		~		
	1	٥١		
- 1	л	Э,	L	

Register			
Number			

2008

ELECTRICAL AND INSTRUMENTATION ENGINEERING

	Company of the compan
Time Allowed : 3 Hours ?	[Maximum Marks : 30
Time Allowed: 3 Hours	

Read the following instructions carefully before you begin to answer the questions.

IMPORTANT INSTRUCTIONS

- This Booklet has a cover (this page) which should not be opened till the invigilator gives signal
 to open it at the commencement of the examination. As soon as the signal is received you should
 tear the right side of the booklet cover carefully to open the booklet. Then proceed to answer the
 questions.
- This Question Booklet contains 200 questions.
- Answer all questions. All questions carry equal marks.
- 4. The Test Booklet is printed in four series e.g. A B C or D (See Top left side of this page). The candidate has to indicate in the space provided in the Answer Sheet the series of the booklet. For example, if the candidate gets A series booklet, he/she has to indicate in the side 2 of the Answer Sheet with Blue or Black link Ball point pen as follows:

A [B] [C] [D]

- You must write your Register Number in the space provided on the top right side of this page. Do not write anything else on the Question Booklet.
- An Answer Sheet will be supplied to you separately by the invigilator to mark the answers. You
 must write your Name. Register No. and other particulars on side 1 of the Answer Sheet
 provided, failing which your Answer Sheet will not be evaluated.
- 7. You will also encode your Register Number, Subject Code etc., with Blue or Black ink Ball point pen in the space provided on the side 2 of the Answer Sheet. If you do not encode properly or fall to encode the above information, your Answer Sheet will not be evaluated.
- 8. Each question comprises four responses (A), (B), (C) and (D). You are to select ONLY ONE correct response and mark in your Answer Sheet. In case you feel that there are more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each question. Your total marks will depend on the number of correct responses marked by you in the Answer Sheet.
- 9. In the Answer Sheet there are four brackets [A][B][C] and [D] against each question. To answer the questions you are to mark with Ball point pen ONLY ONE bracket of your choice for each question. Select one response for each question in the Question Booklet and mark in the Answer Sheet. If you mark more than one answer for one question, the answer will be treated as wrong. e.g. If for any item, (B) is the correct answer, you have to mark as follows:

[A] [C] [D]

- 10. You should not remove or tear off any sheet from this Question Booklet. You are not allowed to take this Question Booklet and the Answer Sheet out of the Examination Hall during the examination. After the examination is concluded, you must hand over your Answer Sheet to the Invigilator. You are allowed to take the Question Booklet with you only after the Examination is over.
- Failure to comply with any of the above instructions will render you liable to such action or penalty as the Commission may decide at their discretion.
- 12. Do not tick-mark or mark the answers in the Question Booklet.
- 13. The sheet before the last page of the Question Booklet can be used for Rough Work.

×	1005		6009
---	------	--	------

1. With the increase in temperature, the resistance of the pure metals

A) increases

- B) decreases
- C) first increases and then decreases D)
- remains constant.

2. Which of the following statements is false in case of a series circuit?

- A) The voltage drop across each resistor is the same
- B) The current flowing through each resistor is the same
- Applied voltage is equal to the sum of the voltage drops across individual resistors
- D) Resistors are additive.

3. Which of the following relations is not correct?

A)
$$P = \frac{V}{R^2}$$

C)
$$I = \sqrt{\frac{P}{R}}$$

D)
$$V = \sqrt{PR}$$

4. Two alternating quantities are added

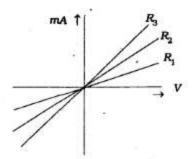
A) arithmetically

B) graphically

C) vectorially

D) geometricaly.

 All the rules and laws which apply to dc networks also apply to ac networks consisting of


A) resistance only

B) inductance only

C) capacitance only

D) all of these.

6. The resistor with least resistance is

- A) R,
- B) R.
- C) R₃
- D) all of these are with same resistance.

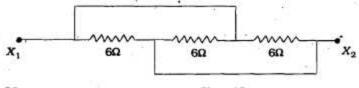
x 1005

6009

583

- 7. A capacitor
 - A) offers easy path to a.c. but blocks d.c.
 - B) offers easy path to d.c. but blocks a.c.
 - C) offers easy path to both a.c. and d.c.
 - D) blocks a.c.
- 8. A unit impulse function is obtained on the differentiation of
 - A) a unit ramp function

B) a unit step function


C) a unit triplet

- D) a unit doublet.
- The equation for 25 cycles current sine wave having rms value of 30 amperes, will be
 - A) 30 sin 25t

B) 30 sin 50t

C) 42-4 sin 25πt

- D) 42-4 sin 50πt.
- Three resistances of 6Ω each are connected as shown in fig. The equivalent resistance between X₁ and X₂ is

A) 2Ω

B) 4Ω

C) 8Ω

- D) 12Ω.
- When a two-winding transformer is connected as an autotransformer, its efficiency (full-load)
 - A) remains same

B) increases

C) decreases

- D) rises to 100%.
- 12. A Δ/Y transformer has a phase-to-phase voltage transformation ratio of α (delta phase): 1 (star phase). The line-to-line voltage ratio Y/Δ is given by
 - A) a/√3

B) a√3/1

C) \\(\sqrt{3}/a

- D) a
- If the load on a dc shunt motor is increased, its speed decreases primarily due to
 - A) increase in its flux

- B) decrease in back emf
- Increase in armature current
- D) decrease in brush drop.

