Sol: . $\int \frac{\mathrm{dx}}{\sqrt{\tan _{\mathrm{x}}^{3} \cos _{\mathrm{x}}^{4}}}=\int \frac{\sec ^{2} \mathrm{xdy}}{\sqrt{\tan _{\mathrm{x}}^{3}}}$ Put. $\tan \mathrm{x}=\mathrm{t}$
72. If $\int \frac{d x}{(1+\sqrt{x}) \sqrt{x-x^{2}}}=\frac{A \sqrt{x}}{\sqrt{1-x}}+\frac{B}{\sqrt{1-x}}+C$, where is a real constant then $A+B=$

1) 0
2) 1
3) 2
4) 3

Key: 1
Sol: .Put $\sqrt{\mathrm{x}}=\mathrm{t}$
73. For any integer $n \geq 2$, let $I_{n}=\int \tan ^{n} x d x$. If $I_{n}=\frac{1}{a} \tan ^{n-1} x-b I_{n-2}$ for $n \geq 2$, then the ordered pair (\mathbf{a}, b) $=$

1) $\left(\mathrm{n}-1 \frac{\mathrm{n}-2}{\mathrm{n}-1}\right)$
2) $(\mathrm{n}, 1)$
3) $(\mathrm{n}-1,1)$
4) $\left(\mathrm{n}-1, \frac{\mathrm{n}-1}{\mathrm{n}-2}\right)$

Key: 3
Sol:. In $=\int \tan _{\mathrm{x}}^{\mathrm{n}-2}\left(\sec _{\mathrm{n}}^{2}-1\right)$
$=\frac{1}{\mathrm{n}-1} \tan _{\mathrm{x}}^{\mathrm{n}-1}-\mathrm{I}_{\mathrm{n}-2}$
74. If $\int \frac{\left(x^{2}-1\right)}{(x+1)^{2} \sqrt{x\left(x^{2}+x=1\right)}} d x=A \tan ^{-1}\left(\sqrt{\frac{x^{2}+x+1}{x}}\right)+c$, in which c is a constant then $A=$

1) 3
2) 2
3) 1
4) $\frac{1}{2}$

Key: 2
Sol: .divide nr and dr by x^{2}
put $\mathrm{x}+\frac{1}{\mathrm{x}}=\mathrm{t}^{2}$
75. By the definition of the definite integral, the value of $\lim _{n \rightarrow \infty}\left(\frac{1^{4}}{1^{5}+n^{5}}+\frac{2^{4}}{2^{5}+n^{5}}+\frac{3^{4}}{3^{5}+n^{5}}+\ldots \ldots .+\frac{n^{4}}{n^{5}+n^{5}}\right)$ is

1) $\frac{1}{5} \log 2$
2) $\frac{1}{4} \log 2$
3) $\frac{1}{3} \log 2$
4) $\log 2$

Key: 1
Sol: $\cdot \int_{0}^{1} \frac{\mathrm{x}^{4}}{1+\mathrm{x}^{5}} \mathrm{dx}$
76. $\int_{0}^{\pi / 6} \cos ^{4} 3 \theta \sin ^{2} 6 \theta d \theta=$

1) $\frac{5}{192}$
2) $\frac{5 \pi}{256}$
3) $\frac{5 \pi}{192}$
4) $\frac{\pi}{96}$

Key: 3
Sol: .Put $3 \theta=\mathrm{t}$ and aply (1)
use reduction formula
77. The area (in square units) of the region bounded by $x=-1, x=2, y=x^{2}+1$ and $y=2 x-2$ is

1) 7
2) 8
3) 9
4) 10

Key: 3
Sol: . $\int_{-1}^{2}\left(x^{2}+1\right)-(2 x-2) d x$
78. The differential equation of the family of parabolas with vertex at $(0,-1)$ and having axis along the y-axis is

1) $x y^{\prime}+y+1=0$
2) $x y^{\prime}-2 y-2=0$
3) $x y^{\prime}-y-1=0$
4) $y y^{\prime}+2 x y+1=0$

Key: 2
Sol: . $x^{2}=k(y+1) ; / x^{2}=C_{1}(y+1)$ Eliminate C_{1}
79. The solution of $x \frac{d y}{d x}=y+x e^{y / x}$ with $y(1)=0$ is

1) $e^{-y / x}=\log x$
2) $e^{-y / x}+2 \log x=1$
3) $e^{-y / x}+\log x=1$
4) $e^{y / x}+\log x=1$

Key: 3
Sol: .Put $y=v x$
80. The solution of $\cos y+(x \sin y-1) \frac{d y}{d x}=0$ is

1) $\tan y-\sec y=c x$
2) $\tan y+\sec y=c x$
3) $x \sec y+\tan y=c$
4) $x \sec y=\tan y+c$

Key: 4
Sol: .Reduce it in the form $\frac{d x}{d y}+P x=q$

PHYSICS

81. Match the following (Take the relative strength of the strongest fundamental forces in nature as one)

A
Fundamental forces in nature
(a) Strong nuclear force
(b) Weak nuclear force
(c) Electromagnetic force
(d) Gravitational force

1) (a) - (f), (b) - (h), (c) - (e), (d) - (h)
2) (a) - (f), (b) - (e), (c) - (h), (d) - (i)

Key: 2
Sol: a-f ; b-h; c-e; d-i
82. If C the velocity of light, h Planck's constant and G Gravitational constant are taken as fundamental quantities, then the dimensional formula of mass is

1) $\mathrm{h}^{1 / 2} \mathrm{C}^{1 / 2} \mathrm{G}^{-1 / 2}$
2) $\mathrm{h}^{-1 / 2} \mathrm{C}^{1 / 2} \mathrm{G}^{-1 / 2}$
3) $\mathrm{h}^{-1 / 2} \mathrm{C}^{-1 / 2} \mathrm{G}^{-1 / 2}$
4) $h^{-1 / 2} G^{-1 / 2} C^{0}$

Key: 1
Sol: $c^{a} h^{b} G^{c}=M$
$\left(L T^{-1}\right)^{a}\left(M L L^{2} T^{-1}\right)^{b}\left(M^{-1} L^{3} T^{-2}\right)^{c}=M$
b-c = 1
$a+2 b+3 c=0$
$-\mathrm{a}-\mathrm{b}-2 \mathrm{c}=0$
$\therefore a=1 / 2, b=1 / 2, c=-1 / 2$
83. A person walks along a straight road from his house to a market 2.5 kms away with a speed of 5 $\mathrm{km} / \mathrm{hr}$ and instantly turns back and reaches his house with a speed of $7.5 \mathrm{kms} / \mathrm{hr}$. The average speed of the person during the time interval 0 to 50 minutes is (in $\mathrm{m} / \mathrm{sec}$)

1) $\frac{5}{3}$
2) $\frac{5}{6}$
3) $\frac{1}{3}$
4) $4 \frac{2}{3}$

Key: 1
Sol: $\mathrm{t}_{1}=\frac{2.5}{5}=\frac{1}{2} \mathrm{hrs}$
$\mathrm{t}_{2}=\frac{2.5}{7.5}=\frac{1}{3} \mathrm{hrs}=20 \mathrm{~min}$.
$\mathrm{v}=\frac{5 \times 1000}{50 \times 60}=\frac{5}{3} \mathrm{~m} / \mathrm{s}$
84. Velocity (v) versus displacement (x) plot of a body moving along a straight line is as shown in the graph. The corresponding plot of acceleration (a) as a function of displacement (x) is

