
NAME OF DEPTT./CENTRE:	Mathematics Depart	tment		
1. Subject Code: MAN-001	Course Title: Mathe	matics I		
2. Contact Hours: L: 3	T: 1	P: 0		
3. Examination Duration (Hrs.):	Theory 3	Practical	0	
4. Relative Weightage: CWS 25	5 PRS 00 MTE	25 ETE 50	PRE	0
5. Credits: 4 6. Sem	nester: Autumn	7. Subject Area: B	SC	
8. Pre-requisite: None				

9. Objective: To provide essential knowledge of basic tools of Differential Calculus, Integral Calculus, Vector Calculus and Matrix Algebra for degree students.

S. No.	Contents	Contact Hours
1.	Matrix Algebra: Elementary operations and their use in getting the Rank, Inverse	8
	of a matrix and solution of linear simultaneous equations. Orthogonal, Symmetric,	
	Skew-symmetric, Hermitian, Skew-Hermitian, Normal & Unitary matrices and	
	their elementary properties. Eigen-values and Eigenvectors of a matrix, Cayley-	
	Hamilton theorem, Diagonalization of a matrix.	
2.	Differential Calculus: Limit, Continuity and differentiability of functions of two	12
	variables, Euler's theorem for homogeneous equations, Tangent plane and normal.	
	Change of variables, chain rule, Jacobians, Taylor's Theorem for two variables,	
	Error approximations. Extrema of functions of two or more variables,	
	Lagrange's method of undetermined multipliers	
3.	Integral Calculus:	12
	Review of curve tracing and quadric surfaces, Double and Triple integrals,	
	Change of order of integration. Change of variables. Gamma and Beta functions.	
	Dirichlet's integral. Applications of Multiple integrals such as surface area,	
	volumes, centre of gravity and moment of inertia	
4.	Vector Calculus: Differentiation of vectors, gradient, divergence, curl and their	10
	physical meaning. Identities involving gradient, divergence and curl. Line and	
	surface integrals. Green's, Gauss and Stroke's theorem and their applications.	
	Total	42

S. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	E. Kreyszig, Advanced Engineering Mathematics, 9th edition, John	2011
	Wiley and Sons, Inc., U.K.	
2.	R.K. Jain and S.R.K. Iyenger, Advanced Engineering Mathematics,	2005
	2nd Edition, Narosa Publishing House.	
3.	M.D. Weir, J. Hass, F.R. Giordano, Thomas' Calculus, 11th Edition,	2008
	Pearson Education.	

- 9. Objective: To provide introductory knowledge to the students about mathematical sciences, commonly used terminologies and History of Mathematics.
- 10. Details of Course:

S. No.	Contents	Contact
		Hours
1.	Introduction (with simple examples) to various branches of mathematics such as:	4
	Pure mathematics, Applied mathematics, Engineering mathematics, Statistics,	
	Operations research, Mathematical modeling.	
2.	Geometry: Basic structures, transformations among Cartesian, polar and	4
	parametric coordinates, curves, tracing and investigation of curves.	
3.	History of Ancient mathematics: Egypt and Mesopotamia, Number systems,	4
	Arithmetic and geometry, Hindu and Arabic, Invention of negative numbers and	
	zero, development of algebra, roots of equations	
4.	Mathematics in Medieval period: Distinct character of Greek Mathematics	8
	(geometry, logic, proof, axiomatic structure), Nature of problems and method of	
	solutions, proof by contradiction, theory of incommensurables, method of	
	exhaustion, reconsideration of infinity.	
5.	History of Modern Mathematics: Development of calculus as the language of	8
	physics, Differential equations, Quantics, Theory of numbers, Introduction to the	
	work of Srinivasa Ramanujan, Theory of functions, Probabilities and Least	
	squares, Modern Geometry, Non-Euclidean geometry.	
	Total	28

S. No.		Year of
	Name of Authors/ Books/Publishers	Publication/Reprint
1.	C.B. Boyer, History of Mathematics, Wiley International Edition, New	1968
	York.	
2.	E. Carrucio, Mathematics and Logic in History and in Contemporary	1964
	Thought, Aldine Publications company, Chicago.	
3.	R. Courant, H. Robbins and I. Stewart, What is Mathematics? An	1996
	elementary approach to ideas and methods, Oxford University Press,	
	Oxford.	
4.	Keith Devlin, Introduction to Mathematical Thinking, California.	2012
5.	Howard Eves, An introduction to History of Mathematics, Holt, Reinhart	1964
	and Winston, New York.	
6.	G. H. Hardy and E. M. Wright, An Introduction to the Theory of	2008
	Numbers, Oxford University Press.	
7.	V. Lakshmikantham and S. Leela, Origin and History of Mathematics,	2005
	Cambridge Scientific Publishers, Cambridge	
8.	Sarju Tiwari, Mathematics in History, Culture, Philosophy and Science	1992
	from ancient time to Modern age, Mittal Publications, New Delhi.	

NAME OF DEPTT./CENTRE:	Mathematics Depart	tment			
1. Subject Code: MAN-103	Course Title: Introd	uction to Compute	er Programming		
2. Contact Hours: L: 3	T: 0	P: 2			
3. Examination Duration (Hrs.):	3. Examination Duration (Hrs.): Theory 3 Practical 0				
4. Relative Weightage: CWS 15	PRS 25 MTE	20 ETE 40	PRE 0		
5. Credits: 4 6. Sen	nester: Autumn	7. Sul	oject Area: ESC		
8. Pre-requisite: None					

- 9. Objective: To give the basic knowledge of computer programming
- 10. Details of Course:

S. No.	Contents	Contact Hours
1.	Basic Computer Fundamentals: Introduction to computer systems; number	7
	system, integer, signed integer, fixed and floating point representations; IEEE	
	standards, integer and floating point arithmetic; CPU organization, ALU, registers,	
	memory, the idea of program execution at micro level.	
2.	Basic Programming in C++: Input/output; Constants, variables, expressions and	9
	operators; Naming conventions and styles; Conditions and selection statements;	
	Looping and control structures (while, for, do-while, break and continue); Arrays;	
	File I/O, header files, string processing; Pre-processor directives such as #include,	
	#define, #ifdef, #ifndef; Compiling and linking.	
3.	Programming through functional decomposition: Design of functions, void and	8
	value returning functions, parameters, scope and lifetime of variables, passing by	
	value, passing by reference, passing arguments by constant reference, recursive	
	functions; Function overloading and default arguments; Library functions.	
4.	Pointers: Pointers; Dynamic data and pointers, dynamic arrays.	3
5.	Object Oriented Programming Concepts: Data hiding, abstract data types,	12
	classes, access control; Class implementation-default constructor, constructors,	
	copy constructor, destructor, operator overloading, friend functions; Object	
	oriented design (an alternative to functional decomposition) inheritance and	
	composition; Dynamic binding and virtual functions; Polymorphism; Dynamic data	
	in classes.	
6.	Introduction to data structures, use of pointers in linked structures.	3
	Total	42

S. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	H.M. Deitel and P.J. Deitel. C++ How to Program. Prentice Hall,	2011
	8th edition.	
2.	B. Eckel. Thinking in C++ Volume 1 & 2. Prentice Hall, 2nd	2003
	edition.	
3.	I. Koren. Computer Arithmetic Algorithms. A.K. Peters Ltd., 2nd	2001
	edition	
4.	S.B. Lippman, J. Lajoie, and B.E. Moo. The C++ Primer. Addison-	2012
	Wesley Professional, 5th edition	
5.	S. Oualline. Practical C++ Programming. O'Reilly Media, 2nd	2003
	edition.	
6.	S. Prata. C++ Primer Plus. Sams, 5th edition.	2004
7.	W. Stallings. Computer Organisation and Architecture: Designing	2005
	for Performance. Prentice-Hall, 7th edition.	
8.	B. Stroustrup. The C++ Programming Language. Addison-Wesley,	1997
	3rd edition.	
9.	R. Lafore. Object-Oriented Programming in C++. Sams Publishing,	2001
	4th edition.	

NAME OF DEPTT./CENTRE:]	Departmen	t of Mathema	tics	
1.	Subject Code: MAN-0)04	Со	urse Title:	Numerical M	lethods
2.	Contact Hours: L: 3		T: 1	P	• 0	
3.	Examination Duration (Hrs.): Theory: 3		ory: 3	Practi	cal: 0	
4.	Relative Weightage:	CWS: 25	PRS: 0	MTE: 25	ETE: 50	PRE: 0
5.	Credits: 4	6. Semester: Spring		7.	Subject Area:	BSC

- 8. Pre-requisite: Nil
- 9. Objective: To introduce various numerical methods to get approximation solutions.
- 10. Details of Course:

S.No.	Contents	Contact Hours
1	Error Analysis : Exact and approximate numbers, Rounding of numbers, Significant digits, Correct digits, various types of errors encountered in computations, Propagation of errors.	3
2	Solution of system of linear equations : (i) Direct methods: Gauss elimination method without pivoting and with pivoting, LU-decomposition method. (ii) Iterative methods: Jacobi and Gauss-Seidel methods.	8
3	Roots of non-linear equations: Bisection method, Regula-Falsi method, Newton-Raphson method, direct iterative method with convergence criteria, Newton-Raphson method for solution of a pair of non-linear equations.	6
4	Eigen values and Eigen vectors : Dominant and smallest Eigen values/Eigen vectors by power method.	3
5	Interpolation : Finite difference operator and their relationships, difference tables, Newton, Bessel and Stirling's interpolation formulae, Divided differences, Lagrange interpolation and Newton's divided difference interpolation.	6
6	Numerical differentiation : First and second order derivatives by various interpolation formulae.	4
7.	Numerical integration: Trapezoidal, Simpsons 1/3 rd and 3/8 th rules with errors and their combinations, Gauss Legendre 2-points and 3-points formulae	6
8.	Solution of first and second order ordinary differential equations: Picard's method, Taylor's series method, Euler, Modified Euler, Runge-Kutta methods and Milne's method.	4
9.	Case studies	2
	Total	42

S.No.	Name of Authors / Books / Publishers	Year of
		Publication /
		Reprint
1	Gerald, C. F. and Wheatly, P. O.," Applied Numerical Analysis", 6 th	2002
	Edition, Wesley.	
2	Jain, M. K., Iyengar, S. R. K. and Jain, R. K., "Numerical Methods for	2000
	Scientific and Engineering Computation", New Age Pvt. Pub, New Delhi.	
3	Conte, S. D. and DeBoor, C., "Elementary Numerical Analysis", McGraw-	1982
	Hill Publisher	
4	Krishnamurthy, E. V. & Sen, S. K., "Applied Numerical Analysis", East	1998
	West Publication.	

