
 jfor /eko/kZ zlsk I neff hj. Whallt thegkt

STUDY PACKAGE

 Subject: Mathematics Topic: FUNCTIONSAvailable Online : www.MathsBySuhag.com

1. Theory
2. Short Revision
3. Exercise (Ex. $1+5=6$)
4. Assertion \& Reason
5. Que. from Compt. Exams
6. 39 Yrs. Que. from IIT-J EE(Advanced)
7. 15 Yrs. Que. from AIEEE (J EE Main)

Student's Name :

Class \qquad
Roll No. :

Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal盆: 0903903 7779, 98930 58881, WhatsApp 9009260559 www.TekoClasses.com www.MathsBySuhag.com

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

Functions

A. Definition : Function is a special case of relation, from a non empty set A to a non empty set B, that associates each member of A to a unique member of B. Symbolically, we write $f: A \rightarrow B$. We read it as " f is a function from A to $B "$.
Set ' A ' is called domain of f and set ' B ' is called co-domain of f.
For example, let $A \equiv\{-1,0,1\}$ and $B \equiv\{0,1,2\}$. Then $A \times B \equiv\{(-1,0),(-1,1),(-1,2),(0,0),(0,1),(0,2),(1,0)$, $(1,1),(1,2)\}$
Now, " $f: A \rightarrow B$ defined by $f(x)=x^{2}$ " is the function such that
$f \equiv\{(-1,1),(0,0),(1,1)\}$
f can also be show diagramatically by following picture.

Every function say $f: A \rightarrow B$ satisfies the following conditions:
(a)
$f \subseteq A \times B, \quad$ (b) $\quad \forall a \in A \Rightarrow(a, f(a)) \in f \quad$ and \quad (c) $\quad(a, b) \in f \&(a, c) \in f \Rightarrow b=c$

Illustration \# 1: (i) Which of the following correspondences can be called a function ?

(A)	$f(x)=x^{3}$	$;$	$\{-1,0,1\} \rightarrow\{0,1,2,3\}$
(B)	$f(x)= \pm \sqrt{x}$	$;$	$\{0,1,4\} \rightarrow\{-2,-1,0,1,2\}$
(C)	$f(x)=\sqrt{x}$	$;$	$\{0,1,4\} \rightarrow\{-2,-1,0,1,2\}$
(D)	$f(x)=-\sqrt{x}$	$;$	$\{0,1,4\} \rightarrow\{-2,-1,0,1,2\}$

While in case of (B), the given relation is not a function, as $f(1)= \pm 1$ and $f(4)= \pm 2$ i.e. element 1 as well as 4 in domain is related with two elements of codomain. Hence definition of function is not satisfied.
Which of the following pictorial diagrams represent the function
(A)

(C)

(B)

Solution: B \& D. In (A) one element of domain has no image, while in (C) one element of domain has two images in codomain Assignment: 1. Let $g(x)$ be a function defined on $[-1,1]$. If the area of the equilateral triangle with two of its vertices at $(0,0) \&(x, g(x))$ is $\sqrt{3} / 4$ sq. units, then the function $g(x)$ may be.
(A) $g(x)= \pm \sqrt{\left(1-x^{2}\right)}$
$\left(B^{*}\right) g(x)=\sqrt{\left(1-x^{2}\right)} \quad\left(C^{*}\right) g(x)=-\sqrt{\left(1-x^{2}\right)}$
unctions defined from $\{\alpha, \beta\}$ to $\{1,2\}$
(D) $g(x)=\sqrt{\left(1+x^{2}\right)}$

Represent all possible functions defined from $\{\alpha, \beta\}$ to $\{1,2\}$
Answer

(i) $\underset{\sim}{\mathrm{a}} \xrightarrow{\mathrm{a}}$
(iii)

(iv)

Let $f: A \rightarrow B$, then the set A is known as the domain of f \& the set B is known as co-domain of f. If a member ' a ' of A is associated to the member ' b ' of B, then ' b ' is called the f-image of 'a' and we write. $b=f(a)$. Further ' a ' is called a pre-image of ' b '. The set $\{f(a): \forall a \in A\}$ is called the range of f and is denoted by $f(A)$. Clearly $f(A) \subseteq B$.
Sometimes if only definition of $f(x)$ is given (domain and codomain are not mentioned), then domain is set of those values of ' x ' for which $f(x)$ is defined, while codomain is considered to be $(-\infty, \infty)$
A function whose domain and range both are sets of real numbers is called a real function. Conventionally the word "FUNCTION" is used only as the meaning of real function.

Illustration \# 2 : Find the domain of following functions:

$$
\begin{equation*}
f(x)=\sqrt{x^{2}-5} \quad \text { (ii) } \quad \sin ^{-1}(2 x-1) \tag{i}
\end{equation*}
$$

$\therefore \quad$ the domain of f is $(-\infty,-\sqrt{5}] \cup[\sqrt{5}, \infty)$
(ii) $\quad-1 \leq 2 x-1 \leq+1 \quad \therefore \quad$ domain is $x \in[0,1]$