3)

2)

4)

Key: 2
Sol: $\mathrm{v}=\mathrm{kx}$
$\frac{\mathrm{dv}}{\mathrm{dt}}=\mathrm{kv}=\mathrm{k}^{2} \mathrm{x}$
$\mathrm{a}=\mathrm{k}^{2} \mathrm{x}$
$\mathrm{v}=-\mathrm{kx}+\mathrm{v}_{0}$
$\frac{\mathrm{dv}}{\mathrm{dt}}=-\mathrm{kv}=-\mathrm{k}\left(-\mathrm{kx}+\mathrm{v}_{0}\right)$
$a=k^{2} x-k v_{0}$
85. The path of a projectile is given by the equation $y=a x-b x^{2}$, where a and b are constants and x and y are respectively horizontal and vertical distance of projectile from the point of projection. The maximum height attained by the projectile and the angle of projection are respectively

1) $\frac{b^{2}}{2 a}, \tan ^{-1}(b)$
2) $\frac{a^{2}}{b}, \tan ^{-1}(2 b)$
3) $\frac{a^{2}}{4 b}, \tan ^{-1}(a)$
4) $\frac{2 a^{2}}{b}, \tan ^{-1}(a)$

Key: 3
Sol: $\tan \theta=\mathrm{a}$
$\theta=\tan ^{-1} \mathrm{a}$
$\tan \theta=\mathrm{a} ; \quad \frac{\mathrm{g}}{2 \mathrm{u}^{2} \cos ^{2} \theta}=\mathrm{b}$
$\frac{\mathrm{a}^{2}}{\mathrm{~b}}=\frac{\tan ^{2} \theta}{\mathrm{~g}} \times 2 \mathrm{u}^{2} \cos ^{2} \theta=\frac{\sin ^{2} \theta}{\mathrm{~g}} \times 2 \mathrm{u}^{2}=\left(\frac{\mathrm{u}^{2} \sin ^{2} \theta}{2 \mathrm{~g}}\right) \times 4$
$\frac{a^{2}}{4 b}=H$
86. A body is projected at an angle θ so that its range is maximum. If T is the time of flight then the value of maximum range is (acceleration due to gravity $=g$)

1) $\frac{g T}{2}$
2) $\frac{g T^{2}}{2}$
3) $\frac{g^{2} T^{2}}{2}$
4) $\frac{g^{2} T}{2}$

Key: 2
Sol: As range is maximum $\theta=45^{\circ}$
$\mathrm{T}=\frac{2 \mathrm{u} \sin \theta}{\mathrm{g}}=\frac{2 \mathrm{u} \sin 45^{\circ}}{\mathrm{g}}=\frac{\sqrt{2} \mathrm{u}}{\mathrm{g}}$
$=\frac{1}{g}\left(\frac{\mathrm{~T} / \mathrm{g}}{\sqrt{2}}\right)^{2}=\frac{1}{\mathrm{~g}} \times \frac{\mathrm{T}^{2} \mathrm{~g}^{2}}{2}$
$\mathrm{R}=\frac{\mathrm{T}^{2} \mathrm{~g}}{2}$
87. A mass $M \mathrm{~kg}$ is suspended by a weightless string. The horizontal force required to hold the mass at 60° with the vertical is

1) $\operatorname{Mg} \sqrt{3}$
2) $\operatorname{Mg}(\sqrt{3}+1)$
3) $\frac{M g}{\sqrt{3}}$
4) Mg

Key: 1

Sol: $\mathrm{F}=\mathrm{Mg} \tan \theta \Rightarrow \mathrm{F}=\mathrm{Mg} \sqrt{3}$
88. The force required to move a body up a rough inclined plane is double the force required to prevent the body from sliding down the plane. The coefficient of friction when the angle of inclination of the plane is 60° is

1) $\frac{1}{\sqrt{2}}$
2) $\frac{1}{\sqrt{3}}$
3) $\frac{1}{2}$
4) $\frac{1}{3}$

Key: 2
Sol: $\mathrm{F}_{\text {up }}=2\left(\mathrm{~F}_{\text {down }}\right)$
$m g(\sin \theta+\mu \cos \theta)=2 m g(\sin \theta-\mu \cos \theta)$
$\Rightarrow \mu=\frac{1}{3} \tan \theta=\frac{1}{3} \tan 60^{\circ}=\frac{1}{\sqrt{3}}$
89. A cannon shell fired breaks into two equal parts at its highest point. One part retraces the path to the cannon with kinetic energy E_{1} and kinetic energy of the second part is E_{2}. Relation betweeen the E_{1} and E_{2} is

1) $E_{2}=E_{1}$
2) $E_{2}=4 E_{1}$
3) $E_{2}=9 E_{1}$
4) $\mathrm{E}_{2}=15 \mathrm{E}_{1}$

Key: 3
Sol: .At highest point mu $\cos \theta=-\frac{m}{2} u \cos \theta+\frac{m}{2} v$
$\frac{3 m}{2} u \cos \theta=\frac{m}{2} v \Rightarrow v=3 u \cos \theta$
$\mathrm{E}_{1}=\frac{1}{2} \times \frac{\mathrm{m}}{2} \times \mathrm{u}^{2} \cos ^{2} \theta=\frac{m u^{2} \cos ^{2} \theta}{4}$
$\mathrm{E}_{2}=\frac{1}{2} \times \frac{\mathrm{m}}{2} \times 9 \mathrm{u}^{2} \cos ^{2} \theta=\frac{9 \mathrm{mu}^{2} \cos ^{2} \theta}{4}$
$\Rightarrow \mathrm{E}_{2}=9 \mathrm{E}_{1}$
90. A bus moving on a level road with a velocity V can be stopped at a distance of x, by the application of a retarding force F . The load on the bus is increased by $\mathbf{2 5 \%}$ by boarding the passengers. Now, if the bus is moving with the same speed and if the same retarding force is applied, the distance travelled by the bus before it stops is,

1) x
2) $5 x$
3) $2.5 x$
4) $1.25 x$

Key: 4
Sol: $\cdot v^{2}-u^{2}=2 a s=2\left(\frac{F}{m}\right) s$
$-u^{2}=-2\left(\frac{F}{m}\right) \mathrm{s}$
$\mathrm{s} \propto \mathrm{m} \Rightarrow \frac{\mathrm{s}_{1}}{\mathrm{~s}_{2}}=\frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}} \Rightarrow \frac{\mathrm{x}}{\mathrm{s}_{2}}=\frac{\mathrm{m}}{\frac{5}{4} \mathrm{~m}} \Rightarrow \mathrm{~s}_{2}=\frac{5 \mathrm{x}}{4}=1.25 \mathrm{x}$
91. A wheel which is initially at rest is subjected to a constant angular acceleration about its axis. It rotates through an angle of 15^{0} in time t secs. The increase in angle through which it rotates in the next $2 t$ secs is

1) 120°
2) 30°
3) 45°
4) 90°

Key: 1

Sol: . $15=\frac{1}{2} \alpha \mathrm{t}^{2}$
$\Delta \theta=\frac{1}{2}(\alpha) 9 \mathrm{t}^{2}-\frac{1}{2}(\alpha) \mathrm{t}^{2}=15 \times 9-15=120^{0}$
92. A thin wire of length l having linear density ρ is bent into a circular loop with C as its centre, as shown in figure. The moment of inertia of the loop about the line $A B$ is