NA	ME OF DEPTT./CE	NTRE:	Departm	ent of Mat	hematics	
1.	Subject Code: MAN	-102	Course	Title: Li	near Algebra	
2.	Contact Hours: L: 3		T: 1	P: ()	
3.	Examination Duration	on (Hrs.):	Theory : 3	I	Practical : 0	
4.	Relative Weightage:	CWS: 25	PRS: 0	MTE: 25	ETE: 50	PRE: 0
5.	Credits: 4	6. Semester:	Spring	7. Subj	ect Area: DCC	

- 8. Pre-requisite: Nil
- 9. Objective: To introduce the basic concepts of vector spaces and linear transformations.
- 10. Details of Course:

S. No.	Particulars	Contact Hours
1	Vector Spaces: Vector space, subspace, sum of subspaces, linear combination, linear dependence and independence, basis and dimension, examples of infinite dimensional spaces, ordered bases and coordinates	10
2	Linear Transformation: Basic definitions, rank-nullity theorem, matrix representation, algebra of linear transformations, change of basis, linear functional, Dual Spaces	8
3	Canonical Forms: Eigen-values of linear operators, Eigen-space, minimal polynomial, diagonalisation, invariant subspaces, Jordan canonical representation, Norm of a matrix, computation of a matrix exponential	12
4	Inner Product Space: Definition of inner product between two vectors, orthogonal and orthonormal vectors, normed space, Gram-Schmidt process for orthogonalisation, projection operator, quadratic forms, positive definite forms, Symmetric, Hermitian, orthogonal, unitary and Normal transformations/matrices.	12
	TOTAL	42

11. Books Recommended:

S. No.	Name of Authors / Books / Publishers	Year of
		Publication/
		Reprint
1.	Hoffman, K. and Kunze, R., "Linear Algebra", 2 nd edition, Pearson	2004
	Education (Asia) Pvt. Ltd/ Prentice Hall of India	
2.	Leon, S.J., "Linear Algebra with Applications", 8th Edition, Pearson	2009
3.	Peter, J. Olever and Shakiban, C., "Applied Linear Algebra", 1 st Edition	2005
	, Prentice Hall	
4.	Strang, G., "Linear Algebra and its Applications", 3 rd edition, Thomson	2003
	Learning Asia Pvt Ltd	
5.	Sudan L., " Applied Linear Algebra ", Prentice Hall	2001

NAME OF DEPTT./CENTRE:		Departm	ent of Math	ematics		
1.	Subject Code: MAN-1	104	Course	Title: Re a	ll Analysis- I	
2.	Contact Hours: La	: 3	T: 1]	?: 0	
3.	3. Examination Duration (Hrs.):		Theory: 3		Practical	: 0
4.	Relative Weightage:	CWS: 25	PRS: 0	MTE: 25	ETE: 50	PRE: 0
5.	Credits: 4	6. Semester: Spring7. Subject Area: DCC		CC		

8. Pre-requisite: Nil

9. Objective: To provide the basic properties of functions of a real variable.

S. No.	Contents	Contact Hours
1.	Real number system, ordering, bounded sets, order completeness axiom, mathematical induction, well ordering principle; Archimedian property, Dedekind's theorem, complete ordered field, limit point of a set, Bolzano-Weierstrass theorem, open and closed sets, compact sets and Heine-Borel theorem.	8
2.	Sequences, Cauchy's first and second limit theorems, Cauchy sequences, Cauchy criterion for convergent sequences, bounded and monotonic sequences, Euler's constant, subsequences, limit superior and limit inferior. Series of real valued functions and their Tests for convergence.	6
3.	Limit and continuity, uniform continuity, monotonic functions, functions of bounded variation, absolutely continuous functions, Taylor's theorem (finite form), Lagrange's form of remainder.	7
4.	Sequences and series of real valued functions, their point-wise, absolute and uniform convergence, Cauchy's general principle of uniform convergence, continuity of the limit (sum) function, differentiation and integration of the sequences and series of functions, Weierstrass approximation theorem.	6
5.	Riemann integration, Darboux's theorem, necessary and sufficient conditions for integrability, functions defined by integrals, fundamental theorem of calculus, first and second mean value theorems of integral calculus	8
6.	Metric spaces, open and closed sets, interior, closure and limit points of a set, subspaces, continuous functions on metric spaces, convergence in a metric space, complete metric spaces.	7
	Total	42

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Royden. H.L. and Fitzpatrick. P.M., Real Analysis, Prentice Hall India Pvt. Ltd.	2010
2.	Apostol, T. M., Mathematical Analysis, Narosa Publishing House.	2002
3.	Lang. S., Real and Functional Analysis, Springer-Verlag.	1993
4.	Rudin. W., Principles of Mathematical Analysis, McGraw-Hill Book Company.	1976
5.	Goldberg, R.R., Methods of Real Analysis, Oxford and IBH Publishing company Pvt. Ltd.	1970

NAME OF DEPTT./CENTRE:		Departm	ent of Mat	hematics		
1.	Subject Code: MAN	-106	Course	e Title: D	ata Structur	es
2.	Contact Hours:	L: 3	T: 0		P: 2	
3.	Examination Duration	(Hrs.):	Theory: 3		Practical: 0	
4.	Relative Weightage:	CWS: 15	PRS: 25	MTE: 20	ETE: 40	PRE: 0
5.	Credits: 4	6. Semeste	er: Spring	7. S	ubject Area:	DCC

- 6. Pre-requisite: Nil
- 9. Objective: To impart the knowledge of basic Data Structures such as Arrays, Stacks, Queues, Linked Lists, Trees, lists and Graphs.

S. No.	Contents	Contact Hours
1	Introduction to data structures. Arrays: One and two dimensional	3
	arrays, storage allocations. String representation. Implementation	
	of abstract data types (ADT).	
2	Stacks: LIFO structure, push, pop, create, delete and empty stack.	5
	Queues: FIFO structure, operations on queues, priority queues,	
	circular queues. Linear lists, list v/s array, internal pointer &	
	external pointer, head, tail of a list, null list, length of a list.	
3	Linked Lists: nodes, linked list data structure, algorithms: insert,	8
	delete and retrieve node, create, search, print, append linked list,	
	array of linked lists, header nodes, circularly-linked list, doubly	
	linked list: insertion, deletion.	
4	Binary trees: definition, array, linked and threaded	6
	representations, traversal, (Pre, Post and Symmetric order),	
	expression trees (Infix, Prefix and Postfix).	
5	Sorting: Selection sort, bubble sort, exchange sort, quick sort,	8
	heap sort and merge sort. Analysis of sorting techniques.	
	Searching: sequential search, binary search, search trees AVL	
	trees, M-way search trees, B trees, hash tables, hashing functions,	
	collision resolution techniques.	
6	General lists: Representations, operations, dynamic storage	4
	management, garbage collection, compaction.	
7	Graphs: array and linked representation, operations: add, delete	8
	and find vertex, add, delete edge, traverse graph (depth-first,	
	breadth-first). Networks: minimum spanning tree, shortest path	
	algorithm (Dijkstra's algorithm and Kruskal's algorithm).	
	Total	42

11. List of Data Structure Practical

Write C++ programs to implement the following:

- 1. Traversal, insertion, deletion in a linear array.
- 2. Stacks using arrays.
- 3. Linear Queue using arrays.
- 4. Circular Queue using arrays
- 5. Stacks and Queues using linked list.
- 6. Singly Linked circular List.
- 7. Doubly Linked List.
- 8. Polynomial Arithmetic using linked list.
- 9. Binary Tree Traversal (pre, post and symmetric order)
- 10. Sequential Search and Binary Search.
- 11.Binary Search Tree.
- 12.Insertion sort, Exchange sort, Selection sort
- 13.Quick sort.
- 14.Heap Sort.
- 12. Suggested Books:

S. No.	Name of Authors / Books / Publishers	Year of
		Publication/
		Reprint
1	Langman, Y., Augenstein, M.; Tennenbaum A.M. Data Structure	1998
	Using C and C++. Prentice Hall of India.	
2	Sahni S., Data Structures Algorithms and Applications in C++,	2005
	McGraw Hill	
3	Dale N., C++ Plus Data Structures. Narosa Publications.	2000
4	Tenenbaum A. M., Data Structures Using C, Pearson Edn, India.	1990
5	Kruse Robert L., Ryba Alexander J., Data Structures and Program	1998
	Design in C++	

NAME OF DEPTT./CENTRE:		D	epartment of	Mathematics	
1. Subject Code: MAN-2	201	Course Title:	Complex An	alysis-I	
2. Contact Hours: L: 3		T: 1	P: 0		
3. Examination Duration (Hrs.):		Theory: 3		Practical: 0	
4. Relative Weightage: C	CWS: 25	PRS: 0	MTE: 25	ETE: 50	PRE: 0
5. Credits : 4	6. Sen	nester: Autumr	n 7. Sul	oject Area: DCC	

