

PART: A

Section-A

Choose the correct alternative and fill the OMR sheet.

1. $\sqrt{12}$ and \qquad are line surds.
(A) $\sqrt{36}$
(B) $\sqrt{48}$
(C) $\sqrt{60}$
(D) $\sqrt{72}$
2. $\sqrt{3}$ is irrational number. To obtian rational number from it which of the following operation.
(A) by adding $\sqrt{3}$
(B) by adding $\frac{1}{\sqrt{3}}$
(C) by multiplying $\sqrt{3}$
(D) by multiplying \sqrt{a}
3. $12+12 \times 12+12=$ \qquad
(A) 576
(B) 192
(C) 168
(D) 300
4. Which of the following is minimum integer such that divided by it is integers from 2 to 10 .
(A) 6000
(B) 2520
(C) 720
(D) 540
5. $\frac{1}{3+\sqrt{8}}=$ \qquad
(A) $3-\sqrt{8}$
(B) $\sqrt{3}-8$
(C) $\sqrt{6}-4$
(D) $3+2 \sqrt{2}$
6. If $x^{3 l}-1$ is divided by $x+1$ then the remainder is \qquad
(A) 0
(B) 2
(C) -2
(D) None of these
7. If α and β are zeros of $p(x)=x^{2}-3 x+2$ then $\frac{1}{\alpha}+\frac{1}{\beta}=$ \qquad .
(A) $\frac{2}{3}$
(B) $\frac{3}{2}$
(C) -3
(D) 2
8. If α, β and γ an the zeros of a cubic polynomial $p(x)=a x^{3}+b x^{2}+c x+d ; a \pm 0$, $a, b, c, d \in R$ then $\alpha+\beta+\gamma=$ \qquad
(A) $\frac{\text { The co-efficient of } x^{2}}{\text { The co-efficient of } x^{3}}$
(B) $-\frac{\text { The co-efficient of } x^{2}}{\text { The co-efficient of } x^{3}}$
(C) $\frac{\text { The co-efficient of } x}{\text { The co-efficient of } x^{3}}$
(D) $\frac{\text { The co-efficient of } x^{3}}{\text { The co-efficient of } x}$
9. The sum of zeros of polynomial $p(x)=6 x^{2}-11 x+5$ is \qquad
(A) $\frac{-5}{6}$
(B) $\frac{-11}{6}$
(C) $\frac{5}{6}$
(D) $\frac{11}{6}$
10. If $p(x)=x^{3}+2 x^{2}+2 x+5$ the $p(-2)=$ \qquad
(A) -1
(B) 3
(C) 2
(D) 1
11.