Algebraic Operations on Functions:
If $f \& g$ are real valued functions of x with domain set A and B respectively, then both $f \& g$ are defined in $A \cap B$. Now we define $f+g, f-g$, ($f \cdot g$) \& (f / g) as follows:
(i) $(f \pm g)(x)=f(x) \pm g(x)$
(ii) $\quad(f . g)(x)=f(x) . g(x)$ domain in each case is $A \cap B$
$\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$ domain is $\{x \mid x \in A \cap B$ such that $g(x) \neq 0\}$.
Note : For domain of $\phi(x)=\{f(x)\}^{g(x)}$, conventionally, the conditions are $f(x)>0$ and $g(x)$ must be defined.
\quad For domain of $\phi(x)={ }^{f}(x) C_{g(x)}$ or $\phi(x)={ }^{f(x)} P_{g(x)}$ conditions of domain are $f(x) \geq g(x)$ and $f(x) \in N$ and $g(x) \in$ Illustration \# 3: Find the domain of following functions :

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
(i)
$f(x)=\sqrt{\sin x}-\sqrt{16-x^{2}}$
$f(x)=\frac{3}{\sqrt{4-x^{2}}} \log \left(x^{3}-x\right)$
(iii) $f(x)=x^{\cos ^{-1} x}$
$\sqrt{16-x^{2}}$ is real iff $16-x^{2} \geq 0 \Leftrightarrow-4 \leq x \leq 4$.
Thus the domain of the given function is $\{x: x \in[2 n \pi, 2 n \pi+\pi], n \in I\} \cap[-4,4]=[-4,-\pi] \cup[0, \pi]$.
(ii) Domain of $\sqrt{4-x^{2}}$ is [-2, 2] but $\sqrt{4-x^{2}}=0$ for $x= \pm 2 \quad \Rightarrow \quad x \in(-2,2)$ $\log \left(x^{3}-x\right)$ is defined for $x^{3}-x>0$ i.e. $x(x-1)(x+1)>0$.
$\dot{H} \quad$ domain of $\log \left(x^{3}-x\right)$ is $(-1,0) \cup(1, \infty)$.
Hence the domain of the given function is $\{(-1,0) \cup(1, \infty)\} \cap(-2,2)=$ $(-1,0) \cup(1,2)$.
(iii) $\quad x>0$ and $-1 \leq x \leq 1, \therefore \quad \therefore \quad$ domain is $(0,1]$
3. Find the domain of following functions.
(i)

$$
\begin{equation*}
f(x)=\frac{1}{\log (2-x)}+\sqrt{x+1} \tag{ii}
\end{equation*}
$$

Ans. (i) $[-1,1) \cup(1,2)$
(ii) $[-1,1]$

$$
f(x)=\sqrt{1-x}-\sin ^{-1} \frac{2 x-1}{3}
$$

Methods of determining range

(i) Representing x in terms of y
Definition of the function is usually represented as y (i.e. $f(x)$ which is dependent variable) in terms of an expression of x (which is independent variable). To find range rewrite given definition so as to represent x in terms of an 0 expression of y and thus obtain range (possible values of y).
If $y=f(x) \Leftrightarrow \quad x=g(y)$, then domain of $g(y)$ represents possible values of y, i.e. range of $f(x)$.
Find the range of $f(x)=\frac{x^{2}+x+1}{x^{2}+x-1}$
$y=\frac{x^{2}+x+1}{x^{2}+x-1} \Rightarrow x^{2}+y x-y=x^{2}+x+1$
$\Rightarrow \quad(y-1) x^{2}+(y-1) x-y-1=0$
$y=1$, then the above equation reduces to $-2=0$. Which is not true
Further if $y \neq 1$, then $(y-1) x^{2}+(y-1) x-y-1=0$ is a quadratic and has real roots if
$(y-1)^{2}-4(y-1)(-y-1) \geq 0 \quad$ i.e. if $y \leq-3 / 5$ or $y \geq 1$ but $y \neq 1$
Thus the range is $(-\infty,-3 / 5],(1, \infty)$
(ii) Graphical Method: Values covered on y-axis by the graph of function is range

(iii) Using Monotonocity/Maxima-Minima

Using Monotonocity/Maxima-Minima
(a) Continuous function: If $y=f(x)$ is continuous in its domain then range of $f(x)$ is $y \in[\min f(x)$, max. $f(x)]$
(b) Sectionally continuous function: In case of sectionally continuous functions, range will be union of [min $f(x)$, max. $f(x)]$ over all those intervals where $f(x)$ is continuous, as shown by following example.
Let graph of function $y=f(x)$ is

Then range of above sectionally continuous function is $\left[\mathrm{y}_{2}, \mathrm{y}_{3}\right] \cup\left(\mathrm{y}_{4}, \mathrm{y}_{5}\right] \cup\left(\mathrm{y}_{6}, \mathrm{y}_{7}\right]$

then $t \in\left[-\frac{5}{4}, \infty\right) \quad$ but $y=\sec ^{-1}(t) \quad \Rightarrow \quad t \in\left[-\frac{5}{4},-1\right] \cup[1, \infty)$

nt:
Find domain and range of following functions.
(i) $y=x^{3}$
from graph range is $y \in\left[0, \frac{\pi}{2}\right) \cup\left[\sec ^{-1}\left(-\frac{5}{4}\right), \pi\right]$

