GATE SOLVED PAPER - CS

THEORY OF COMPUTATION

YEAR 2001

Q. 1 Consider the following two statements :

S1: $\left\{0^{2 n} \mid n \geq 1\right\}$ is a regular language
$S 2:\left\{0^{m} 1^{n} 0^{m+n} m \geq 1\right.$ and $\left.n \geq 1\right\}$ is a regular language
W hich of the following statements is incorrect ?
(A) Only S1 is correct
(B) Only S2 is correct
(C) B othS1 and S2 are correct
(D) None of S1 and S2 is correct.
Q. $2 \quad$ Which of the following statements true?
(A) If a language is context free it can be always be accepted by a deterministic push-down automaton.
(B) The union of two context free language is context free.
(C) The intersection of two context free language is context free
(D) The complement of a context free language is context free
Q. 3 Given an arbitary non-deterministic finite automaton (NFA) with N states, the maximum number of states in an equivalent minimized DFA is at least.
(A) N^{2}
(B) 2^{N}
(C) 2 N
(D) N !
Q. 4 Consider a DFA over $\Sigma=\{a, b\}$ accepting all strings which have number of a's divisible by 6 and number of b's divisible by 8 . W hat is the minimum number of states that the DFA will have ?
(A) 8
(B) 14
(C) 15
(D) 48
Q. 5 Consider the following languages:
$\mathrm{L} 1=\{\mathrm{ww} \mid \mathrm{w} \in\{\mathrm{a}, \mathrm{b}\} *\}$
$L 2=\left\{w w^{R} \mid w \in\{a, b\}^{*} w^{R}\right.$ is the reverse of $\left.w\right\}$
$\mathrm{L} 3=\left\{0^{2 i} \mid\right.$ i is an integer $\}$
$\mathrm{L} 4=\left\{0^{\mathrm{i}^{2}}\right.$ i is an integer $\}$
Which of the languages are regular ?
(A) Only L1 and L2
(B) Only L2, L3 and L4
(C) Only L3 and L4
(D) Only L3
Q. $6 \quad$ Consider the following problem x.

Given a Turing machine M over the input alphabet Σ, any state q of M.
A nd a word $w \in \Sigma^{*}$ does the computation of M on w visit the state q ? W hich of the following statements about x is correct ?
(A) x is decidable
(B) x is undecidable but partially decidable
(C) x is undecidable and not even partially decidable
(D) x is not a decision problem

YEAR 2002

The smallest finite automaton which accepts the language $\{x \mid$ length of x is divisible by 3$\}$ has
(A) 2 states
(B) 3 states
(C) 4 states
(D) 5 states

Which of the following is true?
(A) The complement of a recursive language is recursive.
(B) The complement of a recursively enumerable language is recursively enumerable.
(C) The complement of a recursive language is either recursive or recursively enumerable.
(D) The complement of a context-free language is context-free.

TheC Ianguage is :
(A) A context free language
(B) A context sensitive language
(C) A regular language
(D) Parsable fully only by a Turing machine

The language accepted by a Pushdown Automaton in which the stack is limited to 10 items is best described as
(A) Context free
(B) Regular
(C) Deterministic Context free
(D) Recursive

YEAR 2003
ONE MARK
Ram and Shyam have been asked to show that a certain problem Π is NPcomplete. Ram shows a polynomial time reduction from the 3-SAT problem to Π , and Shyam shows a polynomial time reduction from Π to 3-SAT. Which of the following can be inferred from these reduction?
(A) Π is NP-hard but not NP-complete
(b) Π is in NP, but is not NP-complete
(C) Π is NP-complete
(D) Π is neither Np -hard, nor in NP

Nobody knows yet if $P=N P$. Consider the language L defined as follows

$$
L=\left\{\begin{array}{l}
(0+1)^{*} \text { if } P=N P \\
\phi \text { othervise }
\end{array}\right.
$$

Which of the following statements is true?
(A) L is recursive
(B) L is recursively enumerable but not recu
(C) L is not recursively enumerable
(D) W hether L is recursive or not will be known after we find out if $P=N P$
Q. 13 The regular expression $0 *(10)^{*}$ denotes the same set as
(A) $(1 * 0) * 1 *$
(B) $0+(0+10)$ *
(C) $(0+1) * 10(0+1) *$
(D) None of the above

If the strings of a language L can be effectively enumerated in lexicographic (i.e. alphabetic) order, which of the following statements is true?
(A) L is necessarily finite
(B) L is regular but not necessarily finite
(C) L is context free but not necessarily regular
(D) L is recursive but not necessarily context free

Consider the following deterministic finite state automaton M.

