Directions (Questions 1-5): Choose the word which best expresses the meaning of the underlined word in the sentence.

	a m me sentence.				
1.	She is a very <u>sensible</u> person.				
	(1) rational	(2) cunning	(3) educated	(4) sensitive	
2.	I am on the horns of <u>d</u>	<u>ilemma</u> these days.			
	(1) confusion		(2) clear		
	(3) difficult situation		(4) favourable situation	1	
3.	The musicians found of	out that they do not have	ample time to go there.		
	(1) some	(2) enough	(3) much	(4) abundant	
1	The minister's speech	was not comprehensible	to the public		
т.	(1) complement	was not <u>comprehensible</u>	(2) confident		
	(1) complement (2) ships to be one denoted	- 1	(2) confident (4)		
	(3) able to be understo	DOO	(4) comprehensive		
5.	Man is mortal.				
	(1) ever growing	(2) constantly active	(3) imperishable	(4) subject to death	
		(2) constantly active	(c) imperionatio	(1) subject to dealin	
Dire	ections (Questions 6-1)	0): Choose the word whence	nich is closest to the opp	posite in meaning of the	
6	The Ganga is a pious t	iver			
0.	(1) impure	(2) terrible	(3) common	(1) pure	
	(1) impute	(2) terrible		(4) pure	
7.	Bravery is a good qual	lity.			
	(1) Audacity	(2) Fearful	(3) Heroism	(4) Cowardice	
8.	A unanimous decision	was taken by the organized	zation.		
	(1) great	(2) one-sided	(3) fair	(4) unfair	
9.	She was very <u>cheerful</u>	on her wedding day.			
	(1) overjoyed	(2) emotional	(3) happy	(4) cheerless	
10	Educated parents make				
10.	(1) vicious	$(2) \log$	(3) alternative	(4) good	
	(-) , 1010000	_/ ····b	(-) "	(· / 5°°°	

Directions (Questions 11-15): Choose the option which best expresses the meaning of the underlined idiom/phrase in the sentence.

11. Peter was <u>put in cold storage</u> in the party.
(1) sadness(2) ignored(3) grief(4) sympathy

12. Ravish showed <u>crocodile tears</u> at the death of his employee.				
	(1) happiness	(2) fake mourning	(3) weeping	(4) mourning
12	The Dresident did away	with the upper value est		
15.	(1) retain	$\frac{1}{2}$ with the unpopular act.	(3) distribute	(4) consider
		(2) abolish		(+) consider
14.	A good weather friend	is not a true friend.		
	(1) attentive friend	(2) faithful friend	(3) selfish friend	(4) caring friend
15	II ('		11 1 1	
15.	(1) states clearly	(2) protonds	$\frac{\text{calls a space a space}}{(3)}$ makes things vacue	(A) absconds
	(1) states clearly	(2) pretends	(5) makes unings vague	
Dire	ctions (Questions 16-2	0): In each of these ques	stions, choose the word	which can be substituted
for the	he given sentence/words			
16.	A book or work of art v	(2) Unanimous	Vn. (3) Unidentified	(1) A nonzmous
		(2) Ollalinious	(5) Oliidelitilled	(4) Anonymous
17.	A disease which spread	ls by physical contact.		
	(1) Non infectious	(2) Contagious	(3) Untouchable	(4) Fatal
10				
18.	One who eats too much (1) Eat	(2) Observed	(2) Clutton	(1) Corres
	(1) Fat	(2) Obese	(5) Gluttoli	(4) Goige
19.	One who knows many	languages.		
	(1) Bi-lingual	(2) Decoder	(3) Linguist	(4) Cryptologist
20		4		
20.	(1) Simultaneous	(2) Co happening	(3) Convistant	(1) Identical
	(1) Simultaneous	(2) Co-nappening	(5) COEXISTENT	(4) Identical
Dire	ctions (Questions 21-2-	I): Fill in the blank.		
21.	Mounting unemployme	ent is the most serious an	d problem bein	g faced by India today.
	(1) dubious	(2) profound	(3) unpopular	(4) intractable
22.	His logic eve	ervone, including the exr	perts.	
	(1) surprised	(2) teased	(3) mocked	(4) confounded
	-			
23.	The unruly behaviour of	of the students	_ their teacher.	
	(1) tempered	(2) clashed	(3) impeached	(4) incensed
24	The children	crackers to celebrate	e the victory of their team	n.
	(1) burst	(2) fired	(3) shot	(4) broke
45/A	/2K15/05	3		

Directions (Questions 25-30): Study the passages below and answer the questions that follow each passage.

Passage-I

Complementary and alternative medicine, which includes a range of practices outside of conventional medicine such as herbs, homeopathy, massage therapy, yoga, and acupuncture, hold increasing appeal for Americans. In fact, according to one estimate, 42% of Americans have used alternative therapies. In all age groups, the use of unconventional healthcare practices has steadily increased in the last 30 years, and the trend is likely to continue, although people born before 1945 are the least likely to turn to these therapies. Why have so many patients turned to alternative therapies? Many are frustrated by the time constraints of managed care and alienated by conventional medicine's focus on technology. Others feel that a holistic approach to healthcare better reflects their beliefs and values. Others seek therapies that relieve symptoms associated with chronic disease; symptoms that mainstream medicine, as scientific investigation has confirmed their safety and efficacy. For example, physicians may currently prescribe acupuncture for pain management or to control the nausea associated with chemotherapy. Additionally, many U.S. medical schools teach courses in alternative therapies, and many health insurance companies offer some alternative medicine benefits.

- 25. What is the main idea of this passage?
 - (1) Alternative medicine is now a big business in the United States with more Americans seeking it out than ever before.
 - (2) Today, it is not unusual for mainstream doctors to incorporate alternative therapies into their practice.
 - (3) Over the last few decades, alternative medicine has become more popular, accepted, and practised in the United States.
 - (4) People are tired of conventional medicine's focus on technology.
- 26. According to the passage, which practice would not be defined as alternative medicine?
 - (1) Pain management
 (2) Acupuncture
 (3) Taking herbal garlic supplements
 (4) Massage therapy
- 27. Based on the passage, what kind of person would be least likely to seek out alternative medical
- treatment?
 - (1) A senior citizen suffering from chemotherapy induced nausea.
 - (2) A young woman suffering from chronic fatigue syndrome.
 - (3) A 45-year-old man who believes that his body and mind must be treated together.
 - (4) A 25-year-old track star with chronic back pain.