Answer
(i) domain R ; range R
(ii) domain R; range $\left[\frac{3-\sqrt{5}}{2}, \frac{3+\sqrt{5}}{2}\right]$
$y=\frac{1}{\sqrt{x^{2}-x}}$
Answer domain R-[0, 1] ; range ($0, \infty$)
(iv) $y=\cot ^{-1}\left(2 x-x^{2}\right)$

$$
y=\cot ^{-1}\left(2 x-x^{2}\right)
$$

Answer \quad domain R ; range $\left[\frac{\pi}{4}, \pi\right)$
(v)
geol
$\frac{3}{4}$ Answer domain $x \in\left[\frac{-2-\sqrt{5}}{4}, \frac{-2+\sqrt{5}}{4}\right] ;$ range $\left[\ln \frac{\pi}{6}, \ln \frac{\pi}{2}\right]$

C. Classification of Functions :

Functions can be classified as:
(i) One - One Function (Injective Mapping) and Many - One Function:

One-One Function :
A function $f: A \rightarrow B$ is said to be a one-one function or infective mapping if different elements of A have different f images in B. Thus for $x_{1}, x_{2} \in A \& f\left(x_{1}\right), f\left(x_{2}\right) \in B, f\left(x_{1}\right)=f\left(x_{2}\right) \Leftrightarrow x_{1}=x_{2}$ or $x_{1} \neq x_{2} \Leftrightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)$.

Diagrammatically an infective mapping can be shown as

Many -One function :

A function $f: A \rightarrow B$ is said to be a many one function if two or more elements of A have the same f image in B.
Thus $f: A \rightarrow B$ is many one of there exists atleast two elements $x_{1}, x_{2} \in A$, such that $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)$ but $\mathrm{X}_{1} \neq \mathrm{x}_{2}$.

Diagrammatically a many one mapping can be shown as

Note : If a function is one-one, it cannot be many-one and vice versa.
Methods of determining whether function is ONE-ONE or MANY-ONE :
(a) If $x_{1}, x_{2} \in A \& f\left(x_{1}\right), f\left(x_{2}\right) \in B, f\left(x_{1}\right)=f\left(x_{2}\right) \Leftrightarrow x_{1}=x_{2}$ or $x_{1} \neq x_{2} \Leftrightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)$, then function is ONE-ONE otherwise MANY-ONE. (b) If there exists a straight line parallel to x-axis, which cuts the graph of the function atleast at two points, then the function is MANY-ONE, otherwise ONE-ONE. (c) If either $f^{\prime}(x)$ $\geq 0, \forall x \in$ complete domain or $f^{\prime}(x) \leq 0 \forall x \in$ complete domain, where equality can hold at discrete point (s) only, then function is ONE-ONE, otherwise MANY-ONE.
(ii) Onto function (Surjective mapping) and Into function : Onto function:

If the function $f: A \rightarrow B$ is such that each element in B (co-domain) must have atleast one pre-image in A, then we say that f is a function of A 'onto' B. Thus $f: A \rightarrow B$ is surjective of $\forall b \in B$, there exists some $a \in A$ such that $f(a)=b$.

Diagrammatically surjective mapping can be shown as

OR

Method of determining whether function is ONTO or INTO:

Find the range of given function. If range $\equiv \operatorname{co}$-domain, then $f(x)$ is onto, otherwise into

Into function :

If $f: A \rightarrow B$ is such that there exists atleast one element in co-domain which is not the image of any element in domain, then $f(x)$ is into.
Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don't.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
Diagrammatically into function can be shown as

Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don't.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
(v) \quad Logarithmic Function $: ~$
$f(x)=\log _{2} \mathrm{x}$ is called logarithmic function where $\mathrm{a}>0$ and $\mathrm{a} \neq 1$ and x
(v) Logarithmic Function: $f(x)=\log _{\mathrm{a}} \mathrm{x}$ is called logarithmic function where $\mathrm{a}>0$ and $\mathrm{a} \neq 1$ and $\mathrm{x}>0$. Its graph can be as follows

(vi) Absolute Value Function / Modulus Function :

The symbol of modulus function is $f(x)=|x|$ and is defined as: $y=|x|=\left\{\begin{array}{ccc}x & \text { if } & x \geq 0 \\ -x & \text { if } & x<0\end{array}\right.$.

(vi) Signum Function :

A function $y=|x|(x)=\operatorname{sgn}(x)$ is defined as follows:
$f(x)=\operatorname{sgn}(x)=\left\{\begin{array}{cll}1 & \text { for } & x>0 \\ 0 & \text { for } & x=0 \\ -1 & \text { for } & x<0\end{array}\right.$
It is also written as $\operatorname{sgn} x= \begin{cases}\frac{|x|}{x ;} & x \neq 0 \\ 0 ; & x=0\end{cases}$
$\left\{\begin{array}{l}Y=1 \text { if } x>0\end{array}\right.$
$=\left\{\begin{array}{cc}\frac{|f(x)|}{f(x)} ; & f(x) \neq 0 \\ 0 ; & f(x)=0\end{array}\right.$

The function $y=f(x)=[x]$ is called the greatest integer function where $[x]$ equals to the greatest integer less than or equal to x. For example:
$\begin{array}{lll}\text { for }-1 \leq x<0 ; \\ \text { for } 1 \leq x<2 ;\end{array} \quad[x]=-1 ; \quad$ for $0 \leq x<1 \quad ; \quad[x]=0 \quad$ for $2 \leq x<3 \quad ; \quad[x]=2 \quad$ and so on.
Alternate Definition :
The greatest integer occur on real number line while moving L.H.S. of x (starting from x) is $[x]$

