
1

CHENDU COLLEGE OF ENGINEERING & TECHNOLOGY
(Approved by AICTE, New Delhi and Affiliated to Anna University)

Zamin Endathur, Madurantakam, Kancheepuram District – 603311.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

VLSI LAB MANUAL

VI SEMESTER ECE

2

Step 1 : Start the Xilinx Project Navigator by using the desktop shortcut or by using the Start 

Programs  Xilinx ISE (8.1i).

SOURCE

WINDOW

PROCESS

WINDOW

WORK

SPACE

TRANSCRIPT

3

Step 2 Create a new project

In the window go to FILE New project.

Specify the project name and location and say NEXT

Select Device. Use the pull-down arrow to select the Value for each Property Name. Click

in the field to access the pull-down list.

Say FINISH. Project summary is seen.

4

Step 3: Creating a new VHD file

Click on the symbol of FPGA device and then right click Click on new source VHDL

module and give the File name

Then say NextDefine ports.In this case

 a and b are the input ports defined as in

 sum and carry are output ports defined as out

after this say Next twice and then Finish

Skeleton of the design is shown in the VHDL editor.

VHDL

MODULE

5

Step 4: Writing the Behavioural VHDL Code in VHDL Editor

Sample code is given below for this experiment.

Step 5 Check Syntax

Run the Check syntax  Process window synthesizecheck syntax >, and remove

errors if present.

6

Step 6 Creating a test bench file

Verify the operation of your design before you implement it as hardware. Simulation

can be done using ISE simulator. For this click on the symbol of FPGA device and then

right click Click on new source Test Bench Waveform and give the name  Select

entityFinish.

Select the desired parameters for simulating your design. In this case combinational

circuit and Simulation time.

7

Step 7: Simulate the code

Simulation Tools

ISE tool supports the following simulation tools:

 HDL Bencher is an automated test bench creation tool. It is fully integrated with

Project Navigator.

 ModelSim from Model Technology, Inc., is integrated in Project Navigator to

simulate the design at all steps (Functional and Timing). ModelSim XE, the Xilinx

Edition of Model Technology, Inc.’s ModelSim application, can be installed from

the MTI CD included in your ISE Tool

In source Window from the Drop-down menu select Behavioural Simulation to view

the created test Bench file.

Click on test bench file. Test bench file will open in main window. Assign all the

signals and save File. From the source of process window. Click on Simulate

Behavioral Model in Process window.

FOR

SIMULATION

8

Verify your design in wave window by seeing behaviour of output signal with respect

to input signal. Close the ISE simulator window

SIMULATED

OUTPUT

9

Step 8: Synthesize the design using XST.

Translate your design into gates and optimize it for the target architecture. This is the

synthesis phase.

Again for synthesizing your design, from the source window select,

synthesis/Implementation from the drop-down menu.

Highlight file in the Sources in Project window. To run synthesis, right-click on

Synthesize, and the Run option, or double-click on Synthesize in the Processes for

Current Source window. Synthesis will run, and

 a green check will appear next to Synthesize when it is successfully

completed.

 a red cross indicates an error was generated and

 a yellow exclamation  mark indicates that a warning was generated, (warnings

are OK).

Check the synthesis report.

If there are any errors correct it and rerun synthesis.

SYNTHESIS

10

Step 9: Create Constraints File(UCF)

Click on the symbol of FPGA device and then right click Click on new source

Implementation Constraints File and give the name  Select entityFinish.

Click on User Constraint and in that Double Click on Assign Package Pins option in

Process window. Xilinx PACE window opens. Enter all the pin assignments in PACE.,

depending upon target device and number of input and outputs used in your design.

(sample code is given below for given design.)

SYNTHESIS

COMPLETED

SUCCESSFULLY

PIN

ASSIGNMENT

11

Step 10: Implementing a Design

Once synthesis is complete, you can place and route your design to fit into a Xilinx

device, and you can also get some post place-and-route timing information about the

design. The implementation stage consists of taking the synthesized netlist through

translation, mapping, and place and route.

To check your design as it is implemented, reports are available for each stage in the

implementation process. Use the Xilinx Constraints Editor to add timing and location

constraints for the implementation of your design. This procedure runs you through the

basic flow for implementation.

Right-click on Implement Design, and choose the Run option, or double left-click on

Implement Design.

Step 11: Generating Programming File

Right-click on Generate Programming File, choose the Run option, or double left-click

on Generate Programming File. This will generate the Bit stream

Step 12 Downloading in Boundary Scan Mode.

Note : Xilinx provides 2-tools for downloading purpose, viz.

 iMPACT - is a command line and GUI based tool

 PROM File Formatter

IMPLEMENTATION

DONE

12

BOUNDARY

SCAN MODE

13

 Procedure for downloading using iMPACT

1. Boundary Scan Mode

1. Right click on “Configure Device (iMPACT)” -> and Say RUN or Double

click on “Configure Device (iMPACT)”.

2. Right click in workspace and say Initialize chain .The device is seen.

3. Right click on the device and say Program.

If the device is programmed properly, it says Programming Succeeded or else.

Programming Failed. The DONE Led glows green if programming succeeds.

 Note:

Before downloading make sure that Protoboard is connected to PC's parallel port with

the cable provided and power to the Protoboard is ON.

Step 13: Apply input through DIP Switches, output is displayed on LEDs

Step 14: Configuration through PROM: Generating PROM file:

FPGA can also be configured in Master Serial Mode through PROM. For this you need

to program the PROM through a .mcs file.