Passage-II

Sprouts not only contain a full spectrum of minerals, but during the process of soaking, germination and sprouting the mineral salts present undergo significant changes. The changed compounds are of the water soluble variety, easily assimilated by the body. The quantum of nutrient present also increases in multiples. For example, sprouted moong has an 8.3% increase in water content over the seed. Its energy content decreases by 15%, its carbohydrates content decreases by 9% and its protein availability increases by 30%. All this makes it an ideal food for those who desire to lose weight. At the same time, it provides a more than ample supply of vitamins, minerals and amino acids. Another benefit of becoming a sproutarian is the fact that sprouts have a lot of fibre and water and hence they drive away constipation. The reduction in carbohydrate content indicates that many carbohydrate molecules are broken down during sprouting: and these react with atmospheric nitrogen to form amino acids. The resultant protein has a simple molecular structure, and is the most digestible protein available in all foods. Also, during sprouting much of the starch gets broken down by enzymatic action into simple, pre-digested sugars such as glucose and sucrose. The proteins are converted into amino acids and amides, and this reduction in the amount of complex proteins ingested prevents ageing and the degenerative diseases. A handful of common moong seeds can blossom and provide the most complete of meals. After the seed has been sprouted, the calcium content increases by 34%, potassium content increases by 80%, the iron content increases by 40%, the phosphorous content increases by as much as 690%. Sprouted sesame seeds too, are excellent for providing the body with easily assimilable minerals. They contain 10 times more calcium than cow's milk.

- 28. Why is sprout most easily digestible in terms of its protein content?
 - (1) Protein has a simple molecular structure.
 - (2) Calcium content is low, hence digestion is easy.
 - (3) There is an increase in complex proteins.
 - (4) Fats and oils are eliminated.
- 29. Why is sprout an ideal choice of food for those who want to lose weight?
 - (1) It contains digestive acids.
 - (2) It is rich in calories.
 - (3) It is rich in protein content.
 - (4) It contains vitamins, minerals and amino acids.
- 30. In which process do the minerals in sprouts undergo significant changes?
 - (1) Spectral changes
 - (2) Soaking, germination and sprouting
 - (3) Assimilation
 - (4) Radiation and Germination

- 31. In a projectile motion, the velocity is
 - (1) always perpendicular to the acceleration.
 - (2) never perpendicular to the acceleration.
 - (3) perpendicular to the acceleration for one instant only.
 - (4) perpendicular to the acceleration for two instants.
- 32. A cannon ball is fired with a velocity v in a direction making an angle θ with the horizontal. At the highest point of its path it breaks into two parts of equal masses. One of the parts retraces the initial path of the ball. The speed of the second part immediately after explosion in *m/s* will be
 - (1) $\frac{3}{2}v\cos\theta$ (2) $\sqrt{\frac{3}{2}}v\cos\theta$ (3) $2v\cos\theta$ (4) $3v\cos\theta$

33. Mr. Naveen kicked off a football with an initial speed 19.6 *m/s* at a projection angle 45°. A receiver on the goal line 67.4 *m* away in the direction of the kick starts running to meet the ball at that instant. What must be his speed so that he could catch the ball before hitting the ground? (1) 2.82 *m/s* (2) $2/\sqrt{2}$ *m/s* (3) 39.2 *m/s* (4) 10 *m/s*

34. A car starts from rest to cover a distance *s*. The coefficient of friction between the road and the tyres is μ . The minimum time in which the car can cover the distance is proportional to _____.

(1) μ (2) $\sqrt{\mu}$ (3) $\sqrt{\frac{1}{\mu}}$ (4) $\frac{1}{\sqrt{\mu}}$

35. A particle moves along the *x*-axis from $x = x_1$ to $x = x_2$ under the influence of a force given by F = 2x. Then work done in the process is _____.

- (1) zero (2) $x_2^2 x_1^2$ (3) $2x_2(x_2 x_1)$ (4) $2x_1(x_1 x_2)$
- 36. The speed v reached by a car of mass m, driven with constant power P, is given by _____.

(1)
$$v = \frac{3xp}{m}$$
 (2) $v = \left(\frac{3xP}{m}\right)^{1/2}$ (3) $v = \left(\frac{3xP}{m}\right)^{1/3}$ (4) $v = \left(\frac{3xP}{m}\right)^2$

- 37. A convex and a concave lens separated by distance d are then put in contact. The focal length of the combination
 - (1) decreases (2) increases (3) becomes 0 (4) remains the same

38. Two discs of same thickness but of different radii are made of two different materials such that their masses are same. The densities of the materials are in the ratio 1 : 3. The moments of inertia of these discs about the respective axes passing through their centres and perpendicular to their planes will be in the ratio _____.
(1) 1 : 3 (2) 3 : 1 (3) 1 : 9 (4) 9 : 1

- 39. A body weighs *W Newton* at the surface of the earth. Its weight at a height equal to half the radius of the earth will be _____.
 - (1) $\frac{W}{2}$ (2) $\frac{2W}{3}$ (3) $\frac{4W}{9}$ (4) $\frac{8W}{27}$

40. A geostationary satellite orbits around the earth in a circular orbit of radius 36000 km. Then, the time period of a satellite orbiting a few hundred kilometres above the earth's surface ($R_{Earth} = 6400$ km) will approximately be

(1) 1/2 h (2) 1 h (3) 2 h (4) 4 h

- 41. A heavy uniform rod is hanging vertically from a fixed support. It is stretched by its own weight. The diameter of the rod is
 - (1) smallest at the top and gradually increases down the rod.
 - (2) largest at the top and gradually decreases down the rod.
 - (3) uniform everywhere.
 - (4) maximum in the middle.
- 42. On bisecting a soap bubble along a diameter, the force due to surface tension on any of its half part will be _____.
 - (1) $4\pi RT$ (2) $\frac{4\pi R}{T}$ (3) $\frac{T}{4\pi R}$ (4) $\frac{2T}{R}$

43. In a seconds pendulum, mass of the bob is 30 gm. If it is replaced by 90 gm mass, then its time period will be

- (1) 1 sec. (2) 2 sec. (3) 4 sec. (4) 3 sec.
- 44. The potential energy of a particle executing S.H.M. is 2.5 J, when its displacement is half of amplitude. The total energy of the particle is _____.
 (1) 18 J
 (2) 10 J
 (3) 12 J
 (4) 2.5 J

45. A simple pendulum has a metal bob, which is negatively charged. If it is allowed to oscillate above a positively charged metallic plate, then its time period will
(1) increase.
(2) decrease.
(3) become zero.
(4) remain the same.

- 46. A cylindrical bar magnet is kept along the axis of a circular coil. If the magnet is rotated about its axis, then
 - (1) a current will be induced in the coil.
 - (2) no current will be induced in the coil.
 - (3) only an e.m.f. will be induced in the coil.
 - (4) both e.m.f. and current will be induced in the coil.