8. Pre-requisite: Nil

9. Objective: To provide knowledge about the analytical aspects of functions of one complex variable.

 Introduction: Algebra of Complex Numbers, inequalities. Stereographic Projection, Topological structure of Complex Plane, Simply connected and multiply connected domains. Analytic Functions: Functions of a complex variable. Limits, continuity, uniform continuity, differentiability and analyticity of functions, C-R equations, necessary and sufficient conditions, applications to the problems of potential flow, Harmonic functions, Harmonic conjugates, Milne's method. Sequences, Series, Uniform convergence, power series, Hadamard's formula for the radius of convergence, elementary functions, exponential, trigonometric and hyperbolic functions and their identities in the complex plane, multiple valued functions, logarithmic functions and functions with complex exponent. Complex integration: Rectifiable arcs, contours, complex line integration, Cauchy's theorem for simply and multiply connected domains, Cauchy's integral formula for the derivatives of an analytic function, Winding Numbers, Cauchy's estimate, Morera's theorem, Liouville's theorem, Fundamental theorem of Algebra. Maximum modulus principle, Schwarz Lemma, Taylor series, Laurent series, Zeros and poles of a function, 	2 10
 and multiply connected domains. Analytic Functions: Functions of a complex variable. Limits, continuity, uniform continuity, differentiability and analyticity of functions, C-R equations, necessary and sufficient conditions, applications to the problems of potential flow, Harmonic functions, Harmonic conjugates, Milne's method. Sequences, Series, Uniform convergence, power series, Hadamard's formula for the radius of convergence, elementary functions, exponential, trigonometric and hyperbolic functions and their identities in the complex plane, multiple valued functions, logarithmic functions and functions with complex exponent. Complex integration: Rectifiable arcs, contours, complex line integration, Cauchy's theorem for simply and multiply connected domains, Cauchy's integral formula for the derivatives of an analytic function, Winding Numbers, Cauchy's estimate, Morera's theorem, Liouville's theorem, Fundamental theorem of Algebra. Maximum modulus principle, Schwarz 	10
 2. Analytic Functions: Functions of a complex variable. Limits, continuity, uniform continuity, differentiability and analyticity of functions, C-R equations, necessary and sufficient conditions, applications to the problems of potential flow, Harmonic functions, Harmonic conjugates, Milne's method. Sequences, Series, Uniform convergence, power series, Hadamard's formula for the radius of convergence, elementary functions, exponential, trigonometric and hyperbolic functions and their identities in the complex plane, multiple valued functions, logarithmic functions and functions with complex exponent. 3. Complex integration: Rectifiable arcs, contours, complex line integration, Cauchy's theorem for simply and multiply connected domains, Cauchy's integral formula for the derivatives of an analytic function, Winding Numbers, Cauchy's estimate, Morera's theorem, Liouville's theorem, Fundamental theorem of Algebra. Maximum modulus principle, Schwarz 	10
 uniform continuity, differentiability and analyticity of functions, C-R equations, necessary and sufficient conditions, applications to the problems of potential flow, Harmonic functions, Harmonic conjugates, Milne's method. Sequences, Series, Uniform convergence, power series, Hadamard's formula for the radius of convergence, elementary functions, exponential, trigonometric and hyperbolic functions and their identities in the complex plane, multiple valued functions, logarithmic functions and functions with complex exponent. Complex integration: Rectifiable arcs, contours, complex line integration, Cauchy's theorem for simply and multiply connected domains, Cauchy's integral formula for the derivatives of an analytic function, Winding Numbers, Cauchy's estimate, Morera's theorem, Liouville's theorem, Fundamental theorem of Algebra. Maximum modulus principle, Schwarz 	10
 equations, necessary and sufficient conditions, applications to the problems of potential flow, Harmonic functions, Harmonic conjugates, Milne's method. Sequences, Series, Uniform convergence, power series, Hadamard's formula for the radius of convergence, elementary functions, exponential, trigonometric and hyperbolic functions and their identities in the complex plane, multiple valued functions, logarithmic functions and functions with complex exponent. Complex integration: Rectifiable arcs, contours, complex line integration, Cauchy's theorem for simply and multiply connected domains, Cauchy's integral formula for the derivatives of an analytic function, Winding Numbers, Cauchy's estimate, Morera's theorem, Liouville's theorem, Fundamental theorem of Algebra. Maximum modulus principle, Schwarz 	
 problems of potential flow, Harmonic functions, Harmonic conjugates, Milne's method. Sequences, Series, Uniform convergence, power series, Hadamard's formula for the radius of convergence, elementary functions, exponential, trigonometric and hyperbolic functions and their identities in the complex plane, multiple valued functions, logarithmic functions and functions with complex exponent. Complex integration: Rectifiable arcs, contours, complex line integration, Cauchy's theorem for simply and multiply connected domains, Cauchy's integral formula for the derivatives of an analytic function, Winding Numbers, Cauchy's estimate, Morera's theorem, Liouville's theorem, Fundamental theorem of Algebra. Maximum modulus principle, Schwarz 	
 Milne's method. Sequences, Series, Uniform convergence, power series, Hadamard's formula for the radius of convergence, elementary functions, exponential, trigonometric and hyperbolic functions and their identities in the complex plane, multiple valued functions, logarithmic functions and functions with complex exponent. Complex integration: Rectifiable arcs, contours, complex line integration, Cauchy's theorem for simply and multiply connected domains, Cauchy's integral formula for the derivatives of an analytic function, Winding Numbers, Cauchy's estimate, Morera's theorem, Liouville's theorem, Fundamental theorem of Algebra. Maximum modulus principle, Schwarz 	
 Hadamard's formula for the radius of convergence, elementary functions, exponential, trigonometric and hyperbolic functions and their identities in the complex plane, multiple valued functions, logarithmic functions and functions with complex exponent. Complex integration: Rectifiable arcs, contours, complex line integration, Cauchy's theorem for simply and multiply connected domains, Cauchy's integral formula for the derivatives of an analytic function, Winding Numbers, Cauchy's estimate, Morera's theorem, Liouville's theorem, Fundamental theorem of Algebra. Maximum modulus principle, Schwarz 	
 exponential, trigonometric and hyperbolic functions and their identities in the complex plane, multiple valued functions, logarithmic functions and functions with complex exponent. Complex integration: Rectifiable arcs, contours, complex line integration, Cauchy's theorem for simply and multiply connected domains, Cauchy's integral formula for the derivatives of an analytic function, Winding Numbers, Cauchy's estimate, Morera's theorem, Liouville's theorem, Fundamental theorem of Algebra. Maximum modulus principle, Schwarz 	
 the complex plane, multiple valued functions, logarithmic functions and functions with complex exponent. Complex integration: Rectifiable arcs, contours, complex line integration, Cauchy's theorem for simply and multiply connected domains, Cauchy's integral formula for the derivatives of an analytic function, Winding Numbers, Cauchy's estimate, Morera's theorem, Liouville's theorem, Fundamental theorem of Algebra. Maximum modulus principle, Schwarz 	
functions with complex exponent.3.Complex integration: Rectifiable arcs, contours, complex line integration, Cauchy's theorem for simply and multiply connected domains, Cauchy's integral formula for the derivatives of an analytic function, Winding Numbers, Cauchy's estimate, Morera's theorem, Liouville's theorem, Fundamental theorem of Algebra. Maximum modulus principle, Schwarz	
3. Complex integration: Rectifiable arcs, contours, complex line integration, Cauchy's theorem for simply and multiply connected domains, Cauchy's integral formula for the derivatives of an analytic function, Winding Numbers, Cauchy's estimate, Morera's theorem, Liouville's theorem, Fundamental theorem of Algebra. Maximum modulus principle, Schwarz	
Cauchy's theorem for simply and multiply connected domains, Cauchy's integral formula for the derivatives of an analytic function, Winding Numbers, Cauchy's estimate, Morera's theorem, Liouville's theorem, Fundamental theorem of Algebra. Maximum modulus principle, Schwarz	8
integral formula for the derivatives of an analytic function, Winding Numbers, Cauchy's estimate, Morera's theorem, Liouville's theorem, Fundamental theorem of Algebra. Maximum modulus principle, Schwarz	
Fundamental theorem of Algebra. Maximum modulus principle, Schwarz	
Lemma Taylor series Laurent series Zeros and poles of a function	
Meromorphic function.	
4. Residue Calculus: The residue at a singularity, Residue theorem, the	6
argument principle, Rouche's theorem, contour integration and its	
applications to improper integrals, evaluation of a real integrals, improper integrals, involving, since, and assince, definite integrals, involving, since	
integrals involving sines and cosines, definite integrals involving sines	
and cosines, integration through branch cut.5.Conformal Mapping: Definition of Conformal and Bilinear	7
transformations, Cross ratio, the mappings from disc to disc, disc to half	1
plane and half plane to half plane. Mapping of elementary	
transformations.	

6.	Applications: Applications of conformal mapping to steady temperature,	9
	electrostatic potential, two-dimensional fluid flow, stream function.	
	Schwarz-Christoffel transformations and their applications, Poisson	
	formula, Dirichlet problem in the unit disc, Dirichlet problem in the half	
	plane, Neumann problem for the disc and the half plane.	
	Total	42

S. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	Churchill, J. W. and Brown, R. V., "Complex Analysis", Mcgraw-	2009
	Hill.	
2.	Gamelin, T. W., "Complex Analysis", Springer-Verlag	2001
3.	Greene R., and Krantz, S. G., "Function Theory of One Complex	2006
	Variable", 3rd Edition, GSM, Vol. 40, American Mathematical	
	Society.	
4.	Kreyszig, E., "Advanced Engineering Mathematics", Wiley, New	2009
	York	
5.	Lang, S., "Complex Analysis", Springer –Verlag.	2003
6.	Mathews, J. H. and Howell, R. W., "Complex Analysis for	2009
	Mathematics and Engineering", Narosa	

NAME OF DEPTT./CENTRE:		Department of Mathematics			
1. Subject Code: MAN	N-202	Course Title:	Transform 7	Fechniques	
2. Contact Hours: L	<i>a</i> : 3	T: 1		P: 0	
3. Examination Duration	n (Hrs.):	Theory: 3	Pr	actical: 0	
4. Relative Weightage:	CWS: 25	PRS:0	MTE: 25	ETE: 50	PRE: 0
5. Credits: 4 6. Semes		ster: Spring	-	7. Subject Area:	DCC

8. Pre-requisite: Nil

9. Objective: To provide knowledge of various mathematical transformations and their applications.

S. No.	Contents	Contact Hours
1.	Laplace Transform: Laplace of some standard functions, Existence	10
	conditions for the Laplace Transform, Shifting theorems, Laplace	
	transform of derivatives and integrals, Inverse Laplace transform and their	
	properties, Convolution theorem, Initial and final value theorem, Laplace	
	transform of periodic functions, error functions, Heaviside unit step	
	function and Dirac delta function, Applications of Laplace transform to	
	solve ODEs and PDEs.	
2.	Finite Laplace Transform: Definition and properties, Shifting and	5
	scaling theorem.	
3.	Z-Transform: Z-transform and inverse Z-transform of elementary	5
	functions, Shifting theorems, Convolution theorem, Initial and final value	
	theorem, Application of Z-transforms to solve difference equations.	
4.	Hankel Transform: Basic properties of Hankel Transform, Hankel	4
	Transform of derivatives, Application of Hankel transform to PDE.	
5.	Mellin Transform: Definition and properties of Mellin transform,	5
	Shifting and scaling properties, Mellin transforms of derivatives and	
	integrals, Applications of Mellin transform.	
6.	Fourier series: Trigonometric Fourier series and its convergence. Fourier	5
	series of even and odd functions, Gibbs phenomenon, Fourier half-range	
	series, Parseval's identity, Complex form of Fourier series.	
7.	Fourier Transforms: Fourier integrals, Fourier sine and cosine integrals,	8
	Complex form of Fourier integral representation, Fourier transform,	
	Fourier transform of derivatives and integrals, Fourier sine and cosine	
	transforms and their properties, Convolution theorem, Application of	
	Fourier transforms to Boundary Value Problems.	
	Total	42

S. No.	Name of Authors / Books / Publishers	Year of Publication/
		Reprint
1.	Kreyszig, E., "Advanced Engineering Mathematics", John Wiley	2011
	& Sons	
2.	Jain, R. K. and Iyenger, S. R. K., "Advanced Engineering	2009
	Mathematics", Narosa Publishing House	
3.	Hildebrand F. B., "Methods of Applied Mathematics", Courier	1992
	Dover Publications	
4.	Debanth L. and Bhatta D., Integal Tranforms and Their	2007
	Applications, 2 nd edition, Taylor and Francis Group	

NAME OF DEPTT./CENTRE:		Department of Mathematics			
1. Subject Code: MAN	N-203	Course Title:	Discrete Mat	hematics	
2. Contact Hours: L	.: 3	T: 1		P: 0	
3. Examination Duration	n (Hrs.):	Theory 3	Pra	actical0	
4. Relative Weightage:	CWS: 25	PRS: 0	MTE: 25	ETE: 50	PRE: 0
5. Credits: 4	6. Ser	mester: Autum	n 7. Sub	ject Area : DCC	