Properties of greatest integer function :
$\begin{array}{ll}\text { (a) } x-1<[x] \leq x & \text { (b) }[x \pm m]=[x] \pm m \text { iff } m \text { is an integer. }\end{array}$
(vii) Greatest Integer Function or Step Up Function :
\square

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

(ix) Identity function: The function $f: A \rightarrow A$ defined by, $f(x)=x \forall x \in A$ is called the identity function on A and is denoted by I_{A}. It is easy to observe that identity function is a bijection.
(x) Constant function: A function $f: A \rightarrow B$ is said to be a constant function, if every element of A has the Illustration \# 8 (i) image in B. Thus $f: A \rightarrow B ; f(x)=c, \forall x \in A, c \in B$ is a constant function.
Solution $\begin{aligned} & 4\{x\}=x+[x] \\ & \text { As } x=[x]+\{x\}\end{aligned}$
$\therefore \quad$ Given equation $\Rightarrow \quad 4\{x\}=[x]+\{x\}+[x] \quad \Rightarrow \quad\{x\}=\frac{2[x]}{3}$
As $[x]$ is always an integer and $\{x\} \in[0,1)$, possible values are
$\begin{aligned} & x \\ & 0\end{aligned}=[x]+\{x\}$

1
$\frac{2}{3}$
$\frac{5}{3}$
$\therefore \quad$ There are two solution of given equation $\mathrm{x}=0$ and $\mathrm{x}=\frac{5}{3}$
(ii) Draw graph of $f(x)=\operatorname{sgn}(\ell \ln x)$
(i)

(ii) If $f(-x)=-f(x)$ for all x in the domain of ' f ' then f is said to be an odd function.

If $f(x)+f(-x)=0 \Rightarrow f(x)$ is odd. e.g. $f(x)=\sin x ; g(x)=x^{3}+x$.
Note : A function may neither be odd nor even. (e.g. $f(x)=e^{x}, \cos ^{-1} x$)
If an odd function is defined at $x=0$, then $f(0)=0$

Properties of Even/Odd Function

(a) Every even function is symmetric about the y-axis \& every odd function is symmetric about the origin.

For example graph of $y=x^{2}$ is symmetric about y-axis, while graph of $y=x^{3}$ is symmetric about origin

(b) All functions (whose domain is symmetrical about origin) can be expressed as the sum of an even \& an \vdash odd function, as follows

(c) The only function which is defined on the entire number line and is even \& odd at the same time is $f(x)=0$.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
(d) If f and g both are even or both are odd then the function $f . g$ will be even but if any one of them is odd then $f . g$ will be odd. (e) If $f(x)$ is even then $f^{\prime}(x)$ is odd but converse need not be true.

Illustration \# 9: Show that $\log \left(x+\sqrt{x^{2}+1}\right)$ is an odd function.

$$
\begin{aligned}
& \text { Let } f(x)=\log \left(x+\sqrt{x^{2}+1}\right) . \quad \text { Then } f(-x)=\log \left(-x+\sqrt{(-x)^{2}+1}\right) \\
& =\log \frac{\left(\sqrt{x^{2}+1}-x\right)\left(\sqrt{x^{2}+1}+x\right)}{\sqrt{x^{2}+1}+x}=\log \frac{1}{\sqrt{x^{2}+1+x}}-\log \left(x+\sqrt{x^{2}+1}\right)=-f(x)
\end{aligned}
$$

Hence $f(x)$ is an odd function.
Show that $a^{x}+a^{-x}$ is an even function.
Solution Let $f(x)=a^{x}+a^{-x} \quad$ Then $f(-x)=a^{-x}+a^{-(-x)}=a^{-x}+a^{x}=f(x)$.
Hence $f(x)$ is an even function
Illustration \# 11 Show that $\cos ^{-1} x$ is neither odd nor even.
Solution Let $f(x)=\cos ^{-1} x$. Then $f(-x)=\cos ^{-1}(-x)=\pi-\cos ^{-1} x$ which is neither equal to $f(x)$ nor equal to $f(-x)$. Hence $\cos ^{-1} \mathrm{x}$ is neither odd nor even
Assignment: 8. Determine whether following functions are even or odd?
(i) $\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}$

Answer Odd
(ii) $\quad \log \left(\sqrt{x^{2}+1}-x\right)$

Answer Odd
Answer Even
Answer Odd

$$
x \log \left(x+\sqrt{x^{2}+1}\right)
$$

(iv) $\sin ^{-1} 2 x \sqrt{1-x^{2}}$
Answer Odd

Let the defincition of the function $f(x)$ is given only for $x \geq 0$. Even extension of this function implies to define the function for $x<0$ assuming it to be even. In order to get even extension replace x by $-x$ in the given defincition Similarly, odd extension implies to define the function for $x<0$ assuming it to be odd. In order to get odd extension, multiply the definition of even extension by -1
Illustration \#12, What is even and odd extension of $f(x)=x^{3}-6 x^{2}+5 x-11 ; x>0$
Even extension
$f(x)=-x^{3}-6 x^{2}+5 x-11 \quad ; x<0$
Odd extension
$f(x)=x^{3}+6 x^{2}+5 x+11$
; $x<0$
F. Periodic Function : A function $f(x)$ is called periodic with a period T if there exists a real number $T>$ 0 such that for each x in the domain of f the numbers $x-T$ and $x+T$ are also in the domain of f and $f(x)=f(x+$ T) for all x in the domain of 'f'. Domain of a periodic function is always unbounded. Graph of a periodic function with period T is repeated after every interval of 'T'
e.g. The function $\sin x \& \cos x$ both are periodic over $2 \pi \& \tan x$ is periodic over π.