Let S denote the set of seven bit binary strings in which the first, the fourth, and the last bits are 1 . The number of strings in S that are accepted by M is
(A) 1
(B) 5
(C) 7
(D) 8

Let $G=(\{S\},\{a, b\} R, S$ be a context free grammar where the rule set R is $S \rightarrow a S b|S S| \varepsilon$

Which of the following statements is true?
(A) G is not ambiguous
(B) There exist $x, y, \in L(G)$ such that $x y \notin L(G)$
(C) There is a deterministic pushdown automaton that accepts L (G)
(D) We can find a deterministic finite state automaton that accepts $L(G)$

Consider two languages L_{1} and L_{2} each on the alphabet Σ. Let f: $\Sigma \rightarrow \Sigma$ be a polynomial time computable bijection such that ($\forall x\left[x \in L_{1}\right.$ iff $\left.f(x) \in L_{2}\right]$. Further, let f^{1} be also polynomial time commutable.
Which of the following CANNOT be true?
(A) $L_{1} \in P$ and L_{2} finite
(B) $L_{1} \in N P$ and $L_{2} \in P$
(C) L_{1} is undecidable and L_{2} is decidable
(D) L_{1} is recursively enumerable and L_{2} is recursive

A single tape Turing M achine M has two states q^{0} and q^{1}, of which q^{0} is the starting state. The tape alphabet of M is $\{0,1, B\}$ and its input alphabet is $\{0,1\}$. The symbol B is the blank symbol used to indicate end of an input string. The transition function of M is described in the following table

	0	1	B
q^{0}	$q^{1,1, R}$	$Q^{1,1, R}$	Halt
q^{1}	$\mathrm{q}^{1,1, \mathrm{R}}$	$\mathrm{q}^{0,1, \mathrm{~L}}$	$\mathrm{qH} 0, \mathrm{~B}, \mathrm{~L}$

The table is interpreted as illustrated below.
The entry ($q^{1,1, R}$) in row q^{0} and column 1 signifies that if M is in state q^{0} and reads 1 on the current tape square, then it writes 1 on the same tape square, moves its tape head one position to the right and transitions to state q^{1}.
Which of the following statements is true about M ?
(A) M does not halt on any string in $(0+1)^{+}$
(B) M dies not halt on any string in $(00+1)^{*}$
(C) M halts on all string ending in a 0
(D) M halts on all string ending in a 1
Q. 19 Define languages L_{0} and L_{1} as follows
$L_{0}=\{<M, W, 0\rangle \mid M$ halts on $\left.w\right\}$
$L_{0}=\{\langle M, w, 1\rangle \mid M$ does not halts on $w\}$
Here $<\mathrm{M}, \mathrm{w}, \mathrm{i}>$ is a triplet, whose first component. M is an encoding of a Turing M achine, second component, w, is a string, and third component, t, is a bit.
Let $L=L_{0} \cup L_{1}$. Which of the following is true?
(A) L is recursively enumerable, but $[$ is not
(B) $[$ is recursively enumerable, but L is not
(C) Both L and L are recursive
(D) Neither L nor L is recursively enumerable

Consider the NFAM shown below.

Let the language accepted by M be L. Let L_{1} be the language accepted by the NFAM ${ }_{1}$, obtained by changing the accepting state of M to a non-accepting state and by changing the non-accepting state of M to accepting states. W hich of the following statements is true?
(A) $L_{1}=\{0,1\}^{*}-L$
(B) $\mathrm{L}_{1}=\{0,1\}^{*}$
(C) $\mathrm{L}_{1} \subseteq \mathrm{~L}$
(D) $\mathrm{L}_{1}=\mathrm{L}$

The problems 3-SAT and 2-SAT are
(A) both in P
(B) both NP-complete
(C) NP-complete and in P respectively
(D) undecidable and NP-complete respectively

The following finite state machine accepts all those binary strings in which the number of 1 's and 0 's are respectively