47. A body of mass 4 kg is accelerated upon by a constant force, travels a distance of 5 m in the first second and a distance of 2 m in the third second. The force acting on the body is

(1) 2 N (2) 4 N (3) 6 N (4) 8 N

- 48. In a double slit experiment, instead of taking slits of equal widths, one slit is made twice as wide as the other. Then in the interference pattern the
 - (1) intensities of both the maxima and the minima increase.
 - (2) intensity of maxima increases and the minima has zero intensity.
 - (3) intensity of maxima decreases and that of the minima increases.
 - (4) intensity of maxima decreases and the minima has zero intensity.
- 49. Which of the following statements is incorrect?
 - (1) Half-life of a neutron is 13 minutes.
 - (2) The stability of a nucleus is determined by the number of neutrons present in it.
 - (3) Both fast and slow neutrons are capable of penetrating a nucleus.
 - (4) A free neutron decays into a proton, an electron and positron.
- 50. The depletion layer in silicon diode is 1 μ m wide and the knee potential is 0.6 V, then the electric field in the depletion layer will be _____. (1) zero (2) 0.6 Vm⁻¹ (3) 6×10⁴ V/m (4) 6×10⁵ V/m
 - (1) zero (2) 0.6 Vm^{-1} (3) $6 \times 10^4 \text{ V/m}$ (4) $6 \times 10^5 \text{ V/m}$
- 51. Which of the following is a scalar quantity?
(1) Impulse(2) Current(3) Torque(4) Momentum
- 52. Human eye is most sensitive to the colour having wavelength of nearly
(1) 680 nm.(2) 720 nm.(3) 480 nm.(4) 550 nm.
- 53. A double converse lens of focal length 15 cm produces a distinct real image of an object on a screen kept at 150 cm away from the object. On moving the lens alone, how many other distinct images of the same object can be produced on the same screen?
 (1) Zero
 (2) One
 (3) Ten
 (4) Two
- 54. A person, standing near the edge of the top of a tall building throws two balls A and B. The ball B is thrown vertically upward while the ball A is thrown vertically downward, with the same speed V. Then, the ball A hits the ground with a speed V while the ball B hits the ground with a speed V'. Which of the following relationships is likely to hold true?
 (1) V = V'
 - (1) V = V(2) V > V'
 - (3) V < V'
 - (4) The relationship between the speeds V and V' will depend on the height of the tall building above the ground only.

55. A vehicle with 40 cm diameter wheels is moving with a speed of 18 m/s. Then, wheels of the vehicle are turning at a speed of

(2) 45 m/s.

- (1) 90 revolutions/second.
- (3) 18 revolutions/second. (4) $45/\pi$ revolutions/second.
- 56. The kinetic energy E of an object of mass m, having linear momentum p, will be _____. (1) p^2m^2 (2) p^2/m^2 (3) $p^2/2m$ (4) p^2/m
- 57. The capacitance across the terminal A and B of the electrical circuit, given below, is _____.

(1) $6\mu F$ (2) $10\mu F$ (3) $15\mu F$ (4) $5\mu F$

58. The angular momentum of a flywheel, having rotational inertia of 0.16 kg m², decreases from 3.2 kg m²/s to 0.8 kg m²/s in 1.2s. The average torque acting on the flywheel during this period is _____.
(1) 2.0 Nm
(2) 2.6 kg m²/s²
(3) 3.9 kg m²/s²
(4) 1.6 Nm

59. If a gymnast, sitting on a rotating stool, with his arms out-stretched, suddenly folds his arms, his (1) moment of inertia decreases. (2) angular velocity remains constant.

(3) angular momentum decreases. (4) angular momentum increases.

60. The intensity ratio of two waves A and B is 1:9. Then, the ratio of their amplitudes will be _____.(1) 9:1(2) 1:9(3) 1:3(4) 3:1

61. The total energy of a particle, executing simple harmonic motion (SHM) is proportional to (1) its period.
(2) its phase angle.
(3) the square of its amplitude.
(4) None of these

- 62. A capacitor of capacitance 900 pF is charged by a battery of 100 V. Then, the electrostatic energy stored by the capacitor will be _____.
 - (1) $4.5 \,\mu J$ (2) $4.5 \,n J$ (3) $4.5 \,J$ (4) $9 \,\mu J$

- 63. The initial velocity of a body travelling along a straight line is 20 ms⁻¹. If the retardation of the body is 4 ms⁻¹, the distance moved by the particle in the 5th second is _____.
 - (1) 2 m (2) 19 m (3) 75 m (4) 100 m
- 64. If the change in the value of 'g' at a height 'h' above the surface of the earth is the same as at a depth 'x' below its surface, then

(1)
$$x = h^2$$
 (2) $x = 0.5 h$ (3) $x = 2 h$ (4) $x = h$

- 66. The temperature at which Celsius and Fahrenheit scale have the same reading is _____. $(1) -10^{\circ}$ C $(2) -20^{\circ}$ C $(3) -30^{\circ}$ C $(4) -40^{\circ}$ C
- 67. The masses of two radioactive substances are same and their half lives are 1 year and 2 years respectively. The ratio of their activities after 6 years will be
 - (1) 1:4 (2) 1:2 (3) 1:3 (4) 1:6
- 68. Which of the following statements is incorrect?
 - (1) Work done in the adiabatic process is greater than the work done in isothermal process.
 - (2) Work done in the adiabatic process is directly proportional to the gas.
 - (3) Work done in the adiabatic process is directly proportional to the temperature difference.

$$(4) \ \frac{nR(T_2 - T_1)}{\gamma - 1}$$

- 69. Work that must be done by a force on 100 kg body in order to accelerate it from 0 to 20 m/s in 10 seconds is _____.
 - (1) 2×10^4 J (2) 4×10^3 J (3) 4×10^4 J (4) 0.2×10^3 J
- 70. An ideal heat engine operates in Carnot cycle between 227°C and 327°C. It absorbs 6×10^4 calories at the higher temperature. Calculate the amount of heat converted into work.
 - (1) 1×10^4 calories (2) 1.6×10^4 calories (3) 2×10^4 calories (4) 3×10^4 calories
- 71. How many times more intense is a 90 dB sound compared to 40 dB sound? (1) 10^5 (2) 100 (3) 1000 (4) 10^4

- 72. A small particle carrying a negative charge of 2×10^{-19} C is suspended in equilibrium between the horizontal plates 10 cm apart, having a potential difference of 2000 V across them. The mass of the particle is (assuming g ~ 10 ms⁻²)
 - (1) 4×10^{-16} Kg (2) 5×10^{-16} Kg (3) 3×10^{-16} Kg (4) 2×10^{-16} Kg
- 73. A wire is stretched to make it 0.1% longer. The percentage change in its resistance is _____.

 (1) 0.2%
 (2) 0.1%

 (3) 0.4%
 (4) 0.8%

74. The ratio of the concentration of electrons to that of holes in a semiconductor is 9/5 and the ratio of currents is 9/4, then the ratio of their drift velocities is _____.
(1) 5/4 (2) 3/4 (3) 2/3 (4) 1/3

- 75. A ferromagnetic material is heated above its curie temperature. Which one is correct statement? (1) Ferromagnetic domains are perfectly arranged
 - (2) Ferromagnetic domains become random
 - (3) Ferromagnetic domains are not influenced
 - (4) Ferromagnetic materials changes into diamagnetic materials
- 76. If a current is given by $I = I_o \sin\left(wt \frac{\pi}{2}\right)$ flows in an A.C. circuit across which an A.C.

potential $E = E_o \sin(wt)$ has been applied, then power consumption in the circuit will be _____.