The least positive period is called the principal or fundamental period of f or simply the period of f.
$\rightarrow \quad f(T)=f(0)=f(-T)$, where ' T ' is the period.
Every constant function is always periodic, with no צ
fundamental period.

Properties of Periodic Function

(a) If $f(x)$ has a period T, then $\frac{1}{f(x)}$ and $\sqrt{f(x)}$ also have a period T.
(b) If $f(x)$ has a period T then $f(a x+b)$ has a period $\frac{T}{|a|}$.

Illustration \# 13

 If $f(x)$ has a period $T_{1} \& g(x)$ also has a period T_{2} then period of $f(x) \pm g(x)$of T_{1} \& T_{2} provided their L.C.M. exists. However that L.C.M. (if exists)
If L.C.M. does not exists $f(x) \pm g(x)$ or $f(x) \cdot g(x)$ or $\frac{f(x)}{g(x)}$ is aperiodic. e.g. $|\sin x|$ has the period $\pi,|\cos x|$ also has the period π
$\therefore \quad|\sin x|+|\cos x|$ also has a period π. But the fundamental period of $|\sin x|+|\cos x|$ is $\frac{\pi}{2}$.
(c) If $f(x)$ has a period $T_{1} \& g(x)$ also has a period T_{2} then period of $f(x) \pm g(x)$ or $f(x) \cdot g(x)$ or $\frac{f(x)}{g(x)}$ is L.C.M of $T_{1} \& T_{2}$ provided their L.C.M. exists. However that L.C.M. (if exists) need not to be fundamental period. $|\sin x|+|\cos x|$ also has a period π
Find period of following functions

$$
\begin{equation*}
f(x)=\sin \frac{x}{2}+\cos \frac{x}{3} \tag{i}
\end{equation*}
$$

(ii) $f(x)=\{x\}+\sin x$
(iii) $f(x)=\cos x \cdot \cos 3 x$

$$
\begin{equation*}
f(x)=\sin \frac{3 x}{2}-\cos \frac{x}{3}-\tan \frac{2 x}{3} \tag{iv}
\end{equation*}
$$

(ii) Period of $\sin x=2 p$

Period of $\{x\}=1$
it is aperiodic

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
(iii) $f(x)=\cos x \cdot \cos 3 x$
period of $f(x)$ is L.C.M. of $\left(2 \pi, \frac{2 \pi}{3}\right)=2 \pi$
but 2π may or may not be fundamental periodic, but fundamental period $=\frac{2 \pi}{n}$, where $n \in N$. Hence crosschecking for $\mathrm{n}=1,2,3, \ldots$ we find π to be fundamental period $\mathrm{f}(\pi+\mathrm{x})=(-\cos \mathrm{x})(-\cos 3 \mathrm{x})=\mathrm{f}(\mathrm{x})$
(iv) Period of $\mathrm{f}(\mathrm{x})$ is L.C.M. of $\frac{2 \pi}{3 / 2}, \frac{2 \pi}{1 / 3}, \frac{\pi}{3 / 2}$

$$
=\text { L.C.M. of } \frac{4 \pi}{3}, 6 \pi, \frac{2 \pi}{3} \quad=12 \pi
$$

L.C.M. of $\left(\frac{\mathbf{a}}{\mathbf{b}}, \frac{\mathbf{p}}{\mathbf{q}}, \frac{\ell}{\mathbf{m}}\right)=\frac{\text { L.C.M. }(\mathbf{a}, \mathbf{p}, \ell .}{\text { H.C.E. }-\mathbf{q} \mathbf{~ m})}$

(i)

9 . Find the period of following function.
(ii) $\quad f(x)=\sqrt{3} \cos x-\sin \frac{x}{3}$

Answer $\quad 2 \pi$
Answer 6π
(iii) $\sin \frac{2 x}{5}-\cos \frac{3 x}{7}$

Answer $\quad 70 \pi$
(iv) $f(x)=\sin ^{2} x+\cos ^{4} x$
G. Composite Function :

Answer π
Let $f: X \rightarrow Y_{1}$ and $g: Y_{2} \rightarrow Z$ be two functions and the set $D=\left\{x \in X: f(x) \in Y_{2}\right\}$. If $D \not \equiv \phi$, then the function h defined on D^{-1}
D by $h(x)=g\{f(x)\}$ is called composite function of g and f and is denoted by gof. It is also called function of a function
Domain of gof is D which is a subset of X (the domain of f). Range of gof is a subset of the range of g. If $D=$ X, then $f(x) \subseteq Y$.
Properties of Composite Functions:
(a) In general gof \neq fog (i.e. not commutative)
(b) The composite of functions are associative i.e. if three functions f, g, h are such that fo (goh) \& (fog) oh are defined, then fo (goh) $=$ (fog) oh.
(c) If f and g both are one-one, then gof and fog would also be one-one.
(d) If f and g both are onto, then gof or fog may or may not be onto.
(e) The composite of two bijections is a bijection iff f \& g are two bijections such that gof is defined, then gof is also a bijection only when co-domain of f is equal to the domain of g.
(f) If g is a function such that gof is defined on the domain of f and f is periodic with T, then gof is also periodic with T as one of its periods. Further if
g is one-one, then T is the period of gof g is also periodic with T^{\prime} as the period and the range of f is a sub-set of $\left[0, T^{\prime}\right]$, then T is the period of gof
Illustration \#14 Describe fog and gof wherever is possible for the following functions