1) $\frac{\rho l^{3}}{16 \pi^{2}}$
2) $\frac{\rho l^{3}}{8 \pi^{2}}$
3) $\frac{3 \rho l^{3}}{8 \pi^{2}}$
4) $\frac{5 \rho l^{3}}{16 \pi^{2}}$

Key: 3
Sol: $\frac{3 m R^{2}}{2}=\frac{3}{2}(\phi)\left(\frac{l}{2 \pi}\right)^{2}=\frac{3}{8} \times \frac{\rho^{3}}{\pi^{2}} \quad(2 \pi r=l)$
93. The ratio between kinetic and potential energies of a body excuting simple harmonic motion, whe it is at a distance of $\frac{1}{N}$ of its amplitude from the mean position is

1) $\frac{1}{\mathrm{~N}^{2}}$
2) N^{2}
3) $\mathrm{N}^{2}-1$
4) $\mathrm{N}^{2}+1$

Key: 3
Sol: . $\left.\frac{\frac{1}{2} k\left(A^{2}-x^{2}\right)}{\frac{1}{2} k x^{2}}=\frac{A^{2}-\frac{A^{2}}{N^{2}}}{\frac{A^{2}}{N^{2}}}=N^{2}-1\right)$
94. A satellite is revolving veryclose to a planet of density ρ. The period of revoluton of satellite is

1) $\sqrt{\frac{3 \pi}{2 \rho \mathrm{G}}}$
(2) $\sqrt{\frac{3 \pi}{\rho G}}$
2) $\sqrt{\frac{3 \pi \mathrm{G}}{\rho}}$
3) $\sqrt{\frac{3 \pi \rho}{G}}$

Key: 2
Sol: . $T=2 \pi \sqrt{\frac{R^{3}}{G M}}=2 \pi \sqrt{\frac{R}{g}}=2 \pi \sqrt{\frac{R}{\frac{4}{3} \pi \rho G R}}=\sqrt{\frac{3 \pi}{\rho G}}$
95. Two wires of the same material and length but diameters in the ratio $1: 2$ are stretched by the same force. The elastic potential energy per unit volume for the two wires when stretched by the same force will be in the ratio

1) $1: 1$
2) $2: 1$
3) $4: 1$
4) $16: 1$

Key: 4
Sol: $. \frac{1}{2} \times \frac{F}{A} \times \frac{1}{l} \times \frac{F l}{Y A} \propto \frac{1}{r^{4}} \Rightarrow\left(\frac{2}{1}\right)^{4}=\frac{16}{1}$
96. When a big drop of water is formed from n small drops of water, the energy loss is 3 E , where E is the energy of the bigger drop. If R is the radius of the bigger drop and r is the radius of the smaller drop, then number of of smaller drops (n) is

1) $\frac{4 R}{r}$
2) $\frac{2 R^{2}}{r}$
3) $\frac{4 R^{2}}{r^{2}}$
4) $\frac{4 R}{r^{2}}$

Key: 3
Sol: $\cdot \mathrm{n} \times 4 \pi \mathrm{r}^{2} \times \mathrm{T}-4 \pi \mathrm{R}^{2} \times \mathrm{T}=3 \times 4 \pi \mathrm{R}^{2} \times \mathrm{T}$
$\mathrm{n}=\frac{4 \mathrm{R}^{2}}{\mathrm{r}^{2}}$
97. A steam at $100^{\circ} \mathrm{C}$ is passed into 1 kg of water contained in a calorimeter of water equivalent 0.2 kg at $9^{\circ} \mathrm{C}$, till the temperature of the calorimeter and water in it is increased to $90^{\circ} \mathrm{C}$. The mass of steam condensed in kg is nearly (sp . heat of water $=1 \mathrm{cal} / \mathrm{g}-{ }^{\circ} \mathrm{C}$, Latent heat of vaporisation $=$ $540 \mathrm{cal} / \mathrm{g}$)

1) 0.18
2) 0.27
3) 0.54
4) 0.81

Key: 1
Sol: $. \mathrm{m} \times 540+\mathrm{m} \times 1 \times 10=1200 \times 1 \times 81$
$\mathrm{m}=\frac{1200 \times 81}{550}=176.7 \mathrm{~g} \square 0.18 \mathrm{~kg}$
98. A very small hole in an electric furnace is used for heating metals. The hole nearly acts as a black body. The area of the hole is $200 \mathrm{~mm}^{2}$. Te keep a metal at $727^{\circ} \mathrm{C}$, heat energy flowing through this hole per sec, in joules is $\left(\sigma=5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{k}^{-4}\right)$.

1) 2.268
2) 1.134
3) 11.34
4) 22.68

Key: 3
Sol: . $\mathrm{P}=\sigma \mathrm{AT}^{4}=5.67 \times 10^{-8} \times 200 \times 10^{-6} \times\left(10^{3}\right)^{4}=11.34$
99. Five moles of Hydrogen initially at STP is compressed adiabatically so that its temperature becomes 673 K . The increase in internal energy of the gas, in Kilo Joules is ($R=8.3 \mathrm{~J} / \mathrm{mole}-\mathrm{K}$; $\gamma=1.4$ for diatomic gas)

1) 21.55
2) 41.50
3) 65.55
4) 80.5

Key: 2
Sol: $. \Delta \mathrm{U}=\mathrm{n} \frac{\mathrm{R}}{\gamma-1} \mathrm{dT}=5 \times \frac{8.3}{0.4} \times 400=41.50$
100. The volume of one mole of the gas is changed from \mathbf{V} to 2 V at constant pressure P . If γ is the ratio of specific heats of the gas, change in internal energy of the gas is

1) $\frac{\mathrm{R}}{\gamma-1}$
2) PV
3) $\frac{\mathrm{PV}}{\gamma-1}$
4) $\frac{\mathrm{r} \cdot \mathrm{PV}}{\gamma-1}$

Key: 3
Sol: $\Delta \mathrm{U}=\mathrm{n}\left(\frac{\mathrm{R}}{\gamma-1}\right) \Delta \mathrm{T}=\frac{\mathrm{P} \Delta \mathrm{V}}{\gamma-1}=\frac{\mathrm{PV}}{\gamma-1}$
101. Aclosed pipe is suddenly opened and changed to an open pipe of same length. The fundamental frequency of the resulting open pipe is less than of 3rd harmomic of the earlier closed pipe by 55 Hz . Then, the value of fundamental frequency of the closed pipe is

1) 110 Hz
2) 55 Hz
3) 220 Hz
4) 165 Hz

Key: 2

Sol: $\frac{v}{2 l}=3 \times \frac{v}{4 l}-55$
$55=\frac{3 v}{4 l}-\frac{v}{2 l}=\frac{(3-2) v}{4 l}$
$\frac{v}{4 l}=55 \mathrm{~Hz}$
102. A convex lens has its radii of curvature equal. The focal length of the lens is f. If it is divided vertically into two identical plano-convex lenses by cutting it, then the focal length of the planoconvex lens is ($\mu=$ the refractive index of the material of the lens)

