GATE SOLVED PAPER - CS

THEORY OF COMPUTATION

	YEAR 2001	
Q. 1	Consider the following two statements : $S1 : \{0^{2n} n \ge 1\}$ is a regular language $S2 : \{0^m 1^n 0^{m+n} m \ge 1 \text{ and } n \ge 1\}$ is a rewrite Which of the following statements is ince (A) Only <i>S</i> 1 is correct (C) Both <i>S</i> 1 and <i>S</i> 2 are correct	
Q. 2	Which of the following statements true (A) If a language is context free it can be push-down automaton.(B) The union of two context free langu (C) The intersection of two context free (D) The complement of a context free langu (D) The complement (D) The compl	be always be accepted by a deterministic age is context free. language is context free
Q. 3	Given an arbitary non-deterministic finite maximum number of states in an equivation $(A) N^2$ (C) $2N$	te automaton (<i>NFA</i>) with N states, the lent minimized <i>DFA</i> is at least. (B) 2^N (D) $N!$
Q. 4		ing all strings which have number of <i>a</i>'se by 8. What is the minimum number of(B) 14(D) 48
Q. 5	Consider the following languages : $L1 = \{ww w \in \{a, b\} *\}$ $L2 = \{ww^R w \in \{a, b\}^* w^R$ is the reverse $L3 = \{0^{2i} i \text{ is an integer}\}$ $L4 = \{0^{i^2} i \text{ is an integer}\}$ Which of the languages are regular ? (A) Only <i>L</i> 1 and <i>L</i> 2 (C) Only <i>L</i> 3 and <i>L</i> 4	(B) Only <i>L</i> 2, <i>L</i> 3 and <i>L</i> 4
Q. 6	(C) Only <i>L</i> 3 and <i>L</i> 4 Consider the following problem <i>x</i> . Given a Turing machine <i>M</i> over the inp And a word $w \in \Sigma^*$ does the computation Which of the following statements about (A) <i>x</i> is decidable (B) <i>x</i> is undecidable but partially decide	ion of M on w visit the state q ? t x is correct ?

- (C) x is undecidable and not even partially decidable
- (D) x is not a decision problem

YEAR 2002 The smallest finite automaton which accepts the language $\{x \mid \text{length of } x \text{ is }$ Q. 7 divisible by 3} has (A) 2 states (B) 3 states (C) 4 states (D) 5 states Which of the following is true ? 0.8 (A) The complement of a recursive language is recursive. (B) The complement of a recursively enumerable language is recursively enumerable. (C) The complement of a recursive language is either recursive or recursively enumerable. (D) The complement of a context-free language is context-free. The C language is : Q. 9 (A) A context free language (B) A context sensitive language (C) A regular language (D) Parsable fully only by a Turing machine The language accepted by a Pushdown Automaton in which the stack is limited Q. 10 to 10 items is best described as (A) Context free (B) Regular (C) Deterministic Context free (D) Recursive **YEAR 2003 ONE MARK** Ram and Shyam have been asked to show that a certain problem Π is NP-Q. 11 complete. Ram shows a polynomial time reduction from the 3-SAT problem to Π , and Shyam shows a polynomial time reduction from Π to 3-SAT. Which of the following can be inferred from these reduction? (A) Π is NP-hard but not NP-complete (b) Π is in NP, but is not NP-complete (C) Π is NP-complete (D) Π is neither Np-hard, nor in NP Nobody knows yet if P = NP. Consider the language L defined as follows 0.12 $L = \begin{cases} (0+1)^* & \text{if } P = NP \\ \phi & \text{otherwise} \end{cases}$ Which of the following statements is true? (A) L is recursive (B) L is recursively enumerable but not recu (C) L is not recursively enumerable (D) Whether L is recursive or not will be known after we find out if P = NP

- Q. 13 The regular expression $0^{*}(10)^{*}$ denotes the same set as
 - (A) (1 * 0) * 1 *

YEAR 2003

- (B) 0 + (0 + 10) *
- (C) (0+1) * 10(0+1) *
- (D) None of the above
- **Q. 14** If the strings of a language *L* can be effectively enumerated in lexicographic (i.e. alphabetic) order, which of the following statements is true?
 - (A) L is necessarily finite
 - (B) L is regular but not necessarily finite
 - (C) L is context free but not necessarily regular
 - (D) L is recursive but not necessarily context free

Q. 15

TWO MARKS

Consider the following deterministic finite state automaton M.