Domain of g is R, range of g is $[1, \infty)$.
Since range of f is a subset of domain of g,
$\therefore \quad$ domain of gof is $[-3, \infty)$ \{equal to the domain of f \}
gof $(x)=g\{f(x)\}=g(\sqrt{x+3})=1+(x+3)=x+4$. Range of gof is $[1, \infty)$.
Further since range of g is a subset of domain of f,
$\therefore \quad$ domain of fog is $R \quad$ \{equal to the domain of g \}
$f \circ g(x)=f\{g(x)\}=f\left(1+x^{2}\right)=\sqrt{x^{2}+4}$ Range of $f \circ g$ is $[2, \infty)$.
(ii) $\quad f(x)=\sqrt{x}, g(x)=x^{2}-1$.

Domain of f is $[0, \infty)$, range of f is $[0, \infty)$.
Domain of g is R, range of g is $[-1, \infty)$.
Since range of f is a subset of the domain of g,
domain of gof is $[0, \infty)$ and $g\{f(x)\}=g(\nu x)=x-1$. Range of gof is $[-1, \infty)$
Further since range of g is not a subset of the domain of f
i.e. $[-1, \infty) \notin[0, \infty)$
fog is not defined on whole of the domain of g .
Domain of fog is $\{x \in R$, the domain of $g: g(x) \in[0, \infty)$, the domain of $f\}$.
Thus the domain of fog is $D=\{x \in R: 0 \leq g(x)<\infty\}$
i.e. $D=\left\{x \in R: 0 \leq x^{2}-1\right\}=\{x \in R: x \leq-1$ or $x \geq 1\}=(-\infty,-1] \cup[1, \infty)$
$f \circ g(x)=f\{g(x)\}=f\left(x^{2}-1\right)=\sqrt{x^{2}-1}$ Its range is $[0, \infty)$.
(iii) Let $f(x)=e^{x} ; R^{+} \rightarrow R$ and $g(x)=\sin ^{-1} x ;[-1,1] \rightarrow\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Find domain and range of $f(\mathrm{~g}(\mathrm{x})$

Domain of $f(x):(0, \infty) \quad$ Range of $g(x):\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
values in range of $g(x)$ which are accepted by $f(x)$ are $\left(0, \frac{\pi}{2}\right]$
$\Rightarrow \quad 0<g(x) \leq \frac{\pi}{2} \quad 0<\sin ^{-1} x \leq \frac{\pi}{2} \quad 0<x \leq 1$
Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don't.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com Hence domain of $f o g(x)$ is $x \in\{0,1]$

Example of composite function of non-uniformly defined functions:
then find fog (x) and draw rough sketch of $\operatorname{fog}(x)$.
$\begin{aligned} \text { Solution } & f(x)=||x-3|-2| \quad 0 \leq x \leq 4 \\ = & \begin{cases}|x-1| & 0 \leq x<3 \\ |x-5| & 3 \leq x \leq 4\end{cases} \end{aligned}$

$$
= \begin{cases}1-x & 0 \leq x<1 \\ x-1 & 1 \leq x<3 \\ 5-x & 3 \leq x \leq 4\end{cases}
$$

$g(x)=4-|2-x| \quad-1 \leq x \leq 3$
$=\quad\left\{\begin{array}{lc}4-(2-x) & -1 \leq x<2 \\ 4-(x-2) & 2 \leq x \leq 3\end{array}\right.$
$= \begin{cases}2+x & -1 \leq x<2 \\ 6-x & 2 \leq x \leq 3\end{cases}$
$\therefore \quad f \circ g(x)= \begin{cases}1-g(x) & 0 \leq g(x)<1 \\ g(x)-1 & 1 \leq g(x)<3 \\ 5-g(x) & 3 \leq g(x) \leq 4\end{cases}$

$\left\{\begin{array}{cccc}1-(2+x) & 0 \leq 2+x<1 & \text { and } & -1 \leq x<2 \\ 2+x-1 & 1 \leq 2+x<3 & \text { and } & -1 \leq x<2 \\ 5-(2+x) & 3 \leq 2+x \leq 4 & \text { and } & -1 \leq x<2 \\ 1-6+x & 0 \leq 6-x<1 & \text { and } & 2 \leq x \leq 3 \\ 6-x-1 & 1 \leq 6-x \leq 3 & \text { and } & 2 \leq x \leq 3 \\ 5-6+x & 3 \leq 6-x \leq 4 & \text { and } & 2 \leq x \leq 3\end{array}\right.$

$\left\{\begin{array}{cc}-1-x & -2 \leq x<-1\end{array}\right.$ and $-1 \leq x<2$
$=\left\{\begin{array}{rrrr}5-x & 3<x \leq 5 & \text { and } & 2 \leq x \leq 3 \\ x-1 & 2 \leq x \leq 3 & \text { and } & 2 \leq x \leq 3 \\ 1+x & -1 \leq x<1 & & \\ 3-x & 1 \leq x<2 & & \\ x-1 & 2 \leq x \leq 3 & & \end{array}\right.$