1) $\frac{f}{2}$
2) $2 f$
3) $(\mu-1) \mathrm{f}$
4)f

Key: 2
Sol: $\frac{1}{\mathrm{f}}=(\mu-1) \frac{2}{\mathrm{R}}$
$\frac{\mu-1}{R}=\frac{1}{2 f}$
\therefore focal length $=2 f$
103. A thin converging lens of focal length $f=25 \mathrm{~cm}$ forms the image of an object on a screen placed at a distance of 75 cm from the lens. The screen is moved closer to the lens by a distance of $\mathbf{2 5} \mathbf{c m}$. The distance through which the object has shifted so that its image on the screen is sharp again is

1) 16.25 cm
2) 12.5 cm
3) 13.5 cm
4) 37.5 cm

Key: 2
Sol: case(1)
$\frac{1}{\mathrm{f}}=\frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}}$
$\frac{1}{25}=\frac{1}{75}-\frac{1}{x}$
$\frac{1}{x}=\frac{1}{75}-\frac{1}{25}=\frac{1-3}{75}$
$x=-\frac{75}{2}=-37.5 \mathrm{~cm}$
case(2)
$\frac{1}{25}=\frac{1}{50}-\frac{1}{x}$
$\frac{1}{x}=\frac{1}{50}-\frac{1}{25}=\frac{1-2}{50}$
$\mathrm{x}=-50 \mathrm{~cm}$
$50-37.5=12.5 \mathrm{~cm}$
104. In a double slit interference experiment, the fringe width obtained with a light of wavelength $5900{ }^{0}$ was $1.2 \mathbf{~ m m}$ for parallel narrow slits placed $2 \mathbf{~ m m}$ apart. In this arrangement, if the slit separation is increased by one-and-half times the previous value, the fringe width is

1) 0.8 mm
2) 1.8 mm
3) 1.6 mm
4) 0.9 mm

Key: 1
Sol: $\beta=\frac{\lambda D}{d}$
$\frac{\beta_{1}}{\beta_{2}}=\frac{\mathrm{d}_{2}}{\mathrm{~d}_{1}}=\mathbf{1 . 5}$
$\beta_{2}=\frac{1.2}{1.5}=\frac{4}{5}=0.8 \mathrm{~mm}$
105. A charge Q is divided into two charges q and Q - q. The value of q such that the force between them is maximum is

1) $\frac{3 Q}{4}$
2) $\frac{Q}{2}$
3) $\frac{Q}{3}$
4) Q

Key: 2
Sol: $\cdot \mathrm{q}_{1}=\mathrm{Q} \quad \& \quad \mathrm{q}_{2}=\mathrm{Q}-\mathrm{q}$
$\frac{\mathrm{dF}}{\mathrm{dQ}}=0$
$\frac{\mathrm{d}}{\mathrm{dQ}}\left(\frac{1}{4 \pi \epsilon_{0}} \mathrm{Q}(\mathrm{Q}-\mathrm{q})\right)=0$
$\therefore \mathrm{q}_{1}=\mathrm{q}_{2}=\frac{\mathrm{Q}}{2}$
106. Two concentric hollow spherical shells have radii r and $R(R \gg r)$. A charge Q is distributed on them such that the surface charge densities are equal. The electric potential at the centre is

1) $\frac{\mathrm{Q}\left(\mathrm{R}^{2}+\mathrm{r}^{2}\right)}{4 \pi \epsilon_{0}(\mathrm{R}+\mathrm{r})}$
2) $\frac{Q}{R+r}$
3) 0
4) $\frac{\mathrm{Q}(\mathrm{R}+\mathrm{r})}{4 \pi \epsilon_{0}\left(\mathrm{R}^{2}+\mathrm{r}^{2}\right)}$

Key: 4
Sol: . $\sigma=\frac{\mathrm{Q}}{4 \pi\left(\mathrm{r}^{2}+\mathrm{R}^{2}\right)}$
$\mathrm{V}=\frac{1}{4 \pi \epsilon_{0}}\left(\frac{\sigma \times 4 \pi \mathrm{r}^{2}}{\mathrm{r}}+\frac{\sigma \times 4 \pi \mathrm{R}^{2}}{\mathrm{R}}\right)=\frac{\sigma}{\epsilon_{0}}(\mathrm{r}+\mathrm{R})=\frac{\mathrm{Q}(\mathrm{r}+\mathrm{R})}{4 \pi \epsilon_{0}\left(\mathrm{r}^{2}+\mathrm{R}^{2}\right)}$
107. Wires A and \mathbb{B} have resistivities ρ_{A} and $\rho_{\mathrm{B}},\left(\rho_{\mathrm{B}}=2 \rho_{\mathrm{A}}\right)$ and have lengths l_{A} and l_{B}. If the diameter of the wire B is twice that of \mathbf{A} and the two wires have same resistance, then $\frac{l_{B}}{l_{A}}$ is

1) 1
2) $1 / 2$
3) $1 / 4$
4) 2

Key: 4
Sol: . $\left(\frac{\rho l}{A}\right)_{A}=\left(\frac{\rho l}{A}\right)_{B} \Rightarrow \frac{l_{B}}{l_{A}}=\frac{\rho_{A}}{\rho_{B}} \times \frac{A_{B}}{A_{A}}=\frac{1}{2} \times \frac{4}{1}=2$
108. In the circuit shown, the heat produced in 5 ohms resistance due to current through it is $50 \mathrm{~J} / \mathrm{s}$. Then the heat generated/second in $\mathbf{2}$ ohms resistance is

1) $4 \mathrm{~J} / \mathrm{s}$
2) $9 \mathrm{~J} / \mathrm{s}$
3) $10 \mathrm{~J} / \mathrm{s}$
4) $5 \mathrm{~J} / \mathrm{s}$

Key: 4
Sol: $i_{1}=\frac{i \times 5}{5+10}=\frac{i}{3}$
$\mathrm{i}_{2}=\frac{\mathrm{i} \times 10}{15}=\frac{2}{3} \mathrm{i}$
$\frac{P_{1}}{P_{2}}=\frac{i_{1}^{2} R_{1}}{i_{2}^{2} R_{2}}$
$\frac{\mathrm{P}_{1}}{50}=\left(\frac{\mathrm{i}_{1}}{\mathrm{i}_{2}}\right)^{2} \cdot \frac{2}{5}=\left(\frac{1}{2}\right)^{2} \cdot \frac{2}{5}$
$\frac{\mathrm{P}_{1}}{50}=\frac{1}{10}$
$P_{1}=5 \mathrm{~J} / \mathrm{s}$
109. A steady current flows in a long wire. It is bent into a circular loop of one turn and the magnetic field at the centre of the coil is B. If the same wire is bent into a circular loop of n turns, the magnetic field at the centre of the coit is

1) nB
2) $n B^{2}$
3) $n^{2} B$
4) B / n

Key: 3
Sol: $\mathrm{B}=\frac{\mu_{0} n \mathrm{ni}}{2 \mathrm{r}} \quad \mathrm{n}_{1}=1, \mathrm{n}_{2}=\mathrm{n}, 2 \pi \mathrm{r}_{1}=\mathrm{n} \times 2 \pi \mathrm{r}_{2} \Rightarrow \frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}=\frac{\mathrm{n}}{1}$
$\frac{\mathrm{B}_{1}}{\mathrm{~B}_{2}}=\frac{\mathrm{n}_{1}}{\mathrm{n}_{2}} \cdot \frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}$
$\frac{\mathrm{B}}{\mathrm{B}_{2}}=\frac{1}{\mathrm{n}} \cdot \frac{1}{\mathrm{n}}$
$B_{2}=n^{2} B$
110. An electrically charged particle enters into a uniform magnetic induction field in a direction perpendicular to the field with a velocity V. Then, it travels