x 1008

14.	DC	DC series motors are best suited for traction because							
	A)	 A) torque is proportional to the square of the armature current and speed is proportional to the torque. 							
	B)	torque is proportional to the inversely proportional to the to		the armature current and speed is					
	C)	torque and speed both are current.	proportio	nal to the square of the armature					
	D)	none of these.							
15.		For a $d.c.$ series motor with saturated condition of the field circuit, the torque developed is proportional to							
	A)	I_a^2	B)	I _a					
	C)	speed	D)	voltage.					
16.	The damping winding in a synchronous motor is generally used to								
	A)	prevent hunting and provide the starting torque							
	B)	reduce eddy currents							
	C)	minimise vibrations							
	D)	reduce noise level.		- 25					
17.	In a synchronous generator operating at zero pf lagging, the effect of armature reaction is								
	A)	magnetizing	7.0	× × ×					
	B)	demagnetizing		W W					
	C)	cross-magnetizing		65					
	D)	 both magnetizing and cross-magnetizing. 							
18.	The	e disadvantage of starting an indi	uction mo	tor with a star-delta starter is that					
	A)	the starting torque is one-third	of the to	rque in case of delta connection					
	B)	during starting high losses result							
	C)	the starting torque increases and the motor runs with jerks							
	D)	none of these.		St. 19					
19.	The	advantage of starting a slip-r	ing indu	tion motor with the help of rotor					

x 1005 . [Turn over

resistance as compared to other methods is that the A) starting torque increases due to rotor resistance

starter can be built directly into the rotor

B) starting current is reduced

none of these.

Di

6

20. Electrical machines are designed to have maximum efficiency at

A) full-load

B) 50% of full-load

C) near about full-load

D) no-load.

21. The open loop transfer function of a unity feedback control system is given by

$$G(s) = \frac{k(s+2)}{s(s^2+2s+2)}$$

The centroid and angles of root locus asymptotes are respectively

- A) zero and + 90°, 90°
- B) -2/3 and +60', -60'
- C) zero and + 120°, 120°
- D) -2/3 and -90° and -90°, +90°.

22. The characteristic equation of a closed loop system is given by

$$s^4 + 6s^3 + 11s^2 + 6s + k = 0$$

Stable closed loop behaviour can be ensured when gain k is such that

A) 0 < k < 10</p>

B) k > 10

C) -∞≤k<∞

D) 0 < k ≤ 20.</p>

23. If the system has multiple pole on the Jw-axis, it is

A) Stable

B) Marginally stable

C) Unstable

D) Conditionally stable.

 The maximum phase shift that can be obtained by using a lead compensator with transfer function

Gc (s) =
$$\frac{4(1+0.15 s)}{(1+0.05 s)}$$

is equal to

A) 15°

B) 30°

C) 45°

D) 60°.

 A unity feedback control system has a forward path transfer function equal to 42.25

$$\frac{42.25}{s(s+6.5)}$$

The unit step response of this system starting from rest will have its maximum value at a time equal to

A) 0 sec

B) 0.56 sec

C) 5-6 sec

D) infinity.

x 1005

26. The impulse response of an R-L circuit is a

A) rising exponential function

B) decaying exponential function

C) step function

D) parabolic function.

27. A unity feedback second order control system is characterised by

$$G(s) = \frac{k}{s(js+B)}$$

where

f = moment of inertia

k = system gain

B = viscous damping coefficient.

The transient response specification which is not affected by variation of system gain is the

A) peak overshoot

B) rise time

C) setting time

D) damped frequency of oscillations.

28. A system has the following transfer function:

$$G(s) = \frac{100(s+5)(s+50)}{s^4(s+10)(s^2+3s+10)}$$

The type and order of the system are respectively

A) 4 and 9

B) 4 and 7

C) 5 and 7

D) 7 and 5.

29. A value of a matrix in $\ddot{X} = A\dot{X}$ for the system described by the differential equation y + 2y + 3y = 0 is

A)
$$\begin{bmatrix} 1 & 0 \\ -2 & -1 \end{bmatrix}$$

C) $\begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix}$

B)
$$\begin{bmatrix} 1 & 0 \\ -1 & -2 \end{bmatrix}$$
D) $\begin{bmatrix} 1 & 0 \\ -3 & -2 \end{bmatrix}$

30. Consider the following statements regarding a linear system $y = f(x_2)$:

I.
$$f(x_1 + x_2) = f(x_2)$$

II.
$$f[x(t+T)] = f[x(t)] + f[x(T)]$$

111.
$$f(kx) = kf(x).$$

Of the statements:

A) I, II and III are correct

B) I and II are correct

C) III alone is correct

D) I and III are correct.

x 1005

6009

RECT 8 31. During load-shedding A system voltage is reduced B system frequency is reduced C some loads are switched off D) system power factor is changed. 32. The half-life period of an isotope is 1 hr. 15/16 of it radiates out in A) 8 hrs B) 16 hrs 9 hrs CI D) 5 hrs. 33. When a fixed amount of power is to be transmitted, the efficiency of transmission increases when voltage decreases, power factor remains constant B) voltage increases, power factor increases C voltage decreases, power factor decreases voltage constant, power factor decreases. 34. For a long uncompensated line the limit to the line loading is governed by A) thermal limit B voltage drop CI stability limit DI corona loss. With 100% series compensation of lines A the circuit is series resonant at power frequency B) low transient voltage C high transient current D both (A) and (C). The function of steel wire in an ACSR conductor is to A) take care of surges B prevent corona C) reduce inductance and hence improve power factor provide additional mechanical strength. Nominal-II model is normally used for evaluating the performance of A short line medium line B) C) long line Dì infinite line. The inductance per unit length of an overhead line due to internal flux linkages A depends on the size of the conductor B) is independent of the size of conductor and constant C) depends on the current through the conductor D) depends on distance between conductors.