8. Pre-requisite: Nil

9. Objective: To provide the basic knowledge about discrete mathematics.

S. No.	Contents	Contact Hours
1	Logic and Proofs: Proposition, predicate logic, logic connectives, methods of proofs. Mathematical induction	06
2	Relation and Function: Definitions and properties, pigeonhole principle, extended pigeonhole principle, equivalence relations and equivalence classes. representation of relations by binary matrices and digraphs; operations on relations. closure, Warshall's algorithm, discrete numeric functions, growth of functions, big O, big Θ , hash function.	10
3	Partial Order Relations: Partially ordered sets, lattices, isomorphism of lattices	05
4	Boolean algebra and Boolean functions, different representations of Boolean functions, application of Boolean functions to synthesis of circuits, circuit minimization and simplification, Karnaugh map.	08
5	Languages and grammars, Finite state machines, Finite state automata.	05
6	Recurrence Relation: Linear recurrence relations with constant coefficients, homogeneous and non-homogeneous relations, discussion of several special cases to obtain particular solutions. Generating functions, solution of linear recurrence relations using generating functions. Some recursive algorithms.	08
	Total	42

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Kenneth, K. R., Discrete Mathematics and its Applications, 7 th Ed.,	2012
	Tata McGraw Hill,	
2.	Liu, C. L., Elements of Discrete Mathematics, Tata McGraw Hill	2007
3.	Johnsonbaugh, R., Discrete Mathematics, 6 th Ed., Maxwell	2006
	Macmillan International	
4.	Mott, J.L., Kandel, A. and Baker, T.P., Discrete Mathematics for	2001
	Computer Scientists and Mathematicians, Prentice Hall India Pvt Ltd	
5.	Kolman, B., Busby, R. and Ross, S.C., Discrete Mathematical Structure, 6 th Ed., Pearson	2008

Name of Department:		Department of Mathematics			
Subject Code: MAN-204		Course Title: Database Management Syster			Systems
 Contact Hours: L: Examination Duration 	3 (Hrs.):	T: 1 Theory: 3	Pr	P: 0 actical: 0	
4. Relative Weightage:	CWS: 25	PRS: 0	MTE: 25	ETE: 50	PRE: 0
5. Credits: 4 6. Sem		nester: Spring	7. Su	bject Area: DC	2

8. Pre-requisite: A course on Programming languages

9. Objective: To impart the knowledge of basic Data Base Management Systems

S. No.	Contents	Contact Hours
1	Purpose of Database System, Views of data, Data Models,	8
	Database Languages-Database System Architecture, Database	
	users and Administrator, Entity Relationship model (E-R model)	
	– E-R Diagrams, Introduction to relational databases.	
2	The relational Model – The catalog Types, Keys, Relational	10
	Algebra, Domain Relational Calculus, Tuple Relational	
	Calculus, Fundamental operations, Additional Operations, SQL	
	fundamentals - Integrity, Triggers, Security, Advanced SQL	
	features, Embedded SQL, Dynamic SQL, Missing Information,	
	Views, Introduction to Distributed Databases and Client/Server	
	Databases.	
3	PL/SQL- Basic and Advanced Concepts.	8
4	Functional Dependencies – Non-loss Decomposition, Functional	8
	Dependencies – First, Second, Third Normal Forms, Dependency	
	Preservation, Boyce/Codd Normal Form, Multi-valued	
	Dependencies and Fourth Normal Form – Join Dependencies and	
	Fifth Normal Form.	
5	Transaction Concepts - Transaction Recovery, ACID Properties,	8
	System Recovery, Media Recovery, Two Phase Commit, Save	
	Points - SQL Facilities for recovery, Concurrency, Need for	
	Concurrency, Locking Protocols, Two Phase Locking, Intent	
	Locking, Deadlock, Serializability – Recovery Isolation Levels –	
	SQL Facilities, for Concurrency.	
	Total	42

S.No.	Name of Authors / Books / Publishers	Year of
		Publication/
		Reprint
1.	Silberschatz, A., Korth, H. F., Sudharshan, S., "Database System,	2011
	Concepts", Sixth Edition, Tata McGraw Hill	
2.	Date, C. J., Kannan, A., Swamynathan, S., "An Introduction to	2006
	Database Systems", Eighth Edition, Pearson Education	
3.	Elmasri, R. and Navathe, S. B., "Fundamentals of Database	2007
	Systems", FourthEdition, Pearson / Addision wesley	
4.	Bhattacharya, P. and Majumdar, A., "Introduction to Database	2001
	Management Systems", Tata McGraw Hill	
5.	Desai, B. C., "Introduction to Database Systems" West Group,	1990
	11 th Ed.	

NAME OF DEPTT./CE	NTRE:	Department	of Mathemati	CS		
1. Subject Code: MAN	N-205	Course Title:	Ordinary an	d Partial Diffe	rential Equat	ions
2. Contact Hours: I	: 3	T: 1		P: 0		
3. Examination Duration	n (Hrs.):	Theory:3	Pr	actical :0		
4. Relative Weightage:	CWS :25	PRS:0	MTE:25	ETE:50	PRE:0	
5. Credits:4	6. Ser	nester: Autumr	n 7. Sul	oject Area: DCC		

8. Pre-requisite: Nil

9. Objective: To provide basic concepts of differential equations and their solutions.

S. No.	Contents	Contact Hours
1.	Introduction to Differential Equations: Formation of differential equations. Basic definitions (linearity, order, homogeneous and non-homogeneous, explicit and implicit solution, general solution, particular solution). Existence and uniqueness theorem for linear ODE.	3
2.	Review of First order ODE: Separable equations, ODE with homogenous coefficients. Exact equations. Integrating factors. ODE with linear coefficients, Bernoulli equation.	2
3.	Second and Higher order ODE: Linear independence of functions, Wronskian and its basic properties. Solution of homogeneous and non-homogeneous linear ODE with constant coefficients using method of undetermined coefficients and inverse operator method. Equation with variable coefficients, Euler-Cauchy equations, Variation of parameters, Reduction of order. Solution of second order differential equations by changing dependent and independent variables.	8
4.	Series Solution: Power series solution of second order homogeneous ODE, ordinary points, singular points, Frobenius series solution, Legendre and Bessel's equation through examples. Elementary properties of Legendre polynomial and Bessel functions.	9
5.	Partial Differential Equations: Introduction, Curves and surfaces. Formation of PDE, Classification of solutions (Complete, general and singular).	2
6.	First order PDE: Classification of first order PDE, Lagrange's method to solve first order PDE. Integral surface passing through a given curve. Compatibility, Charpit's method to solve first order nonlinear PDE. Special types of first order PDE	9

7.	Second order PDE: Solutions of linear PDE with constant	9				
	coefficients using differential operators, reducible and irreducible non-					
	homogeneous linear PDE, Homogeneous linear PDE with constant					
	Total	42				

S.No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1	Simmons, G. F., "Differential Equations ", McGraw-Hill, 2 nd Edition	1991
2.	Hildebrand F. B., "Methods of Applied Mathematics", Courier Dover Publications	1992
3.	Tenenbaum, M. and Polard, H., "Ordinary Differential Equations", Dover Publications	1985
4.	Sneddon, I. N., "Elements of Partial Differential Equations", McGraw-Hill Book Company	1988
5.	Rao, K. S., "Introduction to Partial Differential Equations", PHI Learning Pvt. Ltd. (2 nd Edition)	2010
6.	Amarnath, T., "An Elementary Course in Partial Differential Equations", Narosa Publishing House (2 nd Edition)	2012

NAME OF DEPTT./CENTRE:		Department of Mathematics			
1. Subject Code: MAN	1-206	Course Title:	Graph Theor	·у	
 Contact Hours: L Examination Duration 	.: 3 n (Hrs.):	T: 1 Theory:3	Pra	P: 0 ectical:0	
4. Relative Weightage:	CWS: 25	PRS:0	MTE: 25	ETE:50	PRE:0
5. Credits: 4	6. Sen	nester: Spring	7. Sub	ject Area: DCO	C

8. Pre-requisite: Nil

9. Objective: To introduce the basic concepts of graph theory and its applications

S. No.	Contents	Contact Hours
1.	Introduction to Graphs: Definition of a graph, finite and infinite graphs, incidence of vertices and edges, types of graphs, subgraphs, walks, trails, paths, cycles, connectivity, components of a graph, Eulerian and Hamiltonian graphs, travelling salesman problem, vertex and edge connectivity, matrix representation of graphs, incidence and adjacency matrices of graphs.	10
2.	Trees and Fundamental Circuits: Definition and properties of trees, rooted and binary trees, counting trees, spanning trees, weighted graphs, minimum spanning tree, fundamental circuit, cut set, separability, network flows.	8
3.	Vector Spaces Associated with Graphs: Galois fields, Vector spaces associated with graphs, orthogonal vectors and spaces.	4
4.	Planar Graphs and Graph coloring: Planar graphs, Kuratowski's graphs, detection of planarity, Euler's formula for planar graphs, geometric and combinatorial duals of a planar graphs, coloring of graphs, chromatic numbers, chromatic polynomial, chromatic partitioning, Four color theorem.	7
5.	Directed Graphs: Types of digraphs, digraphs and binary relations, directed paths and connectedness, Euler digraphs, de Brujin sequences, tournaments	5
6.	Ramsey Theory: Introduction to Ramsey theory, Ramsey numbers, Ramsey theorem.	3
7.	Enumerations: Types of enumerations, Polya theory of enumeration and its applications.	5
	Total	42

S.No.	Name of Authors / Books / Publishers	Year of
		Publication/
		Reprint
1.	Deo N., "Graph Theory with Applications to Engineering and Computer	2004
	Science", Prentice Hall India	
2.	West D. B., "Introduction to Graph Theory ", Prentice Hall India (2nd Ed.)	2009
3.	Clark J. and Holton J. A., "A First Look at Graph Theory", World Scientific	1991
4.	Wilson R. J., "Introduction to Graph Theory", Pearson Education (4th Ed.)	1996
5.	Chartrand G. and Zhang P., "Introduction to Graph Theory", Tata McGraw Hill	2007
6.	Aldous J. M., Wilson R. J. and Best S., "Graphs and Applications: An	2003
	Introductory Approach", Springer	
7.	Deistel R., "Graph Theory", Springer (4th Ed.)	2010
8.	Bondy J. A. and Murty U. S. R., "Graph Theory", Springer	2011

NAME OF DEPTT./CENTR:		Department of Mathematics			
1. Subject Code: MAN	291	Course T	itle: Design a	nd Analysis of Al	gorithms
2. Contact Hours: I	.: 3	Т:	0	P: 0	
3. Examination Duratio	n (Hrs.):	Theory:3		Practical:0	
4. Relative Weightage:	CWS: 25	PRS: 0	MTE: 25	ETE: 50	PRE:0
5. Credits : 3	6. Sei	mester: Autu	ımn 7.	Subject Area: DC	CC

8. Pre-requisite: Nil

9. Objective: To introduce fundamentals of algorithms, their analysis and complexity issues.

S. No.	Contents	Contact Hours
1.	Notion of algorithm, pseudo code conventions, Performance analysis, Time and space complexities, Asymptotic notation, Big oh notation, omega notation, theta notation, Average and worst case analysis, Probabilistic analysis, Amortized analysis.	5
2.	Recurrence relations, Divide and conquer relations, Solving of recurrences by iteration method and substitution method, Master theorem, Binary search algorithm, Merger sort, Quick sort, Strassen's matrix multiplication method.	9
3.	Greedy strategy, Huffman coding algorithm, Data structures of disjoint sets, Complexity analysis of Depth first search, Breadth first search, Prim's algorithm, Kruskal's algorithm, Dijkstra's and Bellman-Ford algorithms, Knapsack problem, Warshall's and Floyd's algorithms.	12
4.	Introduction to dynamic programming, Principle of optimality, Optimal binary search trees, Matrix-chain multiplication, Longest common subsequence.	7
5.	String matching, The naive string matching algorithm, The Rabin-Karp algorithm	3
6.	Introduction to computability, Reducibility, Polynomial-time verification, NP-completeness, NP-complete problems.	6
	Total	42