from the above figure of the pair of scales; the pair of linear equation is \qquad .
(A) $3 x=4 y, x+2 y=10$
(B) $x=y, 2 x+y=10$
(C) $2 x=y, 2 x+2 y=0$
(D) $x=2 y, x+2 y=10$
12. To eliminate x, from $3 x+y=7$ and $-x+2 y=2$ second equation is multiplied by \qquad .
(A) 1
(B) 2
(C) 3
(D) 0
13. In a two digit number, the digit at unit place is $(x-1)$ and the digit at ten's place is $(x+1)$ then the interchanged number is \qquad .
(A) $10 x+11$
(B) $11 x-9$
(C) $11 x+9$
(D) $11 x+10$
14. For $\frac{5}{x}+\frac{2}{y}=9$ and $\frac{4}{x}+\frac{7}{y}=9$ then $\frac{1}{x}+\frac{1}{y}=$ \qquad
(A) 1
(B) 2
(C) 3
(D) None of these
15. 3 years ago, the sum of ages of a father and his son was 40 years. After 2 years, the sum of ages of the father and his son will be \qquad
(A) 40
(B) 46
(C) 50
(D) 60
16. In $\triangle A B C, A-M-B, A-N-C$ and $\overline{M N} \| \overline{B C}$. If $A M=8, M B=16$ and $M N=12$, then $B C=$
(A) 24
(B) 36
(C) 32
(D) 48
17. • "Measure what is measurable and make measurable what is so" which mathematician give this statement?
(A) Rene De Carte
(B) Gialileo
(C) Albert Einstein
(D) George Polya
18. In $\triangle A B C$ and $\triangle P Q R \frac{A B}{P Q}=\frac{A C}{Q R}$ and $\angle A \cong \angle Q$. If $m \angle B=50, m \angle Q=40$, then $m \angle R=$ \qquad .
(A) 90
(B) 75
(C) 60
(D) 45
19. The bisector of $\angle A$ in $\triangle A B C$ intersects $\overline{B C}$ in D. If $A B: A C=5: 7$ and $B D=5.5$ then $B C=$ \qquad .
(A) 6.5
(B) 7.7
(C) 13.2
(D) 11
20. $\overline{A D}$ and $\overline{B E}$ an altitudes in $\triangle A B C$. If $A C=12, A D=15, B C=18$, then $B E=$ \qquad .
(A) 20
(B) 15
(C) 10
(D) 5
21. If measures of three sides of a triangles are \qquad then it is not a right triangle.
(A) 20, 21, 29
(B) $8,24,26$
(C) $8,18,17$
(D) $9,40,41$
22. In $\triangle A B C, \overline{A B}$ is median, then \qquad
(A) $A B^{2}+A C^{2}=A D^{2}+2 B D^{2}$
(B) $A B^{2}+A C^{2}=A D^{2}+B D^{2}$
(C) $A B^{2}+A C^{2}=2 A D^{2}+2 B D^{2}$
(D) $A B^{2}+A C^{2}=2 A D^{2}+B D^{2}$
23. A staircase of length 15 meters touches wall at height of 9 meter. The distance of base of the staircase from the wall is \qquad meters.
(A) 12
(B) 15
(C) 10
(D) 14
24. In rectangle $\square A B C D, A B^{2}+B C^{2}+C D^{2}+A D^{2}=200$ then length of diaganol is \qquad .
(A) 9
(B) 10
(C) 13
(D) 14
25. In $\triangle A B C, m \angle A=90, \overline{A D}$ is altitude so $A B^{2}=$ \qquad
(A) $B D \cdot B C$
(B) $B D \cdot D C$
(C) $\frac{B D}{D C}$
(D) $B C \cdot D C$
26. If $4 \sqrt{1-\sin ^{2} \theta}=9 \sqrt{1-\cos ^{2} \theta}$ then $\tan \theta=$ \qquad .
(A) $\frac{3}{5}$
(B) $\frac{5}{3}$
(C) $\frac{9}{4}$
(D) $\frac{4}{9}$
27. $\sin ^{2} 23+\cos ^{2} x=1$ find x
(A) 32°
(B) 45°
(C) 90°
(D) None of these
28. In $\Delta x y z, m \angle y=90$, then $\sin ^{2} x+\sin ^{2} z=$ \qquad
(A) 2
(B) 1
(C) 3
(D) 0
29. $\tan ^{2} \theta-\sec ^{2} \theta=$ \qquad
(A) 1
(B) -1
(C) 2
(D) -2
30. $\cos ^{2} 45-\cos ^{2} 30=x, \cos 45 \sin 45$ then $x=$ \qquad .
(A) 2
(B) $\frac{3}{2}$
(C) $-\frac{1}{2}$
(D) $\frac{3}{4}$
31. $\tan ^{4} \theta+\tan ^{6} \theta=$ \qquad
(A) 1
(B) 0
(C) $\tan ^{4} \theta \cdot \sec ^{2} \theta$
(D) $\tan ^{4} \theta+\cot ^{2} \theta$
32. The value of \qquad are not equal.
(A) $\cos 45 \& \sin 45$
(B) $\sin 0 \& \cos 90$
(C) $\tan 45 \& \sin 45$
(D) $\sin 90 \& \cos 0$
33.

For the above figure $A B=$
(A) 20
(B) 26
(C) 24
(D) 28
34. $\odot(P, 5)$ and $\odot(Q, 4)$ touches each other externally, $P Q=$ \qquad .
(A) 9
(B) 5
(C) 1
(D) 7
35. In $\triangle P Q R, p=3, q=4$ and $\mathrm{r}=5$ then circumradius of $\triangle P Q R$ is \qquad
(A) 2.5
(B) 3.5
(C) 4.5
(D) 1.5
36. $\odot(P, r)$ touches the sides of $\square A B C D$. If $A B=7, B C=8, C D=12$, then $A D=$ \qquad .
(A) 10
(B) 11
(C) 13
(D) 8
37. The chord of circle $\overline{A B}$ and $\overline{C D}$ intersect point p at exterior of circle. If $A B=5, P B=5$, $D P=2$ then $C D=$ \qquad .
(A) 8
(B) 12
(C) 5
(D) 10
38. If point is in interior part of circle then \qquad tangent is obtained from this point of circle.
(A) 0
(B) 1
(C) 2
(D) infinite
39. The probability of a non-loeap year having 53 sunday is \qquad .
(A) $\frac{1}{7}$
(B) $\frac{3}{7}$
(C) $\frac{2}{7}$
(D) $\frac{4}{7}$
40. In 52 cards, randomly selected cards are black and red than probability of this event is \qquad
(A) 1
(B) $\frac{1}{2}$
(C) $\frac{1}{4}$
(D) $\frac{3}{4}$
41. If one balanced coin is tossed 4 times, then total number of event is \qquad .
(A) 4
(B) 8
(C) 16
(D) 32
42. The probability of the event "The sun set in west" is \qquad .
(A) 0.2
(B) 0.5
(C) 0
(D) 1
43. L.C.M. $(35,28,63)$
(A) 1250
(B) 1140
(C) 1260
(D) 1450
44. $0 . \overline{05}$ can be written as ___ in $\frac{p}{q}$ form
(A) $\frac{5}{99}$
(B) $\frac{5}{100}$
(C) $\frac{1}{5}$
(D) $\frac{5}{10}$
45. All natural numbers are divided into \qquad groups.
(A) 1
(B) 2
(C) 3
(D) 4
46. If 4 is a zero of $p(x)=x^{2}-k x+12$ find another zero ?
(A) 7
(B) -7
(C) 3
(D) -4
47. In $\triangle P Q R, \frac{m \angle P}{3}=\frac{m \angle Q}{4}=\frac{m \angle R}{2}$, then the measure of smallest angle is \qquad .
(A) 40
(B) 30
(C) 20
(D) 50
48. The measure of side of one triangle are 3,4 and 5 . The perimeter of other similar triangle is 18 , then measure of other triangle are \qquad .
(A) $5,8,5$
(B) $4.5,6,7.5$
(C) 4, 8, 6
(D) $6,6,6$
49. If zeros of the given polynomial $p(x)$ is opposite, then \qquad is true.
(A) $b=0$
(B) $a=c$
(C) $c=0$
(D) $a=0$
50. In $\triangle A B C, \angle B$ is right angle $B E$ is attitude. If $A E=6, B E=3$ then $A C=$ \qquad .
(A) 7.5
(B) 8.5
(C) 7
(D) 8