6009

Turn over

6009

REC	T	(4) ES	10							
47.	The	actuating quantity for the relays	may be	f na er er						
	A)	magnitude	B)	frequency						
	C)	phase angle	D)	any of these.						
48.	In a	a static over-current relay, invers	e time o	characteristics are obtained by						
	A)	a transistor amplifier	B)	an integrating circuit						
	C)	a transistor switch	D)	a differentiating circuit.						
49.	We do not require any protection against prime-mover failure in case of									
	A)	turbo-generator sets	B)	hydro-generator sets						
	C)	diesel engine driven alternators	D)	back pressure turbo-generators.						
50.	A material best suited for manufacturing fuse wire is									
	A)	stiver	B)	copper						
	C)	aluminium	D)	zinc.						
51.	The	phase comparator in a PLL circu	iit is us	ed to provide						
	A)	one-half the crystal oscillator fr	equency	•						
	B)	RF output with audio modulation	n	100						
	C)	DC control voltage								
	D)	double crystal oscillator signal.								
52.	Ava	alanche breakdown is primarily d	epender	nt on the phenomenon of						
	Al	collision	B)	doptng						
9	C)	ionization	DI	rècombination.						
53.	-17	, As, LEDS emit radiation in the	:555							
	A)	ultraviolet region								
	B)	violet-blue green range of the v	isible re	egon						
00)	C)	visible region		1						
	D)	infrared region.								
54.		nich of the following methods us asidered independent of transisto		clasing a BJT in integrated circuits is						
	A	Fixed biasing	B)	Voltage divider biasing						
	C)	Collector feedback biasing	D)	Base bias with collector feedback.						
(-		F-	-000							
× 1	005	76	1/2/2/10/10							

- 11

55.	1.000	wo stages of a cascaded am	The state of the same and the same	e decibel gains of 60 and 30, then					
	A)	90	B)	1800					
	C)	2	D)	0.5.					
56.	In a	a common emitter amplifier, t	he unbypas	sed emitter resistor provides					
	A)	voltage-shunt feedback	B)	current-series feedback					
	C)	negative-voltage feedback	D)	positive-current feedback.					
57.	The	e depletion region of a semicor	nductor dio	de is due to					
	A)	reverse biasing							
	B)	forward biasing	70						
	C)	crystal biasing							
	D)	migration of mobile charge	carriers.						
58.	A 7	41 OP-AMP has an open loop	gain 200,0	00. The input offset voltage is 2 mV.					
	If the input terminals are shorted, the output voltage is								
	A)	ov	B)	•					
	C)	400V	D)	± 400V.					
59.	The maximum overall efficiency of a class-B push-pull amplifier cannot exceed per cent.								
	A)	100	. B)	78-5					
	C)	50	D)	85.					
60.	The	e following relationships betwe	een α and β	The second of th					
	A)	$\beta = \frac{\alpha}{1 - \alpha}$	B)	$\alpha = \frac{\beta}{1 - \beta}$					
	C)	$\alpha = \frac{\beta}{1+\beta}$	D)	$1-\alpha=\frac{1}{1+\beta}.$					
61.	2's	complement of 10010010 is							
	A)	01101110	B)	00101110					
	C)	01001110	D)	01100010.					
62.	A multiplexer has								
	A)	one input and one output	B)	one input and many outputs					
	(C)	many inputs and one output	D)	many inputs and many outputs.					
x 10	005	. 20	6009	Turn over					

		1	
-	•	\sim	r
ж.	ъ.		

63.		-bit synchronous counter uses flip h. The maximum possible time re	- TO E	with propagation delay time of 15 ns for change of state will be					
	A)	15 ns	B)	30 ns					
	C	45 ns	D)	60 ns.					
64.	Dec	amal number represented by the	binary i	number 101101 is					
	A)	(43)10	B)	(45) 10					
100	C)	(47) 10	D)	(49) 10.					
65.	The	The minimal sum of products form of							
		$f = A\overline{B}CD + \overline{A}BC + \overline{A}\overline{B}C + BCD$	s	20 II					
	A)	AC + BD	B)	ĀC + CD					
	C)	AC + BD	D)	AB + CD.					
66,	HT - 기타								
	A)	1	B)	2 .					
	C)	3	D)	4.					
67.	Wh	ich one of the following is equivale	ND-OR realization ?						
	A)	NAND - NOR realization	B)	NOR - NOR realization					
	C)	NOR - NAND realization	D)	NAND - NAND realization.					
68.	Which of the following identities is true?								
	A)	$A + BC = (\overline{A} + B)(\overline{A} + C)$	B)	$A + BC = (\tilde{A} + B)(A + C)$					
	C)	$A+BC=(A+B)(\overline{A}+C)$	D)	A+BC=(A+B)(A+C).					
69.	Metastability in D-flip-flop occurs when								
	A)	set-up time of input data is not	•						
	B)	clock period is too large	, 8	v					
	C)	set and reset are active simultar	neously	4					
	D)	D and Q pins are shortened.							
70.	A P	LA can be used							
	A)	as a microprocessor	B)	as a dynamic memory					
	C)	to realize a sequential logic	D)	to realize a combinational logic.					
71.		riving point function can be expre i q (s)	essed as	s p(s)/q(s). The degrees of $p(s)$					
	A)	should be same	B)	may differ by unity					
	C)	may differ by zero or one	D)	are stable response.					
x 10	005	60	900	S 11					

72.	A constant k low-pass filter has a cut-off frequency of 1000 Hz. At a frequency	72.
	of 50 Hz, the phase shift is	

A) 0

B) #

C) less than π

- D) more than π.
- 73. The poles of an RC function
 - A) are simple and lie on negative real axis
 - B) are simple and lie on the jw-axis
 - C) must be complex conjugate
 - D) may be anywhere on the s-plane.