(A) divisible by 3 and 2
(B) odd and even
(C) even and odd
(D) divisible by 2 and 3

The language $\left\{a^{m} b^{m+n} \mid m, n \leq 1\right\}$ is
(A) regular
(B) context-free but not regular
(C) context sensitive but not context free (D) type-0 but not context sensitive

Consider the flowing grammar C

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{bS}|\mathrm{aA}| \mathrm{b} \\
& \mathrm{~A} \rightarrow \mathrm{bA} \mid \mathrm{aB} \\
& \mathrm{~B} \rightarrow \mathrm{bB}|\mathrm{aS}| \mathrm{a}
\end{aligned}
$$

Let $N_{a}(W)$ and $N_{b}(W)$ denote the number of a's and b's in a string W respectively. The language $L(G) \subseteq\{a, b\}^{+}$generated by G is
(A) $\left\{W \mid N_{a}(W)>3 N_{b}(W)\right\}$
(B) $\left\{\mathrm{W} \mid \mathrm{N}_{\mathrm{b}}(\mathrm{W})>3 \mathrm{~N}_{\mathrm{a}}(\mathrm{W})\right\}$
(C) $\left\{W \mid N_{a}(W)=3 k, k \in\{0,1,2, \ldots\}\right\}$
(D) $\left\{W \mid N_{b}(W)=3 k, k \in\{0,1,2, \ldots\}\right\}$
L_{1} is a recursively enumerable language over Σ. An algorithm A effectively enumerates its words as $w_{1}, w_{2}, w_{3}, \ldots$. Define another language L_{2} over $\sum \cup\{\#\}$ as $\left\{w_{i} \# w_{j}: w_{i}, w_{j} \in L_{1}, i<j\right\}$. Here \# is a new symbol. Consider the following assertion. $S_{1}: L_{1}$ is recursive implies L_{2} is recursive $S_{2}: L_{2}$ is recursive implies L_{1} is recursive W hich of the following statements is true?
(A) B oth S_{1} and S_{2} are true
(B) S_{1} is true but S_{2} is not necessarily true
(C) S_{2} is true but S_{1} ins necessarily true
(D) Neither is necessarily true

Consider three decision problem P_{1}, P_{2} and P_{3}. It is known that P_{1} is decidable and P_{2} is undecidable. Which one of the following is TRUE ?
(A) P_{3} is decidable if P_{1} is reducible to P_{3}
(B) P_{3} is undecidable if P_{3} is reducible to P_{2}
(C) PL3 is undecidable if P_{2} is reducible to P_{3}
(D) P_{3} is decidable if P_{3} is reducible to P_{2} 's complement

Consider the machine M

The language recognized by M is
(A) $\left\{\mathrm{W} \in\{a, b\}^{*} /\right.$ every a in w is followed by exactly two b's $\}$
(B) $\left\{W \in\{a, b\}^{*} /\right.$ every a in w is followed by at least two b's $\}$
(C) $\left\{W \in\{a, b\}^{*} / \quad w\right.$ contains the substring 'abb'
(D) $\left\{W \in\{a, b\}^{*} / W\right.$ does not contain 'aa' as a substring $\}$

Let N_{f} and N_{p} denote the classes of languages accepted by non-deterministic finite automata and non-deterministic push-down automata, respectively. let D_{f} and D_{p} denote the classes of languages accepted by deterministic finite automata and deterministic push-down automata, respectively. Which one of the following is TRUE?
(A) $D_{f} \subset N_{f}$ and $D_{p} \subset N_{p}$
(B) $D_{f} \subset N_{f}$ and $D_{P}=N_{P}$
(C) $D_{f}=N_{f}$ and $D_{P}=N_{P}$
(D) $D_{f}=N_{f}$ and $D_{P} \subset N_{p}$

Consider the languages
$L_{1}+\left\{a^{n} b^{n} c^{m} \mid n, m>0\right\}$ and $L_{2}=\left\{a^{n} b^{m} c^{m} \mid n, m>0\right\}$
(A) $L_{1} \cap L_{2}$ is a context-free language
(B) $L_{1} \cup L_{2}$ is a context-free language
(C) L_{1} and L_{2} are context-free language
(D) $L_{1} \cap L_{2}$ is a context sensitive language