Let S denote the set of seven bit binary strings in which the first, the fourth, and the last bits are 1. The number of strings in S that are accepted by M is

- (A) 1 (B) 5 (C) 7 (D) 8
- Q. 16
- Let $G = (\{S\}, \{a, b\} R, S \text{ be a context free grammar where the rule set } R \text{ is } S \rightarrow a S b | S S | \varepsilon$

Which of the following statements is true?

- (A) G is not ambiguous
- (B) There exist $x, y \in L(G)$ such that $xy \notin L(G)$
- (C) There is a deterministic pushdown automaton that accepts L(G)
- (D) We can find a deterministic finite state automaton that accepts L(G)
- **Q. 17** Consider two languages L_1 and L_2 each on the alphabet Σ . Let $f: \Sigma \to \Sigma$ be a polynomial time computable bijection such that $(\forall x [x \in L_1 \text{ iff } f(x) \in L_2]$. Further, let f be also polynomial time commutable.

Which of the following CANNOT be true?

- (A) $L_1 \in P$ and L_2 finite
- (B) $L_1 \in NP$ and $L_2 \in P$
- (C) L_1 is undecidable and L_2 is decidable
- (D) L_1 is recursively enumerable and L_2 is recursive
- **Q. 18** A single tape Turing Machine M has two states q^0 and q^1 , of which q^0 is the starting state. The tape alphabet of M is {0,1,B} and its input alphabet is {0,1}. The symbol B is the blank symbol used to indicate end of an input string. The transition function of M is described in the following table

	0	1	В
q^0	$q^{1,1,R}$	$Q^{1,1,R}$	Halt
q^1	$q^{1,1,R}$	$q^{0,1,L}$	qH0, B, L

The table is interpreted as illustrated below.

The entry $(q^{1,1,R})$ in row q^0 and column 1 signifies that if M is in state q^0 and reads 1 on the current tape square, then it writes 1 on the same tape square, moves its tape head one position to the right and transitions to state q^1 .

Which of the following statements is true about M?

(A) M does not halt on any string in $(0 + 1)^+$

(B) M dies not halt on any string in $(00 + 1)^*$

(C) M halts on all string ending in a 0

(D) M halts on all string ending in a 1

Define languages L_0 and L_1 as follows

 $L_0 = \{ < M, w, 0 > | M \text{ halts on } w \}$

 $L_0 = \{ < M, w, 1 > | M \text{ does not halts on } w \}$

Here $\langle M, w, i \rangle$ is a triplet, whose first component. M is an encoding of a Turing Machine, second component, w, is a string, and third component, t, is a bit.

Let $L = L_0 \cup L_1$. Which of the following is true?

- (A) L is recursively enumerable, but \overline{L} is not
- (B) \overline{L} is recursively enumerable, but L is not
- (C) Both *L* and \overline{L} are recursive
- (D) Neither *L* nor \overline{L} is recursively enumerable

Q. 20

Q. 19

Consider the NFAM shown below.

Let the language accepted by M be L. Let L_1 be the language accepted by the $NFAM_1$, obtained by changing the accepting state of M to a non-accepting state and by changing the non-accepting state of M to accepting states. Which of the following statements is true?

(A) $L_1 = \{0, 1\}^* - L$	(B) $L_1 = \{0, 1\}^*$
(C) $L_1 \subseteq L$	(D) $L_1 = L$

YEAR 2004

ONE MARK

Q. 21

The problems 3-SAT and 2-SAT are

- (A) both in P
- (B) both NP-complete
- (C) NP-complete and in P respectively
- (D) undecidable and NP-complete respectively