(1)
$$P = E_o \frac{I_o}{2\sqrt{2}}$$
 (2) $P = E_o \frac{I_o}{\sqrt{2}}$ (3) $P = E_o \frac{I_o}{2}$ (4) 0

77. Which of the following electromagnetic waves has the longest wavelength?

- (1) Heat Waves
- (2) Visible Light
- (3) Radio frequency waves

- (4) Microwaves
- 78. The current relationship between two current gains (á, â) in a transistor is _____

(1)
$$\frac{\beta}{1+\beta}$$
 (2) $\beta = \frac{\alpha}{1+\alpha}$ (3) $\alpha = \frac{\beta}{1-\beta}$ (4) $\alpha = \frac{\beta}{2}$

- 79. Operating point of a transistor is _____.
 (1) zero signal value of I_c and V_{CE}
 (3) zero signal value of V_{CC}
- (2) zero signal value of I_c
- (4) zero signal value of I_b and V_{CC}
- 80. The GATE represented by block diagram is
 - (1) AND gate. (2) OR gate.

 $(3) \text{ NOR gate.} \qquad (4) \text{ N}$

INPUT B

- 81. If A and B are square matrices of the same order r, then (A+B)(A-B) =_____. (1) $A^2-BA-AB-B^2$ (2) $A^2-B^2+BA-AB$ (3) A^2-B^2 (4) A^2-BA+B^2+AB
- 82. There are two values of 'a' which makes $\begin{vmatrix} 1 & -2 & 5 \\ 2 & a & -1 \\ 0 & 4 & 2a \end{vmatrix} = 86$, then the sum of these numbers is
 - $\overline{(1) 7}$ (2) 9 (3) -4 (4) 4

83. For the function $f(x) = x^3 - 3x$, the value of c in the interval $\left[-\sqrt{3}, 0\right]$ by Rolle's theorem is (1) 1 (2) -1 (3) $\frac{-3}{2}$ (4) $\frac{-1}{3}$

- 84. If $x = t^2$, $y = t^3$, then $\frac{d^2 y}{dx^2} =$. (1) $\frac{3}{4t}$ (2) $\frac{3}{2t}$ (3) $\frac{3}{2}$ (4) $\frac{3t}{4}$
- 85. $\int_{a+c}^{b+c} f(x)dx = \underline{\qquad}.$ (1) $\int_{a-c}^{b-c} f(x)dx$ (2) $\int_{a}^{b} f(x-c)dx$ (3) $\int_{a}^{b} f(x+c)dx$ (4) $\int_{a}^{b} f(x)dx$
- 86. $\int e^{x} \left(\frac{1-x}{1+x^{2}}\right)^{2} dx = \underline{\qquad}$ (1) $\frac{-e^{x}}{1+x^{2}} + c$ (2) $\frac{e^{x}}{1+x^{2}} + c$ (3) $\frac{e^{x}}{(1+x^{2})^{2}}$ (4) $\frac{-e^{x}}{(1+x^{2})^{2}} + c$

87. The angle between the vectors $\hat{i} - \hat{j}$ and $\hat{j} - \hat{k}$ is _____. (1) $-\frac{\pi}{3}$ (2) $\frac{\pi}{6}$ (3) $\frac{\pi}{3}$ (4) $\frac{2\pi}{3}$

- 88. Distance of point (α, β, r) from y-axis is _____. (1) $|\beta|$ (2) $\sqrt{\alpha^2 + r^2}$ (3) α (4) $|\beta| + |r|$
- 89. If A and B' are independent events then $P(A' \cup B) = 1$ _____. (1) P(A)P(B') (2) P(A')P(B') (3) $P(A' \cap B')$ (4) P(A')P(B)

- 90. A man is known to speak truth 3 out of 4 times. He throws a dice and reports that it is a six. The probability that it is actually a six is _____.
 - (1) $\frac{3}{4}$ (2) $\frac{1}{6}$ (3) $\frac{3}{8}$ (4) $\frac{1}{4}$

91. The domain and range of the real function f defined by $f(x) = \frac{5-x}{x-5}$ is given by ______. (1) Domain = R, Range = {-5,5} (2) Domain = R-{1}, Range = R (3) Domain = R-{5}, Range = {-1} (4) Domain = R-{5}, Range = {1}

- 92. If $\sin \theta + \cos ec \theta = -2$, then $\sin^2 \theta + \cos ec^2 \theta =$ _____. (1) 2 (2) 4 (3) -4 (4) -1
- 93. The sum of the series $i+i^2+i^3+....+$ up to 100 terms is _____. (1) i (2) -i (3) 0 (4) 1
- 94. For a real number x if |x| < 2, then _____.(1) x > 2(2) x < -2(3) -2 < x < 2(4) -2 < x < 2

95. The number of ways of selecting 11 players from 22 players always including 2 of them and excluding 4 of them is _____. (1) ${}^{20}C_{11}$ (2) ${}^{16}C_{11}$ (3) ${}^{20}C_{9}$ (4) ${}^{16}C_{9}$

96. The locus of the centre of a square made outside the circle $x^2+y^2=a^2$ on a chord of length equal to radius is _____. (1) $x^2 + y^2 = a^2(\sqrt{3}+1)/2$ (2) $x^2 + y^2 = a^2(\sqrt{3}+1)/4$

(1) $x + y^2 = a^2(\sqrt{3}/2+1)^2$ (2) $x + y^2 = a^2(\sqrt{3}/2+1)$ (3) $x^2 + y^2 = a^2(\sqrt{3}/2+1)$ (4) $x^2 + y^2 = a^2(\sqrt{3}/2+2)$

97. The triangle having the largest area in a circle of radius *r* has ______ as one of its side. (1) 2r (2) $\sqrt{3}r$ (3) $2r/\sqrt{3}$ (4) None of these

98. For x = 2, which of the following statement is false?
(1) x is prime and x is even
(2) x is odd or x is even
(3) x is not prime and x is even
(4) x is odd or x is prime

99. The diagonal of square made touching the hyperbola x.y = 2 tangentially is _____. (1) $4\sqrt{2}$ (2) $4\sqrt{3}$ (3) $3\sqrt{3}$ (4) 4

 100. The image of the point (1, 2, 3) in a plane is (3, 2, 1). The plane passes through the point _____.

 (1) (4,5,6)
 (2) (5,4,6)
 (3) (4,5,4)
 (4) (4,5,5)

101. A plane passes through (1, 0, 1), (1, 1, 0) and gives a circle of area π when intersect with sphere $x^2 + y^2 + z^2 = 1$. The normal to the plane passing through (2, 3, 5) also passes through

(1) (3,2,6) (2) (6,3,2) (3) (3,2,4) (4) (3,2,5)