Let L_{1} be a recursive language, and let L_{2} be a recursively enumerable but not a recursive language. W hich one of the following is TRUE?
(A) \bar{L}_{1} is recursive and \bar{L}_{2} is recursively enumerable
(B) L_{1} is recursive and \bar{L}_{2} is not recursively enumerable
(C) \bar{L}_{1} and \bar{L}_{2} are recursively enumerable
(D) L_{1} is recursively enumerable and L_{2} is recursive

Consider the languages
$L_{1}=\left\{W W^{R} \mid W \in\{0,1\}^{*}\right\}$
$L_{2}=\left\{W \# W^{R} \mid W \in\{0,1\}^{*}\right\}$, where \# is a special symbol
$L_{3}=\left\{W W \mid W \in\{0,1\}^{*}\right\}$
Which one of the following is TRUE?
(A) L 1 is a deterministic CFL
(B) L_{2} is a deterministic CFL
(C) L_{3} is a CFL, but not a deterministic CFL
(D) L_{3} is a deterministic CFL
Q. 32 Consider the following two problems on undirected graphs α : Given $\mathrm{G}(\mathrm{V}, \mathrm{E})$, does G have an independent set of size |V|-4?
β : Given $\mathrm{G}(\mathrm{V}, \mathrm{E})$, does G have an independent set of size 5 ?
Which one of the following is TRUE ?
(A) α is in the \mathbf{P} and β is NP-complete
(B) α is N \mathbf{P}-complete and β is \mathbf{P}
(C) Both α and β are NP-complete
(D) Both α and β are in P

YEAR 2006

Let S be an NP -complete problem Q and R be two other problems not known to be in NP. Q is polynomial-time reducible to S and S is polynomial-time reducible to R. Which one of the following statements is true?
(A) R is NP -complete
(B) R is $N P$-hard
(C) Q is NP -complete
(D) Q is NP -hard

Let $\quad L_{1}=\left\{0^{n+m} 1^{n} 0^{m} \mid n, m \leq 0\right\}, L_{2}=\left\{0^{n+m} 1^{n+m} 0^{m} \mid n, m \leq 0\right\}$, and $L_{3}=\left\{0^{n+m} 1^{n+m} 0^{n+m} \mid n, m \leq 0\right\}$. Which of these languages are NOT context free?
(A) L_{1} only
(B) L_{3} only
(C) L_{1} and L_{2}
(D) L_{2} and L_{3}

YEAR 2006
TWO MARKS
If s is a string over $(0+1)^{*}$, then let $n_{0}(s)$ denote the number of 0 ' s in s and $n_{1}(s)$ the number of 1 's in s . Which one of the following languages is not regular?
(A) $L=\left\{s \in(0+1)^{*} \mid n_{0}(s)\right.$ is a 3-digit prime $\}$
(B) $L=\left\{s \in(0+1) * \mid\right.$ for every prefixes' of $\left.s,\left|n_{0}\left(s^{\prime}\right)-n_{1}\left(s^{\prime}\right)\right| \leq 2\right\}$
(C) $L=\left\{s \in(0+1)^{*} \| n_{0}(s)-n_{1}(s) \leq 4\right.$
(D) $\mathrm{L}=\left\{\mathrm{s} \in(0+1)^{*} \mid \mathrm{n}_{0}(\mathrm{~s}) \bmod 7=\mathrm{n}_{1}(\mathrm{~s}) \bmod 5=0\right\}$

For $s \in(0+1)^{*}$ let $d(s)$ denote the decimal value of $s(e . g . d(101)=5)$
Let $L=\left\{s \in(0+1)^{*} \mid d(s) \bmod 5=2\right.$ and $\left.d(s) \bmod 7 \neq 4\right\}$
Which one of the following statements is true?
(A) L is recursively enumerable, but not recursive
(B) L is recursive, but not context-free
(C) L is context_free, but not regular
(D) Lis regular

Let SHAM, be the problem of finding a Hamiltonian cycle in a graph $G+(V, E)$ with [V] divisible by 3 and DHAM' be the problem of determining if a Hamltonian cycle exists in such graphs. Which one of the following is true?
(A) B oth DHAM, and SHAM, are NP-hard
(B) SHAM, is NP-hard, but DHAM, is not
(C) DHAM, is NP-hard, but SHAM, is not
(D) Neither DHAM , nor SHAM, is NP-hard
Q. 38 Consider the following statements about the context-free grammar, $\mathrm{G}=\{\mathrm{S} \rightarrow \mathrm{SS}, \mathrm{S} \rightarrow \mathrm{ab}, \mathrm{S} \rightarrow \mathrm{ba}, \mathrm{S} \rightarrow \in\}$

1. G is ambiguous.
2. G produces all strings with equal number of a's and b's.
3. G can be accepted by a deterministic PDA.