1) with force in the direction of the field
2) in a circular path with a radius directly proportional to V^{2}
3) in a circular path with a radius directly proportional to its velocity
4) in a straight line without acceleration

Key : 3

Sol: $\mathrm{Bvq}=\frac{\mathrm{mv}^{2}}{\mathrm{r}}$
$B q=\frac{m v}{r}$
$r \alpha v$
111. At a certain place, the angle of dip is 60° and the horizontal component of earth's magnetic field $\left(B_{H}\right)$ is $0.8 \times 10^{-4} \mathrm{~T}$. The earth's overall magnetic field is

1) $1.6 \times 10^{-3} \mathrm{~T}$
2) $1.5 \times 10^{-3} \mathrm{~T}$
3) $1.6 \times 10^{-4} \mathrm{~T}$
4) $1.5 \times 10^{-4} \mathrm{~T}$

Key: 3
Sol: $\mathrm{B}_{\mathrm{H}}=\mathrm{B} \cos \theta$
$0.8 \times 10^{-4}=\mathrm{B} \cos \theta$
$B=1.6 \times 10^{-4}$
112. A coil of wire of radius r has 600 turns and a self inductance of 108 mH . The self inductance of a coil with same radius and $\mathbf{5 0 0}$ turns is

1) 75 mH
2) 108 mH
3) 90 mH
4) 80 mH

Key 3
Ans: $\mathrm{L} \alpha \mathrm{N}^{2}$
$\frac{\mathrm{L}_{1}}{\mathrm{~L}_{2}}=\left(\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}\right)^{2}$
$\frac{108}{L_{2}}=\left(\frac{600}{500}\right)^{2}$
$\mathrm{L}_{2}=108 \times \frac{25}{36}$
$\mathrm{L}=75 \mathrm{mH}$
113. A capacitor of 50μ F is connected to a power source $V=220 \sin 50 t(V$ in volt, t in second). The value of rms current (in Amperes)

1) 0.55 A
2) $\sqrt{2}$
3) $\frac{(0.55)}{\sqrt{2}} \mathrm{~A}$
4) $\frac{\sqrt{2}}{0.55} \mathrm{~A}$

Key: 3
Sol: C $=50 \mu \mathrm{~F}$
$X_{C}=\frac{1}{\omega C}=\frac{1}{50 \times 50 \times 10^{-6}} \Omega$
$i_{\text {rms }}=\frac{V_{\text {rms }}}{X}=\frac{V_{\text {rms }}}{\left(\frac{1}{\omega C}\right)}=\omega C V_{\text {rms }}$

$$
=50 \times 50 \times 10^{-6} \times \frac{\mathrm{V}_{0}}{\sqrt{2}}=25 \times 10^{-4} \times \frac{220}{\sqrt{2}}=\frac{25 \times 22 \times 10^{-3}}{\sqrt{2}}
$$

$$
=\frac{550 \times 10^{-3}}{\sqrt{2}}
$$

$\mathrm{i}_{\mathrm{rms}}=\frac{0.55}{\sqrt{2}} \mathrm{~A}$
114. The electric field for an electromagnetic wave in free space is $\overrightarrow{\mathrm{E}}=\overrightarrow{\mathrm{i}} 30 \cos \left(\mathrm{kz}-5 \times 10^{8} \mathrm{t}\right)$ where magnitude of E is in V / m. The magnitude of wave vector, k is (velocity of em wave in free space= $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$)

1) $3 \mathrm{radm}^{-1}$
2) $1.66 \mathrm{rad} \mathrm{m}^{-1}$
3) $0.83 \mathrm{rad} \mathrm{m}^{-1}$
4) $0.46 \mathrm{radm}^{-1}$

Key: 2
Sol: $\overrightarrow{\mathrm{E}}=\overrightarrow{\mathrm{i}} 30 \cos \left(\mathrm{kz}-5 \times 10^{8} \mathrm{t}\right)$
$\mathrm{C}=3 \times 10^{8}$
$v \lambda=3 \times 10^{8}$
$\frac{\omega}{2 \pi} \cdot \lambda=3 \times 10^{8}$
$\lambda=\frac{2 \pi \times 3 \times 10^{8}}{\omega}$
$=\frac{2 \pi \times 3 \times 10^{8}}{5 \times 10^{8}}=\frac{6 \pi}{5} \mathrm{~m}$
$\mathrm{k}=\frac{2 \pi}{\lambda}=\frac{2 \pi}{6 \pi} \times 5$
$\mathrm{k}=\frac{5}{3} \mathrm{~m}$
$\mathrm{k}=1.66 \mathrm{~m}$
115. The energy of a photon is equal to the kinetic energy of a proton. If λ_{1} is the de Broglie wavelength of a proton, λ_{2} the wavelength associated with the photon, and if the energy fo the photon is E, then $\left(\lambda_{1} / \lambda_{2}\right)$ is proportionalto

1) $E^{1 / 2}$
2) E^{2}
3) E
4) E^{4}

Key :1
Sol: $K . \mathrm{E}_{\text {proton }}=\mathrm{E}_{\text {photon }}$
$($ proton $) \frac{\mathrm{h}}{\mathrm{mv}}=\lambda_{\mathrm{h}}$
$($ Photon $) \mathrm{E}=\mathrm{hu}=\frac{\mathrm{hC}}{\lambda_{2}}$
$\lambda_{2}=\frac{\mathrm{hC}}{\mathrm{E}}$
$\mathrm{P}=\sqrt{2 \mathrm{mE}}$
$\lambda_{1}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mE}}}$

$$
\begin{aligned}
& \begin{aligned}
\frac{\lambda_{1}}{\lambda_{2}} & =\frac{\frac{\mathrm{h}}{\sqrt{2 \mathrm{mE}}}}{\left(\frac{\mathrm{hC}}{\mathrm{E}}\right)} \\
& =\frac{1}{\mathrm{C} \sqrt{2 \mathrm{~m}}} \frac{\mathrm{E}}{\sqrt{\mathrm{E}}} \\
\frac{\lambda_{1}}{\lambda_{2}} & \alpha \sqrt{\mathrm{E}}
\end{aligned}
\end{aligned}
$$

116. The radius of the first orbit of hydrogen is r_{H}, and the energy in the ground state is $\mathbf{- 1 3 . 6} \mathbf{e V}$. Considering a μ^{-}particle with a mass $207 \mathrm{~m}_{\mathrm{e}}$ revolving round a proton as in Hydrogen atom, the energy and radius of proton and μ^{-}combination respectively in the first orbit are (assume nucleus to be stationary)
1) $-207 \times 13.6 \mathrm{eV}, 207 \mathrm{r}_{\mathrm{H}}$
2) $\frac{-13.6}{207} \mathrm{eV}, \frac{\mathrm{T}_{\mathrm{H}}}{207}$
3) $\frac{-13.6}{207} \mathrm{eV}, 207 \mathrm{r}_{\mathrm{H}}$
4) $-13.6 \times 207 \mathrm{eV}, \frac{\mathrm{r}_{\mathrm{H}}}{207}$