14

 Right click on “Generate PROM,ACE or JTAG file” -> and Say RUN or Double click

on “Generate PROM,ACE or JTAG file”

Specify the PROM file name and location where it is to be generated.

Specify the desired parameters of the PROM on board and say ADD then FINISH

15

Say Generate File from the Process Window.

 PROGRAMMING THE PROM

Note: Check the Jumper setting on the board. Refer the Chapter jumper Setting

Similar to Step 12.Initialize chain through iMPACT. PROM and FPGA devices on

board are seen .Assign the generated mcs file and bit file as desired.

Right click the PROM symbol and say PROGRAM.

16

 Now, whenever the board is powered on in master serial mode, FPGA is configured

through PROM automatically.

17

Expt . No: 1

Date : Full Adder

Aim:

Realize the full adder using Verilog.

Apparatus Required:

Synthesis tool: Xilinx ISE.

Simulation tool: ModelSim Simulator

Theory:

 A combinational circuit that performs the addition of three bits is called a half-adder. This circuit

needs three binary inputs and produces two binary outputs. One of the input variables designates the

augend and other designates the addend. Mostly, the third input represents the carry from the previous

lower significant position. The output variables produce the sum and the carry.

 The simplified Boolean functions of the two outputs can be obtained as below:

 Sum S = x y z

 Carry C = xy + xz + yz

 Where x, y & z are the two input variables.

Procedure:

1. The full-adder circuit is designed and the Boolean function is found out.

2. The Verilog Module Source for the circuit is written.

3. It is implemented in Model Sim and Simulated.

4. Signals are provided and Output Waveforms are viewed.

Program:

//Gate-level description of Full Adder using two Half Adder

//Description of Half Adder

module halfadder(s,co,x,y);

input x,y;

output s,co;

//Instatiate primitive gates

xor (s,x,y);

and (co,x,y);

endmodule

//Description of Full Adder

module fulladder(s,co,x,y,ci);

input x,y,ci;

+ +

18

output s,co;

wire s1,d1,d2; //Outputs of first XOR and AND gates

//Instantiate Half Adder

halfadder ha_1(s1,d1,x,y);

halfadder ha_2(s,d2,s1,ci);

or or_gate(co,d2,d1);

endmodule

//Stimulus for testing Full Adder

module simulation;

reg x,y,ci;

wire s,co;

//Instantiate Full Adder

fulladder fa_test(s,co,x,y,ci);

initial

begin

x=1'b0; y=1'b0; ci=1'b0;

#100 x=1'b0; y=1'b0; ci=1'b1;

#100 x=1'b0; y=1'b1; ci=1'b0;

#100 x=1'b0; y=1'b1; ci=1'b1;

#100 x=1'b1; y=1'b0; ci=1'b0;

#100 x=1'b1; y=1'b0; ci=1'b1;

#100 x=1'b1; y=1'b1; ci=1'b0;

#100 x=1'b1; y=1'b1; ci=1'b1;

end

endmodule

Diagram:

19

Waveform:

Waveform:

Result:

Thus the logic circuit for the Full adder is designed in Verilog HDL and the output is

verified.

20

Expt . No: 2

Date :
Design of 8 Bit Adders

1. DESIGN of RIPPLE CARRY ADDER using VERILOG HDL

Aim:

To Design Ripple Carry Adder using Verilog HDL

Apparatus Required:

Synthesis tool: Xilinx ISE.

Simulation tool: ModelSim Simulator

Theory:

 The n-bit adder built from n one –bit full adders is known as ripple carry adder because of the

carry is computed. The addition is not complete until n-1th adder has computed its Sn-1 output; that results

depends upon ci input, n and so on down the line, so the critical delay path goes from the 0-bit inputs up

through ci’s to the n-1 bit.(We can find the critical path through the n-bit adder without knowing the exact

logic in the full adder because the delay through the n-bit adder without knowing the exact logic in the full

adder because the delay through the n-bit carry chain is so much longer than the delay from a and b to s).

The ripple-carry adder is area efficient and easy to design but it is when n is large.It can also be called as

cascaded full adder.

The simplified Boolean functions of the two outputs can be obtained as below:

 Sum si = ai xor bi xor ci

 Carry ci+1 = aibi +bi ci +ai ci

 Where x, y & z are the two input variables.

Procedure:

1The full-adder circuit is designed and the Boolean function is found out.

 2.The Verilog Module Source for the circuit is written.

3.It is implemented in Model Sim and Simulated.

4.Signals are provided and Output Waveforms are viewed.

21

Circuit diagram:

Ripple carry adder using verilog code:

 module ripplecarryadder(s,cout,a,b,cin);

output[7:0]s;

output cout;

input[7:0]a,b;

input cin;

wire c1,c2,c3,c4,c5,c6,c7;

fulladd fa0(s[0],c1,a[0],b[0],cin);

fulladd fa1(s[1],c2,a[1],b[1],c1);

fulladd fa2(s[2],c3,a[2],b[2],c2);

 fulladd fa3(s[3],c4,a[3],b[3],c3);

 fulladd fa4(s[4],c5,a[4],b[4],c4);

 fulladd fa5(s[5],c6,a[5],b[5],c5);

 fulladd fa6(s[6],c7,a[6],b[6],c6);

 fulladd fa7(s[7],cout,a[7],b[7],c7);

endmodule

module fulladd(s,cout,a,b,cin);

output s,cout;

input a,b,cin;

wire s1,c1,c2;

xor(s1,a,b);

xor(s,s1,cin);

and(c1,a,b);

and(c2,s1,cin);

xor(cout,c2,c1);

endmodule

22

Waveform of ripple carry adder:

Test bench wave form of ripple carry adder:

RESULT:

Thus the logic circuit for the Ripple carry adder is designed in Verilog HDL and the output is

verified.