Which combination below expresses all the true statements about G ?
(A) 1 only
(B) 1 and 3 only
(C) 2 and 3 only
(D) 1, 2 and 3

Let L_{1} be regular language, L_{2} be a deterministic context-free language and L_{3} a recursively enumerable, but not recursive, language. Which one of the following statements is false?
(A) $L_{1} \cap L_{2}$ is a deterministic CFL
(B) $L_{3} \cap L_{1}$ is recursive
(C) $L_{1} \cup L_{2}$ is context free
(D) $\mathrm{L}_{1} \cap \mathrm{~L}_{2} \cap \mathrm{~L}_{3}$ is recursively enumerable

Consider the regular language $\mathrm{L}=(111+111111)^{*}$. The minimum number of states in any DFA accepting this languages is
(A) 3
(B) 5
(C) 8
(D) 9

YEAR 2007
Which of the following problems is undecidable?
(A) M embership problem for CFGs
(B) A mbiguity problem for CFGs
(C) Finiteness problem for FSAs
(D) Equivalence problem for FSAs
Q. 42 Which of the following is TRUE ?
(A) Every subset of a regular set is regular
(B) Every finite subset of a non-regular set is regular
(C) The union of two non-regular sets is not regular
(D) Infinite union of finite sets is regular

YEAR 2007

A minimum state deterministic finite automation accepting the language $L=\left\{w \mid w \in(0,1\}^{*}\right.$, number of $0 s \& 1 s$ in w are divisible by 3 and 5 , respectively $\}$ has
(A) 15 states
(B) 11 states
(C) 10 states
(D) 9 states

The language $L=\left\{0^{\top} 21^{i} \mid i \leq 0\right\}$ over the alphabet $\{0,1,2$) is
(A) not recursive
(B) is recursive and is a deterministic CFL
(C) us a regular language
(D) is not a deterministic CFI but a CFL
Q. $45 \quad$ Which of the following languages is regular?
(A) $\left\{W W^{R} \mid W \in\{0,1\}^{+}\right\}$
(B) $\left\{W W^{R} X \mid X, W \in\{0,1\}^{+}\right\}$
(C) $\left\{W \times W^{R} X \mid X, W \in\{0,1\}^{+}\right\}$
(D) $\left\{X W W^{R} X \mid X, W \in\{0,1\}^{+}\right\}$

Common Data For Q. 46 \& 47

Solve the problems and choose the correct answers. Consider the following Finite State Automation

Q. 46 The language accepted by this automaton is given by the regular expression
(A) $b^{*} a b * a b * a b *$
(B) $(a+b)^{*}$
(C) $b^{*} a(a+b)^{*}$
(D) $b^{*} a b^{*} a b^{*}$
Q. 47 The minimum state automaton equivalent to the above $F S A$ has the following number of states
(A) 1
(B) 2
(C) 3
(D) 4

YEAR 2008
ONE MARK
Q. $48 \quad$ Which of the following in true for the language $\left\{a^{P} \mid P\right.$ is a prime $\}$
(A) It is not accepted by a Turning M achine
(B) It is regular but not context-free
(C) It is context-free but not regular
(D) It is neither regular nor context-free, but accepted by a Turing machine
Q. $49 \quad$ Which of the following are decidable?

1. Whether the intersection of two regular languages is infinite
2. Whether a given context-free language is regular
3. Whether two push-down automata accept the same language
4. Whether a given grammar is context-free
(A) 1 and 2
(B) 1 and 4
(C) 2 and 3
(D) 2 and 4

If L and L are recursively enumerable then L is
(A) regular
(B) context-free
(C) context-sensitive
(D) recursive
(A)

	a	b
$-P$	S	R
Q	R	S
$R(F)$	Q	P
S	Q	P

(C)

	a	b
$-P$	Q	S
Q	R	S
$R(F)$	Q	P
S	Q	P

(B)

	a	b
$-P$	S	Q
Q	R	S
$R(F)$	Q	P
S	Q	P

(D)

	a	b
$-P$	S	Q
Q	S	R
$R(F)$	Q	P
S	Q	P

Which of the following statements are true ?

