
AIEEE - 2002

Physics and Chemistry

1.	Which statement is	s incorrect ?			
	(a) all reversible cv	ycles have same efficie	ency		
	(b) reversible cycle has more efficiency than an irreversible one				
	(c) Carnot cycle is	·			
	• •	as the maximum efficie	ncy in all cycles		
2.	•		s is 40 cm. Maximum lengt	th (wave length in cm) of a	
	stationary wave pr	-	Ŭ	,	
	(a) 20	(b) 80	(c) 40	(d)120	
3.	()	· /	esistance (R) and inductan	()	
	and an angular vel	_	(, ,	(-)	
	(a) R/ωL	(b) R/(R ² + $\omega^2 L^2$) ^{1/2}	(c) ωL/R	(d) $R/(R^2 - \omega^2 L^2)^{1/2}$	
4.	An astronomical te	elescope has a large ap	erture to		
	(a) reduce spherica	al aberration	(b) have high resolution		
	(c) increase span	of observation	(d) have low dispersion		
5.	The kinetic energy	needed to project a b	ody of mass m from the e	arth surface (radius R) to	
	infinity is		•	,	
	(a) mgR/2	(b) 2mgR	(c) mgR	(d) mgR/4	
6.	If an ammeter is to	be used in place of a	oltmeter, then we must cor	nnect with the ammeter a	
	(a) low resistance	in parallel	(b) high resistance in par-	allel	
	(c) high resistance	in series	(d) low resistance in serie	es	
7.	If in a circular coil	A of radius R, current I	is flowing and in another co	oil B of radius 2R a current	
	2I is flowing, then t	he ratio of the magneti	c fields B_A and B_B , produce	d by them will be	
	(a) 1	(b) 2	(c) 1/2	(d) 4	
8.	If two mirrors are k	ept at 60° to each othe	r, then the number of image	es formed by them is	
	(a) 5	(b) 6	(c) 7	(d) 8	
9.	A wire when conne	ected to 220 V mains su	pply has power dissipation	P ₁ . Now the wire is cut into	
	two equal pieces v	which are connected in	parallel to the same supply	y. Power dissipation in this	
	case is P ₂ . Then P	₂ : P ₄ is			
	(a) 1	(b) 4	(c) 2	(d) 3	
10.	If 13.6 eV energy is	required to ionize the h	nydrogen atom, then the end	ergy required to remove an	
	electron from $n = 2$	2 is			
	(a) 10.2 eV	(b) 0 eV	(c) 3.4 eV	(d) 6.8 eV	
11.	Tube A has both er	nds open while tube B I	nas one end closed, otherw	vise they are identical. The	
		al frequency of tube A			
	(a) 1 : 2	(b) 1 : 4	(c) 2 : 1	(d) 4 : 1	
12.	A tuning fork arran	ngement (pair) produce	s 4 beats / sec with one fo	ork of frquency 288 cps. A	
	<u>-</u>		nd it then produces 2 beats	•	
	unknown fork is		•		
	(a) 286 cps	(b) 292 cps	(c) 294 cps	(d) 288 cps	
	•	<u> </u>	<u>-</u>		

13.	A wave $y = a \sin(\omega t)$ the equation of the	,	ts with another wave produ	cing a node at x = 0. Then
	(a) $y = a \sin(\omega t + kx)$		(b) $y = -a \sin(\omega t + kx)$	
		•	,	
4.4	(c) $y = a \sin(\omega t - kx)$	•	(d) $y = -a \sin(\omega t - kx)$	
14.	between the points		cm, 2 J of work is done, the	en the potential difference
	(a) 0.1 V	(b) 8 V	(c) 2 V	(d) 0.5 V
15.	If an electron and a (a) curved path of el (b) they will move up	proton having same m lectron and proton will ndeflected lectron is more curved	omenta enter perpendicula be same (ignoring the sent than that of the proton	r to a magnetic field, then
16.	(a) kinetic energy is(b) both kinetic and(c) kinetic energy is	c oscillator, at the mea minimum, potential er potential energies are maximum, potential e potential energies are	nergy is maximum maximum nergy is minimum	
17.	Initial angular veloci	ty of a circular disc of r	nass M is $\omega_{_{\! 1}}$. Then two sm	all spheres of mass m are
	attached gently to divelocity of the disc?	• • • •	oints on the edge of the disc	c. What is the final angular
	$\left(a\left(\frac{M+m}{M}\right)\omega_{1}\right)$	(b) $\left(\frac{M+m}{m}\right)\omega_1$	(c) $\left(\frac{M}{M+4m}\right)\omega_1$	(d) $\left(\frac{M}{M+2m}\right)\omega_1$
18.		city (in ms ⁻¹) with which to of friction 0.6 to avo	ch a car driver must trave	rse a flat curve of radius
	(a) 60	(b) 30	(c) 15	(d) 25
19.		•	ed with water. The velocity	
	through a small hole (a) 10		e cylinder near its bottom is (c) 25.5	s (d) 5
20.	` '	(b) 20 Instant 800 N/m has a	n extension of 5 cm. The	` '
_0.	from 5 cm to 15 cm			work done to omorium g it
	(a) 16 J	(b) 8 J	(c) 32 J	(d) 24 J
21.	Two identical particle of centre of mass is		other with velocity 2v and v	respectively. The velocity
	(a) v	(b) v/3	(c) v/2	(d) zero
22.	• •	d through a spring the	n the spring will	
	(a) expand	(b) compress	(c) remains same	(d) none of these
23.	Heat given to a bod	y which raises its tem	perature by 1°C is	
		(b) thermal capacity	(c) specific heat	(d) temperature gradient
24.	At absolute zero, Si			
	(a) non metal	(b) metal	(c) insulator	(d) none of these

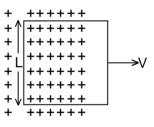
- 25. Electromagnetic waves are transverse in nature is evident by
 - (a) polarization
- (b) interference
- (c) reflection
- (d) diffraction
- 26. Wires 1 and 2 carrying currents i_1 and i_2 respectively are inclined at an angle θ to each other. What is the force on a small element dl of wire 2 at a distance of r from wire 1 (as shown in the figure) due to the magnetic field i_1 of wire 1?