Alternate method for finding fog

$$
g(x)= \begin{cases}2+x & -1 \leq x<2 \\ 6-x & 2 \leq x \leq 3\end{cases}
$$

$=$
$\left\{\begin{array}{l}3 \\ x \\ 5 \\ x \\ 1 \\ 3 \\ x\end{array}\right.$
$1 \leq x \leq 2 \quad$ and $-1 \leq x<2$
$\begin{array}{llll}-5 & 5<x \leq 6 & \text { and } & 2 \leq x \leq 3 \\ -x & 3<x \leq 5 & \text { and } & 2 \leq x \leq 3\end{array}$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
$\therefore \quad f \circ g(x)= \begin{cases}1-g(x) & 0 \leq g(x)<1 \\ g(x)-1 & 1 \leq g(x)<3 \\ 5-g(x) & 3 \leq g(x) \leq 4\end{cases}$
$=\left\{\begin{array}{lc}1-g(x) & \text { for no value } \\ g(x)-1 & -1 \leq x<1 \\ 5-g(x) & 1 \leq x \leq 3\end{array} \quad\left\{\begin{array}{cc}2+x-1 & -1 \leq x<1 \\ 5-(2+x) & 1 \leq x<2 \\ 5-(6-x) & 2 \leq x \leq 3\end{array}\right.\right.$

$$
=\left\{\begin{array}{cc}
x+1 & -1 \leq x<1 \\
3-x & 1 \leq x<2 \\
x-1 & 2 \leq x \leq 3
\end{array}\right.
$$

Assignment: 10. Define $f \circ g(x)$ and $g \circ f(x)$. Also their Domain \& Range.
(i) $f(x)=[x], g(x)=\sin x$
(ii) $f(x)=\tan x, x \in(-\pi / 2, \pi / 2) ; g(x)=\sqrt{1-x^{2}}$

Answer (i) \quad gof $=\sin [x]$
range $\{\sin a: a \in I\}$ domain: R
range : $\{-1,0,1\}$
Answer
(ii) gof $=\sqrt{1-\tan ^{2} x}$
range : $[0,1]$
domain: $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$
, $[0,1]$
fog $=\tan \sqrt{1-x^{2}} \quad$ domain: $[-1,1] \quad$ range $[0, \tan 1]$
11. Let $f(x)=e^{x}: R^{+} \rightarrow R$ and $g(x)=x^{2}-x: R \rightarrow R$. Find domain and range of fog $(x) \& g o f(x)$
Answer
fog (x)
Domain : $(-\infty, 0) \cup(1, \infty)$
gof $f(x)$
Range : $[1, \infty$)
Domain: ($0, \infty$)
Range: $\left[-\frac{1}{4}, \infty\right)$
H. Inverse of a Function : Let $f: A \rightarrow B$ be a function. Then f is invertible iff there is a function $g: B$ \rightarrow A such that go f is an identity function on A and fog is an identity function on B. Then g is called inverse of f and is denoted by f^{-1}.
For a function to be invertible it must be bijective
The inverse of a bijection is unique. Inverse of an even function is not defined.
Properties of Inverse Function :
(a) The graphs of f \& g are the mirror images of each other in the line $y=x$. For example $f(x)=a^{x}$ and $g(x)$ $=\log _{\mathrm{a}} \mathrm{x}$ are inverse of each other, and their graphs are mirror images of each other on the line $\mathrm{y}=\mathrm{x}$ as

(b) Normatly points of intersection of f and f^{-1} lie on the straight line $y=x$. However it must be noted that $f(x) \sim$ and $f(x)$ may intersect otherwise also.

$$
\text { (c) In general fog }(x) \text { and } g o f(x) \text { are not equal but if they are equal then in majority of cases either } f \text { and } g \text { are } c
$$

inverse of each other or atleast one of f and g is an identity function.
(d) If $f \& g$ are two bijections $f: A \rightarrow B, g: B \rightarrow C$ then the inverse of gof exists and $(\mathrm{gof})^{-1}=\mathrm{f}^{-1} \mathrm{Og}^{-1}$.
(e) If $f(x)$ and g are inverse function of each other then $f^{\prime}(g(x))=\frac{1}{g^{\prime}(x)}$
$\therefore \quad f(x)$ is increasing in $\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ and is decreasing in each of the intervals
$\left(-1, \frac{-1}{\sqrt{2}}\right)$ and $\left(\frac{-1}{\sqrt{2}}, 1\right)$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
(iii) $\quad f(x)$ is not one-one, so is not invertible.
(iii) $f^{(x)}(x) f^{\prime-1}(x)^{x^{2}}+2 x ; x \geq-1$. Draw graph of $f^{-1}(x)$ also find the number of solutions of the equation, $f(x)=f^{-1}(x)$

Suhag.com
Solution
$(x)=f^{-1}(x)$ is equilavent to solving $y=f(x)$ and $y=x$
$\Rightarrow \quad x^{2}+2 x=x \quad \Rightarrow \quad x(x+1)=0 \quad \Rightarrow \quad x=0,-1$
$\overrightarrow{H e n c e}$ two solution for $f(\vec{x})=f^{-1}(x)$
(iv) If $y=f(x)=x^{2}-3 x+1, x \geq 2$. Find the value of $g^{\prime}(1)$ where g is inverse of f

Solution	$y=1$		
But	$x \geq 2$	$\quad \Rightarrow \quad$	$x^{2}-3 x+1=1$
:---			
$x=3$	$\quad \Rightarrow \quad x(x-3)=0 \quad \Rightarrow \quad x=0,3$		