Key: 4
Sol: $r \propto \frac{1}{m} \quad E \propto m$
117. If the radius of a nucleus with mass number 125 is 1.5 Fermi, then radius of a nucleus with mass number 64 is

1) 0.96 Fermi
2) 1.92 Ferni
3) 1.2 Fermi
4) 0.48 Fermi

Key: 3
Sol: $\mathrm{R} \propto \mathrm{A}^{1 / 3} \Rightarrow \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}=\left(\frac{\mathrm{A}_{2}}{\mathrm{~A}_{1}}\right)^{1 / 3} \Leftrightarrow \mathrm{R}_{2} \neq\left(\frac{64}{125}\right)^{1 / 3} \times 1.5$
$\mathrm{R}_{2}=\left(\frac{4}{5}\right) \times 1.5=1.2$ ferm. .2$)$
118. A crystal of intrinsic silicon at room temperature has a carrier concentration of $1.6 \times 10^{16} / \mathrm{m}^{3}$. If the donor concentration level is $4.8 \times 10^{20} / \mathrm{m}^{3}$, then the concentration of holes in the semiconductor is

1) $4 \times 10^{11} / \mathrm{m}^{3}$
2) $4 \times 10^{12} / \mathrm{m}^{3}$
3) $5.3 \times 10^{11} / \mathrm{m}^{3}$
4) $53 \times 10^{12} / \mathrm{m}^{3}$

Key: 3
Sol: $n^{2}=n_{e} \cdot n_{h} \Rightarrow n_{h}=\frac{n^{2}}{n_{e}}$
$=\frac{2.56 \times 10^{32}}{4.8 \times 10^{20}}=5.3 \times 10^{11} / \mathrm{m}^{3}$
119. The output characteristics of an n-p-n transistor represent, [I_{C} Collector current, $V_{C E}=$ potential difference between collector and emitter, $I_{B}=$ Base current, $V_{B B}=$ Voltage given to base, $V_{B E}=$ the potential differnce between base and emitter]

1) changes in I_{C} with changes in $V_{C E}\left(I_{B}=\right.$ constant $)$
2) changes in I_{B} with changes in $V_{C E}$
3) changes in I_{C} as $V_{B E}$ is changed
4) changes in I_{C} as I_{B} and $V_{B B}$ are changed

Key: 1
Sol: Graph between I_{C} and $V_{C E}$ when $I_{B}=$ constant
120. A T.V transmitting Antenna is 128 m tall. If the receiving Antenna is at the ground level, the maximum distance between them for satisfactory communication in L.O.S. mode is (Radius of the earth $=6.4 \times 10^{6} \mathrm{~m}$)

1) $\frac{128}{\sqrt{10}} \mathrm{~km}$
2) $128 \times \sqrt{10} \mathrm{~km}$
3) $\frac{64}{\sqrt{10}} \mathrm{~km}$
4) $64 \times \sqrt{10} \mathrm{~km}$

Key: 1
$\mathrm{h}=\sqrt{2 \mathrm{Rh}_{\mathrm{T}}}=\sqrt{2 \times 6.4 \times 10^{6} \times 128}$
$=\sqrt{128 \times 128 \times 10^{5}}$
$=\frac{128 \times 10^{3}}{\sqrt{10}} \mathrm{~m}==\frac{128}{\sqrt{10}} \mathrm{~km}$

CHEMISTRY

121. In an atom the order of increasing energy of electrons with quantum numbers
(i) $\mathrm{n}=4, \mathrm{l}=1$
(ii) $\mathrm{n}=4, \mathrm{l}=0$
(iii) $\mathrm{n}=3, \mathrm{l}=2$ and
(iv) $\mathrm{n}=3, \mathrm{l}=1$ is
(1) (ii) $<$ (iv) $<$ (i) $<$ (iii)
(2) (i) $<($ (iii) $<($ ii $)<($ iv $)$
(3) (iv) $<($ ii) $<($ iii $)<($ i $)$
(4) (iii) $<$ (i) $<$ (iv) $<$ (ii)

Key: 3
Sol: Applying $(n+l)$ rule
122. The number of angular and radial nodes of 4 d orbital respectively are
(1) 1,2
(2) 3,0
(3) 2,1
(4) 3,1

Key: 3
Sol: Number of radial nodes $=(\mathrm{n}-l-1)=(4-2-1)=1$
Number of angular nodes $=l=2$
123. The oxidation state and covalency of $A l$ in $\left[\mathrm{AlCl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{2+}$ are respectively
(1) $+3,6$
(2) $+2,6$
(3) $+3,3$
(4) $+6,6$

Key: 1
Sol: $\left[\mathrm{AlCl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{2+}$
$x+(-1)+5(0)=+2 \Rightarrow x=+3$
Covalency $\Rightarrow \mathrm{Cl}=1, \mathrm{H}_{2} \mathrm{O}=5 \Rightarrow$ Total $=1+5=6$
124. The increasing order of the atomic radius of $\mathrm{Si}, \mathrm{S}, \mathrm{Na}, \mathrm{Mg}, \mathrm{Al}$ is
(1) $\mathrm{Na}<\mathrm{Al}<\mathrm{Mg}<\mathrm{S}<\mathrm{Si}$
(2) $\mathrm{Na}<\mathrm{Mg}<\mathrm{Si}<\mathrm{Al}<\mathrm{S}$
(3) $\mathrm{Na}<\mathrm{Mg}<\mathrm{Al}<\mathrm{Si}<\mathrm{S}$
(4) $\mathrm{S}<\mathrm{Si}<\mathrm{Al}<\mathrm{Mg}<\mathrm{Na}$

Key: 4
Sol: In periode Left to right atomic size decreases as z-effective increases
125. The number of electrons in the valence shell of the central atom of a molecule is 8 . The molecule is
(1) BeH_{2}
(2) SCl_{2}
(3) SF_{6}
(4) BCl_{3}

Key: 2
Sol: SCl_{2} Number of lone pairs on ' S ' $=\frac{6-2 \times 1}{2}=2$
\therefore Total number of pairs $=2$ B.P. $+2 L . \mathrm{P}=8 \mathrm{e}^{-}$.
126. Which one of the following has longest covalent bond distance ?
(1) $\mathrm{C}-\mathrm{H}$
(2) $\mathrm{C}-\mathrm{N}$
(3) $\mathrm{C}-\mathrm{O}$
(4) $\mathrm{C}-\mathrm{C}$

Key: 4
Sol: Conceptual .
127. The ratio of rates of diffusion of gases X and Y is $1: 5$ and that of Y and Z is $1: 6$. The ratio of rates of diffusion of Z and X is
(1) $1: 6$
(2) $30: 1$
(3) $6: 1$
(4) $1: 30$