11. Suggested References/Books:

S.No.	Name of Authors / Books / Publishers	Year of Publication/
		Reprint
1.	Cormen T. H., Leiserson C. E., Rivest R. L. and Stein C., "Introduction to	2004
	Algorithms", Prentice Hall India, (3 rd Edition)	
2.	Aho A. V., Hopcroft J. E. and Ullman J. D., "The Design and Analysis of	2002
	Computer Algorithms", Pearson Education	
3.	Horowitz E., Sahni S. and Rajasekaran S., "Fundamentals of Computer	2006
	Algorithms", Orient Longman	
4.	Kleinberg J. and Tardos E., "Algorithm Design", Pearson Education	2008
5.	Levitin A., "Introduction to the Design and Analysis of Algorithm", (2 nd	2003
	edition) Pearson Education	

NAME OF DEPTT./CE	ENTRE:	Department	of Mathem	atics	
1. Subject Code: MAN	-208	Course Title:	Number 7	Theory	
2. Contact Hours: I	2:3	T: 1		P: 0	
3. Examination Duratio	n (Hrs.):	Theory:3		Practical :0	
4. Relative Weightage:	CWS:25	PRS:0	MTE:25	ETE:50	PRE:0
5. Credits: 4	6. Sem	nester: Spring	7.	Subject Area: DC	С

8. Pre-requisite: Nil

9. Objective: To give an introduction of basic concepts of Number Theory.

S. No.	Contents	Contact Hours
1.	Divisibility, Euclidean algorithm, Linear Diophantine equations, Prime numbers, Fundamental theorem of arithmetic, Prime number theorem (statement only).	7
2.	Congruences, solutions of linear congruences, Chinese Remainder Theorem, Euler's totient function, Euler-Fermat theorem, Wilson's theorem, non-linear congruences, Hensel's lemma, primitive roots and power residues.	12
3.	Quadratic residues, quadratic reciprocity, the Jacobi symbols.	7
4.	The greatest integer function, Arithmetic functions, Mobius function and Mobius inversion formula.	6
5.	Finite continued fractions, infinite continued fractions, approximation to irrational numbers.	6
6.	Introduction to cryptography, public key cryptography, RSA.	4
	Total	42

S.No.	Name of Authors / Books / Publishers	Year of
		Publication/
		Reprint
1.	Niven I., Zuckerman H. S., and Montgomery H. L., "An Introduction to the Theory	1991
	of Numbers", John Wiley & Sons (5 th Ed.)	
2.	Hardy, G., H. and Wright, E. M, "An Introduction to the Theory of Numbers ",	2008
	Oxford University Press (6 th Ed.)	
3.	Burton D., M., "Elementary Number Theory", McGraw Hill (7th Ed.)	2010
4.	Andrews G. E., "Number Theory", Dover Publications	1994
5.	Koblitz N., A Course in Number Theory and Cryptography, Springer (2 nd Ed.)	1994

NAME OF DEPTT./CENTRE:		Department of Mathematics			
1. Subject Code: MAN-301		Course Title:	Title: Abstract Algebra I		
2. Contact Hours:	L: 3	T: 1		P: 0	
3. Examination Duration (Hrs.):		Theory:3	Practical:0		
4. Relative Weightag	e: CWS:25	PRS:0	MTE:25	ETE:50 P	RE:0
5. Credits:4 6. Sem		nester: Autumn		7. Subject Area: DCC	

8. Pre-requisite: Nil

9. Objective: To introduce the basic concepts of abstract algebra.

S. No.	Contents	Contact Hours
1.	Group theory: Definition and some examples of groups, some preliminary lemmas, subgroups, a counting principle, normal subgroups and Quotient groups.	12
2.	Homomorphisms, automorphisms, Cayley's theorem, permutation groups, Sylow's theorems.	11
3.	Ring theory: Definition and examples of Rings, some special classes of Rings, homomorphisms, Ideal and Quotient rings, Maximal Ideal, Integral domain, Principal Ideal domain, unique factorization domain.	11
4.	Definition of field and some examples, the field of Quotients of an Integral domain, Euclidean rings, polynomial rings.	8
	Total	42

S.No.	Name of Authors / Books / Publishers	Year of
		Publication/
		Reprint
1.	Herstein, I. N., "Topics in Algebra", 2 nd Ed., John Wiley & Sons.	2004
2.	Fraleigh, J. B., "A First Course in Abstract Algebra", 7th Ed., Pearson	2003
	Education	
3.	Dummit, D. S. and Foote, R. M., "Abstract Algebra", 3 rd Ed., John Wiley	2004
	& Sons.	
4.	Artin M., "Algebra", 2 nd Ed., Prentice Hall India	2011
5.	Gallian J. A., "Contemporary Abstract Algebra", 8th Ed., Cengage	2013
	Learning	

NAME OF DEPTT./CENTRE:		Department of Mathematics			
1. Subject Code: MAN-	302	Course Title:	Mathematic	al Modeling and	Simulation
2. Contact Hours: L	: 3	T: 1		P: 0	
3. Examination Duration	(Hrs.):	Theory:3	Pr	actical:0	
4. Relative Weightage:	CWS:25	PRS:0	MTE:25	ETE:50	PRE:0
5. Credits:4	6. Sen	nester: Spring	7. Su	bject Area: DCC	

8. Pre-requisite: Nil

9. Objective: To develop basic understanding of modeling and simulation techniques.

S. No.	Contents	Contact Hours
1.	What is Mathematical Modeling? History of Mathematical Modeling,	4
	latest development in Mathematical Modeling, Merits and Demerits of	
	Mathematical Modeling.	
2.	Introduction to difference equations, Non-linear Difference equations,	14
	Steady state solution and linear stability analysis.	
	Introduction to Discrete Models, Linear Models, Growth models,	
	Decay models, Newton's Law of Cooling, Bank Account Problem and	
	mortgage problem, Drug Delivery Problem, Harrod Model of	
	Economic growth, War Model, Lake pollution model, Alcohol in the	
	bloodstream model, Arm Race models, Linear Prey-Predator models,	
	Density dependent growth models with harvesting, Numerical solution	
	of the models and its graphical representation using EXCEL.	
3.	Introduction to Continuous Models, Carbon Dating, Drug Distribution	14
	in the Body, Growth and decay of current in a L-R Circuit, Horizontal	
	Oscillations, Vertical Oscillations, Damped Force Oscillation,	
	Dynamics of Rowing, Combat Models, Mathematical Model of	
	Influenza Infection (within host), Epidemic Models (SI, SIR, SIRS,	
	SIC), Spreading of rumour model, Steady State solutions,	
	Linearization and Local Stability Analysis, logistic and gomperzian	
	growth, prey-predator model, Competition models, Numerical	
	solution of the models and its graphical representation using EXCEL.	
4.	Fluid flow through a porous medium, heat flow through a small thin	10
	rod (one dimensional), Wave equation, Vibrating string, Traffic flow,	
	Theory of Car-following, Crime Model, Linear stability Analysis: one	
	and two species models with diffusion, Conditions for diffusive	
	instability with examples.	
	Total	42

S. No.	Name of Books / Authors/ Publishers	Year of Publication/ Reprint
1.	Albright, B., "Mathematical Modeling with Excel", Jones and Bartlett	2010
	Publishers.	
2.	Marotto, F. R., "Introduction to Mathematical Modeling using Discrete	2006
	Dynamical Systems", Thomson Brooks/Cole.	
3.	Kapur, J. N., "Mathematical Modeling", New Age International	2005
4.	Barnes, B. and Fulford, G. R., "Mathematical Modelling with Case	2009
	Studies", CRC Press, Taylor and Francis Group.	
5.	Edsberg, L., "Introduction to Computation and Modeling for	2008
	Differential Equations", John Wiley and Sons.	

NAME OF DEPTT./CENTRE:		Department of Mathematics			
1. Subject Code: MAN	N-303	Course Title:	Mathema	ntical Statistics	
2. Contact Hours: L	.: 3	T: 1		P: 0	
3. Examination Duration	n (Hrs.):	Theory: 3		Practical:0	
4. Relative Weightage:	CWS:25	PRS:0	MTE:25	ETE:50	PRE:0
5. Credits:4	6. Sen	nester: Autum	n 7.	Subject Area: DC	C

8. Pre-requisite: : Nil

9. Objective: To impart the knowledge of basics of mathematical statistics.

S. No.	Contents	Contact Hours
1	Concept of probability, random variable and distribution function: discrete	6
	and continuous distributions, moments and moment generating functions.	
2	Some discrete distributions: Binomial, Poisson, Negative binomial,	6
	Geometric, Hypergeometric.	
3	Some continuous distributions: Uniform, Exponential, Gamma, Normal,	8
	Lognormal, Beta, Weibull, Cauchy, Pareto.	
4	Bivariate random variables: joint, marginal, conditional distribution.	10
	Statistical independence, product moment, correlation, regression,	
	transformation of random variables, distribution of distribution function.	
5	Law of large numbers, central limit theorem.	04
6	Simple random sampling with replacement and without replacement, mean	08
	and variance of sample mean and variance, parameter and statistics, order	
	statistics and distribution of order statictics, fundamental sampling	
	distribution from normal population viz. χ^2 , t, f and Z (central)	
	TOTAL	42

S.No.	Name of Books / Authors/ Publishers	Year of Publication/Reprint
1.	Miller, I. and Miller, M., "Freund's Mathematical Statistics with	2006
	Applications", Prentice Hall PTR, 7 th Ed.	
2.	Hogg, R. V. and Craig, A., "Introduction to Mathematical Statistics",	2006
	Pearson Education, 6 th Ed.	
3.	Rohatgi, V. K. and Md. Ehsanes Saleh, A. K., "An Introduction to	2000
	Probability and Statistics", John Wiley and Sons, 2 nd edition.	
4.	Papoulis, A., Pillai, S.U., Probability, "Random Variables and	2002
	Stochastic Processes", Tata McGraw-Hill, 4 th Ed.	
5.	Bhatt B.R., "Modern Probability Theory", New Age International Ltd,	1999
	3 rd Ed.	

