Chapter 1

Quantum Computing

The fundamental goal of Science is to explain/predict natural phenomena using simple models. For example, a
model explaining the behaviour of n charged particles should only involve $O(n)$ parameters, and not, say $\Omega(2 n)$.

This requirement seems so natural and obvious that it is hardly discussed.
On the other hand, the behaviour of nature at microscopic levels seems to defy this modest expectation. Indeed,
the main theory found useful at this level, Quantum Mechanics, seems to require $\Omega(2 n)$ parameters/variables to
model the behaviour of an n particle system. 1 If you take such a system and perturb it a bit (e.g. by shining a laser
on it), then turns out that typically all the $\Omega(2 n)$ parameters change. Note that the problem is not that Quantum

Mechanics doesnt explain nature - that it does very well; only that it seems to need models with far too many
parameters. 2 The first practical effect (rather than philosophical) of the high model complexity is that Quantum

Mechanical systems are extremely expensive to simulate on a computer. Essentially exponential time is required to
simulate a single step.

Quantum Computing aims turns this problem into an advantage. Suppose, as we said, when a laser is shone on
a system of n particles it causes an exponential number of variables describing the system to get modified. What if
the modifications are similar to those needed in a certain computation A? If so, we build the Quantum Mechanical
system, shine lasers, measure the final state, and we would get the solution to our computation A. We would be
using $O(n)$ hardware, but would get an exponential number of computations performed - exponential speedup - as
great a bargain as any!
This is the big hope - by spending only on $O(n)$ hardware we could perhaps get $\Omega(2 n)$ speedup. There are however,
many, many problems. The first is: sure the Quantum Mechanical system will effectively do many computations in
a single step, but how many of those are actually useful? This problem also arises in parallel computing but in
a Quantum Computer it is much more restrictive. Nevertheless, people have been able to design some remarkable
algorithms that can exploit the available parallelism. Most notable amongst these is the (linear hardware, polynomial
time) algorithm for factoring integers. A second problem is that quantum computers appear difficult to build because
quantum systems are very unstable. There is some progress on this too - recently a 3-4 bit quantum computer was
configured and made to factor the number 15 . This is a very tiny beginning, but nevertheless the research community
(and others) are excited because the stakes are very high.
In this chapter we will study the mathematical model proposed for parallel computers. We will then study an
algorithm for computing Fourier transforms. This algorithm is rather elegant and does exhibit exponential speedup.

It is also important because it is at the heart of Shor's factoring algorithm - however we will not get to the factoring
algorithm itself.

1.1 What is a Computational Model

Most people who learn to drive a car do not know how a four stroke engine works. Typically, it suffices to only have
a vague idea that if petrol burns in a chamber it causes the gas inside it to expand, and this is in turn causes a
piston to be pushed. There are of course many additional details needed to build a car (e.g. how to force the piston

1In contrast, the field due to a system of n charges can be completely described using an expression which contains $\mathrm{O}(\mathrm{n})$ parameters
giving the positions and magnitudes of the charges.
2This aspect has puzzled eminent scientists all the way from Einstein. It has caused Richard Feynman (known for his seminal
contribution to Quantum Mechanics) to say, "I think I can safely say that nobody today understands quantum mechanics".

1Page 2

to move the wheels, or how to keep it moving periodically). But most people learn how to drive very well without
knowing much of all this.

The description of quantum computing in these lectures is of the above kind. The goal is to provide a good
mathematical description of the core computational model in quantum computing - which is what is needed to
design algorithms. How the model is realized, i.e. what constitutes the hardware - is described very vaguely and
superficially. The physical realization requires substantial understanding of physics - much more than can be given
in 2-3 lectures. The core computational model, however, can be appreciated within the short time we have.

A computational model must describe how the computer inputs information from the user/environment, how
the information is represented inside the computer, what operations can be used to alter (process) it, and how the
answer is output to the user.