When a number of 2-port networks are connected in cascade, the individual

- A) Z_{oc} matrices are added
- V_{SC} matrices are added
- C) chain matrices are multiplied
- D) H-matrices are multiplied.

The condition AD - BC = 1, for a two-port network implies that the network is

A) reciprocal network

B) lumped element network

C) lossless network

- D) unilateral element network.
- In a series resonance type BPF, C = 1.8 PF.

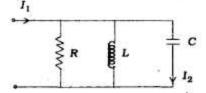
L=25 mH, $R_F=52\Omega$ and $R_L=9$ k Ω . The resonance frequency will be

A) 751 Hz

B) 751 kHz

C) 751 MHz

D) 826 MHz.


77. A unit impulse function is obtained on differentiation of a unit

A) ramp function

B) step function

C) triplet

- D) doublet.
- The driving point admittance function of the network shown in the figure has

- A) poles at s = 0 and zero at $s = \infty$ B) poles at s = 0 and poles at $s = \infty$
- C) poles at $s = \infty$ and zero at s = 0 D) poles
 - poles at s = ∞ and zero at s = ∞.

x 1005

6009

14

79. According to the final value theorem

A)
$$F(0^-) = \lim_{s \to \infty} SF(s)$$

B) $F(0^+) = \lim_{s \to \infty} SF(s)$

C)
$$F(\infty) = \lim_{s \to 0} SF(s)$$

D) none of these.

80. The Z-parameters of a network are given by $\begin{bmatrix} 4 & 1 \\ 3 & 3 \end{bmatrix}$. Its transmission parameters will be

A) $\begin{bmatrix} 3 & 3 \\ 1 & 4 \end{bmatrix}$ B) $\begin{bmatrix} 4/3 & 3 \\ 1/3 & 1 \end{bmatrix}$ C) $\begin{bmatrix} 3 & 3 \\ 4 & 1 \end{bmatrix}$ D) $\begin{bmatrix} 3 & 4/3 \\ 1 & 1/3 \end{bmatrix}$.

81. Bandwidth, a frequency domain concept, is inductive of

A) rise time in time domain

settling time in time domain

- C) steady state error in the domain D) all of these.
- 82. In an analog PMMC 0-10 A ammeter is provided with no controlling mechanisation and the moving parts are free to rotate. What will be the readings of the instrument if 1A (d.c.) is passed through the moving coil?

(The torque produced is sufficient to overcome the frictional losses)

- A) 1A
- B) 10A
- C) The pointer will continuously rotate
- D) The pointer will remain stationary.
- Permanent magnets are tested by
 - A) ballistic methods
 - B) using an electric circuit having a mutual inductance
 - C) potentiometric methods
 - D) Betteridge apparatus.
- The voltage control circuits do not use resistance potential dividers because
 - A) they involve a large power loss
 - B) they cause distortion of waveform
 - C) they do not give a smooth variation of voltage
 - D) they have non-linear characteristics.

x 1005

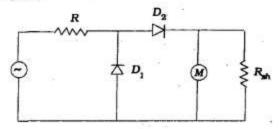
- 85. If an induction type energymeter runs fast, it can be slowed down by
 - A) lag adjustment
 - B) light load adjustment
 - by adjusting the position of braking magnet and making it come closer to the centre of the disc
 - by adjusting the position of braking magnet and making it move away from the centre of the disc.
- The secondary winding of a C.T. is open when current is flowing in the primary.
 Then.
 - A) there will be a high current in primary
 - B) there will be a high voltage in secondary
 - the transformer will burn out immediately
 - D) the meter will burn out.
- 87. A potentiometer is basically a
 - A) deflectional type instrument
 - B) null type instrument
 - C) deflectional as well as null type instrument
 - D) a digital instrument.
- 88. The ratio of transformation in the case of potential transformers
 - A) increases with increase in power factor of secondary burden
 - remains constant irrespective of the power factor of secondary burden
 - decreases with increase in power factor of secondary burden
 - D) none of these.
- Ballistic test is used in magnetic measurements for
 - A) determination of B-H curve of the specimen only
 - B) determination of hysteresis loop of the specimen only
 - determination of flux density, magnetizing force and B-H curve and hysteresis loop of the specimen
 - D) finding out iron losses in the specimen.

1005 6009

[Turn over

RECT 16 90. Which type of wattmeter cannot be used for D.C. ? Electrostatic type B) Dynamometer type Induction type DI. None of these. A DVM has a $4\frac{1}{2}$ digit display. The 1 volt range can read upto A) | 9999 B) 999 1.9999 D) 0.19999. The horizontal sweep speed is set so that a full cycle takes 0.4 m/sec. The 92. resulting display for one sweep of beam will be A) two cycles of the input signal B) one cycle of the input signal C) half cycle of the input signal one-fourth cycle of the input signal. D) A disc mounted on the shaft of a machine has 12 pattern points. The number of flashes projected on the disc by a stroboscope is 6000 in a minute. When the disc appears stationary and it has single image of 12 points, the speed of the machine will be 5 rps B) 50 rpm Di C) 500 rpm 50 rps. 94. A digital voltmeter measures peak value B) · peak to peak value average value. rms value DI Which of the following statements about CRO is correct? The lissajous pattern obtained in a CRO is used to measure distortion in A) the input signal. B) The colour of the spot on the screen of a CRO is a characteristic of the electron gun in a CRT. The time base signal in a CRO is a square waveform. D) None of these.