23

Expt . No: 3

Date :
Design of 8 Bit Adders

2.DESIGN CARRY SAVE ADDER USING VERILOG HDL

Aim:

To design Carry Save Adder using Verilog HDL

Apparatus Required:

Synthesis tool: Xilinx ISE.

Simulation tool: ModelSim Simulator

Theory:

Carry save adders are suitable when three or more operands are to be added, as in

some multiplication schemes. In this adder a separate sum and carry bit is generated for

partial results , except when the last operand is added. For example, when three numbers are

added, the first two are added using a carry save adder. The partial result is two numbers

corresponding to the sum and the carry .The last operand is added using a second carry save

adder stage. The results become the sum and carry numbers. Thus a carry save adder reduces

the number of operands by one for each adder stage. Finally the sum and carry are added

using an adder with carry propagation- for example carry look ahead adder.

Procedure;

1. The carry save adder is designed.

2. The Verilog program source code for the circuit is written.

3. It is implemented in Model Sim and Simulated.

4. Signals are provided and Output Waveforms are viewed.

Carry save adder using Verilog:

module carrysaveadder(d,a,b,e);

 output [4:0]d;

 input e;

 input [3:0]a,b;

wire s1,s2,s3,c0,c1,c2,c3,c4,c5,c6,c7;

fulladder a1(d[0],c7,a[0],b[0],e);

fulladder a2(s3,c6,a[1],b[1],e);

24

fulladder a3(s2,c5,a[2],b[2],e);

fulladder a4(s1,c4,a[3],b[3],e);

fulladder a5(d[1],c3,c7,s3,e);

fulladder a6(d[2],c2,c6,c3,s2);

fulladder a7(d[3],c1,c5,s1,c2);

fulladder a8(d[4],c0,c4,c1,e);

endmodule

module fulladder(s,c, x,y,z);

 output s,c;

 input x,y,z;

xor (s,x,y,z);

assign c = ((x & y)|(y & z)|(z & x)) ;

endmodule

Logic Diagram:

25

Waveform carry save adder:

Test bench waveform carry-save adder:

RESULT:

Thus the logic circuit for the carry save adder is designed in Verilog HDL and the output is

verified.

26

Expt . No: 4

Date :
Design of 8 Bit Adders

3.DESIGN CARRY SELECT ADDER USING VERILOG HDL

Aim:

To design a Carry Select Adder using Verilog HDL

Apparatus Required:

Synthesis tool: Xilinx ISE.

Simulation tool: ModelSim Simulator

Theory:

Carry-select adders use multiple narrow adders to create fast wide adders. A

carry-select adder provides two separate adders for the upper words, one for each

possibility. A MUX is then used to select the valid result. Consider an 8-bit adder that

is split into two 4-bit groups. The lower-order bits and are fed into the 4_bit adder l

to produce the sum bits and a carry-out bit .the higher order bits and are used as

input to one 4_bit adder and and are used as input of the another 4_bit

adder. Adder U0 calculates the sum with a carry-in of C3=0.while U1 does the same

only it has a carry-in value of C3=1.both sets of results are used as inputs to an array

of 2:1 MUXes .the carry bit from the adder L is used as the MUX select signal. If =0

then the results U0 are sent to the output, while a value of =1 selects the results of

U1 for . The carry-out bit is also selected by the MUX array.

Procedure:

1. The carry-select adder circuit is designed and the Boolean function is found out.

2. The Verilog Module Source for the circuit is written.

3. It is implemented in Model Sim and Simulated.

4. Signals are provided and Output Waveforms are viewed.

carry-select adder using verilog:

 module project2(s, m, x, y, z);

 output [0:3]s;

 output [1:5]m;

 input [0:11]x;

 input [0:11]y;

 input z;

 wire c0,c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,s4,s5,s6,s7,s8,s9,s10,s11;

27

fulladder f1(s[0],c0,x[0],y[0],z);

fulladder f2(s[1],c1,x[1],y[1],c0);

fulladder f3(s[2],c2,x[2],y[2],c1);

fulladder f4(s[3],c3,x[3],y[3],c2);

fulladder f5(s4,c4,x[4],y[4],c3);

fulladder f6(s5,c5,x[5],y[5],c4);

fulladder f7(s6,c6,x[6],y[6],c5);

fulladder f8(s7,c7,x[7],y[7],c6);

fulladder f9(s8,c8,x[8],y[8],~c3);

fulladder f10(s9,c9,x[9],y[9],c8);

fulladder f11(s10,c10,x[10],y[10],c9);

fulladder f12(s11,c11,x[11],y[11],c10);

muxer mu1(m[1],s4,s8,c3);

muxer mu2(m[2],s5,s9,c3);

muxer mu3(m[3],s6,s10,c3);

muxer mu4(m[4],s7,s11,c3);

muxer mu5(m[5],c7,c11,c3);

endmodule

module fulladder (s,c,x,y,z);

output s,c;

input x,y,z;

xor (s,x,y,z);

assign c = ((x & y) | (y & z) | (z & x));

endmodule

module muxer (m,s1,s2,c);

output m;

input s1,s2,c;

wire f,g,h;

not (f,c);

and (g,s1,c);

and (h,s2,f);

or (m,g,h);

endmodule

28

Logic Diagram:

Waveform of carry-select adder:

Z=

1

C3=0
c11

 4-bit ADDER U1

s11 s10 s9 s8

MUX

MUX

MUX

MUX

MUX

 4-bit ADDER U0

 4-bit ADDER L

y3 x3 y2 x2 y1 x1 y0 x0

 y7 x7 y6 x6 y5 x5 y4 x4 y11 x11 y10 x10 y9 x9 y8 x8

 s7 s6 s5 s4

s3 s2 s1 s0 m5 m4 m3 m2 m1

C3=1 c7

C3

29

Test bench waveform of carry-select adder:

RESULT:

Thus the logic circuit for the carry select adder is designed in Verilog HDL and the output is verified.

30

Expt . No: 5

Date :
Design of 8 Bit Adders

4.BCD ADDER REALIZATION IN VERILOG HDL

Aim:
 To design a BCD adder circuit using Verilog HDL

Apparatus Required:

 Synthesis tool: Xilinx ISE.

 Simulation tool: ModelSim Simulator

Theory:

 A BCD adder is the circuit that adds two BCD digits in parallel and produces a sum digit also in

BCD. The input digit does not exceed 9,the output sum cannot greater than 9+9+1=19, the 1 in the sum

being an input carry. Suppose we apply two decimal digits, together with the input carry, are first added in

the top 4-bit binary adder to produce the binary sum. When the output carry is equal to zero, nothing is

added in the binary sum . When it is equal to one, binary 0110 is added to binary sum through the bottom

4-bit binary adder. Output generated from bottom binary adder can be ignored.

 The output carry can be expressed in Boolean function

 k = c4 + s3s2 + s3s1

Procedure:

1. The BCD adder circuit is designed and the Boolean function is found out.

2. The VHDL program source code for the circuit is written.

3. It is implemented in Model Sim and Simulated.

4. Signals are provided and Output Waveforms are viewed.

Bcd adder using Verilog :

module bcdadder(s,k,a,b,c,d,e);

 output [4:7] s;

 inout k;

 input [0:3]a,b;

 input c,d,e;

 wire c1,c2,c3,c4,s0,s1,s2,s3,e1,e2,e3,e4;

fulladder f1(s0,c1,a[0],b[0],c);

fulladder f2(s1,c2,a[1],b[1],c1);

fulladder f3(s2,c3,a[2],b[2],c2);

fulladder f4(s3,c4,a[3],b[3],c3);

31

assign k=((s3 & s2) | (s3 & s1)| c4);

fulladder f5(s[4],e1,s0,d,e);

fulladder f6(s[5],e2,s1,k,e1);

fulladder f7(s[6],e3,s2,k,e2);

fulladder f8(s[7],e4,s3,d,e3);

endmodule

module fulladder(s,ca,a,b,c);

output s,ca;

input a,b,c;

xor(s,a,b,c);

assign ca=((a & b)|(b & c)| (c & a));

endmodule

Logic Diagram:

c4

k s3

 d=0 e3 k e2 k e1 d=0 e=0

 b3 a3 c3 b2 a2 c2 b1 a1 c1 b0 a0 c

FA4

4

FA3

4
FA2 FA1

FA8 FA7 FA6 FA5

s2 s1 s0

 s7 s6 s5 s4

32

Waveform:

Waveform of bcd adder:

33

Test bench waveform of bcd adder:

RESULT:

Thus the logic circuit for the BCD adder is designed in Verilog HDL and the output is verified.

34

Expt . No: 6

Date :
Design of Multiplexers

Aim:
 Design a 4 to 1 multiplexer circuit in Verilog.

Apparatus Required:

 Synthesis tool: Xilinx ISE.

 Simulation tool: ModelSim Simulator

Theory:

 A digital multiplexer is a combinational circuit that selects binary information from one of many

input lines and directs it to a single output line. Multiplexing means transmitting a large number of

information units over a smaller number of channels or lines. The selection of a

particular input line is controlled by a set of selection lines. Normally, there are 2n input lines and n

selection lines whose bit combinations determine which input is selected. A multiplexer is also called a

data selector, since it selects one of many inputs and steers the binary information to the output lines.

Multiplexer ICs may have an enable input to control the operation of the unit. When the enable input is in

a given binary state (the disable state), the outputs are disabled, and when it is in the other state (the enable

state), the circuit functions as normal multiplexer. The enable input (sometimes called strobe) can be used

to expand two or more multiplexer ICs to digital multiplexers with a larger number of inputs.

The size of the multiplexer is specified by the number 2n of its input lines and the single output line. In

general, a 2n – to – 1 line multiplexer is constructed from an n – to 2n decoder by adding to it 2n input

lines, one to each AND gate. The outputs of the AND gates are applied to a single OR gate to provide the

1 – line output.