1.2 How information is represented

In classical computing, information is represented as collections of bits. Each bit can be either 0 or 1 . A bit is
realized physically as presence or abscence of charge on (current through) a capacitor (transistor).
In quantum computing, information is represented using collections of qubits. A single qubit has 2 base states,
typically denoted 0,1 . A qubit might be realized using an ion (or atom) which can either be un-excited (base state

0) or excited (base state 1). A qubit may be in the 0 state or in the one state, or it can be in a superposition of the 0
and one states. This superposition is a defining feature of Quantum systems. The state of a qubit is then described
using a vector V of length 2 , where $\mathrm{V}[0]$ denotes the amplitude for the qubit to be in base state 0 (the ion to be
un-excited), V [1] the amplitude for being in base state 1 (ion being excited). V [0],V [1] are complex numbers, but
it is required that $|V| 2=1$, i.e. $|V[0]| 2+|V[1]| 2=1$. With this constraint, it can informally be considered that
$|\mathrm{V}[0]| 2,|\mathrm{~V}[1]| 2$ denote the degree to which the qubit is in states 0 and 1 respectively.
It is natural, but incorrect, to associate amplitudes with any kind of uncertainty in our knowledge of the ion
state: It is a fundamental property of quantum systems that they can exist in this "superposition" of base states,
and the superposition given by complex valued amplitudes. It is also natural to expect that if amplitudes exist in
nature that we should have some ways of measuring them. Even on this count, reality is stranger than our intuition
developed out of macroscopic phenomenon. We will consider this in more detail in Section 1.5.
Now consider a collection of n qubits. If these qubits belong to independent non-interacting physical systems, then
it is enough to describe them by their individual vectors. Qubits can however be made to interact - for example if the
ions realizing the qubits are in close physical proximity, then they may get into a coupled (mechanical) oscillation.

Many other ways of getting qubits to interact are also being considered by researchers. If qubits have interacted
with each other, we need to describe them together, using a single global state vector. Each single qubit can have
base-states 0 and 1; the collection's base states will be all possible n bit strings. Each (collective) base state will
have an amplitude, and hence the collective state will consist of all these 2 n amplitudes. Specifically, the state is a
vector of $2 n$ complex numbers $V[0 . .2 n-1]$. Consider any pattern of n bits, say $b n-1$
,bn-2
, ..b0. Let $\mathrm{b}=\mathrm{bn}-1$
bn-2
..b0
denote the integer formed by concatenating these bits. Then $\mathrm{V}[\mathrm{b}]$ denotes the amplitude of the respective ions being
in base-states bn-1
,bn-2
$, \ldots, \mathrm{b} 0$. As before we require $|\mathrm{V}| 2=1$.

If the exponential number of amplitudes required to describe a the state of a collection of qubits makes you
intuitively uneasy - note that this is expected!
1.3 Input

It is possible to initialize the state vector of a collection of qubits to any base state.

Note that a base state is described by a vector consisting of a single entry with value 1 and all other entries 0 .

We will use $|\mathrm{i}\rangle \mathrm{n}$ to denote a vector of length 2 n having 0 s everywhere except in position i , which is 1 . We will drop
the subscript when it is obvious from the context. 3

1.4 Computation

A computation takes the state vector of a collection of qubits, and transforms it. Physically realizable computations
are unitary, i.e. for n qubits they can be represented as a $2 n \times 2 n$ matrix Q. If V is the state vector of the n qubit

3 This notation is due to Dirac, and $\mid \mathrm{i})$ is pronounced "ket". The transpose of this vector is written as ($\mathrm{i} \mid$ and is referred to as "bra". Page 3

H

M

3

5

7

8

9

6

CNOT

1

4

2

0

0
1
2

S(theta)

Figure 1.1: An example quantum computer.
collection before the operation, then after the operation the state vector becomes QV . It can be proved out that any
unitary matrix Q can be realized (to sufficient accuracy) by performing a series of suitable physical operations on
the physical realizations of the qubits. For example, shining light or applying magnetic fields and so on on the ions
realizing the qubits.
While the operation corresponding to any unitary Q can be realized, the time required (or the number of laser
pulses required) can be exponential in the number n of qubits. Thus, for the purposes of defining a mathematical
model, it may be assumed that in unit time we can apply an operator to a fixed size collection of bits. Even though
your system may consist of n qubits, your operations should only involve only some fixed value k of these at every
step (typically $\mathrm{k} \leq 3$). The operation will consist of applying any $2 \mathrm{k} \times 2 \mathrm{k}$ unitary matrix of your choosing to the
state vector of the chosen k bits. It is reasonable to assume that such operations can be performed in constant time.

