B.Tech. MECHANICAL ENGINEERING
(COMPUTER INTEGRATED MANUFACTURING)
BTCLEVI/BTMEVI/BTELVI/BTCSVI/BTECVI
01835
Term-End Examination
June, 2015

## BME-009 : COMPUTER PROGRAMMING AND APPLICATIONS

## Time : 3 hours

 Maximum Marks : 70Note: Answer any five questions. All questions carry equal marks. Use of scientific calculator is permitted.

1. (a) Find the root of the equation

$$
x^{3}-4 x-9=0
$$

by bisection method, correct to three decimal places.
(b) Find the real root of the equation
$x=\frac{1}{(x+1)^{2}}$ correct to four decimal places.
2. (a) Use Stirlings formula to find $U_{32}$ from the following table :

$$
\begin{aligned}
& \mathrm{U}_{20}=14 \cdot 035, \mathrm{U}_{25}=13 \cdot 674, \mathrm{U}_{30}=13 \cdot 257 \\
& \mathrm{U}_{35}=12 \cdot 734, \mathrm{U}_{40}=12 \cdot 089, \mathrm{U}_{45}=11 \cdot 309
\end{aligned}
$$

(b) Given the table of values

| x | 50 | 52 | 54 | 56 |
| :---: | :---: | :---: | :---: | :---: |
| $3 \sqrt{\mathrm{x}}$ | 3.684 | 3.732 | 3.779 | 3.865 |

Use Lagrange's formula to find $x$, when $3 \sqrt{x}=3 \cdot 756$.
3. (a) Find the real root of the equation

$$
x^{3}+3 x^{2}-3=0
$$

by Newton-Raphson method, correct to three decimal places.
(b) Using Gauss's backward formula, find the value of $\sqrt{12516}$. Given that

$$
\begin{aligned}
& \sqrt{12500}=111.803399 \\
& \sqrt{12510}=111.848111 \\
& \sqrt{12520}=111.892806 \\
& \sqrt{12530}=111.937483
\end{aligned}
$$

4. (a) Solve the given intail value problem using Runge-Kutta method of order four :

$$
y^{\prime}=\frac{y-x}{y+x}, y(0)=1
$$

Find $y(0.5)$ using $h=0.5$.
(b) Evaluate $\int_{0}^{1} \frac{d x}{1+\mathrm{x}^{2}}$ using
(i) Simpson's $1 / 3$ rule by taking $\mathrm{h}=1 / 4$,
(ii) Simpson's $3 / 8$ rule by taking $h=1 / 6$.

Hence compute an approximate value of $x$ in each case.

Assume following data in both cases :

$$
0.7854, \pi=3.14156
$$

5. (a) Solve the following system of equations

$$
\begin{aligned}
& 3 x_{1}+5 x_{2}=8 \\
& -x_{1}+2 x_{2}-x_{3}=0 \\
& 3 x_{1}-6 x_{2}+4 x_{3}=1
\end{aligned}
$$

using Cramer's rule.
(b) Find the inverse of the matrix

$$
A=\left[\begin{array}{rrr}
5 & 8 & 2 \\
0 & 2 & 1 \\
4 & 3 & -1
\end{array}\right]
$$

using the LU decomposition method.
6. (a) Write a C++ program to calculate the factorial of an integer.
(b) Write a C++ program which reads the values of $A, B$ and $C$ (sides of a triangle) and computes the semi-perimeter and area of the triangle, using the formula $S=(A+B+C) / 2$ Area $=\sqrt{S(S-A)(S-B)(S-C)}$.

Also print $A, B, C$ on one line and $S$ and area on the next line.
7. (a) Write a C++ program that reads three integers and prints the minimum and maximum amongst them.
(b) (i) What is dynamic binding ? Differentiate it from static binding.

(ii) Explain the differences between a
class and a structure.

(iii) What is a derived data type ? Give an
example. ..... 2
(iv) Describe the role of a pre-processor. ..... 1
8. (a) Write a $\mathrm{C}^{++}$program to calculate the volume of a square pyramid given by the formula

$$
\text { Volume, } V=\frac{1}{3} a^{2} h \text {, }
$$

where ' $a$ ' is the side of the square base, ' $h$ ' is the height of the pyramid.
(b) (i) What is the effect of execution of the following statements : ..... 2\# include < iosstream. h >\# include < stdio. h >
(ii) What is wrong with the following code :

$$
\begin{aligned}
& \text { Char } c=h^{\prime} \\
& \text { Char } p=\& c
\end{aligned}
$$

(iii) In the context of C++, explain what is
overloading. ..... 2
(iv) Write an equivalent statement for i++. ..... 1