1. Every left-recursive grammar can be converted to a right-recursive grammar and vice-versa
2. All ε-productions can be removed from any context-free grammar by suitable transformations
3. The language generated by a context-free grammar all of whose production are of the form $X \rightarrow w$ or $X \rightarrow w Y$ (where, w is a staring of terminals and Y is a non-terminal), is always regular
4. The derivation trees of strings generated by a context-free grammar in Chomsky Normal Form are always binary trees.
(A) 1, 2, 3 and 4
(B) 2, 3 and 4 only
(C) 1, 3 and 4 only
(D) 1, 2 and 4 only
Q. 54

Match List-I with List-II and select the correct answer using the codes given below the lists:

	List-I		List-II
P.	Checking that identifiers are declared before their use	1.	$\mathrm{~L}=\{\mathrm{a} " \mathrm{~b} \mathrm{c} \mathrm{c} \mathrm{c} \mathrm{d} \mid \mathrm{n} \leq 1, \mathrm{~m} \leq 1\}$
Q.	Number of formal parameters in the declara- tion to a function agress with the number of actual parameters in a use of that function	2.	$\mathrm{X} \rightarrow \mathrm{XbX}\|\mathrm{XcX}\| \mathrm{dXf} \mid \mathrm{g}$
R.	A rithmetic expressions with matched pairs of parentheses	3.	$\mathrm{L}=\left\{\mathrm{wcw} \mid \mathrm{w} \in(\mathrm{a} \mid \mathrm{b})^{*}\right\}$
S.	Palindromes	4.	$\mathrm{X} \rightarrow \mathrm{bXb\|cXc\|} \mathrm{\varepsilon}$

Codes:

	P	Q	R	S
(A)	1	3	2	4
(B)	3	1	4	2
(C)	3	1	2	4
(D)	1	3	4	2

Match List I with List II and select the correct answer using the codes given below the lists:
a.

List II

1. $\varepsilon+0\left(01^{*} 1+00\right)^{*} 01^{*}$
b.

2. $\varepsilon+0(10 * 1+00) * 0$
3. $\varepsilon+0(10 * 1+10)^{*} 1$
d.

4. $\varepsilon+0\left(10^{*} 1+10\right)^{*} 10^{*}$

Code:

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}
(A)	2	1	3	4
(B)	1	3	3	4
(C)	1	2	3	4
(D)	3	2	1	4

Which of the following are regular sets?

1. $\left\{a^{n} b^{2 m} \mid n \leq 0, m \leq 0\right\}$
2. $\left\{a^{n} b^{m} \mid n=2 m\right\}$
3. $\left\{a^{n} b^{m} \mid n \neq m\right\}$
4. $\left\{x c y \mid x, y \in\{a, b\}^{*}\right\}$
(A) 1 and 4 only
(B) 1 and 3 only
(C) 1 only
(D) 4 only
$S \rightarrow$ a S abS balb
The language generated by the above grammar over the alphabet $\{a, b\}$ is the set of
(A) all palindromes
(B) all odd length palindromes
(C) strings that begin and end with the same symbol
(D) all even length palindromes

Which one of the following languages over the alphabet $\{0,1\}$ is described by the regular expression:
$(0+1) * 0(0+1) * 0(0+1)^{*}$?
(A) The set of all strings containing the substring 00
(B) The set of all strings containing at most two 0's
(C) The set of all strings containing at least two 0's
(D) The set of all strings that being and end with either 0 or 1

Which one of the following is FALSE ?
(A) There is a unique minimal DFA for every regular language
(B) Every NFA can be converted to an equivalent PDA
(C) Complement of every context-free language is recursive
(D) Every nondeterministic PDA can be converted to an equivalent deterministic PDA

Match all items in Group I with correct options from those given in Group 2

Group 1
P. Regular expression
Q. Pushdown automata
R. Data flow analysis
S. Register allocation