A quantum algorithm then, consists of a sequence of T operations, in the tth of which some (predecided) fixed size
subset of the n qubits are selected and operated upon using a certain (predecided) operator Qt .
It is customary to view quantum computation using a left to right data flow, as shown in Figure 1.1. Each line
(often called a wire because of the circuit analogy) represents a qubit at a certain time instant, with time increasing
to the right. The boxes represent operations. The wires coming out represent the result of the operation. The
subsequent operations operate on other sets of qubits. If an operation takes as inputs non-consecutive qubits, then
it is customary to draw a box only on the consecutive qubits and indicate the rest by drawing a line from the box to
the other qubits involved, and marking the involved qubits, see Figure 1.2 for an example of this. The operations are
often called gates, again because of a circuit analogy. For constructing the state vectors, it is customary to number
the qubits top to bottom, 0 to $\mathrm{n}-1$.

We next show how this computer executes. For this we will need to discuss the state vectors of various groups
of qubits - we have grouped these collections by dashed lines in Figure 1.1 and given a label L to each line. We will
use ψL to denote the state vector for the qubit group L. Within each group, the qubits will be considered numbered
top to bottom, starting at 0 .
The execution of the computer begins by initializing the values of the qubits. As mentioned earlier, these can
only be base states. This assignment will fix the state vectors for each qubit. Say we fix $\psi 0=|1\rangle, \psi 1=$ $|0\rangle, \psi 2=|1\rangle$.

Following this, we must analyze the effect of each operator.

Analyzing the effect of the H operator is easy - since we know the state vector $\psi 1$ for the single qubit input to
it. The H operator is an important single qubit operator and is called the Hadamard operator, whose matrix is:
$H=$

1

V2 1

1

1-1
)Page 4

From this we can compute $\psi 3$ as:
$\psi 3=H \psi 2=$
1
V2 (
1
1
1-1
) (10) = 1 V $2(11)$
Analyzing the effect of the CNOT operator is not straightforward. As we have described it, to compute the effects
of an operator acting on a set S of qubits, we need to have the collective state vector of just the S bits. In this
case we would need to have the state vector $\psi 4$ for qubits 1 and 2 at this step. This is obtained by a process called
entanglement which we describe next. Given $\psi 4$ and the matrix for CNOT we can compute $\psi 5$. For computing the
effect of S(theta), we first construct $\psi 6$ by entangling $\psi 5$ and $\psi 0$. For evaluating the effect of S(theta) we seem to
need to compute $\psi 7$. You might think of this as disentangling qubit 2 from $\psi 6$ - such disentanglement is not possible
in general. However by using properties of superposition which we discuss shortly, we will be able to compute $\psi 8$.

In fact using entanglement and superposition you should be able to analyze the action of any quantum computer
on any input setting.
1.4.1 Entanglement and Disentanglement

Suppose a set P of p qubits and a set R of r qubits have so far evolved independently. Let T denote their union,
with the i the bit of R being numbered i in T, while the ith bit of P numbered $r+i$ in T. If $V P, V R, V T$ denote the
corresponding VT [i2r + j] = VP [i] *VR[j]. This rule is analogous to the rules for independent events in probability
theory: if the elements of P are probabilities of a set of events which are independent a set of events whose probabilities
are given by the vector R, then the probability that the ith event from P and the jth event from R happen together
is VP [i]VR[j]. The process of forming VT from VP ,VR is called entanglement, and will be denoted using the symbol
\otimes, i.e. $\mathrm{VT}=\mathrm{VP} \otimes \mathrm{VR}$. This operation is called the tensor product between the vectors.