NAME OF DEPTT./CE	NTRE:	Departmen	t of Mathen	natics	
1. Subject Code: MAN-	304	Course Title	: Theory o	f Computation	
2. Contact Hours: L	.: 3	T: 1		P: 0	
3. Examination Duration	n (Hrs.):	Theory:3		Practical:0	
4. Relative Weightage:	CWS: 25	PRS:0	MTE: 25	ETE: 50	PRE:0
5. Credits: 4	6. Ser	mester: Spring	g 7.	Subject Area: DCC	

8. Pre-requisite: Nil

9. Objective: To introduce the theory of automata, languages and grammars.

S. No.	Contents	Contact Hours
1.	Basic definitions, deterministic and non-deterministic finite automata,	9
	regular languages, equivalence of deterministic and non-deterministic	
	finite automata, state equivalence and minimization, regular expressions,	
	equivalence of regular expressions and finite automata	
2.	Properties of regular languages, Pumping lemma, Grammars, Types of	6
	grammars	
3.	Context-free languages, parse tree, simplifications of context-free	6
	grammars, Chomsky normal form, Greibach normal form	
4.	Pushdown automata, deterministic and non-deterministic pushdown	6
	automata, equivalence of pushdown automata with context free languages	
5.	Properties of context-free languages, Pumping lemma for context-free	4
	languages	
6.	Turing machines, computable languages and functions, modifications of	6
	Turing machines	
7.	Computability and decidability, undecidable problems, Halting problem,	5
	Complexity classes: P, NP and NP complete	
	Total	42

S. No.	Name of Authors / Books / Publishers	Year of
		Publication/
		Reprint
1.	Hopcroft J. E., Motwani R. and Ullman J. D., "Introduction to automata Theory,	2008
	languages and Computation", Pearson Education (3 rd Ed.)	
2.	Sipser M., "Introduction to the Theory of Computation", Course Technology (2 nd	2012
	Ed.)	
3.	Lewis H. R. and Papadimitriou C. H., "Elements of the Theory of Computation",	1998
	Prentice Hall (2 nd Ed.)	
4.	Linz P., "An Introduction to Formal Languages and Automata", Jones and Bartlett	2012
	(5 th Ed.)	
5.	Kozen D., "Automata and Computability", Springer	1997
6.	Cohen D. I. A., "Introduction to Computer Theory", John Wiley & Sons (2 nd Ed.)	1996

NAME OF DEPTT./CEN	NTRE:	Department	of Mathema	itics	
1. Subject Code: MAN	-305	Course Title:	Linear Pro	ogramming	
2. Contact Hours: L:	3	T: 1		P: 0	
3. Examination Duration	(Hrs.):	Theory:3]	Practical:0	
4. Relative Weightage:	CWS: 25	PRS:0	MTE:25	ETE:50	PRE:0
5. Credits: 4	6. Sen	nester: Autumr	n 7. S	Subject Area: D	OCC

8. Pre-requisite: Nil

9. Objective: To acquaint students with the basic techniques of linear programming.

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Different Types of OR Models	2
2.	Convex Sets, Graphical Method, Simplex Method, Big – M Method,	11
	Two Phase Method, Revised Simplex Method	
3.	Duality Theory, Dual Simplex Method, Sensitivity Analysis, Parametric	9
	Linear Programming	
4.	Cutting Plane and Branch and Bound Techniques for all Integer and	5
	Mixed Integer Programming Problems,	
5.	Transportation Problems and Assignment Problems	5
6.	Graphical Method and Linear Programming Method for Rectangular	5
	Games, Saddle point, Notion of Dominance	
7.	CPM/ PERT	5
	TOTAL	42

S. No.	Name of Authors / Books / Publishers	Year of Publication/
		Reprint
1	Taha, H.A., "Operations Research: An Introduction", MacMillan Pub	2013
	Co., NY, 9 th Ed. (Reprint).	
2	Mohan, C. and Deep, K., "Optimization Techniques", New Age India	2009
	Pvt. Ltd, New Delhi.	
3	Mittal, K.V. and Mohan, C., "Optimization Methods in System Analysis	1996
	and Operations Research", New Age India Pvt. Ltd, New Delhi.	
4	Ravindran, A., Phillips, D.T. and Solberg, J.J., "Operations Research:	2012
	Principles and Practice", John Wiley and Sons, NY, 2 nd Ed. (Reprint).	
5	Pant, J.C., "Introduction to Optimization/Operations Research", Jain	2012
	Brothers, New Delhi, 2 nd Ed.	

NAME OF DEPTT./CENTRE:	Department	of Mathema	atics	
1. Subject Code: MAN-501	Course Title:	se Title: Theory of Ordinary Differential Equations		
2. Contact Hours: L: 3	T: 0		P: 0	
3. Examination Duration (Hrs.):	Theory:3	Practical:0		
4. Relative Weightage: CWS: 25	PRS:0	MTE:25	ETE:50	PRE:0
5. Credits: 3 6. Se	mester: Autum	n 7.5	Subject Area: D	CC

8. Pre-requisite: Nil

9. Objective: To introduce the theoretical concepts of ordinary differential equations.

S. No.	Contents	Contact Hours
1.	Existence, uniqueness and continuation of solutions of a differential equation and system of differential equations. Differential and integral inequalities. Fixed point methods.	9
2.	Linear systems, properties of homogeneous and non-homogeneous systems, behaviour of solutions of n^{th} order linear homogeneous equations.	7
3.	Review of power series, Power series solution of second order homogeneous equations, ordinary points, regular singular points, solution of Gauss hypergeometric equations, Hermite and Chebyshev polynomials.	8
4.	Boundary value problems for second order differential equations, Green's function and its applications. Eigen value problems, self adjoint form, Sturm –Liouvile problem and its applications.	8
6.	Autonomous systems, phase plane and its phenomenon, critical points and stability for linear and non linear systems, Liapunov's direct method, periodic solutions, limit cycle, the Poincare-Bendixson theorem.	10
	Total	42

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Braun, M. "Differential Equations and Their Applications", 4 th Ed., Springer	2011
2.	Brauer, F. and Nohel, J.A., "The Qualitative Theory of Ordinary Differential Equations", Dover Publications	1989
3.	Coddington E.A., "Ordinary Differential Equations", Tata McGraw Hill	2002
4.	Deo, S.G., Lakshmikantham, V., and Raghvendra, V.,"Text Book of Ordinary Differential Equations", 2 nd Ed., Tata McGraw Hill	2010
5.	Simmons G.F., "Ordinary Differential Equations with Applications", Tata McGraw Hill	2003

NAME OF DEPTT./CE	NTRE:	Department of Mathematics			
1. Subject Code: MAN-	502	Course Title:	Advanced 1	Numerical Analy	vsis
2. Contact Hours: L	.: 3	T: 1		P: 0	
3. Examination Duration (Hrs.):		Theory:3	Practical:0		
4. Relative Weightage:	CWS: 25	PRS:0	MTE:25	ETE:50	PRE:0
5. Credits:4	6. Sen	nester: Spring	7. S	ubject Area: DCO	C

8. Pre-requisite: Basic course in Numerical methods

9. Objective: To impart knowledge of numerical analysis in solving differential equations.

S. No.	Contents	Contact Hours
1.	Computations of Eigen Values of a Matrix: Power method for	10
	dominant, sub-dominant and smallest eigen-values, Method of	
	inflation, Jacobi, Givens and Householder methods for symmetric	
	matrices, LR and QR methods.	
2.	Initial Value Problems: Multistep methods, their error analysis and	6
	stability analysis	
3.	Inverse interpolation: Their developments and applications	4
4.	Finite Difference: Review of finite difference operators, finite	2
	difference methods.	
5.	Elliptic PDE: Five point formulae for Laplacian, replacement for	5
	Dirichlet and Neumann's boundary conditions, curved boundaries,	
	solution on a rectangular domain, block tri-diagonal form and its	
	solution using method of Hockney, condition of convergence	
6.	Parabolic PDE: Concept of compatibility, convergence and stability,	5
	Explicit, full implicit, Crank-Nicholson, du-Fort and Frankel scheme,	
	ADI methods to solve two-dimensional equations with error analysis.	
7.	Hyperbolic PDE: Solution of hyperbolic equations using FD, and	5
	Method of characteristics ,Limitations and Error analysis	
8.	Weighted residual methods: Collocation, least squares, Galerkins,	5
	Rayleigh-Ritz methods and their compatibility	
	TOTAL	42

S. No.	Name of Authors / Books / Publishers	Year of
		Publication/
		Reprint
1.	Gerald, C. F. and Wheatly P. O., "Applied Numerical Analysis", 6 th Ed.,	2002
	Addison-Wesley Publishing	
2.	Smith, G. D., "Numerical Solution of Partial Differential Equations",	2001
	Oxford University Press.	
3.	Jain, M. K., "Numerical Solution of Differential Equations", John Wiley.	1991
4.	Fausett, L. V., "Applied Numerical Analysis", Prentice Hall, 2 nd Ed.	2007
5.	Froberg, C. E., "Introduction to Numerical Analysis", 2 nd Ed., Addison	2004
	Wesley.	

NAME OF DEPTT./CENTRE:	Department of	of Mathemati	cs	
1. Subject Code: MAN-503	Course Title:	Real Analys	is-II	
2. Contact Hours: L: 3	T: 0		P: 0	
3. Examination Duration (Hrs.):	Theory:3	Pr	actical:0	
4. Relative Weightage: CWS: 2	25 PRS:0	MTE: 25	ETE:50	PRE:0
5. Credits :3 6.	Semester: Autumn	7. Su	bject Area: DC	CC
8. Pre-requisite: Nil				

9. Objective: To introduce some advanced topics in theory of real functions and metric spaces.

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Functions of several variables, invertible functions, Jacobian of a	6
	transformation, Inverse mapping theorem, Implicit function theorem	
2.	Riemann Stieltjes integrals, Existence and properties of the integrals,	12
	Fundamental theorem of calculus, first and second mean value theorems.	
3.	Introduction to the properties of general measure and measurable spaces,	5
	Borel Algebras, complete measure.	
4.	Lebesgue outer measure and measure on the real line, measurable sets	12
	and their properties, translation invariance and completeness of	
	Lebesgue measure, Lebesgue integral of a simple function, comparison	
	of Lebesgue and Riemann integrals	
5.	Review of complete metric spaces, compact metric spaces, compactness	7
	and uniform continuity and connected metric spaces.	
	TOTAL	42

S. No.		Year of
5. NO.	Name of Authors/ Books/Publishers	Publication/Reprint
1.	Aliprantis, C.D.and Burkinshaw, W., "Principles of Real	2011
	Analysis", Elsevier.	
2.	Apostol, T.M., "Mathematical Analysis", Narosa Publishing	2002
	House.	
3.	Barra, G.D., "Measure theory and Integration", Woodhead	2003
	Publishing.	
4.	Lang, S., "Real and Functional Analysis", Springer-Verlag.	1993
5.	Rana, I.K., "An Introduction to Measure and Integration",	2007
	Narosa Publishing House.	
6.	Rudin, W., "Principles of Mathematical Analysis", McGraw-	1976
	Hill Book Company.	