Procedure:

1. The multiplexer circuit is designed and the Boolean function is found out.

2. The Verilog Module Source for the circuit is written.

3. It is implemented in Model Sim and Simulated.

4. Signals are provided and Output Waveforms are viewed.

Truth table:

INPUT OUTPUT

s[1] s[0] y

0 0 D[0]

0 1 D[1]

1 0 D[2]

1 1 D[3]

35

Logic Diagram:

4 to 1 Multiplexer:

Multiplexer using verilog code:

module multiplexer(y,d,s);

output y;

input [3:0] d;

input [1:0] s;

wire a,b,c,e,f,g,h,i;

//Instantiate Primitive gates

not (a,s[1]);

not (b,s[0]);

and (c,d[0],b,a);

and (e,d[1],s[0],a);

and (f,d[2],b,s[1]);

and (g,d[3],s[0],s[1]);

or (h,c,e);

or (i,f,g);

or (y,h,i);

endmodule

//Stimulus for testing 4 to 1 Multiplexer

module simulation;

reg [3:0]d;

reg [1:0]s;

wire y;

36

//Instantiate the 4 to 1 Multiplexer

multiplexer mux_t(y,d,s);

initial

begin

s=2'b00;d[0]=1'b1;d[1]= 1'b0;d[2]= 1'b0;d[3]= 1'b0;

#100

s=2'b00;d[0]= 1'b0;d[1]= 1'b1;d[2]= 1'b1;d[3]= 1'b1;

#100

s=2'b01;d[0]= 1'b0;d[1]= 1'b1;d[2]= 1'b0;d[3]= 1'b0;

#100

s=2'b01;d[0]= 1'b1;d[1]= 1'b0;d[2]= 1'b1;d[3]= 1'b1;

#100

s=2'b10;d[0]= 1'b0;d[1]= 1'b0;d[2]= 1'b1;d[3]= 1'b0;

#100

s=2'b10;d[0]= 1'b1;d[1]= 1'b1;d[2]= 1'b0;d[3]= 1'b1;

#100

s=2'b11;d[0]= 1'b0;d[1]= 1'b0;d[2]= 1'b0;d[3]= 1'b1;

#100

s=2'b11;d[0]= 1'b1;d[1]= 1'b1;d[2]= 1'b1;d[3]= 1'b0;

end

endmodule

Waveform:

37

Waveform of multiplexers

Test bench waveform of multiplexers:

RESULT:

Thus the multiplexer is designed in Verilog HDL and the output is verified.

38

Expt . No: 7

Date :
Design of Multipliers

1. ARRAY MULTIPLIER REALIZATION IN VERILOG HDL

Aim:

To design an array multiplier circuit for 4 inputs and 8 outputs using VHDL.

Apparatus required:

Synthesis tool: Xilinx ISE.

Simulation tool: ModelSim Simulator

Theory:

 Binary multiplication can be accomplished by several approaches. The approach presented

here is realized entirely with combinational circuits. Such a circuit is called an array multiplier.

 The term array is used to describe the multiplier because the multiplier is organized as an array

structure. Each row, called a partial product, is formed by a bit-by-bit multiplication of each operand.

 For example, a partial product is formed when each bit of operand ‘a’ is multiplied by b0,

resulting in a3b0, a2b0,a1b0, a0b0. The binary multiplication table is identical to the AND truth table.

 Each product bit {o(x)}, is formed by adding partial product columns. The product equations,

including the carry-in {c(x)}, from column c(x-1), are (the plus sign indicates addition not OR).

 Each product term, p(x), is formed by AND gates and collection of product terms needed for

the multiplier. By adding appropriate p term outputs, the multiplier output equations are realized, as

shown in figure.

4X 4 Array Multiplier:

 a3 a2 a1 a0

 b3 b2 b1 b0

 a3b0 a2b0 a1b0 a0b0

 a3b1 a2b1 a1b1 a0b1

 a3b2 a2b2 a1b2 a0b2

 a3b3 a2b3 a1b3 a0b3

 o7 o6 o5 o4 o3 o2 o1

a0b0 = p0 a1b2 = p8

a1b0 = p1 a0b3 = p9

a0b1 = p2 a3b1 = p10

a2b0 = p3 a2b2 = p11

39

a1b1 = p4 a1b3 = p12

a0b2 = p5 a3b2 = p13

a3b0 = p6 a2b3 = p14

a2b1 = p7 a3b3 = p15

Truth Table:

A

B

A X B

0

0

1

1

0

1

0

1

0

0

0

1

Program:

module mmmm(m,a,b);

input [3:0]a;

input [3:0]b;

output [7:0]m;

wire [15:0]p;

wire [12:1]s;

wire [12:1]c;

and(p[0],a[0],b[0]);

and(p[1],a[1],b[0]);

and(p[2],a[0],b[1]);

and(p[3],a[2],b[0]);

and(p[4],a[1],b[1]);

and(p[5],a[0],b[2]);

and(p[6],a[3],b[0]);

and(p[7],a[2],b[1]);

and(p[8],a[1],b[2]);

and(p[9],a[0],b[3]);

and(p[10],a[3],b[1]);

and(p[11],a[2],b[2]);

and(p[12],a[1],b[3]);

and(p[13],a[3],b[2]);

and(p[14],a[2],b[3]);

and(p[15],a[3],b[3]);

40

half ha1(s[1],c[1],p[1],p[2]);

half ha2(s[2],c[2],p[4],p[3]);

half ha3(s[3],c[3],p[7],p[6]);

full fa4(s[4],c[4],p[11],p[10],c[3]);

full fa5(s[5],c[5],p[14],p[13],c[4]);

full fa6(s[6],c[6],p[5],s[2],c[1]);

full fa7(s[7],c[7],p[8],s[3],c[2]);

full fa8(s[8],c[8],p[12],s[4],c[7]);

full fa9(s[9],c[9],p[9],s[7],c[6]);

half ha10(s[10],c[10],s[8],c[9]);

full fa11(s[11],c[11],s[5],c[8],c[10]);

full fa12(s[12],c[12],p[15],s[5],c[11]);

buf(m[0],p[0]);

buf(m[1],s[1]);

buf(m[2],s[6]);

buf(m[3],s[9]);

buf(m[4],s[10]);

buf(m[5],s[11]);

buf(m[6],s[12]);

buf(m[7],c[12]);

endmodule

module half(s,co,x,y);

input x,y;

output s,co;