Continuing our example, we have:
$\psi 4=\psi 2 \otimes \psi 3==($

0

1) \otimes

1
V2 1

1
1)
$=$

1

|
$\}$

The reverse operation (could be called disentanglement): getting back the the state vectors for P, R given the
state vector for T cannot be performed in general. For example, consider the state vector 1
V2 $(|0\rangle+|3\rangle)$ which is only
slightly different from $\psi 4$ above. You should be able to pursuade yourself that this cannot be written as a tensor
product of two vectors.
However, if T is in a base state, then it can be disentangled. Suppose for example, that VT $=|\mathrm{i} 2 \mathrm{r}+\mathrm{j}\rangle \mathrm{p}+\mathrm{r}$ for
certain i, j. Then it is easily checked that this is the entanglement of $V P=|i\rangle p$ and $V R=|j\rangle r$. In such a situation, if
we have an operator Q that operates on set R, then its effect is easily modelled. We disentangle the given VT, apply

Q to the resulting VR, and then entangle again. Specifically, the new state vector for T will be:
$|i\rangle p \otimes Q|j\rangle r$

To extend this to the general situation, we need the principle of superposition.

1.4.2 Superposition

The basic principle is that quantum operators are linear. This is not a surprise since we defined their effect using
matrices; indeed we could define the effect as matrix multiplication simply because the operators are linear.

To explain this idea further, suppose U, V are valid state vectors for a collection of qubits. Then it can be seen
that $\alpha U+\beta V$ is a valid state vector provided $|\alpha| 2+|\beta| 2=1$. Suppose further that this system can be operated
upon by an operator Q. Then the result for the superposed vector $\alpha U+\beta V$ is $Q(\alpha U+\beta V)=Q \alpha U+Q \beta V$.
So we begin by thinking of VT as a superposition:
VT =
$2 p+r-1$
Σ
$k=0$

VT [k]|k>p+r

The result of applying Q on T is the same as applying Q on each $V T[k]|k\rangle p+r$ and then adding up the results.

But VT [k]|k>p+r can be disentangled, and so it is easy to apply Q on it. Writing $k=i 2 r+j$, and using equation 1.1Page 5
we see that the result of applying Q on $V T[i 2 r+j]|k\rangle p+r$ is simply $V T[i 2 r+j]|i\rangle p \otimes(Q|j\rangle r)$. Thus, the new state
vector is simply:
$2 p-1$
Σ
$i=0$
$2 r-1$
Σ
$j=0$
VT [i2r + j]|i>p $\otimes Q|j\rangle r$

Noting that a matrix vector multiplication $A x$ can be written as $\sum j$ Ajxj where $A j$ is the j th column of A and xj
the jth element of x, the above is a matrix multiplication $Q V T$, where the kth column of Q is $|i 2 r+j\rangle p \otimes$ Q|j)r. It
is left to you to ascertain that Q^{\prime} is simply the block diagonal matrix consisting of $2 p$ copies of Q along the diagonal.

Notice the parallelism implicit here: although we just had one operator, we are getting $2 p$ matrix multiplications!

This will be used with stunning effect in the FFT algorithm.
We now complete our example. Noting that the matrix for CNOT is:

It will be seen that multiplying this by $\psi 4$ leaves it unchanged, thus
$\psi 5=$
1
${ }^{\sqrt{2}}$

Note first that the matrix for $S(\theta)$ is defined only for $|\theta|=1$ and is given by:

I
1

Now we can compute $\psi 8$ by multiplying a matrix with two copies of $S(\theta)$ along the diagonals. Alternatively observing
that $\psi 6=1$
v2 $(|6\rangle+|7\rangle)$, we get
$\psi 8=\psi 6[1 \cdot 22+2]|1\rangle \otimes \mathrm{S}(\theta)|2\rangle+\psi 6[1 \cdot 22+3]|1\rangle S(\theta)|3\rangle=$
1
$\mathrm{V} 2|1\rangle \otimes S(\theta) 2+$

1

2 2 1$\rangle \otimes S(\theta) 3=$
1

Note that in above $S(\theta) 2, S(\theta) 3$ denote the second and third column of $S(\theta)$.Page 6