(A) $\frac{\mu_0}{2\pi r}i_1i_2 dltan\theta$

(b) $\frac{\mu_0}{2\pi r}i_1i_2 dI\sin\theta$

(c) $\frac{\mu_0}{2\pi r}i_1i_2$ dlcos θ

- (d) $\frac{\mu_0}{4\pi r}i_1i_2$ dIsin θ
- 27. At a specific instant emission of radioactive compound is deflected in a magnetic field. The compound can emit
 - (i) electrons
- (ii) protons
- (iii) He2+


(iv) neutrons

The emission at instant can be

- (a) i, ii, iii
- (b) i, ii, iii, iv
- (c) iv

- (d) ii, iii
- 28. Sodium and copper have work functions 2.3 eV and 4.5 eV respectively. Then the ratio of the wave lengths is nearest to
 - (a) 1:2
- (b) 4:1
- (c) 2:1

- (d) 1:4
- 29. Formation of covalent bonds in compounds exhibits
 - (a) wave nature of electron
- (b) particle nature of electron
- (c) both wave and particle nature of electron (d) none of these
- 30. A conducting square loop of side L and resistance R moves in its plane + with a uniform velocity v perpendicular to one of its sides. A magnetic + induction B constant in time and space, pointing perpendicular and into + the plane at the loop exists everywhere with half the loop outside the + field, as shown in figure. The induced emf is +

- (a) zero
- (b) RvB
- (c) VBL/R
- (d) VBL

- 31. Infra red radiation is detected by
 - (a) spectrometer
- (b) pyrometer
- (c) nanometer
- (d) photometer
- 32. If N_0 is the original mass of the substance of half- life period $t_{1/2} = 5$ years, then the amount of substance left after 15 years is
 - (a) N_a/8
- (b) $N_0/16$
- (c) $N_0/2$

- $(d)N_0/4$
- 33. By increasing the temperature, the specific resistance of a conductor and a semiconductor
 - (a) increases for both

- (b) decreases for both
- (c) increases, decreases
- (d) decreases, increases
- 34. If there are n capacitors in parallel connected to V volt source, then the energy stored is equal to
 - (a) CV
- (b) $\frac{1}{2}$ nCV²
- (c) CV²

- (d) $\frac{1}{2n}CV^2$
- 35. Which of the following is more closed to a black body?
 - (a) black board paint (b) green leaves
- (c) black holes
- (d) red roses

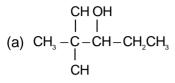
36.	The inductance between A and D is	
	(a) 3.66 H (b) 9 H (c) 0.66 H	(d) 1 H $\frac{1}{A}$ $\frac{1}{3H}$ $\frac{1}{3H}$ $\frac{1}{3H}$ $\frac{1}{D}$
37.	A ball whose kinetic energy is E, is proje	cted at an
	angle of 45° to the horizontal. The kinetic e	nergy of the ball at the highest point of its flight will be
	(a) E (b) E $/\sqrt{2}$	(c) E/2 (d) zero
38.	From a building two balls A and B are throw	vn such that A is thrown upwards A and B downwards
	(both vertically). If v_A and v_B are their resp	ective velocities on reaching the ground, then
	(a) $V_B > V_A$	(b) $V_A = V_B$
	(c) $V_A > V_B$	(d) their velocities depend on their masses
39.	If a body looses half of its velocity on pene	strating 3 cm in a wooden block, then how much will it
	penetrate more before coming to rest?	
	(a) 1 cm (b) 2 cm	(c) 3 cm (d) 4 cm
40.	If suddenly the gravitational force of attract	tion between Earth and a satellite revolving around it
	becomes zero, then the satellite will	
	(a) continue to move in its orbit with same	velocity
	(b) move tangentially to the originally orbit	in the same velocity
	(c) become stationary in its orbit	(d) move towards the earth.
41.	Cooking gas containers are kept in a lorry	moving with uniform speed. The temperature of the
	gas molecules inside will	
	(a) increase	(b) decrease
	(c) remain same	(d) decrease for some, while increase for others
42.	When temperature increases, the frequen	
	(a) increases	(b) decreases
	(c) remains same	(d) increases or decreases depending on the material
43.	• • •	ccount, when water is cooled to form ice, the mass of
	water should	
	(a) increase	(b) remain unchanged
4.4	(c) decrease	(d) first increase then decrease
44.	The energy band gap is maximum in	(a) in a violations
45	(a) metals (b) superconductors	
45.		y doped to produce large number of majority carriers is
	(a) emmiter	(b) base
46.	(c) collector Energy required to move a body of mass i	(d) can be any of the above three
40.	(a) GMm/12R ² (b) GMm/3R ²	(c) GMm/8R (d) GMm/6R
47.		n equal parts, then the time period of each part will be
47.	·	(a) nT
	(a) $T\sqrt{n}$ (b) T/\sqrt{n} (d) T	(c) nT E F
48.	A charged particle q is placed at the centre	
	(ABCDEFGH). Another same charge q	
	L from O. Then the electric flux through AE	, J
	_	$\in_{0} L$ (d) q/3 $\pi \in_{0} L$

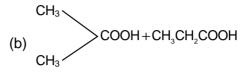
49.	if in the circuit, power	er dissipation is 150 vi	, then R is $^{-}$	^ \\\
	(a) 2Ω	(b) 6Ω		$\bigwedge \bigvee_{2\Omega}$
	(c) 5Ω	(d) 4Ω		
50.			strument are $\lambda_1 = 4000 \text{\AA}$	
			(corresponding to λ_1 and	-
51.	(a) 16 : 25	(b) 9 : 1	(c) 4 : 5 ion, stands up, then the tin	(d) 5:4
51.	(a) increase	(b) decrease	(c) remains same	ie period of the swing will
	,	` '	ises if the child is short	
52.	` '		n in the lift drops a ball inside th	ne lift. The acceleration of the
<u></u>	_		an standing stationary on the	
	(a) g, g	(b) g - a, g - a	•	(d) a, g
53.		. , .	n an electrochemical cell de	
	(a) (lt) ^{1/2}	(b) IT	(c) I/t	(d) I ² t
	(where t is the time	period, for which the o	current is passed)	. ,
54.	At what temperature	e is the r.m.s. velocity	of a hydrogen molecule e	qual to that of an oxygen
	molecule at 47° C?			
	(a) 80 K	(b) - 73 K	(c) 3 K	(d) 20 K
55.	· ·	charged particle unde	ergoing a circular motion in	a uniform magnetic field is
	independent of its (a) speed	(b) mass	(c) charge	(d) magnetic induction
56.	` ' •	` '	are released from top of an i	` '
	•	. •	aximum acceleration down	. ,
	(a) solid sphere	(b) hollow sphere	(c) ring	(d) all same
57.	In a transformer, nu	ımber of turns in the p	rimary coil are 140 and tha	t in the secondary coil are
	<u>-</u>	•	nat in the secondary coil is	
50	(a) 4 A	(b) 2 A	(c) 6 A	(d) 10 A
58.	(a) prevent radiation	-	ficiency because we canno)t
	` ' '	ero temperature	(b) find ideal sources (d) eliminate friction	
59.	• •	•	ss M and radius R about its	diameter is
	(a) MR ² /2	(b) MR ²	(c) 2MR ²	(d) MR ² /4
60.	` ,	F _a are acting on a p	article of mass m such that	` '
			stationary. If the force F ₁	
	acceleration of the			
	(a) F₁/m	(b) $F_{2}F_{3}/mF_{1}$	(c) $(F_2 - F_3)/m$	(d) F ₂ /m
61.	Two forces are such	that the sum of their	magnitudes is 18 N and the	eir resultant is 12 N which
	is perpendicular to t	he smaller force. Ther	the magnitudes of the force	ces are
	(a) 12 N, 6 N	(b) 13 N, 5 N	(c) 10 N, 8 N	(d) 16 N, 2 N
62.	Speeds of two ident	tical cars are u and 4	u at the specific instant. T	he ratio of the respective
	distances in which t	he two cars are stopp	ed from that instant is	
	(a) 1 : 1	(b) 1:4	(c) 1:8	(d) 1:16