//Instatiate primitive gates

xor (s,x,y);

and (co,x,y);

endmodule

//Description of Full Adder

module full(s,co,x,y,ci);

input x,y,ci;

output s,co;

wire s1,d1,d2; //Outputs of first XOR and AND gates

//Instantiate Half Adder

half ha_1(s1,d1,x,y);

half ha_2(s,d2,s1,ci);

or or_gate(co,d2,d1);

endmodule

41

Logic Diagram:

Wave Form:

RESULT:

Thus an array multiplier circuit for 4 inputs and 8 outputs using VHDL is designed and the output

is verified.

HA FA HA HA

HA

FA FA FA

FA

FA

FA FA

P0

O0

P2 P1

O1

P4 P3 P7 P6 P11,P10
P14 P13

P15

O2 O3 O4 O5 O6 O7

P8

P9

P12

42

Expt . No: 8

Date :
Design of Multipliers

2. BRAUN MULTIPLIER REALIZATION IN VERILOG HDL

Aim:

 To design the Braun multiplier in verilog HDL

Apparatus Required:

Synthesis tool: Xilinx ISE.

Simulation tool: ModelSim Simulator

Theory:

 The entire partial product A.bk are computed in parallel, and then collected through a cascaded

array of carry save order. At the bottom of the array, an adder is used to convert the carry save from the

required form of output.

 Completion time is fixed by the depth of the array, and by the carry propagation characteristics

of the adder. In multiplier is suited only to positive operands.

 4 X 4 Braun Multiplier:

 a3 a2 a1 a0

 b3 b2 b1 b0

 a3b0 a2b0 a1b0 a0b0

 a3b1 a2b1 a1b1 a0b1

 a3b2 a2b2 a1b2 a0b2

 a3b3 a2b3 a1b3 a0b3

 o7 o6 o5 o4 o3 o2 o1

a0b0 = p0 a1b2 = p8

a1b0 = p1 a0b3 = p9

a0b1 = p2 a3b1 = p10

a2b0 = p3 a2b2 = p11

a1b1 = p4 a1b3 = p12

a0b2 = p5 a3b2 = p13

a3b0 = p6 a2b3 = p14

a2b1 = p7 a3b3 = p15

43

Truth Table:

A B A X B

0

0

1

1

0

1

0

1

0

0

0

1

Logic Diagram:

Wave Form:

FA

HA FA HA HA FA

HA

FA FA FA

FA FA

P0

O0

P2 P1

O1

P4 P3 P7 P6 P11,P10
P14 P13

P15

O2 O3 O4 O5 O6 O7

P8

P9

P12

44

RESULT:

Thus an Braun multiplier in verilog HDL is designed and the output is verified.

45

Expt . No: 9

Date :
Design of Counters

1. RIPPLE COUNTER REALIZATION IN VERILOG HDL

Aim:

To realize an asynchronous ripple counter in Verilog

Apparatus required:

Synthesis tool: Xilinx ISE.

Simulation tool: ModelSim Simulator

Theory:

 In a ripple counter, the flip-flop output transition serves as a source for triggering other

flip-flops. In other words, the Clock Pulse inputs of all flip-flops (except the first) are triggered not by the

incoming pulses, but rather by the transition that occurs in other flip-flops. A binary ripple counter

consists of a series connection of complementing flip-flops (JK or T type), with the output of each flip-

flop connected to the Clock Pulse input of the next higher-order flip-flop. The flip-flop holding the LSB

receives the incoming count pulses. All J and K inputs are equal to 1. The small circle in the Clock Pulse

/Count Pulse indicates that the flip-flop complements during a negative-going transition or when the

output to which it is connected goes from 1 to 0. The flip-flops change one at a time in rapid succession,

and the signal propagates through the counter in a ripple fashion. A binary counter with reverse count is

called a binary down-counter. In binary down-counter, the binary count is decremented by 1 with every

input count pulse.

Procedure:

1. The 4 bit asynchronous ripple counter circuit is designed.

2. The Verilog Module Source for the circuit is written.

3. It is implemented in Model Sim and Simulated.

4. Signals are provided and Output Waveforms are viewed.

//Structural description of Ripple Counter

module ripplecounter(A0,A1,A2,A3,COUNT,RESET);

output A0,A1,A2,A3;

input COUNT,RESET;

//Instantiate Flip-Flop

FF F0(A0,COUNT,RESET);

FF F1(A1,A0,RESET);

FF F2(A2,A1,RESET);

FF F3(A3,A2,RESET);

endmodule

46

//Description of Flip-Flop

module FF(Q,CLK,RESET);

output Q;

input CLK,RESET;

reg Q;

always @(negedge CLK or negedge RESET)

if(~RESET)

Q=1'b0;

else

Q=(~Q);

endmodule

//Stimulus for testing Ripple Counter

module simulation;

reg COUNT;

reg RESET;

wire A0,A1,A2,A3;

//Instantiate Ripple Counter

ripplecounter rc_t(A0,A1,A2,A3,COUNT,RESET);

always

#5 COUNT=~COUNT;

initial

begin

COUNT=1'b0;