NAME OF DEPTT./C	ENTR:	Department	of Mathen	natics	
1. Subject Code:	MAN-504	Course Title	Abstract	Algebra II	
2. Contact Hours:	L: 3	T: 0		P: 0	
3. Examination Duration	on (Hrs.):	Theory: 3		Practical:0	
4. Relative Weightage:	CWS: 25	PRS:0	MTE: 25	ETE:50	PRE:0
5. Credits : 3	6. Sen	nester: Autum	in 7.	Subject Area: DCC	

8. Pre-requisite: Nil

9. Objective: To provide an exposure of the advanced topics in rings, modules and Field theory.

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Basic concepts of rings, Homomorphism and ideals, Euclidean domains,	6
	Principal ideal domains, Unique factorization domains.	
2.	Introduction to modules, Submodules, Quotient modules, Module	10
	homomorphism, Simple modules, Cyclic modules, Direct sum of modules,	
	Free modules, Finitely generated modules over principal ideal domains,	
	Fundamental theorem of Abelian groups.	
3.	Modules with chain conditions, Noetherian rings and modules, Hilbert basis	10
	theorem, Primary decomposition of ideals in Noetherian rings.	
4.	Field Extensions, Algebraic extensions, Splitting fields and algebraic	6
	closures, Normal and separable extensions.	
5.	Introduction to Galois theory, Fundamental theorem of Galois theory.	6
6.	Finite fields.	4
	Total	42

11. Suggested References/Books:

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Dummit, D. S. and Foote, R. M., "Abstract Algebra", John Wiley & Sons (3 rd Edition)	2003
2.	Bhattacharya, P. B., Jain, S. K. and Nagpaul, S. R., "Basic Abstract Algebra", Cambridge University Press (2 nd Ed.)	1995
3.	Hungerford, T. W., "Algebra", Springer	1980
4.	Lang S., "Algebra", Springer (3 rd Ed.)	2005
5.	Jacobson N., "Basic Algebra Vol. 1", Dover Publications (2 nd Ed.)	2009

NAME OF DEPTT./CI	ENTRE:	Department	of Mathemati	CS	
1. Subject Code: MAN	-505	Course Title:	Topology		
2. Contact Hours:	L: 3	T: 0		P: 0	
3. Examination Duratio	on (Hrs.):	Theory:3	Pr	actical: 0	
4. Relative Weightage:	CWS: 25	PRS:0	MTE: 25	ETE:50	PRE:0
5. Credits:3	6. Ser	mester: Autum	n 7. Sul	oject Area : DC	CC

8. Pre-requisite: Nil

9. Objective: To impart the knowledge of the basic concepts of Topology.

10. Details of Course:

S. No.	Contents	Contact Hours
1	Introduction: Finite, countable, uncountable sets, functions, relations,	2
	Axiom of choice, Zorn's Lemma	
2	Topological Spaces and Continuous functions: Open sets, closed sets,	14
	basis for a topology, Sub basis, T_1 and T_2 Spaces, Order topology, product topology, subspace topology, limit point, continuous function, general product topology, metric space and its Topology, quotient topology	
3	Connectedness and Compactness: Connected spaces, connected subspaces, Local connectedness, compact subspace, limit point compactness, Local compactness	12
4	Countability and Separation axiom: Countability axioms, separation axioms. Regular and Normal Spaces, Urysohn's Lemma, Urysohn metrization Theorem, Tietze Extension Theorem, Tychonoff Theorem	14
	Total	42

S.No.	Name of Authors / Books / Publishers	Year of
		Publication/
		Reprint
1.	Munkres, J.R., "Topology", 2 nd edition, PHI	2010
2.	Mansfield, M.J., "Introduction to Topology", East-West student Edition	1973
3.	Simmons, G.F., "Introduction to Topology & Modern Analysis", Krieger	2003
	Publishing Company.	
4.	Mendelson, B., "Introduction to Topology," 3rd Ed., Dover Publications	1988
5.	Gamelin, T.W. and Greene, R.E., "Introduction to Topology", 2 nd Ed., Dover	1999
	Publications	
6.	Min, Y., "Introduction to Topology: Theory & Applications", Higher Education	2010
	Press	

NAME OF DEPTT./CENTRE:	Department of Mathematics			
1. Subject Code: MAN-506	Course Title:	Nonlinear	Programming	
2. Contact Hours: L: 3	T: 1		P: 0	
3. Examination Duration (Hrs.):	Theory :3	P	Practical:0	
4. Relative Weightage: CWS:25	PRS:0	MTE:25	ETE:50	PRE:0
5. Credits: 4 6. Sen	nester: Spring	7. S	ubject Area: D	CC

8. Pre-requisite: Nil

9. Objective: To introduce the basic techniques of nonlinear programming.

S. No.	Contents	Contact Hours
1	Convex Functions, Karash Kuhn-Tucker Theory, Convex Quadratic	12
	Programming, Wolfe's, Beale and Pivot Complementary Algorithm,	
	Separable Programming.	
2	Geometric Programming: Problems with positive co-efficient up-to one degree of difficulty, Generalized method for problems with	6
	positive and negative coefficients.	
3	Dynamic Programming: Discrete and continuous Dynamic	6
-	Programming, Simple illustrations.	
4	Search Techniques: Direct Search and Gradient Methods, Unimodal	11
	Functions, Fibonacci Method, Golden Section Method, Method of	
	Steepest Descent, Newton Raphson Method, Hookes and Jeeves	
	Method, Conjugate Gradient Methods.	
5	Constrained optimization: Penalty function approach, Barrier	2
	Function Approach.	
6	Multi-objective and Goal Programming.	5
	TOTAL	42

S. No.	Name of Books/ Authors/ Publishers	Year of
		Publication
1	Mohan C., Deep, K., "Optimization Techniques", New Age India Pvt.	2009
	Ltd, New Delhi.	
2	Mittal K. V., Mohan, C., "Optimization Methods in System Analysis	1996
	and Operations Research", New Age India Pvt. Ltd, New Delhi.	
3	Taha H. A., "Operations Research: An Introduction", MacMillan Pub Co.,	2013
	NY, 9 th Edition (Reprint).	
4	Ravindran A, Phillips D. T., Solberg J. J., "Operations Research: Principles	2012
	and Practice", John Wiley and Sons, NY, Second Edition (Reprint).	
5	Pant J. C., "Introduction to Optimization/ Operations Research", Jain	2012
	Brothers, New Delhi, Second Edition.	
6	Bazaraa, M., Sherali, H. D. and Shetty, C. M., "Nonlinear Programming:	2006
	Theory and Algorithms", Wiley-Interscience; 3rd Ed.	
7	Himmelblau, D. M., "Applied Nonlinear Prograaming", Mcgraw-Hill	1972

NAME OF DEPTT./CEN	TRE:	Department of Mathematics			
1. Subject Code: MAN-	507	Course Title:	Statistical	Inference	
2. Contact Hours: L:	3	T: 0		P: 0	
3. Examination Duration ((Hrs.):	Theory:3	I	Practical:0	
4. Relative Weightage:	CWS: 25	PRS:0	MTE: 25	ETE:50	PRE:0
5. Credits:3	6. Sen	nester: Autum	n 7. S	ubject Area: D	CC

8. Pre-requisite: : Nil

9. Objective: To introduce the concepts of statistical inference.

10. Details of Course:

S. No.	Contents	Contact Hours
1.	Principle of Data Reduction: Sufficiency principle, Factorization	08
	criterion, minimal sufficiency, Completeness and bounded	
	completeness, Likelihood principle, Equivariance principle.	
2.	Theory of Estimation: Basic concepts of estimation, Point estimation,	12
	, methods of estimation; method of moments, method of maximum	
	likelihood; Unbiasedness, Minimum variance estimation, Cramer -	
	Rao bound and its generalization, Rao Blackwell theorem, Existence	
	of UMVUE estimators. Interval Estimation, Some results for normal	
	population case.	
3.	Testing of Hypothesis: Null and alternative hypothesis, Type I and II	18
	errors error probability and power function, Method of finding tests,	
	Neyman – Pearson lemma, Uniformly most powerful tests,	
	Likelihood ratio principle, Likelihood ratio test, Sequential	
	probability ratio test, Some results based on normal population.	
4.	Analysis of Variance: one way classification; simple linear regression	04
	analysis with normal distribution.	
	TOTAL	42

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Miller, I. and Miller, M., "Freund's Mathematical Statistics with	2006
	Applications", Prentice Hall PTR, 7 th edition	
2.	Lehman, E.L., "Testing of Statistical Hypothesis", Wiley Eastern Ltd	1959
3.	G. Casella, R. L. Berger, "Statistical Inference", Duxbury Press	2002
4.	Lehman, E.L., "Point Estimation", John Wiley & sons	1984
5.	Rohatgi, V.K., "Statistical Inference", Dover Publications	2011

NAME OF DEPTT./CENTRE:	Department of Mathematics			
1. Subject Code: MAN-508	Course Title: The	eory of Partial Differ	ential Equations	
2. Contact Hours: L: 3	T: 0	P: 0		
3. Examination Duration (Hrs.):	Theory:3	Practical:0		
4. Relative Weightage: CWS:25	PRS:0 MTE	:25 ETE:50	PRE:0	
5. Credits :3 6. Sen	mester: Spring	7. Subject Area: I	DCC	

8. Pre-requisite: Nil

9. Objective: To provide theoretical concepts of partial differential equations.

S. No.	Contents	Contact Hours
1.	Introduction: Surfaces and curves. Simultaneous differential equations of the first order and first degree. Integral curves of vector fields. Methods of solution of $dx/P = dy/Q = dz/R$. Orthogonal Trajectories of a system of curves on a surface. Pfaffian differential forms and equations. Solution of Pfaffian differential equations in three variables.	6
2.	First Order PDE: Partial differential equations, Origins and classification of first order PDE, Initial value problem for quasi-linear first order equations: Existence and uniqueness of solution, Non-existence and non-uniqueness of solutions. Surfaces orthogonal to a given system of surfaces. Nonlinear PDE of first order, Cauchy method of Characteristics, Compatible systems of first order equations, Charpit's method, Solutions satisfying given conditions. Jacobi's method.	8
3.	Second Order PDE: The origin of second order PDE. Equations with variable coefficients, Classification and canonical forms of second order equations in two variables. Classification of second order equations in n variables. Characteristic curves of second order equations in two variables. Importance of characteristic curves.	5
4.	Review of Integral Transform and Fourier series.	2
5.	Elliptic Equations: Laplace equation in Cartesian, polar, spherical and cylindrical coordinates and its solution by Fourier series method, Poisson equation in 2D. Green's function for Laplace equation, method of Images, eigenfunction method for finding Green's function.	9
6.	Hyperbolic Equation: One and two dimensional wave equation, solution by method of characteristics and Fourier series method.	7
7.	Parabolic Equations: solution of homogeneous and non-homogeneous diffusion equation (1D). Duhamel's principle.	5
	Total	42

S. No.	Name of Authors / Books / Publishers	Year of Publication/ Reprint
1.	Zachmanoglou, E.C., Thoe, D.W., "Introduction to Partial Differential Equations with Applications", Dover Publications.	1986
2.	Sneddon, I. N., "Elements of Partial Differential Equations", McGraw-Hill Book Company.	1988
3.	Amarnath, T., "An Elementary Course in Partial Differential Equations", Narosa Publishing House (II Edition).	2012
4.	Rao, K. S., "Introduction to Partial Differential Equations", PHI Learning Pvt. Ltd. (2 nd Edition).	2012
5.	Lawrence C. Evans, "Partial Differential Equations", American Mathematical Society	2010