- **Q.** 26 Consider three decision problem P_1, P_2 and P_3 . It is known that P_1 is decidable and P_2 is undecidable. Which one of the following is TRUE?
 - (A) P_3 is decidable if P_1 is reducible to P_3
 - (B) P_3 is undecidable if P_3 is reducible to P_2
 - (C) *PL*3 is undecidable if P_2 is reducible to P_3
 - (D) P_3 is decidable if P_3 is reducible to P_2 's complement

0.27

Consider the machine M

b a, bThe language recognized by M is (A) { $W \in \{a, b\}^*$ / every a in *w* is followed by exactly two *b*'s} (B) { $W \in \{a, b\}^*$ / every a in *w* is followed by at least two *b*'s} (C) { $W \in \{a, b\}^* / w$ contains the substring '*abb*' (D) { $W \in \{a, b\}^*$ / *w* does not contain '*aa*' as a substring} Let N_f and N_p denote the classes of languages accepted by non-deterministic Q. 28 finite automata and non-deterministic push-down automata, respectively. let D_f and D_P denote the classes of languages accepted by deterministic finite automata and deterministic push-down automata, respectively. Which one of the following is TRUE? (A) $D_f \subset N_f$ and $D_P \subset N_P$ (B) $D_f \subset N_f$ and $D_P = N_P$ (C) $D_f = N_f$ and $D_P = N_P$ (D) $D_f = N_f$ and $D_P \subset N_P$ Consider the languages Q. 29 $L_1 + \{a^n b^n c^m \mid n, m > 0\}$ and $L_2 = \{a^n b^m c^m \mid n, m > 0\}$ (A) $L_1 \cap L_2$ is a context-free language (B) $L_1 \cup L_2$ is a context-free language (C) L_1 and L_2 are context-free language (D) $L_1 \cap L_2$ is a context sensitive language Let L_1 be a recursive language, and let L_2 be a recursively enumerable but not a O. 30 recursive language. Which one of the following is TRUE? (A) $\overline{L_1}$ is recursive and $\overline{L_2}$ is recursively enumerable (B) $\overline{L_1}$ is recursive and $\overline{L_2}$ is not recursively enumerable (C) $\overline{L_1}$ and $\overline{L_2}$ are recursively enumerable (D) $\overline{L_1}$ is recursively enumerable and $\overline{L_2}$ is recursive Consider the languages Q. 31 $L_1 = \{ WW^{\mathcal{R}} \mid W \in \{0,1\}^* \}$ $L_2 = \{ W \# W^{\mathcal{R}} \mid W \in \{0,1\}^* \}$, where # is a special symbol $L_3 = \{WW | W \in \{0, 1\}^*\}$ Which one of the following is TRUE? (A) L1 is a deterministic *CFL* (B) L_2 is a deterministic *CFL* (C) L_3 is a *CFL*, but not a deterministic *CFL* (D) L_3 is a deterministic *CFL*

Q. 32	Consider the following two problems α : Given $G(V, E)$, does G have an in	0 1
	β : Given $G(V, E)$, does G have an in	dependent set of size 5?
	Which one of the following is TRUE (A) α is in the <i>P</i> and β is NP-comp (B) α is NP-complete and β is P (C) Both α and β are NP-complete (D) Both α and β are in P	
	YEAR 2006	ONE MARK
Q. 33	1 1 -	 P and R be two other problems not known to cible to S and S is polynomial-time reducible tements is true? (B) R is NP-hard (D) Q is NP-hard
Q. 34	Let $L_1 = \{0^{n+m}1^n0^m \mid n, m \le 0\}$ $L_3 = \{0^{n+m}1^{n+m}0^{n+m} \mid n, m \le 0\}$. White (A) L_1 only (C) L_1 and L_2	0}, $L_2 = \{0^{n+m}1^{n+m}0^m n, m \le 0\}$, and ch of these languages are NOT context free? (B) L_3 only (D) L_2 and L_3
	YEAR 2006	TWO MARKS
Q. 35		fixes' of $s, n_0(s') - n_1(s') \le 2$ ≤ 4
Q. 36	For $s \in (0 + 1)^*$ let $d(s)$ denote the $d(s)$ Let $L = \{s \in (0 + 1)^* d(s) \mod 5 = 2\}$ Which one of the following statement (A) L is recursively enumerable, but (B) L is recursive, but not context-free (C) L is context_free, but not regulat (D) L is regular	2 and $d(s) \mod 7 \neq 4$ } ts is true? not recursive ree
Q. 37	-	P-hard , is not , is not