6009


96.	A superheterodyne	receiver	with	an	IF	of	450	kHz	18	tuned	to	a	signal	of
	1200 kHz. The image frequency is													

A) 750 kHz

B) 1650 kHz

C) 2100 kHz

- D) None of these.
- In the multimeter circuit shown in the figure for AC voltage measurement, the function of diode D, is to

- A) provide half-wave rectification
- B) make the rectifier D2 perform full-wave rectification
- C) by-pass reverse leakage current of D₂ in the negative cycle of the input
- Short-circuit over range voltages.
- In a Q-meter, the value of shunt resistance connected across the oscillator is typically of the order of
 - A) Ω

B) mΩ

C) μΩ

- D) kΩ.
- 99. A random noise generator produces a signal
 - A) whose amplitude varies randomly
 - B) which has no periodic frequency
 - c) has an unpredictable power spectrum
 - D) all of these.
- 100. An electronic voltmeter with a broad bandwidth has
 - A) low noise level and high sensitivity
 - b) high noise level and high sensitivity
 - c) high noise level and low sensitivity
 - low noise level and low sensitivity.

x 1005

6009

RECT	r		18	
101.	A re	esistance thermometer is an exa	nple of	
	A)	zero order system	B)	first order system
	C)	second order system	D)	none of these.
102.	The	unit of static sensitivity is		
	A)	millimetre per microampere	B)	millimetre per milliampere
	C)	micrometre per microampere	D)	micrometre per milliampere.
.103.	Rar	ndom errors are otherwise known	as	W., #
	A)	residual errors	B)	gross errors
	C)	threshold errors	D)	instrumental errors.
104.	sub	"이 그 전에는 생기가 잘 되어서 이 문에 있는 이 사람들은 생기를 받았다.		a natural frequency of 500 Hz. It is all little at 500 Hz. The amplitude of
	A)	unity	B)	0.5
	C)	2.0	D)	infinity.
105.	out	put resistance of 1 k Ω . An amnurce terminals for measurement	neter of	age source of 10V in series with a 50 Ω resistance is connected to that. The accuracy of measurement
	A)	- 4-8 per cent	B)	+ 4.8 per cent
	C)	99 per cent	D)	95-2 per cent.
106.		first order thermometer has a usoidal input cycling at 0.002 Hz		onstant of 50s. It is subjected to the lag of the instrument is
	A)	50s	B)	500s
	C)	44-6s	D)	0.01s.
107.				20s. It is subjected to a step inpu
				to be the time it reaches 95% of t
	nna A)	al steady state value. The settling	g time of B)	the system is
	C)	60s	D)	20s.
	iji	V 22		models to
1		12	2000	

Turn over

108.	con	70	ce of t	ltmeter having an input impedance he circuit thereby causing error in ed			
	A)	gross error					
	Bi	random error		91			
(4)	C	error caused by misuse of instrum	aent				
	D)	error caused by loading effect.	icirc				
100			- to C	1.125% of span. The calibration is			
103.	The dead zone in a certain pyrometer is 0.125% of span. The calibration is 400°C to 1000°C. What temperature change might occur before it is deflected?						
	A)	0-075°C	B)	0.75°C			
	C)	7-5°C	D)	1-5°C.			
110.	Ch	anges in atmospheric temperature, l	humid	ity etc. cause			
		systematic errors	B)	instrumental errors			
92	C)	All Communications and the second	D)	environmental errors.			
	bet at t	ween plates is variable. The dielectr	ic med capaci	ates of area 200 mm 2 . The distance flum is air. The capacitor connected tance of 100 pF and voltage of 10V. $0.057 \times 10^3 \text{ V/mm}$			
	C)	0-057 V/mm	D)	0-057 mV/mm.			
112.	Three types of temperature transducers are compared as regards their sensitivity. The order in which they exhibit their sensitivities (highest to lowest) is						
	A)	Thermistors, RTDs, thermocouple	8				
	B)	Thermocouples, RTDs, thermistor	8	•			
	C)	RTDs, thermistors, thermocouples	3				
	D)	RTDs, thermocouples, thermistors	9.				
113.	Du	nmore hygrometer has					
	A)	linear resistance / relative humidi	ty cha	racteristics			
1	B)	non-linear resistance / relative hu	midity	characteristics			
	C)	linear inductance / relative humid	ity ch	aracteristics			
	DI	non-linear inductance / relative hi	ımidit	v characteristics.			

Papers provided only for reference. Refer concerned Official Website for Act

6009

RECT 20 114. The microphones, which are widely used for sound measurement systems having a very wide range of amplitudes are carbon microphones A) B) piezoelectric microphones inductive microphones capacitive microphones. Dì 115. A 100 Ω resistive potentiometer is used with an input supply voltage of 10V. If the thermal resistance 30°C/W and the ambient temperature is 40°C, the temperature of the POT is 80°C A 60°C 70°C 100°C. 116. In wire-wound strain gauges, the change in resistance on application of strain is mainly due to A) change in length of wire change in diameter of wire change in both length and diameter of wire change in receptivity. 117. Piezoelectric transducers are A) passive transducers B) active transducers inverse transducers D) (B) and (C). 118. Piezoelectric accelerometer should not be used for high frequencies above 100 Hz should be used for low frequencies should use a monitoring source of low input impedance has a low natural frequency. 119. Capacitive transducers can be used for measurement of liquid level. The principal of operation used in this case is change of capacitance with change of distance between plates change of area of plates CI change of dielectric strength none of these. 120. A transducer has an output impedance of 1kΩ and the load resistance is 1MΩ. The transducer behaves as a constant current source B a constant voltage source a constant power source none of these. 6009