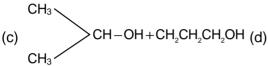
63.	1 mole of a gas with	$\gamma = 7/5$ is mixed with	n 1 mole of a gas with $\gamma = 5$	/3, then the value of γ for
	the resulting mixture	e is		
	(a) 7/5	(b) 2/5	(c) 24/16	(d) 12/7
64.	If a charge q is place	ed at the centre of the	line joining two equal charg	es Q such that the system
	is in equilibrium ther	n the value of q is		
	(a) Q/2	(b) -Q/2	(c) Q/4	(d) -Q/4
65.	Capacitance (in F)	of a spherical conduct	or with radius 1 m is	
	(a) 1.1×10^{-10}	(b) 10 ⁻⁶	(c) 9×10^{-9}	(d) 10 ⁻³
66.	A light string passir	ng over a smooth ligh	t pulley connects two bloc	cks of masses m ₁ and m ₂
	(vertically). If the acc	celeration of the syste	m is g/8, then the ratio of t	he masses is
	(a) 8 : 1	(b) 9:7	(c) 4:3	(d) 5:3
67.	Two spheres of the s	same material have ra	dii 1 m and 4m and temper	atures 4000 K and 2000 K
	respectively. The rati	io of the energy radiate	ed per second by the first sp	here to that by the second
	is			
	(a) 1 : 1	(b) 16:1	(c) 4:1	(d) 1:9
68.	Three identical bloc	ks of masses m = 2ko	g are drawn by a force	
	F = 10.2 N with an a	cceleration of 0.6 ms ⁻²	on a frictions surface,	$C \longrightarrow B \longrightarrow A \longrightarrow F$
	then what is the tens	sion (in N) in the string	$_{ m I}$ between the blocks B 77777	///////////////////////////////////////
	and C?			
	(a) 9.2	(b) 7.8	(c) 4	(d) 9.8
69.	One end of a massl	less rope, which pass	es over a massless and fri	ctionless
	pulley P is tied to a	hook C while the othe	r end is free. Maximum ter	nsion that C
	the rope can bear is	360 N. With what valu	ue of maximum safe accele	ration (in
	ms ⁻²) can a man of 6	60 kg climb on the rop	e?	
	(a) 16	(b) 6	(c) 4	(d) 8
70.	A particle of mass r	m moves along line P	C with velocity v as shown	٦.
	What is the angular	momentum of the par	ticle about P?	
	(a) mvL		(b) mvl	
	(c) mvr		(d) zero	
71.	Which of the following	ng is used in optical fil	ores?	Pr
	(a) total internal refle	ection (b) scattering	(c) diffraction	
	(d) refraction			
72.	The escape velocity	of a body depends u	pon mass as	
	(a) m ⁰	(b) m ¹	(c) m ²	(d) m ³
73.	Which of the following	ng are not electromag	netic waves?	
	(a) cosmic rays	(b) gamma rays	(c) β-rays	(d) X- rays
74.	Identify the pair who	se dimensions are eq	ual	
	•	•	y(c) force and stress	(d) force and work
75.		-	he neutral temperature, $ heta_{\scriptscriptstyle m c}$	•
. 0.	cold junction, then			toporatoro or trio
		(b) $\theta_i - \theta_c = 2\theta_n$	$\theta_i + \theta_c - \theta$	(4) 0 0 20
	(a) $\theta_i + \theta_c = \theta_n$	(b) $\Theta_{\rm i} - \Theta_{\rm c} = \angle \Theta_{\rm n}$	(c) ${2} = \sigma_n$	(d) $\theta_c - \theta_i = 2\theta_n$
				6)-

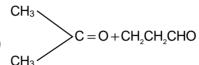
76.	When H ₂ S is pass	sed through Hg ₂ S we g	jet –	
	(a) HgS	(b) HgS + Hg $_2$ S	(c) Hg ₂ S	(d) Hg_2S_2
77.	Alum helps in pur	ifying water by		
	(a) forming Si con	nplex with clay particle	es	
	(b) sulphate part	which combines with th	ne dirt and removes it	
	(c) coagulating the	e mud particles		
	(d) making mud w	ater soluble		
78.	A square planar c	complex is formed by h	ybridisation of which ator	mic orbitals?
	(a) s, p_x , p_y , d_{yz}	(b) $S, P_x, P_y, d_{x^2-y^2}$	(c) s, p_x, p_y, d_{z^2}	(d) s, p_y, p_z, d_{xy}
79.	Polymer formation	n from monomers start	s by	
	(a) condensation	reaction between mon	omers	
	(b) coordinate rea	ction between monom	ers	
	(c) conversion of	monomer to monomer	ions by protons	
	(d) hydrolysis of r	nonomers		
80.	The type of isome	erism present in nitrope	entamine chromium (III) c	hloride is
	(a) optical	(b) linkage	(c) ionization	(d) polymerisation
81.	Arrangement of (C	CH ₃) ₃ - C-, (CH ₃) ₃ - CH-,	CH ₃ - CH ₃ - when attache	ed to benzyl or an unsaturated
		ng order of inductive eff		•
	(a) $(CH_3)_3$ -C - < (0	CH ₃) ₂ - CH - < CH ₃ - C	CH ₂ (b) CH ₂ - CH ₂ - < (C	$(CH_3)_2 - < CH - < (CH_3)_3 - C -$
			$CH_{2}(d) (CH_{3})_{3}-C - < CH$	
82.		n organo metallic comp		3 2 . 3.2
			(c) C - Br bond	(d) C - H bond
83.	1 M NaCl and 1 M	1 HCl are present in an	aqueous solution. The so	olution is
	(a) not a buffer so	lution with pH < 7	(b) not a buffer solution	n with pH > 7
	(c) a buffer solution	on with pH < 7	(d) a buffer solution w	ith pH > 7
84.	Species acting as	both Bronsted acid ar		
	(a) (HSO ₄) ⁻¹	(b) Na ₂ CO ₃	(c) NH ₃	(d) OH ⁻¹
85.	•	= -	of Mg(OH) ₂ be x then its	k _{sn} is
	(a) 4x ³	(b) 108x ⁵	(c) 27x ⁴	(d) 9x
86.	Units of rate const	ant of first and zero ord	ler reactions in terms of m	nolarity M unit are respectively
	(a) sec ⁻¹ , Msec ⁻¹	(b) sec ⁻¹ , M	(c) Msec ⁻¹ , sec ⁻¹	(d) M, sec ⁻¹
87.	In XeF ₂ , XeF ₄ , Xe	F ₆ the numebr of lone	pairs of Xe are respective	ely
	(a) 2, 3, 1	(b) 1, 2, 3		(d) 3, 2, 1
88.	In which of the fol	loiwng species the inte	ratomic bond angle is 10)9°28′?
			(c) NH ₃ , BF ₄	
89.	-	•		n the order of the reaction is
03.				
00	(a) 3	(b) 6	(c) 5	(d) 7
90.		rom DNA because RN		urooil
	(a) ribose sugar a	-	(b) ribose sugar and u	
	(c) deoxyribose s	ugar and thymine	(d) deoxyribose sugar	and uracii