Key: 2
Sol: $\frac{\mathrm{r}_{x}}{\mathrm{r}_{y}}=\frac{\sqrt{\mathrm{M}_{\mathrm{y}}}}{\sqrt{\mathrm{M}_{\mathrm{x}}}}=\frac{1}{5} \longrightarrow(1)$
$\frac{\mathrm{r}_{y}}{\mathrm{r}_{z}}=\frac{\sqrt{\mathrm{M}_{\mathrm{z}}}}{\sqrt{\mathrm{M}_{\mathrm{y}}}}=\frac{1}{6} \longrightarrow(2)$
$\frac{r_{z}}{r_{x}}=\frac{\sqrt{M_{x}}}{\sqrt{M_{z}}}=$ eq $^{n}(1) \times$ eq $^{n}(2)$
128. The molecular interactions responsible for hydrogen bonding in HF
(1) dipole - dipole
(2) dipole - induced dipole (3) ion-dipole
(4) ion - induced dipole

Key: 1
Sol: Conceptual .
129. KMnO_{4} reacts with KI in basic medium to form I_{2} and MnO_{2}. When 250 mL of 0.1 M KI solution is mixed with 250 mL of $0.02 \mathrm{M} \mathrm{KMnO}_{4}$ in basic medium, what is the number of moles of I_{2} formed ?
(1) 0.0075
(2) 0.005
(3) 0.01
(4) 0.015

Key: 1

Sol:

Number of milli equivalent of $\mathrm{MnO}_{4}^{-}=0.02 \times 3 \times 250=15$

Number of milli equivalentof $\mathrm{I}^{-}=0.1 \times 1 \times 250=25$
\therefore Number of milli equivalents of I_{2} formed
$=\mathrm{n}$ - factor X number of milli moles
Number of milli moles of I_{2} form $=\frac{15}{1000}$ moles
130. The oxide of a metal contains 40% of oxygen. The valency of metal is 2 . What is the atomic weight of the metal?
(1) 12
(2) 40
(3) 36
(4) 24

Key: 1
Sol: Conceptual
131. The temperature in K at which $\Delta G=0$, for a given reaction with $\Delta H=-20.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta \mathrm{S}=-50.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ is
(1) 410
(2) 2.44
(3) -2.44
(4) -410

Key: 1
Sol: $0=-20.5 \times 10^{3}-(-50) \times T$
$\therefore \mathrm{T}=410$
132. In a reaction $A+B \square C+D, 40 \%$ of B has reacted at equilibrium, when 1 mol of A was heated with 1 mole of B in a 10 litre closed vessel. The value of K_{c} is
(1) 0.18
(2) 0.22
(3) 0.36
(4) 0.44

Key: 4
Sol: $\begin{array}{lllll} & \mathrm{A}+\mathrm{B} \square & \mathrm{C}+\mathrm{D} \\ \mathrm{t}=0 & 1 & 1 & 0 & 0\end{array}$
$t=$ equilibrium
(1-0.4) (1-0.4) $0.4 \quad 0.4$
$\therefore \mathrm{K}_{\mathrm{c}}=\frac{0.4 \times 0.4}{0.6 \times 0.6}=0.44$
133. If the ionic product of $\mathrm{Ni}(\mathrm{OH})_{2}$ is 1.9×10^{-15}, the molar solubility of $\mathrm{Ni}(\mathrm{OH})_{2}$ in 1.0 M NaOH
(1) $1.9 \times 10^{-13} \mathrm{M}$
(2) $1.9 \times 10^{-15} \mathrm{M}$
(3) $1.9 \times 10^{-14} \mathrm{M}$
(4) $1.9 \times 10^{-18} \mathrm{M}$

Key: 2
Sol: $S=\frac{K_{\mathrm{sp}}}{\mathrm{C}^{2}}=\frac{1.9 \times 10^{-15}}{(1)^{2}}=1.9 \times 10^{-15}$
134. Temporary hardness of water is removed in Clark's process by adding
(1) Calgon
(2) Borax
(3) Lime
(4) Caustic Soda

Key: 3
Sol: Conceptual
135. KO_{2} exhibits paramagnetic behaviour. This is due to the paramagnetic nature of
(1) K^{+}
(2) O_{2}
(3) O_{2}^{-}
(4) KO^{-}

Key: 3
Sol: Conceptual
136. Which one of the following correctly represents the variation of electronegativity (EN) with atomic number (\mathbf{Z}) of group 13 elements?
(1)

(2)

(3)

(4)

Key: 3
Sol: Conceptual
137. Which one of the following elements reacts with steam?
(1) Ge
(2) Si
(3) Sn
(4) C

Key: 3
Sol: Conceptual
138. What are X and Y in the following reaction?

$$
\mathrm{CF}_{2} \mathrm{Cl}_{2} \xrightarrow{\mathrm{uv}} \mathrm{X}+\mathrm{Y}
$$

(1) $\mathrm{C}_{2} \mathrm{~F}_{4}, \mathrm{Cl}_{2}$
(2) $\mathrm{CFCl}_{2}, \mathrm{~F}$
(3) : $\mathrm{CCl}_{2}, \mathrm{~F}_{2}$
(4) $\mathrm{CF}_{2} \mathrm{Cl}, \mathrm{Ci}$

Key: 4
Sol: Conceptual
139. What are the shapes of ethyne and methane?
(1) tetrahedral and trigonal planar
(2) linear and tetrahedral
(3) trigonal planar and linear
(4) square planar and linear

Key: 2
Sol: Conceptual
140. What is Z in the following reaction?

(1) n-butane
(2) ethane
(3) ethyne
(4) propane

Key: 2
Sol: $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CO}_{2}^{-} \mathrm{Na}^{+} \xrightarrow[\Delta]{\mathrm{NaOH} / \mathrm{CaO}} \mathrm{CH}_{3}-\mathrm{CH}_{3}$
De carboxilation in presence of sodalime
141. Which one of the following gives sooty flame on combustion?
(1) CH_{4}
(2) $\mathrm{C}_{2} \mathrm{H}_{6}$
(3) $\mathrm{C}_{6} \mathrm{H}_{6}$
(4) $\mathrm{C}_{2} \mathrm{H}_{4}$

Key: 3
Sol: Conceptual
142. Which one of the following elements on doping with germanium, make it a p-type semiconductor
(1) Sb
(2) As
(3) Ga
(4) Bi

Key: 1
Sol: Conceptual
143. The molar mass of a solute X in $\mathrm{g} \mathrm{mol}^{-1}$, if its $\mathbf{1 \%}$ solution is isotonic with a 5% solution of cane sugar (molar mass $=342 \mathrm{~g} \mathrm{~mol}^{-1}$), is
(1) 34.2
(2) 136.2
(3) 171.2
(4) 68.4

Key: 4
Sol: Osmatic pressure of $x=$ Osmatic pressure of cane sugar
$\frac{1}{\mathrm{M}} \times \frac{1000}{100} \times \mathrm{RT}=\frac{5}{342} \times \frac{1000}{100} \times \mathrm{RT}$
M=68.4
144. Vapour pressure in mm Hg of 0.1 mole of urea in 180 g of water at $25^{\circ} \mathrm{C}$ is
(The vapour pressure of water at $25^{\circ} \mathrm{C}$ is $24 \mathbf{~ m m ~ H g}$)
(1) 20.76
(2) 23.76
(3) 24.76
(4) 2.376