121.	A	otentiometric type accelerometer	can be	e used for measurement of vibration				
•	of i	frequencies						
	A)	lower than 50 Hz	B)	higher than 1 kHz				
	C)	higher than 10 kHz	D)	from 100 Hz and higher.				
122.	cor	njunction with it. If the speed of	the sl	eth. A magnetic pick-up is used in haft to which the toothed wheel is dises generated per second in the				
	A)	3000	B)	1500				
	C)	1800	D)	1200.				
123.	A s		displac	cement mode should be designed to				
	A)	weak springs and heavy mass	B)	weak springs and light mass				
	C)	stiff springs and heavy mass	D)	stiff springs and light mass.				
124.		ribrometer is an instrument, wi rations by measuring	hich c	can be used for measurement of				
	A)	acceleration						
	B)	displacement and velocity						
	C)	displacement, velocity and acceler	ration					
(((D	none of these.		9 9				
125.	Ext	remely small motion can be measur	red with	th				
	A	seismic type accelerometer						
	B)	The state of the s		E 20				
	C)	piezoelectric type transducer						
	DI	an optical interferrometric type se	nsor.					
126.	The seismic transducers give satisfactory results, both in displacement mode and acceleration mode, if the damping factor is							
	A)	1	B)	0				
	C)	nearly 0.7	DI	nearly 0-5.				
127.	Sight	stic elements used for measuremen						
	A)	high sensitivity and slow response		2				
16	B)	low sensitivity and fast response	a .					
	C)	low sensitivity and slow response						
	D)	none of these.						
x 100	15	600	0	[Turn over				

REC	T	2	2		
128.	Hoo	op stress acts			
	A)	in radial direction	B)	in axial direction	
	C)	in both radial and axial direction	s D)	none of these.	*
129.		en accelerometers operate in the quency to natural frequency should		acement mode the ratio	of forcin
	A)	below 1	B)	below 2	
	C)	above 2	D)	above 200.	-
130.	Нус	iraulic load cells are available which	h have	a maximum capacity of	
1	A)	10 kN	B)	50 kN	
	C)	10 MN	D)	50 MN.	311
131.	The	size of a venturimeter is expresse	d as 20	00 × 100 mm. It means t	hat
	A)	the diameter of the upstream pip	e is 20	00 mm and that of downs	stream pip
	B)	the diameter of the pipe is 200 n	ım and	that of throat is 100 mm	a
	C)	the diameter of the pipe is 100 n	m and	that of throat is 200 mm	a
	D)	none of these.			
132.	The	accuracy of the dead weight test	ers is a	ffected by	
	A)	friction force between the piston	and th	e cylinder	*
	B)	uncertainty of the value of the ei	fective	area of the piston	
	C)	uncertainty of the value of gravit	ational	constant	H
	D)	all of these.			
133.	Bri	dman gauges are used for measur	ement e	of	
	A)	vacuum	B)	medium pressures	
	C) -	high pressures	D)	very high pressures.	
134	. The	desirable property of a monomet	ric fluid	i is	30
	A)	high viscosity			
	B)	high coefficient of thermal expan	ston		
	C)	low vapour pressure		100	
	D)	corrosiveness and stickiness.			
		-	00		S *

		1.00	500					
135.	The	discharge over a V-notch is propor	rtiona	l to				
	A)	H 1-5	B)	H 3.5				
	C)	H 2-5	D)	H ⁰⁻⁵ .				
136.	Wh	ich of the following meters is used	for me	easuring flow of clean fluids only?				
	A)	Ultrasonic flowmeter	B)	Hot wire anemometer				
	C)	Turbine flowmeter	D)	All (A), (B) and (C).				
137.	ln a	a vortex shedding flowmeter, the sh	reddin	ig frequency is $f = \frac{N_{st} V}{D}$ where N_{st} is				
	A)	Reynolds number	B)	Mach number				
	C)	Strouhal number	D)	none of these.				
138.	Men	rcury is used in liquid filled system	as it	gives				
	A)	wide temperature range						
	B)	high sensitivity						
	C)	wide temperature range and appr	oxima	tely linear scale				
	D)	wide temperature range and high	sensi	tivity.				
139.	Semiconductor thermometers have the disadvantage that they							
	A)	are not readily available and are expensive						
	B)	are fragile and have low sensitivit	У					
	C)	are large in size and have a poor	freque	ently response				
	D)	none of these.		***				
140.	In a	a balanced lever gauge, the moveme	ent of	the lever arm is limited to				
	A)	180'	B)	90*				
	C)	10*	D)	5'.				
141.	In t	using capillary tube viscometer corr	ection	as are to be made for				
	A)	change of density	B)	change in temperature				
	C)	change in gravitational constant	D)	losses in head.				
142.	For	an ideal Newtonian fluid, the relation	onship	o is				
	A)	μ = shear stress / velocity gradie	nt					
	B)	μ = velocity gradient / shear stre	55					
	C)	μ = velocity / stress						
	D)	μ = stress / velocity.		W 0:				
x 10	05	600	9	[Turn over				

RECT 24 143. Unit of density is kg / m3 B) kg/m2 D) kg /m. 144. The rate of flow of fluid depends upon density B) gravity force all of these. viscosity D) 145. Which one of the following is not used for measurement of density? A) Manometer B) Hydrometer Force balanced method D) Both (B) and (C). 146. The potential drop across pH meter is A) $\Delta V_i = -2.30 \frac{RT}{\xi} \log \frac{C_H}{C_-}$ B) $\Delta V_i = 2.30 \frac{RT}{\xi} \log \frac{C_H}{C_B}$ C) $\Delta V_i = 2.30 \frac{RT}{\xi} \log \frac{C_R}{C_H}$ D) $\Delta V_i = 1.65 \frac{RT}{\xi} \log \frac{C_R}{C_V}$ 147. pH value of a solution is defined as $pH = -\log_{10}(H^+)$ B) $pH = + \log_{10} (H^+)$ $pH = + log_{10} (OH^{-})$ $pH = -\log_{10} (OH^-).$ 148. The dissociation constant is the product of H* ions and OH- ions and this product is always equal to 10-16 10-14 10-12 10-15 C) DI 149. A solution which has a pH value of more than 7 is neutral in nature acidic in nature alkaline in nature can be either acidic or alkaline in nature. 150. In a Saybolt viscometer, the viscosity can be measured to measuring the time to fill a flask with liquid volume equal to A) 50 ml B) 200 ml 60 ml D) 10 ml. 6009 x 1005