91.	Which of the following	ng are arranged in an	increasing order of their bo	ond strengths?
	(a) $O_2^- < O_2^- < O_2^+ <$	O_2^{2-}	(b) $O_2^{2-} < O_2^- < O_2^+$	
	(c) $O_2^- < O_2^{2-} < O_2$	O_2^+	(d) $O_2^+ < O_2^- < O_2^- < O_2^{2-}$	
92.	If an endothermic rea at its boiling point, th		eous at freezing point of wa	ater and becomes feasible
	(a) ΔH is – ve, ΔS is	is + ve	(b) ΔH and ΔS both an	re + ve
	(c) ΔH and ΔS bot	th are – ve	(d) ΔH is + ve, ΔS is -	ve
93.	A heat engine absorthe engine is $J(Q_1 +$		ture T_1 and heat Q_2 at tem	perature T ₂ . Work done by
	(c) violates 1st law of	f thermodynamics f thermodynamics if C 1 st law of thermodyna	-	rmodynamics if Q₁ is -ve
94.	Most common oxida	tion states of Ce (ceri	um) are	
	(a) +2, +3	• •	• •	
95.			asing order of their ionic ra	
	· ,		(b) $Ce^{+3} < Yb^{+3} < Pm^{+3} <$	
	` '		(d) $Pm^{+3} < La^{+3} < Ce^{+3} <$	
96.	=			nd submarines because it
	=	d increases O ₂ conter	nt (b) eliminates moisture	
	(c) absorbs CO ₂		(d) produces ozone.	
97.		optical and geometric		
		I number of isomers for		
	• •	one is present then s		
98.	• •	ng does not show geo	(d) they have no similarit	у
3 0.	(a) 1, 2-dichloro - 1-		(b) 1, 3 - dichloro - 2- per	ntene
	(c) 1, 1- dichloro - 1-		(d) 1, 4 - dichloro - 2- per	
99.	• •	•	•	osphorous, PCl ₃ as well as
00.	PCl ₅ are possible. It	· ·	ATTOI ₅ Willio III cacc of pric	opriorodo, i Ol ₃ do Woll do
	*	ant d orbitals in P but	not in N	
	(b) lower electroneg			
	` '	of H - bond formation i	n P than N	
	•		eous state at room tempe	rature
100.	For an ideal gas, no	umber of moles per	litre in terms of its pressu	ure P, gas contant R and
	temperature T is			
	(a) PT/R	(b) PRT	(c) P/RT	(d) RT/P
101.	The formation of gas	s at the surface of tung	gsten due to adsorption is	the reaction of order
	(a) 0	(b) 1	(c) 2	(d) insufficient data
102.	The solubility of Mg(OH) ₂ is S moles/litre.	The solubility product unde	er the same condition is
	(a) 4S ³	(b) 3S ⁴	(c) 4S ²	(d) S ³


103.	How do we different	iate between Fe3+ and	Cr3+ in group III?	
	(a) by taking excess	s of NH₄OH solution	(b) by increasing NH ₄ ⁺ ion	n concentration
		H ion concentration	·	
104.	In a compound C, H	H and N atoms are pr	esent in 9:1:35 by wei	ght. Molecular weight of
	compound is 108. M	Molecular formula of co	mpound is	
	(a) $C_2H_6N_2$	(b) C ₂ H ₄ N	(c) $C_6H_8N_2$	(d) $C_9H_{12}N_3$
105.	2 0 2	o, which is found in am	0 0 2	() 9 12 3
			(c) - CH ₃ group	(d) both (a) and (b)
106.			pportional to area of the ves	
	• •		ional to the length of the v	
	constant of proportion		gg	
	(a) Sm mol ⁻¹	•	(c) S ⁻² m ² mol	(d) S ² m ² mol ⁻²
107	` '		on in ground state is 13.6	
107.	excited state is	, ii onorgy or air oloon	on in ground dialo io rolo	ov, thorrest in the zha
		(b) 3.4 eV	(c) 6.04 eV	(d) 13.6 eV
108	•	ng statements is true?	• •	(a) 13.0 CV
100.	(a) HF is less polar			
	. ,	water does not contain	any ione	
			forces of attraction overcome	the forces of regulation
				tille loices of repulsion
109	` '	nsference of electron t ng compounds has wro	•	
100.		$_2$ – COO – CH $_2$ CH $_3$ —	-	
			7 outry i buttarroute	
	(b) $CH_3 - CH - CH$	H_2 – CHO \longrightarrow 3-met	hyl-butanal	
	СH			
	-			
	(c) CH ₃ – CH – CH	$-CH_3 \longrightarrow 2$ - methy	/I-3-butanol	
	OH CH	3		
	0			
	(q) CH CH C	CH CH 3	methyl-3-pentanone	
		$-\text{Cir}_2 - \text{Cir}_3 \longrightarrow 2 - \text{Cir}_3$	metriyi—3—peritarione	
	CH₃			
110.	CH CH COOH—CI	$\xrightarrow{2} A \xrightarrow{\text{alc. KOH}} B. Wr$	nat is B?	
	red	P // / D. WI	iat 10 D.	
	(a) CH ₃ CH ₂ COCI	(b) CH ₃ CH ₂ CHO	(c) $CH_2 = CHCOOH$	(d) CICH ₂ CH ₂ COOH
111.	Aluminium is extract	ted by the electrolysis	of	
	(a) bauxite	(b) alumina	(c) alumina mixed with m	olten cryolite
	(d) molten cryolite			
112.	The metal extracted	by leaching with a cya	anide is	
	(a) Mg	(b) Ag	(c) Cu	(d) Na
113.	Value of gas constan	nt R is		
	-		(c) 8.3 J mol ⁻¹ K ⁻¹	(d) 83 erg mol ⁻¹ K ⁻¹
	· •	· ·		
				9