Q. 38	Consider the following statements about the context-free grammar, $G = \{S \rightarrow SS, S \rightarrow ab, S \rightarrow ba, S \rightarrow \in\}$ 1. <i>G</i> is ambiguous.					
	2. <i>G</i> produces all strings with equal r	number of a 's and b 's.				
	3. <i>G</i> can be accepted by a determinis					
	Which combination below expresses all (A) 1 only	the true statements about <i>G</i>?(B) 1 and 3 only				
	(C) 2 and 3 only	(D) 1, 2 and 3				
Q. 39	recursively enumerable, but not recursi statements is false?	terministic context-free language and L_3 a two, language. Which one of the following				
	(A) $L_1 \cap L_2$ is a deterministic <i>CFL</i>	(B) $L_3 \cap L_1$ is recursive				
	(C) $L_1 \cup L_2$ is context free enumerable	(D) $L_1 \cap L_2 \cap L_3$ is recursively				
Q. 40	Consider the regular language $L = (11)$ states in any <i>DFA</i> accepting this langu	$(1 + 111111)^*$. The minimum number of lages is				
	(A) 3	(B) 5				
	(C) 8	(D) 9				
	YEAR 2007	ONE MARK				
Q. 41	 Which of the following problems is und (A) Membership problem for <i>CFGs</i> (B) Ambiguity problem for <i>CFGs</i> (C) Finiteness problem for <i>FSAs</i> (D) Equivalence problem for <i>FSAs</i> 	ecidable?				
Q. 42	Which of the following is TRUE?					
	(A) Every subset of a regular set is reg	ular				
	(B) Every finite subset of a non-regular set is regular					
	(C) The union of two non-regular sets is not regular					
	(D) Infinite union of finite sets is regula	ar				
	YEAR 2007	TWO MARKS				
Q. 43	$L = \{ w w \in (0, 1\}^* \text{, number of } 0s \& 1s \}$	te automation accepting the language in w are divisible by 3 and 5, respectively}				
	has (Λ) 15 states	(P) 11 states				
	(A) 15 states (C) 10 states	(B) 11 states				
- <i></i>	(C) 10 states The low range $L = \{0^T 21^{j} \mid j \leq 0\}$ some the	(D) 9 states $(0, 1, 0)$ is				
Q. 44	The language $L = \{0^T 21^i i \le 0\}$ over the (A) not recursive					
	(B) is recursive and is a deterministic (CFL				
	(C) us a regular language					
	(D) is not a deterministic CFI but a CFL					

Q. 45

- Which of the following languages is regular? (A) $\{WW^{\mathcal{R}} | W \in \{0,1\}^+\}$
- (B) $\{WW^{\mathcal{R}}X \mid X, W \in \{0,1\}^+\}$
- (C) { $WXW^{\mathcal{R}}X | X, W \in \{0,1\}^+$ }
- (D) $\{XWW^{R}X \mid X, W \in \{0,1\}^{+}\}$

Common Data For Q. 46 & 47

Solve the problems and choose the correct answers. Consider the following Finite State Automation

Q. 46	The language accepted by this a (A) <i>b</i> * <i>ab</i> * <i>ab</i> * <i>ab</i> *	utomaton is given by the regular expression (B) $(a+b)^*$					
	(C) $b * a(a+b)*$	(D) $b^* ab^* ab^*$					
Q. 47	The minimum state automaton number of states	equivalent to the above FSA has the following					
	(A) 1	(B) 2					
	(C) 3	(D) 4					
	YEAR 2008	ONE MARK					
Q. 48	Which of the following in true fo (A) It is not accepted by a Turn	r the language{ <i>a^P</i> <i>P</i> is a prime}? ing Machine					
	(B) It is regular but not context-free						
	(C) It is context-free but not regular						
	(D) It is neither regular nor cont	ext-free, but accepted by a Turing machine					
Q. 49	Which of the following are decidable?						
		two regular languages is infinite					
	2. Whether a given context-free						
	3. Whether two push-down automata accept the same language						
	4. Whether a given grammar is context-free						
	(A) 1 and 2	(B) 1 and 4					
	(C) 2 and 3	(D) 2 and 4					
Q. 50	If L and \overline{L} are recursively enume	rable then L is					
	(A) regular	(B) context-free					
	(C) context-sensitive	(D) recursive					

YEAR 2008TWO MARKSWhich of the following statements is false?