1.4.3 Hypercubic view

It is useful to consider the coefficients of the state vector to be residing on a binary hypercube. Specifically, imagine
that $\mathrm{V}[\mathrm{k}]$ resides on node k of the $\mathrm{p}+\mathrm{r}$ dimensional hypercube. In this the ith hypercube dimension corresponds to
the ith qubit in the collection. Now, the matrix multiplication Q VT can be thought of as follows:

1. Only retain the edges along dimensions $0 \ldots r-1$, i.e. dimensions corresponding to the qubits on which the
operator Q is to be applied.
2. At this point we have a collection of $2 p$ hypercubes each of r dimensions. Each has $2 r$ nodes. Consider each
such hypercube as representing a state vector v, and within each such hypercube perform the multiplication

Qv. Replace the values at the nodes by the new values.
The utility of this visualization is more apparent when the subset of qubits on which the operator operates is not
contiguous. Even in that case we can think of the operation as involving matrix multiplication on smaller hypercubes
(which are obtained by only retaining edges along dimensions corresponding to the numbers of the qubits on which
the operation is being performed).

1.5 Output: Measurement

The state vector description of a qubit can thought of as a description of its "private" world. To see what the state
is, you need to make a "measurement". A measurement is again done by shining a laser beam (or something else
depending upon the physical realization). The notion of measurement in Quantum Mechanics is different from the
standard notion. The measurement of a quantum state-vector V has the following effects:

1. A base state is revealed as the outcome of the measurement. The revelation is probabilistic: a base state $|i\rangle$ is
revealed with probability |V [i]|2.
2. The state vector gets set to the measured state. This is called a "collapse of the state vector".

Note that there is, unfortunately, no direct way to measure V [i$]$ themselves. If during a measurement the state vector
collapses to |i> you may conclude that |V [i]| must have had a large value. Of course state it is possible that $|i\rangle$ is the
outcome of a measurement even if |V [i]| is small, but with low probability.

As a metaphor you may think that a quantum system is like the human mind. It can have several thoughts
at the same time (superposition), and if someone asks "what are you thinking", the daydreaming stops and one of
the thoughts is revealed. Furthermore, after the question, the mind may forget the other thoughts and work more
concentratedly on the one thought that was revealed.

1.5.1 Partial Measurement

We may also measure subsets of the n-qubits. The semantics of this is as you might expect: the probability of
observing a base state s for the chosen qubits is the same as the probability of seeing that state had all the n
qubits been measured. After the measurement, the measured qubits and the remaining qubits are disentangled. The
measured qubits are in the measured ground state. The remaining qubits are in the superposition consistent with
the measured state. More formally, suppose we measure the least significant r qubits of a state vector V for an $p+r$
qubit system. Then
$\operatorname{Pr}[|j\rangle r]=\sum i$
$|V[i 2 r+j]| 2$

Given that $|j\rangle r$ is measured, then if V denotes the new state vector for the most significant p bits we have:
$\mathrm{V}[\mathrm{i}]=$
$V[i 2 r+j]$
$\sum i|V[i 2 r+j]| 2$

1.6 Fourier Transform

The Fourier transform of a sequence of complex numbers $a=(a 0, a 1, \ldots, a N-1$ $)$ is the sequence $A=(A 0, A 1, \ldots, A N-1$
)
defined as follows. Let $\mathrm{Pa}(\mathrm{x})$ denote the polynomial $\sum \mathrm{i}$ aixi. Then $\mathrm{Ai}=\mathrm{Pa}(\omega \mathrm{i}$
N), where ωN is a principal Nth root
of 1. The standard algorithm is:Page 7

0

1
n-1

F N

H

S n-2

S 1

S 0
Figure 1.2: Quantum Fourier Transform Algorithm

1. If a has length 1 , then we directly return the result. Else, we first partition a into its even and odd subsequences
b and c (with $b i=a 2 i$ and $c i=a 2 i+1$) respectively, and define the corresponding $N / 2$ degree polynomials $\mathrm{Pb}(\mathrm{z})=\Sigma$
```
N/2-1
i=0
a2izi and Pc(z)= \Sigma
N/2-1
i=0
a2i+1zi.
2. We then recursively compute the Fourier transforms \(B=(B 0, B 1, \ldots, B n / 2-1\)
) and C = (CO,C1,...,CN/2-1
).
3. For \(0 \leq i<N / 2\) we set \(A i=B i+\omega i\)
NCi and \(\mathrm{Ai}+\mathrm{N} / 2=\mathrm{Bi}-\omega \mathrm{i}\)
```