151.	Wh	ich control action is best suited to	contro	ol a flow process ?,					
	A)	P control action	B)	P + I control action					
	C)	P + D control action	D)	P + I + D control action.					
152.		ontrol configuration which has one asured variable is referred to as	mani	pulated variable and more than one					
	A)	cascade control	B)	ratio control					
	C)	inferential control	D)	split range control.					
153.	Z-tr	ransform of a unit step function is							
	A)	$\frac{1}{Z-1}$	B)	$\frac{Z}{Z-1}$					
	C)	$\frac{Z-1}{Z+1}$	D)	1/Z.					
154.	The	basic element for a pneumatic con	troller	is					
	A)	Op-Ariip	B)	RC circuit					
	C)	Flapper nozzle	D)	None of these.					
155.	Whi	ich of the following is not true for a	n Elec	tronic Controller ?					
	A)	It is compact							
	B)	It is more accurate		€					
	C)	It can operate an explosive atmos	ohere						
	D)	All of these.							
156.	The	differential gap is intentionally intr	oduce	d in an ON/OFF controller to					
8	A)	reduce the life of final control elem	nent	E 36					
0.5	B)	increase the life of final control element							
	C)	reduce the control action		8					
	D)	none of these.							
157.	A c	ontrol valve with positioner is referr	ed to	as					
	A)	high gain proportional controller	B)	low gain proportional controller					
8	C)	high gain integral controller	D)	low gain integral controller.					
x 10	05	600	9	[Turn over					
				W C					

RECT 158. Which of the following control actions is referred to as anticipatory control action? Integral control action A) B Proportional control action C) Derivative control action Proportional + Integral control action. 159. The main advantage of combining integral control action to proportional action is A) short recovery time B maximum overshoot C) elimination of offset D) none of these. 160. Due to derivative control, the steady-state error is A) ratio control reduced B) cascade control increased split range control not effected D) inferential control made zero. 161. Blood flow can be measured using the electromagnetic principle because blood has a high magnetic induction B) electrical resistivity A) electrical conductivity D) impedance. 162. An ECG monitor usually has a frequency response of 0-05 Hz to about B A) 45 Hz 60 Hz 70 Hz D) 100 Hz. 163. A cardioverter is a defibrillator that is synchronized to discharge only on the patient's T-wave Bì R-wave P-wave D) Q-wave. 164. Polarised cell resting potential is about B) + 90 mV A) - 90 mV + 20 mV. C) - 45 mV D) 165. Loudspeaker is also used in the recorder of A) **EMG** · B) ECG Dì EEG. EOG C) 6009 1005

166.	The	use of notch filter in signal	conditioning	system is to
	A)	filter R.F. noise		
	B)	filter 50 Hz noise from mai	ins	
	C)	filter the signal from variou	as noises	
	D)	attenuate the evolved resp	onse potentia	ds.
167.	In t	he case of ERG, what type	of electrodes	are used to pick-up signals?
	A)	Disc electrodes	B)	Retinal electrodes
	C)	Vacuum type electrodes	D)	pH electrodes.
168.	The	active transducer in the me	easurement o	of pressure is
	A)	ptezoelectric transducer	B)	capacitive transducer
	C)	strain gauge	D)	inductive transducer.
169.	Arr	hythmia can be diagnosed b	у	
	A)	EEG	B)	ECG
	C)	Vector cardiogram	D)	Phono-cardiography.
170.	In t	the case of defibrillator, a do	uble square	pulse type is used to
ii i	A)	restart the heart rhythm a	fter the open	heart surgery
	B)	arrest ventricular fibrillatio	on	*
	C)	arrest leakage of blood fro	m the heart	
	D)	arrest the reverse flow of t	olood from ve	ntricule to atrium.
171.		e beam width between first- ement spacing = d) equally		rm linear array of N equally spaced nas is determined by
	A)	N alone and not by d	B)	d alone and not by N
	C)	the ratio (N/d)	D)	the product (Nd).
172.		Nyquist sampling rate for ere t is in seconds, is	the signal g	$(t) = 10 \cos (50 \pi t) \cos^2 (150 \pi t)$
	A)	150 samples per second	B)	200 samples per second
	C)	300 samples per second	D)	350 samples per second.
x 100	05		6009	Turn over

RECT 28 173. Two carriers 40 MHz and 80 MHz respectively are frequency modulated by a signal of frequency 4 kHz, such that the bandwidths of the FM signal in the two cases are the same. The peak deviation in the two cases are in the ratio of 1:2 1:4 2:1. C 1:1 · D) 174. Medium wave radio signals may be received at far off distances at night because radio waves travel faster at night ground wave attenuation is low at night C the sky wave is stronger at night there is no fading at night. 175. For transmission of normal speech signal, the PCM channel needs a bandwidth of A) 64 kHz BI 8 kHz 2 kHz. C 4 kHz Di 176. A comparison of frequency division and time division multiplexing systems shows that FDM requires a lower bandwidth, but TDM has greater noise immunity A) FDM has greater noise immunity and requires lower bandwidth than TDM B FDM requires channel synchronisation, while TDM has greater noise CI immunity FDM requires more multiplexing, while TDM requires band-pass filter. 177. A communication channel disturbed by additive white Gaussian noise has a bandwidth of 4 kHz and SNR of 15. The highest transmission rate that such a channel can support (in k-bits / sec) is A 16 B) 1.6 CI 32 D) 60. 178. The intermediate frequency of a superhet receiver is 450 kHz. If it is tuned to 1200 kHz, the image frequency will be B) 900 kHz A) 750 kHz Dì 2100 kHz. CI 1650 kHz