$\begin{aligned} & x \geq 2 \\ & g(f(x))\end{aligned}=x$
$\therefore \quad x=3$
Now $\underset{\text { Differentiating both }}{g(f)}=\underset{x}{=}$ sides w.r.t. x
$\Rightarrow \quad g^{\prime}(f(x)) \cdot f^{\prime}(x)=1 \quad \Rightarrow \quad g^{\prime}(f(x))=\frac{1}{f^{\prime}(x)}$
$\Rightarrow \quad g^{\prime}(f(3))=\frac{1}{f^{\prime}(3)} \quad \Rightarrow \quad g^{\prime}(1)==\frac{1}{6-3}$
Alternate Method
$y=x^{2}-3 x+1$
$x^{2}-3 x+1-y=0$

$\begin{aligned} & =\frac{3 \pm \sqrt{5+4 y}}{2} \\ x & \geq 2 \\ x & =\frac{3+\sqrt{5+4 y}}{2}\end{aligned}$
$g(x)=\frac{3+\sqrt{5+4 y}}{2}$
$g^{\prime}(x)=0+\frac{1}{x \sqrt{5+4 x}} x$

$$
g^{\prime}(1)=\frac{1}{\sqrt{5+4}}=\frac{1}{\sqrt{9}}=\frac{1}{3}
$$

Assignment: 12. Determine $f^{-1}(x)$, if given function is invertible
(i)
(ii) $\quad f:\left[\frac{\pi}{6}, \frac{7 \pi}{6}\right] \rightarrow[-1,1]$ defined by $f(x)=\sin \left(x+\frac{\pi}{3}\right)$
Answer
(i) $-1+\sqrt{-x-2}$
(ii) $\frac{2 \pi}{3}-\sin ^{-1} x$

Equal or Identical Function :

Two functions $f \& g$ are said to be identical (or equal) iff:
(i) The domain of $f \equiv$ the domain of g.
(ii) The range of $f \equiv$ the range of g and
(iii) $f(x)=g(x)$, for every x belonging to their common domain. e.g. $f(x)=\frac{1}{x} \& g(x)=\frac{x}{x^{2}}$ are identical functions.

But $f(x)=x$ and $g(x)=\frac{x^{2}}{x}$ are not identical functions.
Illustration \#17 Examine whether following pair of functions are identical or not
(i) $f(x)=\frac{x^{2}}{x} \& g(x)=x \quad$ Answer \quad No, as domain of $f(x)$ is $R-\{0\}$ while domain of $g(x)$ is R
(ii) $\quad f(x)=\sin ^{2} x+\cos ^{2} x \& g(x)=\sec ^{2} x-\tan ^{2} x$

Answer No, as domain are not same. Domain of $f(x)$ is R while that of $g(x)$ is $R-\left\{(2 n+1) \frac{\pi}{2} ; n \in l\right\}$
Assignment: 13. Examine whether following pair of functions are identical or not
$f(x)=\operatorname{sgn}(x) \& g(x)= \begin{cases}\frac{x}{|x|} & x \neq 0\end{cases}$
Successful People Replace the words $\overline{\mathrm{Y}} \mathrm{\overline{ke}}, 0, \mathrm{w}$ wish", "try" \& "should" with "I Will". Ineffective People don't.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
(ii)
$f(x)=\sin ^{-1} x+\cos ^{-1} x \& g(x)=\frac{\pi}{2}$
Answer
(i) Yes
(ii) No
J. General : If x, y are independent variables, then:
(i) $\quad f(x y)=f(x)+f(y) \Rightarrow f(x)=k \ln x$ or $f(x)=0$. (ii) $\quad f(x y)=f(x) . f(y) \Rightarrow f(x)=x^{n}, n \in R$
(iii) $\quad \quad(x+y)=f(x) . f(y) \Rightarrow f(x)=a^{k x}$. (iv) $\quad f(x+y)=f(x)+f(y) \Rightarrow f(x)=k x$, where k is a constant.
(v) $\quad f(x) \cdot f\left(\frac{1}{x}\right)=f(x)+f\left(\frac{1}{x}\right) \quad \Rightarrow \quad f(x)=1 \pm x^{n}$ where $n \in N$

Illustration \# 18 If $f(x)$ is a polynomial function satisfying $f(x) . f\left(\frac{1}{x}\right)=f(x)+f\left(\frac{1}{x}\right) \forall x \in R-\{0\}$ and
$f(2)=9$, then find $f(3)$
$f(x)=1 \pm x^{n}$

$$
\text { As } f(2)=9 \quad \therefore \quad f(x)=1+x^{3}
$$

Solution $\begin{gathered}f(x)=1 \pm x^{n} \\ \text { Hence } f(3)=1+3^{3}=28\end{gathered}{ }^{2}=2$
Assignment: 14. If $f(x)$ is a polynomial function satisfying $f(x) \cdot f\left(\frac{1}{x}\right)=f(x)+f\left(\frac{1}{x}\right) \forall x \in R-\{0\}$ and $f(3)=-8$, then find $f(4)$

Answer -15
15. If $f(x+y)=f(x) . f(y)$ for all real x, y and $f(0) \neq 0$ then prove that the function, $g(x)=\frac{f(x)}{1+f^{2}(x)}$ is an even function

For 39 Years Que. from IIT-J EE(Advanced) \& 15 Years Que, from AIEEE (J EE Main) we distributed a book in class room