NAME OF DEPTT./CEI	NTRE:	Department of Mathematics			
1. Subject Code: MAN	-510	Course Title:	Complex A	Analysis-II	
2. Contact Hours: L	: 3	T: 0		P: 0	
3. Examination Duration	(Hrs.):	Theory:3]	Practical:0	
4. Relative Weightage:	CWS:25	PRS:0	MTE:25	ETE:50	PRE:0
5. Credits: 3	6. Sen	nester: Spring	7. S	Subject Area: I	DCC

8. Pre-requisite: Nil

9. Objective: To provide advance topics in functions of one complex variable.

S. No.	Contents	Contact Hours
1.	Analytic Functions: Zeroes of analytic functions, Jensen's theorem,	5
	meromorphic functions, their zeroes and poles, Poisson-Jensen's	
	formula. Revisit to Argument principle, Rouche's theorem.	
2.	Entire Functions: Order and genus of entire functions, Hadamard's	6
	factorization theorem, coefficient formula for the order, the derived	
	function, exceptional values, Borel's theorem, Little Picard and Great	
	Picard theorem.	
3.	Harmonic Functions: Harmonic functions in the disc, Mean Value	6
	Property, Maximum and Minimum Principle, Harnack's inequality,	
	Harnack's theorem, The Dirichlet Problem.	
4.	Analytic Continuation: Definition and uniqueness of analytic	9
	continuation, standard method of analytic continuation using power	
	series, the principle	
	of reflection, Hadamard multiplication theorem, Monodromy theorem,	
	Riemann Surfaces,. Homology and homotopy versions of Cauchy's	
	theorem, simply connected regions.	
5.	Spaces of Analytic functions Compactness and Convergence, Hurwitz	9
	Theorem, Weirstrass factorization theorem, Runge's theorem, Mittag	
	Leffler theorem, Normal families, Equiboundedness, Arzela's theorem	
6.	Function theory: Subordination, Riemann mapping theorem,	7
	Univalent functions. Gamma function, Riemann zeta function,	
	Riemann hypothesis.	
	Total	42

S. No.	Name of Authors/ Books/Publishers	Year of Publication/Reprint
1.	Ahlfors, L. V., "Complex Analysis", McGraw Hill	1988
2.	Conway, J. B., "Functions of one complex Variables I", Narosa	2000
	Publishing House.	
3.	Gamelin, T. W., "Complex Analysis", Springer-Verlag	2001
4.	Greene, R., and Krantz, S. G., "Function Theory of One Complex	2006
	Variable", GSM, Vol. 40, American Mathematical Society, (3 rd Ed.)	
5.	Lang, S., "Complex Analysis", Springer – Verlag.	2003
6.	Narasimhan, R. and Nievergelt, Y., "Complex Analysis in One Variable", Birkhauser (2 nd Ed.)	2001

NAME OF DEPTT./CE	NTRE:	Department	of Mathen	natics	
1. Subject Code: MAN-601		Course Title: Fluid Dynamics			
 Contact Hours: L Examination Duration 	2: 3 n (Hrs.):	T: 0 Theory:3		P: 0 Practical:0	
4. Relative Weightage:	CWS:25	PRS:0	MTE:25	ETE:50	PRE:0
5. Credits :3	6. Sen	nester: Autum	n 7.	Subject Area: D	CC

8. Pre-requisite: Nil

9. Objective: To introduce basic concepts of fluid dynamics and boundary layer theory

S. No.	Contents	Contact Hours
1.	Lagrangian and Eulerian descriptions, Continuity of mass flow,	6
	circulation, rotational and irrotational flows, boundary surface,	
	streamlines, path lines, streak lines, vorticity	
2.	General equations of motion: inviscid case, Bernoulli's theorem,	4
	compressible and incompressible flows, Kelvin's theorem,	
	constancy of circulation	
3.	Stream function, Complex-potential, source, sink and doublets,	5
	circle theorem, method of images, Theorem of Blasius, Strokes	
	stream function, Motion of a sphere.	
4.	Helmholtz's vorticity equation, vortex filaments, vortex pair.	2
5.	Navier-Stokes equations, dissipation of energy, diffusion of	9
	vorticity, Steady flow between two infinite parallel plates through	
	a circular pipe (Hagen-Poiseuille flow), Flow between two co-	
	axial cylinders, Energy equation, Dynamical similarity	
6.	Dimensional analysis, large Reynold's numbers; Laminar	5
	boundary layer equations, Similar solutions; Flow past a flat	
	plate, Momentum integral equations, Solution by Karman-	
	Pohlhausen methods, impulsive flow Reyleigh problem,	
	dynamical similarity Thermal boundary layer equation for	
	incompressible flow; Temperature distribution in Coutte flow and	
	in flow past a flat plate.	
7.	Mathematical formulation of the stability problem of	7
	incompressible flow, Stability of flows under different cases,	
	Prandtl's momentum transfer theory.	
8	Introduction to Complex fluids.	4
	TOTAL	42

S. No.	Title/Authors/Publishers	Year of Publication/ Reprint
1.	Batechelor, G.K., "An Introduction to Fluid Dynamics", Cambridge Press.	2002
2.	Schliting, H., Gersten K., "Boundary Layer Theory", Springer, 8th edition.	2004
3.	Rosenhead, "Laminar Boundary Layers", Dover Publications	1963
4.	Drazin, P.G., Reid W. H., "Hydrodynamic Stability", Cambridge Press	2004

NAME OF DEPTT./CENTRE:	Department of Mathematics			
1. Subject Code: MAN-603	Course Title:	Tensors a	nd Differential G	leometry
2. Contact Hours: L: 3	T: 0		P: 0	
3. Examination Duration (Hrs.):	Theory:3]	Practical :0	
4. Relative Weightage: CWS:25	PRS:0	MTE:25	ETE:50	PRE:0
Credits:3 6. Semester: Autumn Pre-requisite: Nil			7. Subject Area: DCC	

9. Objective: To provide the basics geometric concepts curves, surfaces and tensors.

S. No.	Contents	Contact Hours
1.	Theory of Space Curves: Space curves, Planer curves, Curvature,	8
	Torsion and Serret-Frenet formulae. Osculating circles, Osculating	
	circles and spheres. Existence of space curves. Evolutes and involutes	
	of curves.	
2.	Theory of Surfaces: Parametric curves on surfaces. Direction	9
	coefficients. First and second Fundamental forms. Principal and	
	Gaussian curvatures. Lines of curvature, Euler's theorem. Rodrigue's	
	formula, Conjugate and Asymptotic lines.	
3.	Developables: Developable associated with space curves and curves	6
	on surfaces, Minimal surfaces.	
4.	Geodesics: Canonical geodesic equations. Nature of geodesics on a	9
	surface of revolution. Clairaut's theorem. Normal property of	
	geodesics. Torsion of a geodesic. Geodesic curvature. Gauss-Bonnet	
	theorem. Surfaces of constant curvature. Conformal mapping.	
	Geodesic mapping. Tissot's theorem.	
5.	Tensors: Summation convention and indicial notation, Coordinate	10
	transformation and Jacobian, Contra-variant and Covariant vectors,	
	Tensors of different type, Algebra of tensors and contraction, Metric	
	tensor and 3-index Christoffel symbols, Parallel propagation of	
	vectors, Covariant and intrinsic derivatives, Curvature tensor and its	
	properties, Curl, Divergence and Laplacian operators in tensor form,	
	Physical components.	
	Total	42

S. No.	Title/Authors/Publishers	Year of Publication/ Reprint
1.	Willmore, T. J., "An Introduction to Differential Geometry", Dover	2012
	publications.	
2.	O'Neill B., Elementary Differential Geometry, Academic press, 2nd	2006
	Ed.	
3.	Weatherburn, C.E. Differential Geometry of Three Dimensions,	2003
	Cambridge University Press (digital pub)	
4.	Struik, D., J., "Lectures on Classical Differential Geometry", Dover	1988
	Publications.	
5.	Lang, S., Fundamentals of Differential Geometry, Springer.	1999
6.	Spain, B., "Tensor Calculus: A concise Course", Dover Publications	2003

NAME OF DEPTT./CENTRE:		Department of Mathematics			
1. Subject Code:	MAN-605	Course Title:	Course Title: Functional Analysis		
2. Contact Hours:	L: 3	T: 0		P: 0	
3. Examination Duration (Hrs.):		Theory 3	Practical 0		
4. Relative Weightag	e: CWS: 25	PRS: 0	MTE: 25	ETE: 50	PRE: 0
5. Credits:3	6. Sem	ester: Autumn		7. Subject Area: DCC	
8. Pre-requisite:	Nil				

9. Objective: To provide the knowledge of Banach space, Hilbert space, Linear transformation, operators and their properties.

S. No.	Contents	Contact Hours
1.	Recapitulatisation of Hölder inequality, Minkowski inequality and	2
	vector spaces with examples of ℓ_p and L_p spaces.	
2.	Normed linear spaces, Banach spaces with examples, Convergence and	4
	absolute convergence of series in a normed linear space.	
3.	Inner product spaces, Hilbert spaces, Relation between Banach and Hilbert spaces. Schwarz inequality.	2
5.	Convex sets, Existence and uniqueness of a vector of minimum length, Projection theorem. Orthogonal and orthonormal systems in Hilbert space with examples, Bessel's inequality, Parseval's identity, Characterization of complete orthonormal systems.	5
6.	Continuity of linear maps on normed linear spaces, Four equivalent norms on $B(N,N^{\circ})$, Conjugate and Dual spaces, The Riesz Representation Theorem.	5
7.	Adjoint operators, self adjoint operators, normal operators, Unitary operators on Hilbert spaces (H) and their properties. Isometric isomorphism of H onto itself under Unitary operators and their importance . Projection operators on Banach spaces and Hilbert spaces. Orthogonal Projections.	9
8.	Contraction Mappings with examples, Banach–fixed point theorems and applications.	4
9.	Eigenvalues, Eigenvectors and Eigen spaces, Invariant spaces, Spectral Theorem on finite dimensional Hilbert spaces.	4
10.	The Closed Graph Theorem, The Uniform Boundedness Principle and its applications, The Hahn – Banach Extension and Separation Theorems, Open mapping Theorem and applications	7
	Total	42

S. No.	Name of Books / Authors/ Publishers	Year of Publication/Reprint
1.	Simons, G. F., "Introduction to Topology and Modern Analysis",	2004
	McGraw Hill.	
2.	Debnath L. K. and Mikusinski P., "Introduction to Hilbert Spaces	2005
	with Applications", Academic Press.	
3.	Bachman G. and Narici L., "Functional Analysis", Academic	1972
	Press.	
4.	Ponnusamy S., "Foundation of Functional Analysis", Narosa	2002
	Publication.	
5.	Jain P. K. and Ahuja O. P., "Functional Analysis", New Age	2010
	International Publishers.	
6.	Nair, M. T., "Functional Analysis: A First Course", PHI Pvt. Ltd.	2004