114.	Freezing point of an aqueous solution is (-0	·	point of the same solution
	is $K_b = 0.512$ °C, $K_f = 1.86$ °C, find the incre		(-1) 0 0070 00
4.4-	(a) 0.186 °C (b) 0.0512 °C	• •	(d) 0.2372 °C
115.	EMF of a cell in terms of reduction potenta		
	(a) $E = E_{left} - E_{right}$ (b) $E = E_{left} + E_{right}$	•	<u> </u>
116.	Uncertainity in position of a minute particle of		m. What is the uncertainity
	in its velocity (in ms ⁻¹) ? (h = 6.6×10^{-34} Js	·	(1) 2 - (20)
	(a) 2.1×10^{-34} (b) 0.5×10^{-34}		(d) 0.5×10^{-23}
117.	Which of these will not react with acetylen		
	(a) NaOH (b) ammonical AgNC	•	(d) HCI
118	•	t alter the number of moles	s in which of the following
	equilibria?		
	(a) $N_2(g) + O_2(g) = 2 NO(g)$		
	(c) $N_2(g) + 3H_2(g) = 2NH_3(g)$	(d) SO_2CI_2 (g) \longrightarrow S	$O_2(g) + Cl_2(g)$
119.	For the reactions,		
	$C+O_2 \longrightarrow CO_2$; $\Delta H = -393J$		
	$2Zn+O_2 \longrightarrow 2ZnO$; $\Delta H = -412J$		
	(a) carbon can oxidise Zn	(b) oxidation of carbon is	
	(c) oxidation of Zn is not feasible	` '	
120.	Which of the following ions has the maxim		
	(a) Mn ⁺² (b) Fe ⁺²	(c) Ti ⁺²	(d) Cr ⁺²
121.	In which of the following species is the und		
	(a) CH ₃ COOH (b) CH ₃ CH ₂ OH	(c)CH ₃ COCH ₃	(d) $CH_2 = \underline{C}H - CH_3$
122.	Racemic mixture is formed by mixing two		
	(a) isomeric compounds	(b) chiral compounds	
	(c) meso compounds	(d) optical isomers	
123.	The differential rate law for the reaction H ₂	= =	
	(a) $-\frac{d[H_2]}{dt} = -\frac{d[I_2]}{dt} = -\frac{d[HI]}{dt}$	(b) $\frac{d[H_2]}{d[H_2]} = \frac{d[I_2]}{d[H_2]} = \frac{1}{2} \frac{d[H_1]}{d[H_2]}$]
	dt dt dt	dt dt 2 dt	
	(c) $\frac{1}{2} \frac{d[H_2]}{dt} = \frac{1}{2} \frac{d[I_2]}{dt} = -\frac{d[HI]}{dt}$	(d) $-2\frac{d[H_2]}{dt} = -2\frac{d[I_2]}{dt} =$	d[HI]
	(c) 2 dt 2 dt dt	dt dt	dt
124.	Number of sigma bonds in P ₄ O ₁₀ is		
	(a) 6 (b) 7	(c) 17	(d) 16
125.	Kinetic theory of gases proves		
	(a) only Boyle's law (b) only Charles' law	(c) only Avogadro's law	(d) all of these
126.	A metal M readily forms its sulphate MSO ₄	which is water - soluble. It	forms its oxide MO which
	becomes inert on heating. It forms an ins	soluble hydroxide M(OH) ₂ v	which is soluble in NaOH
	solution. Then M is		
	(a) Mg (b) Ba	(c) Ca	(d) Be
127.	If $\boldsymbol{\varphi}$ denotes reduction potential, then which	h is true ?	
	(a) $E_{cell}^0 = \phi_{right} - \phi_{left}$ (b) $E_{cell}^0 = \phi_{left} + \phi_{right}$	(c) $E^0_{,,} = \phi_{,,,} - \phi_{,,}$	(d) $E^0_{,,,} = -(\phi_{,,,,} + \phi_{,,,,})$
	V → Cell Tright Yleft V ← Cell — Yleft Vright	(C) — cell Yleft Yright	(~) —cell (Yleft ' Yright)


- 128. What is the product when acetylene reacts with hypochlorous acid?
 - (a) CH₂COCI
- (b) CICH, CHO
- (c) CI₂CHCHO
- (d) CICHCOOH


129. On vigorous oxidation by permanganate solution

 $(CH_3)_2C = CH - CH_2 - CHO$ gives

- OCOCH₃ COOH 130. The compound is used as
 - (a) antiseptic
- (b) antibiotic
- (c) analgesic
- (d) pesticide
- 131. What will be the emf for the given cell $Pt \mid H_2(P_1) \mid H^+(aq) \mid H_2(P_2) \mid Pt$
 - (a) $\frac{RT}{f}log\frac{P_1}{P_2}$ (b) $\frac{RT}{2f}log\frac{P_1}{P_2}$ (c) $\frac{RT}{f}log\frac{P_2}{P_2}$
- (d) none of these
- 132. When primary amine reacts with chloroform in ethanoic KOH then the product is
 - (a) an isocyanide
- (b) an aldehyde
- (c) a cyanide
- (d) an alcohol
- 133. Which of the following reaction is possible at anode?
 - (a) $2Cr^{3+} + 7H_2O \rightarrow Cr_2O_7^{2-} + 14H^+$ (b) $F_2 \rightarrow 2F^-$
 - (c) (1/2) $O_2 + 2H^+ \rightarrow H_2O$
- (d) none of these
- 134. The reaction : $(CH_3)_3C-Br \xrightarrow{H_2O} (CH_3)_3-C-OH$
 - (a) elimination reaction

(b) substitution reaction

(c) free radical reaction

- (d) displacement reaction
- 135. If half-life of a substance is 5 yrs, then the total amount of substance left after 15 years, when initial amount is 64 grams is
 - (a) 16 grams
- (b) 2 grams
- (c) 32 grams
- (d) 8 grams