Key: 2
Sol: $\mathrm{P}_{\mathrm{s}}=\mathrm{P}_{0} \times$ mole fraction of urea
$\mathrm{P}_{\mathrm{s}}=24 \times \frac{0.1}{0.1+10}=2.376 \Rightarrow 24-0.24=23.76$
145. At 298 K the molar conductivities at infinite dilution $\left(\wedge_{\mathrm{m}}^{0}\right)$ of $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{KOH}$ and KCl are $152.8,272.6$ and $149.8 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$ respectively. The \wedge_{m}^{0} of $\mathrm{NH}_{4} \mathrm{OH}$ in $\mathrm{S} \mathrm{cm} \mathrm{cmol}^{2} \mathrm{man}^{-1}$ an dissociation of $0.01 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$ with $\gamma_{\mathrm{m}}=25,1 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ at the same temperature are
(1) $275.6,9.1$
(2) $269.6,9.6$
(3) 30,84
(4) $275.6,0.91$

Key: 1
Sol: $\wedge_{m}^{0} \mathrm{NH}_{4} \mathrm{OH}=\wedge_{m}^{0}\left(\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{KOH}\right)-\wedge_{m}^{0}(\mathrm{KCl})$

$$
\begin{aligned}
& =152.8+272.6-149.8 \\
& =275.6
\end{aligned}
$$

$\alpha=\frac{\wedge_{m}}{\wedge_{m}^{0}}=\frac{25.1}{275.6}=9.1$
146. In a first order reaction the concentration of the reactant decreases from 0.6 M to 0.3 M in $\mathbf{1 5}$ minutes. The time taken for the concentration to change from 0.1 M to 0.025 M in minutes is
(1) 12
(2) 30
(3) 3
(4) 1.2

Key: 2
Sol: $\mathrm{t}_{1 / 2}=15$ min
$\therefore \mathrm{t}=\frac{2.303}{0.693} \times 15 \log \frac{(0.1)}{(0.25)}=30$
147. Assertion (A) : Van der Waals' are responsible for chemisorption Reason (R) : High temperature is favourable for chemisorption The correct answer is
(1) (A) and (R) are correct and (R) is the correct explanation of (A)
(2) (A) and (R) are correct but (R) is not the correct explanation of (A)
(3) (A) is correct but (R) is not correct
(4) (A) is not correct but (R) is correct

Key: 4

Sol: Conceptual
148. What is the role of limestone during the extraction of iron from haematite ore ?
(1) oxidizing agent
(2) reducing agent
(3) flux
(4) leaching agent

Key: 3
Sol: Conceptual
149. The charring of sugar takes place when treated with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$. What is the type of reaction involved in it ?
(1) Hydrolysis reaction
(2) Addition reaction
(3) Disproportionation reaction
(4) Dehydration reaction

Key: 4
Sol: Conceptual
150. The structure of XeOF_{4} is
(1) Square planar
(2) Square pyramidal
(3) Pyramidal
(4) Trigonal bipyramidal Key: 2

Sol: Structure of XeOF_{4}

151. Which one of the following ions has same number of unpaired electrons as those present in V^{3+} ion?
(1) Ni^{2+}
(2) Mn^{2+}
(3) Cr^{3+}
(4) Fe^{3+}

Key: 1
Sol: $\mathrm{V}^{+3}=3 \mathrm{~d}^{2} 4 \mathrm{~s}^{0}$
$\mathrm{Ni}^{+}=3 \mathrm{~d}^{8} 4 \mathrm{~s}^{0}$
152 Match the following

List - I
(A) sp^{3}
(B) dsp^{3}
(C) $\mathrm{sp}^{3} \mathrm{~d}^{2}$

	(A)	(B)	(C)	(D)
1)	(V)	(II)	(IV)	(III)
2)	(II)	(III)	(IV)	(I)
3)	(II)	(III)	(I)	(V)
4)	(III)	(II)	(IV)	(I)

(D) $\mathbf{d}^{2} \mathbf{s p}^{3}$

Key: 2
Sol: Conceptual

List - II
(I) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
(II) $\left[\mathrm{Ni}(\mathrm{Co})_{4}\right]$
(III) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
(IV) $\left[\mathrm{CoF}_{6}\right]^{3-}$
(V) $\left[\mathrm{Fe}(\mathrm{Co})_{5}\right]$
(D)
(III)
(I)
(V)
(I)

153. Identify the corpolymer from the following:

1) $\mathrm{fCF}_{2}-\mathrm{CF}_{2} \mathrm{H}_{\mathrm{n}}$
2) $\underset{\mathrm{Cl}}{\mathrm{FCH}_{2}-\underset{\mathrm{Cl}}{\mathrm{CH}} \mathrm{H}_{\mathrm{n}}}$

Key: 4
Sol: Conceptual
154. Lactose is a disaccharide of \qquad
2)

4)

1) $\beta-\mathrm{D}-$ Glucose and $\beta-\mathrm{D}-$ Galactose
2) $\alpha-D$ - Glucose and $\beta-D-$ Galactose
3) $\alpha-\mathrm{D}$ - Glucose and $\beta-\mathrm{D}$-Ribose
4) $\alpha-D-$ Glucose and $\alpha-D-$ Fructose

Key: 1
Sol: Conceptual
155. What are the substances which mimic the natural chemical messengers?

1) Antagonists
2) Agonists
3) Receptors
4) Antibiotics

Key: 2
Sol: Conceptual
156. Which one of the following is more readily hydrolysed by $\mathrm{S}_{\mathrm{N}} 1$ mechanism?

1) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Br}$
2) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{Br}$
3) $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{CHBr}$
4) $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{Br}$

Key: 4
Sol: Conceptual
157. $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{3} \xrightarrow[\Delta]{\mathrm{HI}} \mathrm{Y}+\mathrm{Z}$ Identify Y and Zin the above reaction:

1) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I} \quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$
2) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{I} \quad \mathrm{H}_{3} \mathrm{CCH}_{2} \mathrm{OH}$
3) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH} \quad \mathrm{H}_{3} \mathrm{CCH}_{2} \mathrm{I}$
4) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH} \quad \mathrm{H}_{3} \mathrm{CCH}_{3}$

Key: 3
Sol: $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{3} \xrightarrow{\xrightarrow{\mathrm{HI}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{I}, ~}$
158. $X \xrightarrow{Y}$ Benzoquinone Indetify X and Y in the above reaction:
1)

$\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}_{2} \mathrm{SO}_{4}$
2)

$$
\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}_{2} \mathrm{SO}_{4}
$$

3)

 Zn
4)
 Zn

Key: 1

Sol:

159. $\mathrm{H}_{3} \mathrm{CMgBr}+\mathrm{CO}_{2} \xrightarrow{\text { Dryether }} \mathrm{Y} \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{\ominus}} \mathrm{Z}$ Identify Z from the following:

1) Acetic acid
2) Propanic acid
3) Methyl acetate
4) Ethylacetate

Key: 1
Sol:

160. What is Z in the following reaction sequence?

1) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$
2) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$
3) $\mathrm{C}_{6} \mathrm{H}_{6}$
4) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}$

Key: 2
Sol: $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2} \xrightarrow{\mathrm{NaNO}_{2}, \mathrm{HCl}, 275 \mathrm{~K}} \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{N}_{2}^{+} \mathrm{Cl}^{-} \xrightarrow{\mathrm{H}_{3} \mathrm{PO}_{2}+\mathrm{H}_{2} \mathrm{O}} \mathrm{C}_{6} \mathrm{H}_{6} \xrightarrow[\text { Anhydrous } \mathrm{AlCl}_{3} / \mathrm{CuCl}_{2}]{\mathrm{CO}} \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CHO}$