- (A) Every NFA can be converted to an equivalent DFA
- (B) Every non-deterministic Turing machine can be converted to an equivalent deterministic Turing machine
- (C) Every regular language is also a context-free language
- (D) Every subset of a recursively enumerable set is recursive
- Q. 52

Q. 51

Given below are two finite state automata(\rightarrow indicates the start and F indicates a final state)

Y:

			Z :
	а	b	
\rightarrow	1	2	
2F	2	1	

	а	b
\rightarrow	2	2
2F	1	1

(A)				(B)	1		
		а	b			а	b
	-P	S	R		-P	S	Q
	Q	R	S		Q	R	S
	R(F)	Q	Р		R(F)	Q	Р
	S	Q	Р		S	Q	Р
(C)				(D)			
		а	b			а	b
	-P	Q	S		-P	S	Q
	Q	R	S		Q	S	R
	R(F)	Q	P		R(F)	Q	Р
	S	Q	P		S	Q	Р

Q. 53

Which of the following statements are true ?

- 1. Every left-recursive grammar can be converted to a right-recursive grammar and vice-versa
- 2. All ϵ -productions can be removed from any context-free grammar by suitable transformations
- 3. The language generated by a context-free grammar all of whose production are of the form $X \rightarrow w$ or $X \rightarrow wY$ (where, *w* is a staring of terminals and *Y* is a non-terminal), is always regular
- 4. The derivation trees of strings generated by a context-free grammar in Chomsky Normal Form are always binary trees.
- (A) 1, 2, 3 and 4
- (B) 2, 3 and 4 only
- (C) 1, 3 and 4 only
- (D) 1, 2 and 4 only

Q. 54	Match	List-I	with	List-II	and	select	the	correct	ansv	ver	using	the	codes	giver	ı
	below	the list	s:												

	List-I		List-II
Р.	Checking that identifiers are declared before their use	1.	$L = \{a"b"c"d" n \le 1, m \le 1\}$
Q.	Number of formal parameters in the declara- tion to a function agress with the number of actual parameters in a use of that function		$X \to XbX \mid XcX \mid dXf \mid g$
R.	Arithmetic expressions with matched pairs of parentheses	3.	$L = \{wcw \mid w \in (a \mid b)^*\}$
S.	Palindromes	4.	$X \rightarrow bXb \mid cXc \mid \varepsilon$
Cod	es:		
	P Q R S		
(A)	1 0 0 1		

	Р	Q	R	S
(A)	1	3	2	4
(B)	3	1	4	2
(C)	3	1	2	4
(D)	1	3	4	2

Q. 55

Match $List\ I$ with $List\ II$ and select the correct answer using the codes given below the lists:

Q. 56

Q. 57

Q. 58

Q. 59

d.				0	4. $\varepsilon + 0(10^{*}1 + 10)^{*}10^{*}$
0					
Code	:				
	a	b	c	d	
(A) (B)		1 3	3 3	4 4	
(D) (C)		2	3	4	
(D)	3	2	1	4	
Whic	ch of t	he follo	wing a	re regular s	sets?
		$ n \leq 0,$	-	-	
		n=2n			
3. {	$[a^n b^m]$	$n \neq m$	}		
4. {	[xcy x]	$x, y \in \{a$	a, b}*}		
		4 only			(B) 1 and 3 only
(C) 1	l only	-			(D) 4 only
YEAF	R 2009	9			ONE MARK
$S \rightarrow$	a S a l	bSba	b		
				by the abov	ve grammar over the alphabet $\{a, b\}$ is the se
of					
		indrom		,	
		l length	-		
	-		-		n the same symbol
(D) a	all ever	n lengtl	h palin	dromes	
		of the foression		ng language	es over the alphabet $\{0, 1\}$ is described by the
0	-	$(1+1)^{*}($)*?	
					g the substring 00
(B) 7	Гhe se	t of all	string	s containing	g at most two 0's
			0		g at least two 0' <i>s</i>
			0		g and end with either 0 or 1
			C		-
				ng is FALS	bE ? A for every regular language