Group 2

1. Syntax analysis
2. Code generation
3. Lexical analysis
4. Code Optimization
(A) P-4, Q-1, R-2, S-3
(B) P-3, Q-1, R-4, S-2
(C) P-3, Q-4, R-1, S-2
(D) P-2, Q-1, R-4, S-3

YEAR 2009
Given the following state table of an FSM with two states A and B, one input and one output :

Present State \mathbf{A}	Present State B	Input	Next State A	Next State B	Output
0	0	0	0	0	1
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	1	0	0
0	0	1	0	1	0
0	1	1	0	0	1
1	0	1	0	1	1
1	1	1	0	0	1

If the initial state is $A=0, B=0$, what is the minimum length of an input string which will take the machine to the state $A=0, B=1$ with Output=1 ?
(A) 3
(B) 4
(C) 5
(D) 6

Let $L=L_{1} \cap L_{2}$ where L_{1} and L_{2} are language as defined below :
$L_{1}=\left\{a^{m} b^{m} c a^{n} b^{n} \mid m, n \geq 0\right\}$
$L_{2}=\left\{a^{i} b^{j} c^{k} i, j, k \geq 0\right\}$
Then L is
(A) Not recursive
(B) Regular
(C) Context-free but not regular
(D) Recursively enumerable nut not context-free

The following DFA accept the set of all string over $\{0,1\}$ that

(A) Begin either with 0 or 1
(B) End with 0
(C) End with 00
(D) Contain the substring 00

Let L1 be a recursive language. Let L2 and L3 be language that are recursively enumerable but not recursive. W hat of the following statements is not necessarily true?
(A) $\mathrm{L} 1-\mathrm{L} 1$ is recursively enumerable
(B) L1-L3 is recursively enumerable
(C) $\mathrm{L} 2 \cap \mathrm{~L} 3$ is recursively enumerable
(D) $\mathrm{L} 2 \cap \mathrm{~L} 3$ is recursively enumerable

Let $L=\left\{\omega \in(0+1)^{*} \mid \omega\right.$ has even number of $\left.1 s\right\}$, i.e., L is the set of all bit strings with even number of 1 s . Which one of the regular expressions below represents L ?
(A) $\left(0 * 10^{*} 1\right)^{*}$
(B) $0^{*}\left(10^{*} 10^{*}\right)^{*}$
(C) $0 *(10 * 1) * 0^{*}$
(D) $0 * 1\left(10^{*} 1\right) * 10 *$

Consider the language $L 1=\left\{0^{i} 1^{j} \mid i \neq j\right\}, L 2=\left\{0^{i} 1^{j} \mid i=j\right\}, L 3=\left\{0^{i} 1^{j} \mid i=2 j+1\right\}$ $L 4=\left\{0^{i} 1^{j} i \neq 2 j\right\}$.W hich one of the following statements is true ?
(A) Only L2 is context free
(B) Only L2 and L3 are context free
(C) Only L1 and L2 are context free
(D) All are context free

Let ω by any string of length n in $\{0,1\}^{*}$. Let L be the set of all substring so ω. W hat is the minimum number of states in a non-deterministic finite automation that accepts L ?
(A) $\mathrm{n}-1$
(B) n
(C) $n+1$
(D) 2^{n+1}

YEAR 2011
Which of the following pairs have DIFFERENT expressive power?
(A) Deterministic finite automata (DFA) and Non-deterministic finite automata (NFA)
(B) Deterministic push down automata (DPDA) and Non-deterministic push down automata (NPDA)
(C) Deterministic single-tape Turing machine and Non-deterministic single-tape Turing machine
(D) Single-tape Turing machine and multi-tape Turing machine

The lexical analysis for a modern computer language such as J ava needs the power of which one of the following machine models in a necessary and sufficient sense?
(A) Finite state automata
(B) Deterministic pushdown automata
(C) Non-deterministic pushdown automata
(D) Turing machine

Let P be a regular language and Q be a context-free language such that $Q \subseteq P$. (For example, let P be the language represented by the regular expression $\mathrm{p}^{*} \mathrm{q}^{*}$ and Q be $\left\{p^{n} q^{n} \mid n \in N\right\}$. Then which of the following is ALWAY S regular?
(A) $P \cap Q$
(B) $P-Q$
(C) $\Sigma^{*}-P$
(D) $\Sigma^{*}-Q$

