:

Q D Q
L — I L
Q
Cli
Truth Table:
Input Chutput
Clk Reset Qa Qh Qc
1 1 1 0 0
1 0 0 1 0
1 0 0 0 1
1 0 1 0 (1]
1 0 0 1 (1]
Waveforms
/ring/q Y0100 foo1a Jooo1 {1000 Y0100

o1 1

(1

[2

(31

fring/qb Y1011

J1101

{1110

Jo111

1011

o1 |

(117

[2]

(3

fring/elk 7

Iring/r

55

Waveform of ring counter:

Now:
1000 ns

Test bench waveform of ring counter:

End Time:
1000 s 100 30 500 70 900

w0 1 [[[[

M reset 1 | I
Ey o | "

Mo 0

Wy 0

0

0

Mo
Ma

RESULT:

Thus the ring counter is designed in Verilog HDL and the output is verified.

56

Expt. No: 11
Date :

Design of Pseudo Random Binary Sequence

Aim:
Realize the parity generator in Verilog HDL

Apparatus Required:

Synthesis tool: Xilinx ISE.
Simulation tool: ModelSim Simulator;

Theory:

Random numbers for polynomial equations are generated by using the shift register circuit. The
random number generator is nothing but the Linear Feedback Shift Register(LFSR). The shift registers are
very helpful and versatile modules that facilitate the design of many sequential circuits whose design may
otherwise appear very complex. In its simplest form, a shift register consists of a series of flip-flops
having identical interconnection between two adjacent flip-flops. Two such registers are shift right
registers and the shift left registers. In the shift right register, the bits stored in the flip-flops shift to the
right when shift pulse is active. Like that, for a shift left register, the bits stored in the flip-flops shift left
when shift pulse is active. In the shift registers, specific patterns are shifted through the register. There are
applications where instead of specific patterns, random patterns are more important. Shioft registers can
also built to generate such patterns , which are pseudorandom in nature. Called Linear Feedback Shift
Registers (LFSR’s), these are very useful for encoding and decoding the error control codes. LFSRs used
as a generators of pseudorandom sequences have proved externally useful in the area of testing of VLSI
chips.

Circuit diagram:

T

i1]

ql2]
1] .
q[e] —— ¥

[

CLE

57

Verilog code

module (y,clk);
output y;

input clk;

wire [1:0]q;

wire a;

dff df1(q[0],a,clk);
dff df2(q[1],9[0],clk;
dff df3(y,q[1],clk);

xor(a,y,q[1]);
endmodule

module dff(qg,d,clk);
output g;

input clk;

input d,clk;

reg g=1"b0;

always@ (posedge clk)
q=#5d,

endmodule

Waveform of prbs:

ill

58

Testbenchwaveform of prbs :

EndTimg

1] il

RESULT:

Thus the parity generator is designed in Verilog HDL and the output is verified.

59

Expt . No: 12
Date :

Design of Accumulator

Aim:

Realize the accumulator in Verilog HDL

Apparatus Required:

Synthesis tool: Xilinx ISE.
Simulation tool: ModelSim Simulator

Theory:

An accumulator differs from a counter in the nature of the operands of the add and
subtract operation:

* In a counter, the destination and first operand is a signal or variable and the other
operand is a constant equal to 1: A<= A + 1.

* In an accumulator, the destination and first operand is a signal or variable, and the
second operand is either:

¢ Asignal or variable: A<=A+B

¢ A constant not equal to 1: A <= A + Constant

An inferred accumulator can be up, down or updown. For an updown accumulator, the
accumulated data may differ between the up and down mode:

|f updown ="'1" then

a<=a+b;
else
a<=a-c;
Procedure:
1. the accumulator circuit is designed.
2. The Verilog Module Source for the circuit is written.
3. Itis implemented in Model Sim and Simulated.
4. Signals are provided and Output Waveforms are viewed.
Program:
module accum (C, CLR, D, Q);
input C, CLR;
input [3:0] D;

output [3:0] Q;
reg [3:0] tmp;

always @(posedge C or posedge CLR)
begin
if (CLR)
tmp = 4'b0000;

60

else
tmp = tmp + D;
end
assign Q = tmp;
endmodule

Circuit diagram:

D—~{

Wave form of accumulator :

IS
>
-

CLR

FDC

X10533

Now:
1000 ns

200

400

&00

800

LB Lkl 4hd

4h0

4hd

h{ 4he

4o

ol

ol

ol

o/l

BAFERIOD 1]

32h000000Cs

g/l DUTY_CYCLE

0.8

BA OFFEET[31:0)

37ho0o0ooon

B/ICLR

= = w| =2 w| =2 = = =

3lC

& D0 hd m

4hi

4hd

4hd

4hh

4t

ol

gl

alllll

= 2| =] =

o/l

61

Testbenchwaveform of accumulator:

End Time:
1000 ns 100 300 500 700 ann

anc
ANcLr
B X D[30]

AN D

AN oE

Anon]

0
0
4
1
1
0
AN opo 1
4
0
0
0
0

= o
MM
AMaz
AN a)
b1 | el

RESULT:

Thus the logic circuit for the Accumulator is designed in Verilog HDL and the output is
verified.

62

Expt. No: 13
Date :

Design of Decoder

Aim:

Realize the 3 to 8 Decoder in Verilog HDL.

Apparatus Required:

Synthesis tool: Xilinx ISE.

Simulation tool: ModelSim Simulator.

Theory:

A decoder is a combinational circuit that converts binary information from ‘n’ input lines to a
maximum of 2" unique output lines. It performs the reverse operation of the encoder. If the n-bit decoded
information has unused or don’t-care combinations, the decoder output will have fewer than 2" outputs.
The decoders are represented as n-to-m line decoders, where m < 2". Their purpose is to generate the 2"
(or fewer) minterms of n input variables. The name decoder is also used in conjunction with some code
converters such as BCD-to-seven-segment decoders. Most, if not all, IC decoders include one or more
enable inputs to control the circuit operation. A decoder with an enable input can function as a de-

multiplexer.
Procedure:
1. The decoder circuit is designed and the Boolean function is found out.
2. The Verilog Module Source for the circuit is written.
3. ltis implemented in Model Sim and Simulated.
4. Signals are provided and Output Waveforms are viewed.

Decoder using verilog code

module my_decodr(d,x);

output [0:7] d;

input [0:2] X;

wire [0:2] temp;

not n1(temp[0],x[0]);

not n2(temp[1],x[1]);

not n3(temp[2],x[2]);

and a0(d[0],temp[0],temp[1],temp[2]);
and al(d[1],temp[0],temp[1],x[2]);
and a2(d[2],temp[0],x[1],temp[2]);
and a3(d[3],temp[0],x[1].x[2]);
and a4(d[4],x[0],temp[1],temp[2]);
and a5(d[5],x[0],temp[1].x[2]);
and a6(d[6],x[0],x[1],temp[2]);
and a7(d[7],x[0].x[1].X[2]);
endmodule

63

Logic diagram:

>
— b ——
clinm
Truth Table:
INPUTS OUTPUTS
Din X Do D: D, Ds
1 0 1 0 0 0
1 0 0 1 0 0
1 1 0 0 1 0
1 1 0 0 0 1

64

Waveform:

Iy decoderh {009 1001 010 ot f100 01 [110 111

Imy_decoderd UUUUUUUU 110000000 [01000000 oot00000 J00010000 [00on1000 Joooon100 J00aoot0 {0oooonot

RESULT:

Thus the logic circuit for the 3 to 8 decoder is designed in Verilog HDL and the output is verified.

65