- (A) There is a unique minimal DFA for every regular language
- (B) Every NFA can be converted to an equivalent PDA
- (C) Complement of every context-free language is recursive
- (D) Every nondeterministic $PDA {\rm can}$ be converted to an equivalent deterministic PDA

Q. 60	P. Regu Q. Push R. Data	Group 1 ilar express idown autor i flow analy ster allocati	ion nata sis	 correct options from those given in Group 2 Group 2 1. Syntax analysis 2. Code generation 3. Lexical analysis 4. Code Optimization (B) P-3, Q-1, R-4, S-2 							
	(C) P-3, Q-	4, R-1, S-2		(D) P-2, Q-1, R-4, S-3							
	YEAR 2009			TWO MARKS							
Q. 61	Given the following state table of an FSM with two states A and B , one inpu and one output :										
	Present State A	Present State B	Input	Next State A	Next State B	Output					
	0	0	0	0	0	1					
	0	1	0	1	0	0					
	1	0	0	0	1	0					
	1	1	0	1	0	0					
	0	0	1	0	1	0					
	0	1	1	0	0	1					
	1	0	1	0	1	1					
	1	1	1	0	0	1					
	If the initial state is $A = 0, B = 0$, what is the minimum length of an input string which will take the machine to the state $A = 0, B = 1$ with Output= 1 ? (A) 3 (B) 4 (C) 5 (D) 6										
Q. 62	Let $L = L_1 \cap L_2$ where L_1 and L_2 are language as defined below : $L_1 = \{a^m b^m c a^n b^n m, n \ge 0\}$ $L_2 = \{a^i b^j c^k i, j, k \ge 0\}$ Then L is										
	(A) Not rec(C) Contex			(B)	Regular						
	(D) Recursi	vely enume	rable nut n	ot context-f	ree						
Q. 63	(D) Recursively enumerable nut not context-free The following <i>DFA</i> accept the set of all string over $\{0, 1\}$ that										
		1	a								

(A) Begin either with 0 or 1(C) End with 00

(B) End with 0(D) Contain the substring 00

	YEAR 2010	ONE MARK
Q. 64	0 0	and $L3$ be language that are recursively he following statements is not necessarily
	YEAR 2010	TWO MARKS
Q. 65		nber of 1s}, i.e., L is the set of all bit h one of the regular expressions below (B) $0^*(10^*10^*)^*$ (D) $0^*1(10^*1)^*10^*$
Q. 66	Consider the language $L1 = \{0^i 1^j i \neq j\},$ $L4 = \{0^i 1^j i \neq 2j\}.$ Which one of the foll (A) Only L2 is context free (B) Only L2 and L3 are context free (C) Only L1 and L2 are context free (D) All are context free	$L2 = \{0^{i}1^{j} i = j\}, L3 = \{0^{i}1^{j} i = 2j + 1\}$ owing statements is true ?
Q. 67		 *. Let L be the set of all substring so ω. in a non-deterministic finite automation (B) n (D) 2ⁿ⁺¹
	YEAR 2011	ONE MARK
Q. 68	(NFA)(B) Deterministic push down automata down automata (NPDA)	and Non-deterministic finite automata (DPDA) and Non-deterministic push achine and Non-deterministic single-tape
Q. 69	0	puter language such as Java needs the hine models in a necessary and sufficient ata

Q. 70 Let *P* be a regular language and *Q* be a context-free language such that $Q \subseteq P$. (For example, let *P* be the language represented by the regular expression $p^* q^*$ and *Q* be $\{p^n q^n | n \in N\}$. Then which of the following is ALWAYS regular? (A) $P \cap Q$ (B) P - Q(C) $\Sigma^* - P$ (D) $\Sigma^* - Q$