RESET=1'b0;

#10 RESET=1'b1;

end

endmodule

LOGIC DIAGRAM:

4-Bit Ripple Counter:

47

TRUTH TABLE:

COUNT A0 A1 A2 A3

0 0 0 0 0

1 1 0 0 0

2 0 1 0 0

3 1 1 0 0

4 0 0 1 0

5 1 0 1 0

6 0 1 1 0

7 1 1 1 0

8 0 0 0 1

9 1 0 0 1

10 0 1 0 1

11 1 1 0 1

12 0 0 1 1

13 1 0 1 1

14 0 1 1 1

15 1 1 1 1

Waveform of ripple counter:

48

Testbenchwaveform of ripple counter:

LOGIC DIAGRAM:

MOD-10 Ripple Counter:

49

TRUTH TABLE:

COUNT A0 A1 A2 A3

0 0 0 0 0

1 1 0 0 0

2 0 1 0 0

3 1 1 0 0

4 0 0 1 0

5 1 0 1 0

6 0 1 1 0

7 1 1 1 0

8 0 0 0 1

9 1 0 0 1

10 0 0 0 0

/Structural description of MOD10 Counter

module MOD10(A0,A1,A2,A3,COUNT);

output A0,A1,A2,A3;

input COUNT;

wire RESET;

//Instantiate Flip-Flop

FF F0(A0,COUNT,RESET);

FF F1(A1,A0,RESET);

FF F2(A2,A1,RESET);

FF F3(A3,A2,RESET);

//Instantiate Primitive gate

nand (RESET,A1,A3);

endmodule

//Description of Flip-Flop

module FF(Q,CLK,RESET);

output Q;

input CLK,RESET;

reg Q=1'b0;

always @(negedge CLK or negedge RESET)

if(~RESET)

Q=1'b0;

else

Q=(~Q);

endmodule

50

//Stimulus for testing MOD10 Counter

module simulation;

reg COUNT;

wire A0,A1,A2,A3;

//Instantiate MOD10 Counter

MOD10 MOD10_TEST(A0,A1,A2,A3,COUNT);

always

#10 COUNT=~COUNT;

initial

begin

COUNT=1'b0;

end

endmodule

Waveform of mod 10:

Testbenchwaveform of mod 10:

51

LOGIC DIAGRAM:

MOD-12 Ripple Counter:

TRUTH TABLE:

COUNT A0 A1 A2 A3

0 0 0 0 0

1 1 0 0 0

2 0 1 0 0

3 1 1 0 0

4 0 0 1 0

5 1 0 1 0

6 0 1 1 0

7 1 1 1 0

8 0 0 0 1

9 1 0 0 1

10 0 1 0 1

11 1 1 0 1

12 0 0 0 0

52

//Structural description of MOD12 Counter

module MOD12(A0,A1,A2,A3,COUNT);

output A0,A1,A2,A3;

input COUNT;

wire RESET;

//Instantiate Flip-Flop

FF F0(A0,COUNT,RESET);

FF F1(A1,A0,RESET);

FF F2(A2,A1,RESET);

FF F3(A3,A2,RESET);

//Instantiate Primitive gates

nand (RESET,A2,A3);

endmodule

//Description of Flip-Flop

module FF(Q,CLK,RESET);

output Q;

input CLK,RESET;

reg Q=1'b0;

always @(negedge CLK or negedge RESET)

if(~RESET)

Q=1'b0;

else

Q=(~Q);

endmodule

//Stimulus for testing MOD12 Counter

module simulation;

reg COUNT;

wire A0,A1,A2,A3;

//Instantiate MOD12 Counter

MOD12 MOD12_TEST(A0,A1,A2,A3,COUNT);

always

#10 COUNT=~COUNT;

initial

begin

COUNT=1'b0;

end

endmodule

53

Waveform of mod 12 counter :

Testbenchwaveform of mod 12 counter:

RESULT:

Thus the ripple counter is designed in Verilog HDL and the output is verified.

54

Expt . No: 10

Date :
Design of Counters

2. RING COUNTER REALIZATION IN VERILOG HDL

AIM:

To realize a ring counter in Verilog and VHDL.

Apparatus required:

Synthesis tool: Xilinx ISE.

Simulation tool: ModelSim Simulator

Theory:

A ring counter is a circular shift register with only one flip-flop being set at ay particular time; all

others are cleared. The single bit is shifted from one flip-flop tot the other to produced the

sequence of timing signals.

Procedure:

1. The 4 bit ring counter circuit is designed.

2. The Verilog Module Source for the circuit is written.

3. It is implemented in Model Sim and Simulated.

4. Signals are provided and Output Waveforms are viewed.

Binary Ring Counter Design in Verilog

module my_ringcntvlog (q,clk,reset);

output [0 : 3]q;
input clk,reset;

reg [0 : 3] q;
always @ (negedge clk or reset)
begin

 if (~reset)
 q = 4'b 1000;
 else if (reset)

 begin
 q[0] <= q[3];

 q[1] <= q[0];
 q[2] <= q[1];
 q[3] <= q[2];

 end
end

endmodule

55

Logic Diagram:

Truth Table:

Waveforms

56

Waveform of ring counter:

Test bench waveform of ring counter:

RESULT:

Thus the ring counter is designed in Verilog HDL and the output is verified.

57

Expt . No: 11

Date :
Design of Pseudo Random Binary Sequence

Aim:
 Realize the parity generator in Verilog HDL

Apparatus Required:

 Synthesis tool: Xilinx ISE.