NCi .
Figure 1.2 basically implements the above algorithm. We use an $\mathrm{n}=\log \mathrm{N}$ qubit system. The state vector V of this
system is assumed to be initialized to the input, i.e. $\mathrm{V}[\mathrm{i}]=$ ai. Initializing a set of qubits in this manner is hard
for arbitrary ai, but we will ignore this issue. After this each of the above steps will be implemented as a suitable
matrix operator.
For this it is useful to note the following alternate expression of the Fourier transform:

I

where FN is a $\mathrm{N} \times \mathrm{N}$ matrix with $\mathrm{Fjk}=\omega \mathrm{ij}$
N. This matrix is not unitary; however it is possible to show that the matrix 1

VN FN is. In fact in many definitions, the scaling factor is included. From now on, we will also assume this.

Note that step 2 operates on the even indices and odd indices separately. In each the same operation (multiplica-
tion by matrix FN/2) is performed. Thus this can be done by a single operation on the subcube induced by the most
significant $\mathrm{n}-1$ bits. This explains the first box in Figure 1.2. Notice that we dont need to perform the recursion
twice - the inputs to the two recursions are conveniently superposed and so it suffices to perform the operation once
on the superposition. The output produced from this will indeed be a superposition of the B,C vectors: the even
nodes in the hypercube view holding B and the odd nodes C. In particular, hypercube vertex 2 i holds Bi and $2 i+1$
holds Ci .

The set of gates marked S0,...,Sn-1
together accomplish the task of computing Ciwi, for each i, while leaving
the B values alone. Each $S j$ gate is a $S(\omega 2 j)$ gate. Gate $S j-1$
operates on qubits j and 0 . Thus we must consider 4
node subcubes induced by edges along these dimensions. Such subcubes will in general consist of nodes xn-1
...x0,
for all the possible values for bits $x j$ and $x 0$, in particular
xn-1
...xj+10xj-1
...x10, xn-1
...xj+10xj-1
...x11, xn-1
...xj+11xj-1
...x10, xn-1
...xj+11xj-1
...x11Page 8

These nodes will respectively store:

Bxn-1...xj+10xj-1...x1, Cxn-1...xj+10xj-1...x1, Bxn-1...xj+11xj-1...x1, Cxn-1...xj+11xj-1...x1
From the matrix of $S(\theta)$ discussed earlier, only the last of the values will be multiplied by $\omega 2 j-1$, others will not
change. Thus only those $\mathrm{C}[\mathrm{x}]$ having 1 in the $\mathrm{j}-1$ th bit (note that the Isb in the hypercube position only determined
whether the node stores a B value or a C value) get multiplied by $\omega 2 j-1$. But this will happen for all j and all these
multiplications will result in a total multiplication of exactly ωx as needed. So after this, in hypercube node $2 x+1$
we have $C x \omega x$ as needed. The hypercube node $2 x$ will continue to hold $B x$ throughout.
It will be seen that the final step of adding in the even hypercube and subtracting in the even hypercube is
precisely what the Hadamard gate does.
1.7 Reading material

There is excellent material on Quantum Computing on the web. Wikipedia has a good survey, as does plato.stanford.edu/entries/qt-qua

Notes are also available for Quantum Computing courses, e.g. by Umesh Vazirani at Berkeley and John Preskill at

Caltech.

The textbook "Algorithms" by Dasgupta, Papadimitriou and Vazirani[1] has a chapter on Quantum Computing.

Exercises

1. Argue by contradiction that the state 1
sqrt2 $(|0\rangle 2+|3\rangle 2)$ cannot be disentangled.Page 9

Bibliography
[1] S. Dasgupta, C. Papadimitriou, and U. Vazirani. Algorithms. Tata McGraw-Hill Publishing Co., 2006.