102. Normal to a plane at $(1/2, 0, \sqrt{3}/2)$ has distance 0.5 unit from centre of unit sphere at origin. The area of circle cut by the plane to sphere is _____. (1) $\pi\sqrt{3}/4$ (2) $\pi/3$ (3) $\pi/2$ (4) $\pi/4$

103. A largest sphere is made inside the sphere $x^2 + y^2 + z^2 = 1$ and outside the sphere $(x - 1)^2 + (y - 1)^2 + z^2 = 1$. The volume of the sphere is _____. (1) $\pi\sqrt{2}/3$ (2) $\pi\sqrt{3}/2$ (3) $\pi\sqrt{4}/3$ (4) $\pi\sqrt{3}/4$

104. The plane passing through (1, 2, 3), (2, 1, 3) and origin is rotated at right angle. The plane now passes through the point _____.
(1) (1,1,1)
(2) (2,3,2)
(3) (1,1,-1)
(4) (3,2,3)

105. A vector has components and 3 in rectangular coordinate. If the plane is rotated with angle q counter clockwise, then its components 2*a*+1 and 1. The value of *a* is _____.
(1) -7/3, 1
(2) 7/3, 1
(3) -1, -7/3
(4) -1, 7/3

106. The vector $w = (2 - a)i + (2 + a)j + a^2k$ is parallel to plane containing the vector u = 4i + j + kand v = i + 2j + 3k. The value of *a* is _____.

(1)
$$\frac{2}{7}(3+3\sqrt{11})$$
 (2) $\frac{2}{7}(2+3\sqrt{11})$ (3) $\frac{2}{7}(3+2\sqrt{11})$ (4) $\frac{2}{7}(2+2\sqrt{11})$

107. Vectors u = a i + 5 j + k, v = 2 i + j + 5 k and w = i + 4 j + (a - 1) k are coplanar. Then a is

(1)
$$\frac{2}{5}\left(1+3\sqrt{39}\right)$$
 (2) $\frac{2}{5}\left(3-3\sqrt{39}\right)$ (3) $\frac{3}{5}\left(1+3\sqrt{39}\right)$ (4) $\frac{2}{5}\left(1-5\sqrt{39}\right)$

108. In a biased dice, the probability of getting even number is twice of odd number. If two such dices are rolled, what is probability of getting a sum 9?
(1) 10/81
(2) 18/81
(3) 1/12
(4) 8/81

109. Ram picks a random card out of pack of 52 cards and if it is not a queen, he replaces and again
picks. How many cards, he should draw so that his probability of getting queen is at least 0.5?(1) 6(2) 7(3) 8(4) 9

110. A cinema hall offers 10%, 20% and 30% of discount on tickets of type I, II, and III. If the ratio of tickets of type I, II and III are 5:3:2 and Shyam buys a ticket randomly, what is probability that he gets discount more than 10%?
(1) 0.25
(2) 0.33
(3) 0.66
(4) 0.5

111.	1. The probability of a same birth date of at least two students in a class of 20 students is				
	(1) 0.411	(2) 0.588	(3) 0.25	(4) 0.114	
112.	The number of solution	$10^{2}(x) + 10^{Ta}$	$n^2(x) = 110$ for x in [0, 2]	π] is	
	(1) 0	(2) 1	(3) 2	(4) ∞	
113.	The number of values of	of x in [0, 2π] for which	$\cos(x/2)$, $\sin(x)$ and Tan	n(x/2) are in G.P. is	
	(1) 0	(2) 2	(3) 4	(4) 6	
114.	If 20 $\alpha = \pi$, then val	ue of $\operatorname{Cot}(\alpha)$. $\operatorname{Cot}(2\alpha)$	$.\cot(9\alpha)$ is		
	(1) - 1	(2) ∞	(3) 1	(4) -∞	
115.	If $\frac{11z_1}{17z_2}$ is purely imaginate in the second se	nary, then $\left[\frac{3z_1 + 5z_2}{3z_1 - 5z_2}\right]$ is	equal to		
	(1) $\frac{11}{17}$	(2) $\frac{13}{19}$	(3) $\frac{33}{85}$	(4) None of these	
116.	Let $z_1 = 1 - i$ and $z_2 =$	$3 + \sqrt{2}i$, then the curve re	epresented by $\left \frac{z - z_1}{z - z_2} \right = 7$	is a	
	(1) straight line.	(2) circle.	(3) parabola.	(4) None of these	

117. Let O be the origin and A and B be two points in the argand plane such that O, A and B are collinear and OA.OB =1. If the point A is represented by \overline{z} , then the point B is given by

(1) $\frac{1}{\overline{z}}$ (2) z (3) $\frac{1}{z}$ (4) None of these

118. The centre of a square ABCD is at the origin and point A is represented by $\sqrt{7} + 3i$. Then centroid of ΔBCD is represented by _____.

(1)
$$-\frac{\sqrt{7}}{3}-i$$
 (2) $1+i\frac{\sqrt{7}}{3}$ (3) $\frac{\sqrt{7}}{3}+i$ (4) $-1-\frac{\sqrt{7}}{3}$

119. The number of ways in which 11 different flowers can be strung to form a garland so that 5 particular flowers are never separated is _____.
(1) 5!.6!
(2) 5!.7!
(3) 76400
(4) None of these

120. The number of ways of distributing 7 bananas among 5 children so that each child receives atleast one banana is ______.
(1) 21 ______.
(2) 15 ______.

(1) 21 (2) 35 (3) 15 (4) 7

121.	The total count of num repetition such that all digits on the right of the (1) 576	nbers of seven digits th the digits on the left of t e digit in the middle are (2) 1296	at can be made using the digit in the middle at greater than the digit in the (3) 8!	he digits 1 to 9 without re less than it and all the he middle is (4) None of these	
122.	The number of 7 digit r (1) 9.8 ⁶	numbers in which no two $(2) 9^2.8^5$	adjacent digits are iden $(3) 9^3.8^4$	tical is (4) 9^7	
123.	If <i>X</i> is a singular matrix (1) Identity matrix	(2) Null matrix	K) is(3) Scalar matrix	(4) None of these	
124.	If A and B are square m $(1) -60$	atrices of order 3 such th (2) 120	hat $ A = -3$ and $ B = 5$, t (3) -120	hen 2 <i>AB</i> is (4) 60	
125.	Consider the system of solutions of this system	equations $2x - y + 2z =$ of equations is	2; $x - 2y + z = -4$; $x + y$	z + z = 4. The number of	
	(1) 0	(2) 1	(3) 2	(4) Infinitely many	
126.	Let $a \neq x, b \neq y$ and $c \neq d$	z and $\begin{vmatrix} a & b & z \\ x & b & c \\ x+a & y+b & 2c \end{vmatrix}$ =	=0, then $\frac{x}{x-a} + \frac{y}{y-b} + \frac{y}{x-a}$	$\frac{z}{z-c} = \underline{\qquad}.$	
	(1) 0	(2) 1	(3) 2	(4) 3	
127.	The range of function f (1) $(-\infty,3]$	(x) = $\log^3(9 - x^2)$ is (2) [-3,3]	(3) [0,3]	(4) (-3,3)	
128.	The function $f(x) = 2 \sin x$	$n 3x + 3\cos\sqrt{5}x$ is			
	(1) periodic function w	ith period 2π			
	(2) periodic function w	ith period $\frac{2\pi}{3}$			
	(3) periodic function with period $\frac{2\pi}{\sqrt{5}}$				
	(4) not a periodic funct	ion			
129.	If $f(x) = \sin x - \cos x$ and	d $g(x) = 1 - x^2$, then $g(f(x)) = 1 - x^2$	()) is invertible in the do	main	
	(1) $\left[0,\frac{\pi}{2}\right]$	$(2)\left[-\frac{\pi}{4},\frac{\pi}{4}\right]$	$(3)\left[-\frac{\pi}{4},\frac{\pi}{2}\right]$	(4) $[0,\pi]$	
130.	Let $f: [-3,0] \rightarrow \mathbb{R}$ be	given by $f(x) = e^x + \cos x$	sx, then its extension	to [-3,3] is given by	