Simulation tool: ModelSim Simulator;

Theory:

 Random numbers for polynomial equations are generated by using the shift register circuit. The

random number generator is nothing but the Linear Feedback Shift Register(LFSR). The shift registers are

very helpful and versatile modules that facilitate the design of many sequential circuits whose design may

otherwise appear very complex. In its simplest form, a shift register consists of a series of flip-flops

having identical interconnection between two adjacent flip-flops. Two such registers are shift right

registers and the shift left registers. In the shift right register, the bits stored in the flip-flops shift to the

right when shift pulse is active. Like that, for a shift left register, the bits stored in the flip-flops shift left

when shift pulse is active. In the shift registers, specific patterns are shifted through the register. There are

applications where instead of specific patterns, random patterns are more important. Shioft registers can

also built to generate such patterns , which are pseudorandom in nature. Called Linear Feedback Shift

Registers (LFSR’s), these are very useful for encoding and decoding the error control codes. LFSRs used

as a generators of pseudorandom sequences have proved externally useful in the area of testing of VLSI

chips.

Circuit diagram:

58

Verilog code

 module (y,clk);

output y;

input clk;

wire [1:0]q;

wire a;

dff df1(q[0],a,clk);

dff df2(q[1],q[0],clk;

dff df3(y,q[1],clk);

xor(a,y,q[1]);

endmodule

module dff(q,d,clk);

output q;

input clk;

input d,clk;

reg q=1’b0;

always@(posedge clk)

q=#5d;

endmodule

Waveform of prbs:

59

Testbenchwaveform of prbs :

RESULT:

Thus the parity generator is designed in Verilog HDL and the output is verified.

60

Expt . No: 12

Date :
Design of Accumulator

Aim:

 Realize the accumulator in Verilog HDL

Apparatus Required:

 Synthesis tool: Xilinx ISE.

 Simulation tool: ModelSim Simulator

Theory:

An accumulator differs from a counter in the nature of the operands of the add and

subtract operation:

• In a counter, the destination and first operand is a signal or variable and the other

operand is a constant equal to 1: A <= A + 1.

• In an accumulator, the destination and first operand is a signal or variable, and the

second operand is either:

♦ A signal or variable: A <= A + B

♦ A constant not equal to 1: A <= A + Constant

An inferred accumulator can be up, down or updown. For an updown accumulator, the

accumulated data may differ between the up and down mode:

...

if updown = '1' then

a <= a + b;

else

 a <= a - c;

Procedure:

1. the accumulator circuit is designed.

2. The Verilog Module Source for the circuit is written.

3. It is implemented in Model Sim and Simulated.

4. Signals are provided and Output Waveforms are viewed.

Program:

module accum (C, CLR, D, Q);

input C, CLR;

input [3:0] D;

output [3:0] Q;

reg [3:0] tmp;

 always @(posedge C or posedge CLR)

 begin

 if (CLR)

 tmp = 4'b0000;

61

 else

 tmp = tmp + D;

 end

 assign Q = tmp;

 endmodule

Circuit diagram:

Wave form of accumulator :

62

Testbenchwaveform of accumulator:

RESULT:

 Thus the logic circuit for the Accumulator is designed in Verilog HDL and the output is

verified.

63

Expt . No: 13

Date :
Design of Decoder

Aim:

 Realize the 3 to 8 Decoder in Verilog HDL.

Apparatus Required:

 Synthesis tool: Xilinx ISE.

Simulation tool: ModelSim Simulator.

Theory:

 A decoder is a combinational circuit that converts binary information from ‘n’ input lines to a

maximum of 2n unique output lines. It performs the reverse operation of the encoder. If the n-bit decoded

information has unused or don’t-care combinations, the decoder output will have fewer than 2n outputs.

The decoders are represented as n-to-m line decoders, where m ≤ 2n. Their purpose is to generate the 2n

(or fewer) minterms of n input variables. The name decoder is also used in conjunction with some code

converters such as BCD-to-seven-segment decoders. Most, if not all, IC decoders include one or more

enable inputs to control the circuit operation. A decoder with an enable input can function as a de-

multiplexer.

Procedure:

1. The decoder circuit is designed and the Boolean function is found out.

2. The Verilog Module Source for the circuit is written.

3. It is implemented in Model Sim and Simulated.

4. Signals are provided and Output Waveforms are viewed.

Decoder using verilog code

module my_decodr(d,x);

output [0:7] d;

input [0:2] x;

wire [0:2] temp;

not n1(temp[0],x[0]);

not n2(temp[1],x[1]);

not n3(temp[2],x[2]);

and a0(d[0],temp[0],temp[1],temp[2]);

and a1(d[1],temp[0],temp[1],x[2]);

and a2(d[2],temp[0],x[1],temp[2]);

and a3(d[3],temp[0],x[1],x[2]);

and a4(d[4],x[0],temp[1],temp[2]);

and a5(d[5],x[0],temp[1],x[2]);

and a6(d[6],x[0],x[1],temp[2]);

and a7(d[7],x[0],x[1],x[2]);

endmodule

64

Logic diagram:

Truth Table:

INPUTS

OUTPUTS

DIN

X

Y

D0

D1

D2

D3

1

1

1

1

0

0

1

1

0

1

0

1

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

65

Waveform:

RESULT:

Thus the logic circuit for the 3 to 8 decoder is designed in Verilog HDL and the output is verified.