PART-B

Section-A

Solve the following. (2 marks each)

1. Express $|0| 0 \mid$ as a product of primes.

OR

Find l.c.m. $(105,95)$ using g.c.d. $(a, b) \mathrm{X}$ l.c.m. $(a, b)=a b$.
2. \quad Simplify $\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{2}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}+\ldots .+\frac{1}{\sqrt{n}+\sqrt{n-1}}$
3. The sum of zeros is 2 and the product of zeros is -3 then obtain a quadratic polynomial.
4. In $\triangle X Y Z$, the bisector of $\angle Y$ intersects $\overline{Z X}$ in P if $X Y: Y Z=4: 5$ and $X Z=27$ find $X P \& P Z$.
5. $\overline{A D}, \overline{B E}, \overline{C F}$ an the medians of $\triangle A B C$. If $B E=12, C F=9$ and $A B^{2}+B C^{2}+A C^{2}=600, B C=100$ find $A C$.
6. $\overline{A D}$ is a median of $\triangle A B C, A B^{2}+A C^{2}=148$ and $A D=7$ find $B C$.
7. If $m \angle B=90, A B=3, A C=6$ in $\triangle A B C$ then find $m \angle C, m \angle A$ and $B C$.

- OR

Check : $\cos 90=4 \cos ^{3} 30-3 \cos 30$
8. A coin is tossed three times. Find the probability of the following events :
(i) A : getting at most one head
(ii) B : getting more heads then tails.

Section - B

Solve the following. (3 marks each)
9. $\overline{A B}$ is a chord of $\odot(O, 5)$ such that $A B=8$. Tangents at $A \& B$ to the circle intersect in P. Find $P A$.
10. If α is acute angle and $3 \sin \alpha=2 \cos \alpha$ then prove that;

$$
\left(\frac{1-\tan ^{2} \alpha}{1+\tan ^{2} \alpha}\right)^{2}+\left(\frac{2-\tan ^{2} \alpha}{1+\tan ^{2} \alpha}\right)^{2}=1
$$

OR

If $\tan \theta+\sin \theta=a$ and $\tan \theta-\sin \theta=b$ then prove that $a^{2}-b^{2}=4 \sqrt{a b}$.
11. Solve the pair of linear equation by cross multiplication method.

$$
\frac{x}{3}+\frac{y}{5}=1,7 x-15 y=21
$$

12. A trader bought $2 x^{2}-x+2$ T.V. sets for Rs. $8 x^{4}+7 x-6$. Find the price of one T.V. set.

Section - C

Solve the following. (4 marks each)
13. State and prove the "Pythagoras theorem."
14. $(2+\sqrt{3})$ and $(2-\sqrt{3})$ are the zeroes of $P(x)=x^{4}-6 x^{3}-26 x^{2}+138 x-35$. Find the remaining zeroes of $P(x)$.
15. The area of a rectangle gets increased by 30 sq. units, if its length is reduced by 3 units and breadth is increased by 5 units. If we increase the length 5 units and reduce the breath by 3 units then the area of a rectangle reduced by 10 square units. Find the length and breadth of the rectangle.

OR

A fraction becomes $\frac{2}{5}$ when 2 is substracted from the numerator and denominator it becomes $\frac{3}{4}$ when 5 is added to its denominator and numerator, find the fraction.

Section - D

Solve the following. (5 marks each)

16. Prove that "Areas of two similar triangles are proportional to squares of corresponding sides.
17. Draw $A B$ such that $A B=10 \mathrm{~cm}$. Draw $\odot(A, 3)$ and $\odot(B, 4)$. Construct tangents to each circle through the centre of the circle.

OR

Draw $\triangle P Q R$ with $m \angle P=60, m \angle Q=45$ and $P Q=6 \mathrm{~cm}$. Then construct $\triangle P B C$ whose sides have length $5 / 3$ times the length of the corresponding sides of $\triangle P Q R$.