- 136. Cyanide process is used for the extraction of
 - (a) barium
- (b) aluminium
- (c) boron
- (d) silver

- 137. Which is the correct order of ionic sizes?
 - (a) Ce > Sn > Yb > Lu (b) Sn > Ce > Lu > Yb (c) Lu > Yb > Sn > Ce (d) Sn > Yb > Ce > Lu(Atomic Number : Ce = 58, Sn = 50, Yb = 70 and Lu = 71)
- 138. With increase of temperature, which of these changes?
 - (a) molality

- (b) weight fraction of solute
- (c) fraction of solute present in water
- (d) mole fraction

139.	9. The integrated rate equation is $Rt = log C_0 - log C_t$. The straight line graph is obtaine plotting		ine graph is obtained by		
	(a) time vs log C _t	(b) $\frac{1}{\text{time}}$ vs C_t	(c) time vs C _t	(d) $\frac{1}{\text{time}} \text{vs } \frac{1}{C_t}$	
140.		wing reactions, increa moles at equilibrium	se in the volume at consta	ant temperature does not	
	(a) $2NH_3 \rightarrow N_2 + 3H_3$	H_2	(b) $C(g) + (1/2)O_2(g) \rightarrow 0$	CO(g)	
	(c) $H_2(g) + O_2(g) -$	\rightarrow H ₂ O ₂ (g)	(d) none of these		
141.	electrodes are	copper with zinc impu	urity is to be purified by ele	ctrolysis, the appropriate	
	cathode	anode	cathode	anode	
	(a) pure zinc(c) impure zinc	pure copper impure sample	(b) impure sample(d) pure copper	pure copper impure sample	
142.	The most stable ion	is			
	(a) [Fe(OH) ₃] ³⁻	(b) $[Fe(CI)_6]^{3-}$	(c) $[Fe(CN)_6]^{3-}$	(d) $[Fe(H_2O)_6]^{3+}$	
143.	β - particle is emitte	d in radioactivity by			
	(a) conversion of pro	oton to neutron	(b) from outermost orbit		
	(c) conversion of ne	utron to proton	(d) β -particle is not emitted		
144.	In mixture A and B	component show -ve c	leviation as		
	(a) $\Delta V_{mix} > 0$		(b) $\Delta H_{\text{mix}} < 0$		
	(c) A - B interaction	is weaker than A - A a	and B - B interaction		
		is stronger than A - A			
145.	-	·	e of body by 1 K is called	(1)	
1.46	(a) specific heat	• •	(c) water equivalent	(d) none of these	
140.		in the unit cell of their	e crystals respectively, the respective crystal is	in the number of atoms of	
	(a) 4 and 2	(b) 9 and 14	(c) 14 and 9	(d) 2 and 4	
147.	` '	• •	of Fe = 55.85 g mol ⁻¹) is		
	(a) twice that in 60 g	carbon	(b) 6.023×10^{22}		
	(c) half that in 8g He)	(d) 558.5 \times 6.023 \times 10 23		
148.	·		and ultimately forms [Mn0		
			n each case respectively is		
140	•	(b) 1, 5, 3, 7	• •	(d) 3, 5, 7, 1	
149.		ng is a redox reaction			
	(a) NaCI+KNO ₃ \rightarrow	NaNO ₃ + KCI	(b) $CaC_2O_4 + 2HCI \rightarrow$	$CaCl_2 + H_2C_2O_4$	
	(c) $Mg(OH)_2 + 2NH_2$	$_4\text{CI} \rightarrow \text{MgCl}_2 + 2\text{NH}_4\text{C}$	OH (d) Zn+2AgCN→2A	$ag + Zn(CN)_2$	
150.	For the reaction CC	$O(g) + (1/2)O_2(g) = CO$	$Q_2(g), K_p/K_c$ is		
	(a) RT	(b) (RT) ⁻¹	(c) (RT) ^{-1/2}	(d) $(RT)^{1/2}$	
				_	

AIEEE - 2002

Mathematics

1. If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$ then the equation has			en the equation having $ lpha / $	$^{\prime}\beta$ and β/α as its roots is
	(a) $3x^2 - 19x + 3 =$	0	(b) $3x^2 + 19x - 3 = 0$	
	(c) $3x^2 - 19x - 3 = 0$)	(d) $x^2 - 5x + 3 = 0$	
2.	If $y = (x + \sqrt{1 + x^2})^n$, then $(1+x^2) \frac{d^2y}{dx^2} + x \frac{d^2y}{dx^2}$	dy dx	
	(a) n²y	(b) -n ² y	(c) -y	(d) 2x ² y
3.		og ₃ (4.3 ^x -1) are in A.P.		
	(a) log ₃ 4	(b) 1+ log ₃ 4	•	(d) log ₄ 3
4.	A problem in mathe	matics is given to thre	ee students A, B, C and the	eir respective probability of
	solving the problem	is $\frac{1}{2}$, $\frac{1}{3}$ and $\frac{1}{4}$. Proba	ability that the problem is s	olved is
	3	1	2	1
	(a) $\frac{3}{4}$	(b) $\frac{1}{2}$	(c) $\frac{2}{3}$	(d) $\frac{1}{3}$
5.	The period of sin ² 6) is		
	(a) π^2	(b) π	(c) 2π	(d) $\pi/2$
6.	I, m, n are the p th , q	th and r th term of a G.P.	all positive, then logn	p 1 q 1 equals r 1
	(a) -1	(b) 2	(c) 1	(d) 0
7.	$\lim_{x\to 0}\frac{\sqrt{1-\cos 2x}}{\sqrt{2}x} is$			
	(a) 1	(b) -1	(c) zero	(d) does not exist
8.	• •	ces (4, 0), (-1, -1), (3,		•
	(a) isosceles and rig	•	(b) isosceles but not righ	t angled
•	(c) right angled but		(d) neither right angled n	
9.			oys whose average marks 2, then what is the averag	in a subject are 75. If the
	(a) 73	(b) 65	(c) 68	(d) 74
10.		$n^{-1}(\sqrt{\cos\alpha}) = x$, then	•	,
	(a) $tan^2 \left(\frac{\alpha}{2}\right)$	(b) $\cot^2\left(\frac{\alpha}{2}\right)$	(c) tanα	(d) $\cot\left(\frac{\alpha}{2}\right)$

$(ax)ax^{\circ}$	11.	The order and degree of the differential equation	$1+3\frac{dy}{dx}$	$\int_{0}^{2/3} = 4 \frac{d^3y}{dx^3} \operatorname{are}$
------------------	-----	---	--------------------	---