YEAR 2011
Consider the languages $L 1, L 2$ and $L 3$ are given below:
$L 1\left\{0^{p} 1^{q} \mid p, q \in N\right\}$, $\quad L 2\left\{0^{p} 1^{q} \mid p, q \in N\right.$ and $\left.p=q\right\}$ and
$L 3\left\{0^{p} 1^{q} 0^{r} \mid p, q, r \in N\right.$ and $\left.p=q=r\right\}$
Which of the following statements is NOT TRUE?
(A) Push Down Automata (PDA) can be used to recognize L1 and L2
(B) L1 is a regular language
(C) All the three languages are context free
(D) Turing machines can be used to recognize all the languages

Definition of a language L with alphabet $\{a\}$ is given as follows:
$\mathrm{L}=\left\{\mathrm{a}^{\mathrm{nk}} \mid \mathrm{k}>0\right\}$, and n is a positive integer constant $\}$
What is the minimum number of states needed in a dfa to recognize L ?
(A) $k+1$
(B) $n+1$
(C) 2^{n+1}
(D) 2^{k+1}

Which of the following finite state machines is a valid minimal DFA which accepts the same language as D ?
(A)

(B)

(C)

(D)

assuming $P \neq N P$, which of the following is TRUE?
(A) NP -complete $=N P$
(B) NP-complete $\cap P=\varnothing$
(C) $N P-$ hard $=N P$
(D) $\mathrm{P}=\mathrm{NP}$-complete

What is the complement of the language accepted by the NFA shown below? Assume $\Sigma=\{\mathrm{a}\}$ and ε is the empty string.

(A) \varnothing
(B) $\{\varepsilon\}$
(C) a*
(D) $\{a, \varepsilon\}$

Which of the following problems are decidable?

1. Does a given program ever produce an output?
2. If L is a context-free language, then, is L also context-free?
3. If L is a regular language, then, is L also regular
4. If L is a recursive language, then, is L also recursive?
(A) 1, 2, 3, 4
(B) 1,2
(C) 2, 3, 4
(D) 3,4

Given the language $L=\{a b, a a, b a a\}$, which of the following strings are in L *?

1. abaabaaabaa
2. aaaabaaaa
3. baaaaabaaaab
4. baaaaabaa
(A) 1, 2 and 3
(B) 2, 3 and 4
(C) 1, 2 and 4
(D) 1, 3 and 4

YEAR 2012

Consider the set of strings on $\{0,1\}$ in which, every substring of 3 symbols has at most two zeros. For example, 001110 and 011001 are in the language, but 100010 is not. All strings of length less than 3 are also in the language. A partially complete DFA that accepts this language is shown below.
The missing arcs in the DFA are

(A)

	00	01	10	11	q		
00	1	0					
01				1			
10	0						
11			0				
(C)	00 01 10 11 q 00 1 0 01 1 10 0 11 0					$>.$	
:---							

(B)

	00	01	10	11	q
00		0			1
01		1			
10				0	
11		0			

(D)

	00	01	10	11	q
00		1			0
01				1	
10	0				
11			0		

ANSWER KEY

Theory of Computation									
1	2	3	4	5	6	7	8	9	10
(A)	(B)	(C)	(C)	(C)	(A)	(B)	(A)	(A)	(B)
11	12	13	14	15	16	17	18	19	20
(C)	(A)	(?)	(D)	(C)	(C)	(C)	(A)	(B)	(C)
21	22	23	24	25	26	27	28	29	30
(C)	(A)	(B)	(C)	(B)	(C)	(B)	(D)	(A)	(B)
31	32	33	34	35	36	37	38	39	40
(B)	(?)	(B)	(D)	(C)	(D)	(?)	(B)	(B)	(D)
41	42	43	44	45	46	47	48	49	50
(B)	(B)	(A)	(B)	(C)	(C)	(B)	(D)	(B)	(D)
51	52	53	54	55	56	57	58	59	60
(D)	(A)	(C)	(C)	(C)	(A)	(B)	(C)	(D)	(B)
61	62	63	64	65	66	67	68	69	70
(A)	(C)	(A)	(B)	(B)	(D)	(C)	(B)	(A)	(C)
71	72	73	74	75	76	77	78		
(C)	(B)	(A)	(B)	(B)	(D)	(C)	(D)		