 $(1) - e^{|x|} - \cos|x| \qquad (2) e^{-|x|} - \cos|x| \qquad (3) e^{-|x|} + \cos|x| \qquad (4) - e^{|x|} + \cos|x|$

131.	. The Principal buffer present in human blood is				
	(1) $NaH_2PO_4 + Na_2HPO_4$		(2) $H_3PO_4 + NaH_2PO_4$		
	(3) $H_2CO_3 + HCO_3^-$		(4) $CH_3COOH + CH_3COOH + CH_3C$	COONa	
132.	Number of moles Mn	O_4^- required to oxidize o	one mole of ferrous oxala	ate in acidic medium will	
	be				
	(1) 2.5 mol.	(2) 0.2 mol.	(3) 0.6 mol.	(4) 0.4 mol.	
133.	At a temperature of abo stable?	out 20K (very low), whic	ch allotropes form of mo	lecular hydrogen is more	
	(1) Ortho hydrogen		(2) Para hydrogen		
	(3) Both Ortho and Par	ra hydrogen	(4) None of these		
124	The order of increase	ing hand dissociation	ontholmy of UUDD	and EE molecules is	
134.	·	ing bond dissociation	епипатру от п-п, D-D	and F-F molecules is	
	(1) $H-H < D-D < F-F$	(2) $F-F < H-H < D-D$	(3) $F-F < D-D < H-H$	(4) $D-D < H-H < F-F$	
135.	Which of the following	g anions is present in the	chain structure of silicat	es?	
	(1) $(Si_2O_5^{2-})$	(2) (SiO_3^{2-})	(3) SiO_{-}^{4-}	(4) $Si_2O_7^{6-}$	
	(2.5) m	() (5 m	() n	X / 2 /	
136.	H ₃ BO ₃ is				
	(1) Monobasic and we	ak Lewis acid.	(2) Monobasic and we	ak Brønsted acid.	
	(3) Monobasic and stro	ong Lewis acid.	(4) Tribasic and weak	Brønsted acid.	
127	Paraantaga of laad in 1	and Dancil is			
137.	(1) Zara	(2) 20	_· (2) 80	(4) 70	
	(1) Zelo	(2) 20	(3) 80	(4) 70	
138.	. On mixing certain alkane with chlorine and irradiating it with U.V light, it forms only one monochloroalkane. The alkane is			light, it forms only one	
	(1) Isopentane.	(2) Neopentane.	(3) Propane.	(4) Pentane.	
139.	. The chemical reagent used to detect the presence of phenol in a given sample of organic compound is				

- (1) Tollen's reagent in presence of alkali.
- (2) Neutral ferric chloride solution.
- (3) (NaOH+ I_2) solution.
- (4) Sodium Hydrogen Carbonate (Bicarbonate Test).

- 140. The gases present in atmosphere that causes Greenhouse effect are
 - (1) Carbon Dioxide, Oxygen and Nitrogen.
 - (2) Carbon dioxide, Sulphur dioxide and Methane.
 - (3) Nitrous oxide, Oxygen, and Water vapours.
 - (4) Methane, Water vapours and Carbon dioxide.

141. Structurally a biodegradable detergent should contain a

- (1) Normal alkyl chain. (2) Branched alkyl chain.
- (3) Phenyl side chain. (4) Cyclohexyl side chain.

142. Lithium metal crystallises in a B.C.C structure. If the length of the side of the unit cell of lithium is 351 pm, the atomic radius of the lithium will be
(1) 151.8 pm.
(2) 75.5 pm.
(3) 300.5 pm.
(4) 240.8 pm.

143. A 5.25% solution of substance is isotonic with 1.5% solution of urea (molar mass = 60 g mol⁻¹) in the same solvent. If the densities of both the solution are assumed to be equal to 1.0 g cm⁻³, molar mass of the substance will be _____. (1) 105.0 g mol⁻¹ (2) 210.0 g mol⁻¹ (3) 90.0 g mol⁻¹ (4) 115.0 g mol⁻¹

144. The correct order of equivalent conductance at infinite dilution among LiCl, NaCl and KCl is $\underbrace{(1) \text{ LiCl} > \text{NaCl} > \text{KCl}}_{(2) \text{ NaCl} > \text{KCl} > \text{LiCl} (3) \text{ KCl} > \text{NaCl} > \text{LiCl} (4) \text{ LiCl} > \text{KCl} > \text{NaCl}$

145. For a first order reaction

- (1) the degree of dissociation is equal to $(1-e^{-kt})$.
- (2) a plot of reciprocal concentration of the reactant Vs. time gives a straight line.
- (3) the time taken for the completion of 75% reaction is thrice the $t_{1/2}$ of the reaction.
- (4) the pre-exponential factor in the Arrhenius equation has the dimension of kJ mol⁻¹s⁻¹.
- 146. Which of the following barium salts is soluble in water?
 - (1) Barium Sulphate (2) Barium Carbonate (3) Barium Nitrate (4) Barium Phosphate
- 147. A gas can be liquefied
 - (1) below its critical temperature. (2) above its critical temperature.
 - (3) at its critical temperature. (4) at any temperature.