x 1005

179.	Sou	irce encoding in a data com	munication sy	ystem is done in orde	r to
	A)	enhance the information t	ransmission r	ate	
	B)	increase the transmission	егтога	•	0.1
	C)	conserve the transmitted	power		3.07
	D)	facilitate clock recovery in	the receiver.		
180.	The	root locus always starts as			
	A)	open loop poles	B)	open loop zeros	
	C)	'closed loop poles	D)	closed loop zeros.	4
181.	The	interface chip used for da	ta transmissi	on between 8086 and	i a 16 bit ADC
	is	5 //			
	A)	8259	B)	8255	
	C	8253	D)	8251.	
182.	The	TRAP is one of the interr	upts available	in INTEL 8085. Wh	ich one of the
	folio	wing statements is true of	TRAP?		
	A)	It is level triggered			
	B)	It is negative edge triggere	ed.		
20	C)	It is positive edge triggered	d ,		
	D)	It is both positive edge trip	ggered and lev	el triggered.	
183.	In 8	085 microprocessor system	, the direct ac	idressing instruction	s is
	A)	Mov A, B	В)	Mov B, OAH	
	C)	Mov C, M	D)	STA adds.	*
184.	A R	OM is used to store the	table for mu	ltiplication of two 8	3-bit unsigned
	inte	gers. The size of ROM requ	ired is		76
	A)	256 k × 16	B)	64 k × 8	
	C)	4 k × 16	D)	64 k × 16.	
100	05		6009		[Turn over

185. The following program is run on an 8085 Microprocessor :

M	emory addres	ss in hex		Instruction
	2000	•		LXISP, 1000
	2003		*	PUSH H
	2004	10		PUSH D
	2005			CALL 2050
	2008		100	POPH
	2009			HLT

A) 2050, OFFC

B) 2020, OCCF

C) 2000, CCFO

- D) 2020, OFFC.
- 186. In a generic microprocessor, instruction cycle time is
 - A) shorter than machine cycle time
 - B) larger than machine cycle time.
 - C) exactly double the machine cycle time
 - D) exactly the same as the machine cycle time.
- 187. The stack pointer in the 8085 microprocessor is a
 - A) 16 bit register that points to stack memory locations
 - B) 16 bit accumulator

1005

- C) memory location in the stack
- D) flag register used for the stack.
- 188. Match List I (Request) correctly with List II (Device) and select your answer using the codes given below :

		List						List II
	a)	Interr	upt				1.	I/O device
	b)	Wait				•	2.	DMA controller
	c)	.Hold			•		3.	Memory
Cod	les:							
	a	b	c	3		8		
A	1	2	3					@ 12
B)	1	3	2	945				
C)	2	1	,3					- C
D)	2	3	1.			20		

189.	An	'Assembler' for a micropro	cessor is used	for						
	A)	assembly of processors	n a production	line	10 10					
	B)	creation of new programmes using different modules								
	C)	translation of a program	from assembly	language to machin	e language					
	D)	translation of a higher le	vel language int	to English text.						
190.		In a multiprocessor configuration, two coprocessors are connected to the host 8086 processor. The two coprocessor instruction sets								
	A)	must be the same	420							
	B)	may overlap								
	C)	must be disjoint			11 21 1					
	D)	must be the same as the	at of the host.							
191.	ln I	DC8 the available method	for security des	ign approach is						
	A)	manual back-up approa	ch ·							
	B)	hot stand-by redundance	y approach	a ()						
	C)	multiple active redundar	nt controller	- "	83					
	D)	all of these.								
192.	Wh	ich one of the following m	ethods is not a	network topology?						
	A)	Star	B)	Token-passing						
	C)	Ring	D)	Mesh.						
193.	Wh	ich one of the following is	not an operator	display device?						
	A)	Menu	B)	Indicator.						
	C)	Alarm	D)	Screen area.	#6					
194.	Wh	at size computers are use	d for supervisor	y control applicatio	n ?					
	A)	Mainframe computer	B)	Minicomputer	2					
	C)	Microcomputer	D)	None of these.						
195.	A sı	upervisory control has been	en applied in ch	emical process to	183					
	A)	minimize operating cost	2							
100	B)	maximize efficiency in raw material utilization								
	C)	maximize production pro	Att							
	D)	all of these.		(*)						
			6009	1000	Turn over					
x 10	00		0000		,					

REC	r		32			
196.	Han	nd held programmers are used for	r prograi	nming	•	
	A)	small PLCs	B)	medium PLCs		
	C)	large PLCs	D)	none of these.		
197.	Whi	ich of the following is not true fo	r a count	er instruction in PLC	?	
12.0	A)	Up-counters are always reset t	o zero			
	B)	The counter will operate on the	trailing	edge		
	C)	A separate coil is used for rese	t			
	D)	All of these.		(2)	•	
198.		mally PUT instruction is program?	ammed is	n which part of the l	ogic rung	in a
	A)	Input	B)	Output		
	C)	Either input or output	D)	None of these.		
199.	Ide	ntify the part of the distributed	control sy	stem.		
	A)	High level computing device	B)	Low level human in	terface	
	C)	Data Input / Output unit	D)	All of these.		
200.	The	protocol which is not a media a	ccess pro	otocol, is	198	
	A)	Command / Response	B)	Token passing		
	C)	CRC	D)	QMA / CD.		

www.recruitment.guru

33 REC

(SPACE FOR ROUGH WORK)

www.recruitment.guru'

RECT 34

(SPACE FOR ROUGH WORK)

n Papers provided only for reference.