YEAR 2011

TWO MARKS

- Consider the languages L1, L2 and L3 are given below: Q. 71 L1 $\{0^p 1^q | p, q \in N\},\$ L2 $\{0^{p}1^{q} | p, q \in N \text{ and } p = q\}$ and L3 $\{0^p 1^q 0^r | p, q, r \in N \text{ and } p = q = r\}$ Which of the following statements is NOT TRUE? (A) Push Down Automata (PDA) can be used to recognize L1 and L2 (B) L1 is a regular language (C) All the three languages are context free (D) Turing machines can be used to recognize all the languages Definition of a language L with alphabet $\{a\}$ is given as follows: Q. 72 $L = \{a^{nk} | k > 0\}$, and *n* is a positive integer constant $\}$ What is the minimum number of states needed in a dfa to recognize L? (A) k + 1(B) *n*+1 (C) 2^{n+1} (D) 2^{k+1}
- **Q. 73** A deterministic finite automaton (DFA) D with alphabet $\Sigma = \{a, b\}$ is given below:

Which of the following finite state machines is a valid minimal DFA which accepts the same language as D?

YEAR 2012

ONE MARK

Q. 74 assuming $P \neq NP$, which of the following is TRUE? (A) NP-complete = NP(B) NP-complete $\cap P = \emptyset$ (C) NP-hard = NP(D) P = NP-complete

Q. 75

Q. 76

What is the complement of the language accepted by the NFA shown below? Assume $\Sigma = \{a\}$ and ε is the empty string.

Which of the following problems are decidable?

- 1. Does a given program ever produce an output?
- 2. If *L* is a context-free language, then, is \overline{L} also context-free?
- 3. If L is a regular language, then, is \overline{L} also regular
- 4. If *L* is a recursive language, then, is \overline{L} also recursive?
- (A) 1, 2, 3, 4
- (B) 1, 2
- (C) 2, 3, 4
- (D) 3, 4

Q. 77 Given the language $L = \{ab, aa, baa\}$, which of the following strings are in L^* ? 1. abaabaaabaa

- 2. aaaabaaaa
- 3. baaaaabaaaab
- 4. baaaaabaa
- (A) 1, 2 and 3
- (B) 2, 3 and 4
- (C) 1, 2 and 4
- (D) 1, 3 and 4

YEAR 2012

TWO MARKS

Consider the set of strings on {0,1} in which, every substring of 3 symbols has at most two zeros. For example, 001110 and 011001 are in the language, but 100010 is not. All strings of length less than 3 are also in the language. A partially complete DFA that accepts this language is shown below. The missing arcs in the DFA are

(A)						(B))					
		00	01	10	11	q			00	01	10	11	q
	00	1	0					00		0			1
	01				1			01		1			
	10	0						10				0	
	11			0				11		0			
(C)						(D)					
		00	01	10	11	q			00	01	10	11	q
	00		1			0		00		1			0
	01		1					01				1	

ANSWER KEY											
Theory of Computation											
1	2	3	4	5	6	7	8	9	10		
(A)	(B)	(C)	(C)	(C)	(A)	(B)	(A)	(A)	(B)		
11	12	13	14	15	16	17	18	19	20		
(C)	(A)	(?)	(D)	(C)	(C)	(C)	(A)	(B)	(C)		
21	22	23	24	25	26	27	28	29	30		
(C)	(A)	(B)	(C)	(B)	(C)	(B)	(D)	(A)	(B)		
31	32	33	34	35	36	37	38	39	40		
(B)	(?)	(B)	(D)	(C)	(D)	(?)	(B)	(B)	(D)		
41	42	43	44	45	46	47	48	49	50		
(B)	(B)	(A)	(B)	(C)	(C)	(B)	(D)	(B)	(D)		
51	52	53	54	55	56	57	58	59	60		
(D)	(A)	(C)	(C)	(C)	(A)	(B)	(C)	(D)	(B)		
61	62	63	64	65	66	67	68	69	70		
(A)	(C)	(A)	(B)	(B)	(D)	(C)	(B)	(A)	(C)		
71	72	73	74	75	76	77	78				
(C)	(B)	(A)	(B)	(B)	(D)	(C)	(D)				