148. Fac-Mer isomerism is associated with which one of the following complexes (M=central metal)?

- (1) $[M(AA)_2]$ (2) $[MA_3B_3]$ (3) $[M(AA)_3]$ (4) $[MA_4B_2]$
- 149. $(CH_3)_3CMgBr$ on reaction with D₂O produces(1) $(CH_3)_3CD$ (2) $(CH_3)COD$ (3) $(CD_3)_3CD$ (4) $(CD_3)_3COD$

150.	Hybridization of nitrog	en in pyridine is				
	(1) sp^3d	(2) sp^{3}	(3) sp^2	(4) <i>sp</i>		
151.	The IUPAC name of the compound shown in the figure is CH_3					
	(1) 1-methylcyclohex-5	5-ene.	(2) 6-methyl cyclohexe	me.		
	(3) 1-methylcyclohex-2	2-ene.	(4) 3-methylcyclohexen	ne.		
152.	The function of AlCl ₃ i	n Friedal Craft's reaction	n is to			
	(1) produce nucleophile	e.	(2) produce attacking e	lectrophile.		
	(3) absorb water.		(4) absorb HCl.			
153.	3. If two compounds have same empirical formula but different molecular formulae, they must have					
	(1) same viscosity.		(2) same vapor pressure	2.		
	(3) different percentage	e composition.	(4) different molecular	weights.		
154.	The C-H bond length is	s longest in				
	(1) C_2H_2	(2) C_2H_4	(3) C_2H_6	(4) $C_2H_2Br_2$		
155.	The final product in the	e recation $CH_2 = CH_2$	$O_2, A_g \longrightarrow (X) \xrightarrow{473K} Y$ is			
	(1) Ethylene glycol.	(2) Ethanol.	(3) Epoxyethane.	(4) None of these		
156.	Among the following the follo	he least reactive aldehyd $(2) C H CHO$	e is			
	(1) C2115C110	(2) C_{6} (2) C_{6} (2)	(5) CH3CHO	(4) ПСПО		
157.	In the following reaction	n				
	$CH_3COOH + X - Conc.H$	$\xrightarrow{2SO_4} Y + CO_2 + N_2$, X as	nd Y are respectively			
	(1) NH_3 and CH_3CONF	H ₂	(2) NH_3 and CH_3NH_2			
	(3) HN_3 and CH_3NH_2		(4) HN_3 and CH_3CONF	H ₂		

- 158. Ethyl isocyanide on hydrogen in acidic medium generates
 - (1) Methylamine salt and ethanoic acid.
 - (2) Ethanoic acid and ammonium salt.
 - (3) Propanoic acid and ammonium salt.
 - (4) Ethylamine salt and methanoic acid.

159.	Natural rubber is a poly	mer of		
	(1) Isoprene.	(2) Phenol.	(3) Ethylene.	(4) Vinyl chloride.
160.	Ester used as a medicin	e is		
	(1) Methyl salicylate.	(2) Ethyl benzoate.	(3) Methyl acetate.	(4) Ethyl acetate.
161	Which of the following	has largest number of a	tome?	
101.	(1) $1g \text{ of } Cu$	(2) 0.5 mole of Cu	(3) 0.635 g of Cu	(4) 0.25 mole of Cu
	(1) 15 01 Cu	(2) 0.5 mole of Cu	(<i>J</i>) 0.055 g 01 Cu	(+) 0.25 mole of Cu
162.	The spin magnetic mon	nent of the cobalt in the	compound Hg[Co(SCH)	4] is
	(1) $\sqrt{24}$	(2) $\sqrt{14}$	$(3) \sqrt{15}$	$(4) \sqrt{8}$
		(_) (1)		
163.	The correct order of th	e electron affinity of th	e elements of the oxyge	n family in the periodic
	table is			
	(1) $S > Se > O$	(2) $O > S > Se$	(3) Se> S >O	(4) S > O > Se
164.	The number of the coor	dinate bond in HF_2^- is/	are	
	(1) 1	(2) 0	(3) 2	(4) 1 or 2
165	In the man time A (a) t	$2 \mathbf{D}(z) \rightarrow 4 \mathbf{C}(z)$	4:-1	
103.	In the reaction $A(g)$ +	$3 B (g) \Leftrightarrow 4 C (g), 100$	The equilibrium constant	s equal to that of B. The $nt(K)$ is equal to
	(1) 8	(2) 0.8	(3) 0.008	(A) 1/8
	(1) 8	(2) 0.8	(3) 0.008	(4) 1/8
166.	Which of the following	is a compound whose 0	.1 M solution is basic?	
	(1) Sodium Acetate.	1	(2) Ammonium Acetat	e.
	(3) Ammonium Chlorid	de.	(4) Ammonium Sulpha	te.
167.	The critical temperature	re of water is higher the	han that of O_2 because	the H_2O molecule has
	·			0
	(1) V-shape		(2) Fewer electrons tha	$n O_2$
	(3) Dipole-moment		(4) Two covalent bond	S
168	Glass is a			
108.	(1) gel		(2) polymeric Mixture	
	(3) microcrystalline sol	id.	(4) super cooled liquid.	
169.	Which is not a colligati	ve property?		
	(1) Elevation of boiling	g point	(2) Osmotic pressure	
	(3) Depression of freez	ing point	(4) Lowering of vapor	pressure

170.	 The highest electrical conductivity of the follow (1) 0.1 M Fluoroacetic acid. (3) 0.1 M Acetic acid. 		 7 ing aqueous solution is of (2) 0.1 M Chloroacetic acid. (4) 0.1 M Difluoroacetic acid. 	
171.	Hydrogen bomb is based on the principle of(1) natural radioactivity.(3) nuclear fission.		(2) nuclear fusion.(4) artificial radioactivity.	
172.	The bond angle and dip (1) 109.5° and 1.84 D (3) 102.5° and 1.56 D	pole moment of water are	e respectively (2) 104.5° and 1.84 D (4) 107.5° and 1.56 D	
173.	Which of the following (1) Malachite	g ore contains both Cu ar (2) Cuprite	nd Fe? (3) Chalcopyrites	(4) Chalcocite
174.	The H-O-H angle in w	ater molecule is	_•	
	(1) 45°	(2) 105°	(3) 90°	(4) 115°
 175. Several blocks of magnesium are fixed to the bottom of a ship to (1) prevent puncturing by undersea rocks. (2) prevent action of (3) make the ship lighter. (4) keep away the ship 		ottom of a ship to (2) prevent action of w (4) keep away the shar	vater and salt. ks.	
176.	The correct order of in	creasing C-O bond lengt	h of CO, CO_2, CO_3^{2-} is	·
	(1) $CO > CO_2 > CO_3^{2-}$		(2) $CO > CO_3^{2-} > CO_2$	
	(3) $CO_2 > CO_3^{2-} > CO$		(4) $CO_3^{2-} > CO_2 > CO$	
177.	Boiling/melting point of (1) SbH ₃ > AsH ₃ > PH ₃	of following hydride foll > NH ₃	ow the order (2) $SbH_3 > NH_3 > AsH_3$	₃ > PH ₃
	$(3) \text{ SbH}_3 < \text{AsH}_3 < \text{PH}_3$	< NH ₃	(4) $AsH_3 > SbH_3 > PH_3$	$> NH_3$
178.	Which of the following	g is paramagnetic compo	und?	
	(1) KO ₂	(2) Na_2O_2	(3) O ₃	(4) N ₂ O
179.	Shape and hybridization (1) Pentagonal pyrami	on of IF ₅ respectively are dal, sp^3d^3	(2) Square pyramidal,	sp^3d^2
	(3) See saw, $sp^{-}a$		(4) Trigonal Dipyramic	iai, sp a
180.	Xenon hexafluoride re Xenon in 'X' is	acts with Silica to form	to Xenon Compound 'X	X'. The oxidation state of
	(1) +6	(2) +4	(3) +2	(4) 0