- (a) $(1, \frac{2}{3})$
- (b) (3, 1)
- (c) (3, 3)
- (d) (1, 2)

12. A plane which passes through the point (3, 2, 0) and the line
$$\frac{x-4}{1} = \frac{y-7}{5} = \frac{z-4}{4}$$
 is

- (a) x y + z = 1

- (b) x + y + z = 5 (c) x + 2y z = 1 (d) 2x y + z = 5

13. The solution of the equation
$$\frac{d^2y}{dx^2} = e^{-2x}$$

- (a) $\frac{e^{-2x}}{4}$ (b) $\frac{e^{-2x}}{4} + cx + d$ (c) $\frac{1}{4}e^{-2x} + cx^2 + d$ (d) $\frac{1}{4}e^{-4x} + cx + d$

14.
$$\lim_{x \to \infty} \left(\frac{x^2 + 5x + 3}{x^2 + x + 3} \right)^{\frac{1}{x}}$$

- (a) e4
- (b) e^2
- (c) e^3

(d) 1

- 15. The domain of $\sin^{-1} [\log_3 (x/3)]$ is
 - (a) [1, 9]
- (b) [-1,9]
- (c) [-9, 1]
- (d) [-9, -1]

- The value of $2^{1/4}$, $4^{1/8}$, $8^{1/6} + \dots \infty$ is 16.
- (c) 3/2

- (d) 4
- Fifth term of a GP is 2, then the product of its 9 terms is 17.
 - (a) 256
- (b) 512
- (c) 1024

(d) none of these

18.
$$\int_{0}^{10\pi} |\sin x| \, dx \text{ is}$$

- (c) 10

(d) 18

19.
$$I_n = \int_0^{\pi/4} \tan^n x \, dx$$
 then $\lim_{n \to \infty} n[I_n + I_{n-2}]$ equals

- (a) $\frac{1}{2}$
- (b) 1
- (c) ∞

(d) zero

20.
$$\int_{0}^{\sqrt{2}} [x^{2}] dx$$
 is

- (a) $2 \sqrt{2}$
- (b) $2+\sqrt{2}$ (c) $\sqrt{2}-1$
- (d) $\sqrt{2} 2$

21.
$$\int_{-\pi}^{\pi} \frac{2x(1+\sin x)}{1+\cos^2 x} dx \text{ is}$$

- (a) $\frac{\pi^2}{4}$
- (b) π^{2}
- (c) zero

(d) $\frac{\pi}{2}$

22.	Let $f(x) = 4$ and $f'(x)$	$(x) = 4$. Then $\lim_{x \to 2} \frac{xf(x)}{x}$	$\frac{(2)-2f(x)}{x-2}$ is given by				
	(a) 2	(b) - 2	(c) - 4	(d) 3			
23.	z and w are two no	n zero complex no.s	such that z = w and Arg	$gz + Argw = \pi$ then z equals			
	(a) ₩	(b) $-\overline{\mathbf{w}}$	(c) w	(d) - w			
24.	If z-4 < z-2 , its	s solution is given by	1				
	(a) $Re(z) > 0$	(b) $Re(z) < 0$	(c) Re $(z) > 3$	(d) $Re(z) > 2$			
25.	The locus of the ce	The locus of the centre of a circle which touches the circle $ z - z_1 = a$ and $ z - z_2 = b$ externally					
	$(z, z_1 \text{ and } z_2 \text{ are complex numbers})$ will be						
	(a) an ellipse	(b) a hyperbola	(c) a circle	(d) none of these			
26.	Sum of infinite num GP is	ber of terms of GP is	s 20 and sum of their square	e is 100. The common ratio of			
	(a) 5	(b) 3/5	(c) 8/5	(d) 1/5			
27.	$1^3 - 2^3 + 3^3 - 4^3 + \dots$						
	(a) 425	` '	(c) 475	(d) - 475			
28.	$a \neq b$, then			$dx^2 + bx + a = 0$ is same and			
	• •	• •	(c) $a - b - 4 = 0$	(d) $a - b + 4 = 0$			
29.		ts of the equation t ² x					
	(a) is always positive			(b) is always negative			
	(c) does not exist		(d) none of these				
30.			$x^2 + px + q = 0$, then	(al) a 0 a 4			
24			(c) $p = -2$, $q = 0$				
31.			and $a^2 + b^2 + c^2 = 1$ then ab (c) greater than 1				
32.	(a) less than 1			, 1, 2, 3, 5, 7 (using repetition			
JZ.	allowed) are						
	(a) 216	(b) 375	(c) 400	(d) 720			
33.	allowed) is		-	digits 0, 1, 2, 3, 4 (repetition			
	(a) 125	(b) 105	(c) 375	(d) 625			
34.	Five digit number of number of such nu	•	ned using 0, 1, 2, 3, 4, 6 a	nd 7 without repetition. Total			
	(a) 312	(b) 3125	(c) 120	(d) 216			
35.	_		are divisible by 2 or 5 is				
	(a) 3000	(b) 3050	(c) 3600	(d) 3250			
36.	The coefficients of x^p and x^q in the expansion of $(1+x)^{p+q}$ are						
	(a) equal		(b) equal with opposite signs				
	(c) reciprocals of each other		(d) none of these				
37.	If the sum of the coefficients in the expansion of (a + b) ⁿ is 4096, then the greatest coefficient in						
	the expansion is	(b) 792	(c) 924	(d) 2924			
	(a) 1594	(b) 792	(0) 324	(u) 2924 ———————————————————————————————————			