181.	181. World Cancer Day is held on		_ every year to raise awareness of cancer.		
	(1) February 4	(2) March 4	(3) April 4	(4) May 4	
182.	Whom did Serena Will Singles title?	lliams defeat in the fin	al to win the Australia	n Open 2015 Women's	
	(1) Venus Williams	(2) Maria Sharapova	(3) Ekaterina Makarova	a(4) None of these	
183.	Which technology gian billion?	t became the first compa	any in the world to reach	a market value of \$700	
	(1) Microsoft	(2) Google	(3) Apple	(4) Facebook	
184.	Which Indian Golfer ha	s won the Malaysian Op	pen 2015?		
	(1) Jeev Milkha Singh	(2) Arjun Atwal	(3) Anirban Lahiri	(4) Jyoti Randhawa	
185.	Saina Nehwal won the the women's singles ca	Syed Modi Internationa tegory by defeating worl	l India Grand Prix Gold d champion Carolina Ma	badminton title 2015 in arin of	
	(1) Spain.	(2) Denmark.	(3) Malaysia.	(4) Taiwan.	
186.	Airport Council Interna airport in the 25-40 mil (1) Rajiv Gandhi Intern (2) Bengaluru Internation (3) IGI Airport, New D (4) Chennai Internation	ational (ACI) has ranked lion passengers per annu aational Airport, Hyderah onal Airport, Bengaluru elhi al Airport	d as the value (MPPA) category for bad	the year 2014.	
187.	became the a (1) Chris Gayle	first batsman to hit doub (2) Rohit Sharma	le century in Cricket Wo (3) Virender Sehwag	orld Cup history. (4) Martin Guptill	
188.	188. Senior Journalist Vinod Mehta who passed away on 8 March 2015 was associated with which of the following magazines?				
	(1) Outlook	(2) India Today	(3) The Week	(4) Tehelka	
189.	Indian Railways has a financing the developm (1) LIC of India	signed an MoU with _ ent of its various comme (2) World Bank	to rai ercially viable infrastruct (3) State Bank of India	se ₹1.5 lakh crore for ture projects. (4) NHAI	
190.	Who among the follow Region by the Indian G	wing has been selected overnment?	as the Brand Ambassa	ndor for the North East	
	(1) Baichung Bhutia		(2) Mary Kom		
	(3) Sarita Devi		(4) Somdev Devvarman	n	

191.	. The mass nesting of Olive Ridley sea turtles, an endangered species happens in which India state?				
	(1) Odisha	(2) West Bengal	(3) Andhra Pradesh	(4) Tamil Nadu	
192.]	has acquired the shoppin	g search engine TheFind	l.	
	(1) Facebook	(2) Google	(3) Yahoo	(4) Twitter	
193.	National Photography	Awards in India are give	n by Ministry of		
	(1) Information & Bro	adcasting.	(2) Human Resource D	Development.	
	(3) Skill Development	& Entrepreneurship.	(4) Tourism.		
194.	Who has authored the	book "Indian Parliament	ary Diplomacy – Speake	r's Perspective"?	
	(1) Meira Kumar		(2) Shivraj Patil		
	(3) Somnath Chatterjee	2	(4) Manohar Joshi		
195.	5. India's indigenously developed Beyond Visual Range (BVR) air-to-air missile successfully tested in March 2015 from a Sukhoi-30 fighter aircraft.				
	(1) Astra	(2) Shastra	(3) Prithvi	(4) Agni	
196.	National Green Tribur littering or throwing w	nal (NGT) has announce aste on the railway platfo	ed a fine of ₹ orms and tracks.	on individuals spotted	
	(1) 500	(2) 1000	(3) 3000	(4) 5000	
197.	Who among the follo announced in March 24	owing won the best act 015?	ress award in the 62nd	National Film Awards	
	(1) Kangana Ranaut	(2) Alia Bhatt	(3) Tabbu	(4) Baljinder Kaur	
198.	In March 2015, NASA	's curiosity rover has for	and evidence of	on Mars.	
	(1) Oxygen	(2) Nitrogen	(3) Hydrogen	(4) plutonium	
199.	Which is the only cour the opposition, Deputy	ntry in the world where the Leader of the house, and	he Prime Minister, Parlia d a major opposition lead	ament speaker, Leader of der are all women?	
	(1) Denmark	(2) Bangladesh	(3) Spain	(4) None of these	
200.	Who is the richest man	of India as per the Forb	es Rich list 2015?		
	(1) Anil Ambani	(2) Mukesh Ambani	(3) Shiv Nadar	(4) Lakshmi Mittal	

INSTRUCTIONS TO CANDIDATE

- 1. Please do not open this Question Booklet until asked to do so.
- 2. Do not leave the examination hall until the test is over and permitted by the invigilator.
- **3.** Fill up the necessary information in the space provided on the cover of the Question Booklet and the Answer Sheet before commencement of the test.
- **4.** Check for the completeness of the Question Booklet immediately after opening. There are 24 pages including the cover pages.
- 5. The duration of the test is **3 hours**.
- 6. There are 200 questions. Each question has four answer options marked (1), (2), (3) and (4).
- 7. Answers are to be marked on the OMR Answer Sheet, which is provided separately.
- **8.** Choose the most appropriate option and darken the oval/circle completely, corresponding to (1), (2), (3) or (4) against the relevant question number.
- 9. Use only **HB pencil** to darken the oval/circle for answering.
- **10.** Do not darken more than one oval/circle against any question, as scanner will read such marking as wrong answer.
- 11. If you wish to change any answer, erase completely the one already marked and darken the fresh oval/circle with an **HB** pencil.
- 12. All questions carry equal marks. There is No Negative Marking.
- **13.** Rough work, if any, is to be done on the Question Booklet only. No separate sheet will be provided/used for rough work.
- 14. Calculator, Mobile, Electronic Gadgets, etc., are not permitted inside the examination hall.
- 15. Candidate using unfair means in the test will be disqualified.
- **16.** Appropriate civil/criminal proceedings will be instituted against the candidate taking or attempting to take this Question Booklet or part of it outside the examination hall, besides cancellation of his/her candidature.
- **17.** The right to exclude any question(s) from final evaluation rests with the testing authority.
- **18.** Do not seek clarification on any item in the question booklet from the test invigilator. Use your best judgment.

THIS QUESTION BOOKLET AND OMR ANSWER SHEET ARE TO BE RETURNED ON COMPLETION OF THE TEST.