38.	The positive integer (a) 4	just greater than (1+0 (b) 5	0.0001) ¹⁰⁰⁰⁰ is (c) 2		(d) 3	
39.	r and n are positive	integers r > 1, n > 2 are equal, then n equ	and coefficier	nt of (r + 2	, ,	th term in the
	(a) 3r	(b) 3r + 1			(d) 2r + 1	
40.	If a > 0 discriminant	of $ax^2 + 2bx + c$ is -ve	e, then $\begin{vmatrix} a \\ b \\ ax + b \end{vmatrix}$	b c bx+c	$\begin{vmatrix} ax + b \\ bx + c \\ 0 \end{vmatrix}$ is	
	(a) +ve	(b) $(ac - b^2) (ax^2 + 2b^2)$	ox + c) (c)	-ve	(d) 0	
41.	If $a_n = \sqrt{7 + \sqrt{7 + \sqrt{7}}}$ which is true	7+ having n radio	cal signs then I	by method	s of mathemat	ical induciton
	(a) $a_n > 7 \forall n \ge 1$	(b) $a_n > 7 \forall n \ge 1$	(c) $a_n < 4 \forall$	n≥1	(d) $a_n < 3$	√ n≥1
42.	The sides of a triang (a) right angled	gle are 3x + 4y, 4x+37 (b) obtuse angled				
43.	Locus of mid point o	f the portion between	the axes of x o	cosα+ysi	$n\alpha = p$ where	p is constant
	(a) $x^2 + y^2 = \frac{4}{p^2}$	(b) $x^2 + y^2 = 4p^2$	(c) $\frac{1}{x^2} + \frac{1}{y^2} =$	$=\frac{2}{p^2}$	(d) $\frac{1}{x^2} + \frac{1}{y^2}$	$=\frac{4}{p^2}$
44.45.	(a) $2fgh = bg^2 + ch^2$	$x^2 + 2hxy + by^2 + 2gx + (b) bg^2 \neq ch^2$ presented by $3ax^2 + 5x$	(c) abc = 2fg	h	(d) none of	these
	(a) two values of a	(b) ∀ a	(c) for one va	alue of a	(d) for no va	alues of a
46.	If the chord y = mx - segment of the circle	+ 1 of the circle $x^2 + y^2$ e then value of m is	² = 1 subtends	an angle o	of measure 45°	at the major
	(a) $2 \pm \sqrt{2}$	(b) $-2 \pm \sqrt{2}$	(c) $-1 \pm \sqrt{2}$		(d) none of	these
47.	The centres of a set point in the set is	of circles, each of rac	dius 3, lie on th	ne circle x²	$+ y^2 = 25$. The	locus of any
48.	• •	(b) $x^2 + y^2 \le 25$ role passing through (6)				-
	(a) $\left(\frac{1}{2}, \frac{1}{2}\right)$	(b) $\left(\frac{1}{2}, -\sqrt{2}\right)$	(c) $\left(\frac{3}{2}, \frac{1}{2}\right)$		(d) $\left(\frac{1}{2}, \frac{3}{2}\right)$	
49.	The equation of a ci	rcle with origin as a ce 3a is	entre and pass	ing throug	h equilateral tr	iangle whose
	•	(b) $x^2 + y^2 = 16a^2$	(c) $x^2 + y^2 = 4$	4a²	(d) $x^2 + y^2 =$	= a ²

16

(a) $x = \pm (y + 2a)$ (b) $y = \pm (x + 2a)$ (c) $x = \pm (y + a)$ (d) $y = \pm (x + a)$ 51. In a triangle with sides a, b, c, $r_1 > r_2 > r_3$ (which are the ex- radii) then (a) $a > b > c$ (b) $a < b < c$ (c) $a > b$ and $b < c$ (d) $a < b$ and $b > c$ 52. The number of solution of $\tan x + \sec x = 2\cos x$ in $[0, 2\pi)$ is (a) 2 (b) 3 (c) 0 (d) 1 53. Which one is not periodic (a) $ \sin 3x + \sin^2 x$ (b) $\cos \sqrt{x} + \cos^2 x$ (c) $\cos 4x + \tan^2 x$ (d) $\cos 2x + \sin x$ 54. $\lim_{n \to \infty} \frac{1^p + 2^p + 3^p + \dots + n^p}{n^{p+1}}$ is (a) $\frac{1}{p+1}$ (b) $\frac{1}{1-p}$ (c) $\frac{1}{p} - \frac{1}{p-1}$ (d) $\frac{1}{p+2}$ 55. $\lim_{x \to 0} \frac{\log x^n - [x]}{[x]}$, $n \in \mathbb{N}$ ([x] denotes greatest integer less than or equal to x) (a) has value -1 (b) has value 0 (c) has value 1 (d) does not exist 56. If $f(1) = 1$, $f'(1) = 2$, then $\lim_{x \to 1} \frac{\sqrt{f(x)} - 1}{\sqrt{x} - 1}$ is (a) 2 (b) 4 (c) 1 (d) 1/2 57. If is defined in [-5, 5] as $f(x) = x$ if x is rational and $a = x$ is irrational. Then (a) $f(x)$ is continuous at every x, except $x = 0$ (b) $f(x)$ is discontinuous at every x, except $x = 0$ (c) $f(x)$ is continuous everywhere (d) $f(x)$ is discontinuous everywhere 58. $f(x)$ and $g(x)$ are two differentiable functions on $[0, 2]$ such that $f''(x) - g''(x) = 0$ $f'(1) = 2g'(1) = 4f(2) = 3g(2) = 9$ then $f(x) - g(x)$ at $x = 3/2$ is					
(a) $a > b > c$ (b) $a < b < c$ (c) $a > b$ and $b < c$ (d) $a < b$ and $b > c$ 52. The number of solution of $\tan x + \sec x = 2\cos x$ in $[0, 2\pi)$ is (a) 2 (b) 3 (c) 0 (d) 1 53. Which one is not periodic (a) $ \sin 3x + \sin^2 x$ (b) $\cos \sqrt{x} + \cos^2 x$ (c) $\cos 4x + \tan^2 x$ (d) $\cos 2x + \sin x$ 54. $\lim_{n \to \infty} \frac{1^n + 2^n + 3^n + \dots + n^n}{n^{n+1}}$ is (a) $\frac{1}{p+1}$ (b) $\frac{1}{1-p}$ (c) $\frac{1}{p} - \frac{1}{p-1}$ (d) $\frac{1}{p+2}$ 55. $\lim_{x \to 0} \frac{\log x^n - [x]}{[x]}$, $n \in \mathbb{N}$ ([x] denotes greatest integer less than or equal to x) (a) has value -1 (b) has value 0 (c) has value 1 (d) does not exist 56. If $f(1) = 1$, $f'(1) = 2$, then $\lim_{x \to 1} \frac{\sqrt{f(x)} - 1}{\sqrt{x} - 1}$ is (a) 2 (b) 4 (c) 1 (d) 1/2 57. If is defined in [-5, 5] as $f(x) = x$ if x is rational and $f(x) = x$ is irrational. Then (a) $f(x)$ is continuous at every x, except $f(x) = x$ (c) $f(x)$ is discontinuous at every x, except $f(x) = x$ (d) $f(x)$ is discontinuous everywhere (d) $f(x)$ is discontinuous everywhere (d) $f(x)$ is discontinuous everywhere (d) $f(x)$ and $f(x)$ are two differentiable functions on $f(x)$ such that $f''(x) - g''(x) = 0$					
(a) 2 (b) 3 (c) 0 (d) 1 53. Which one is not periodic (a) $ \sin 3x + \sin^2 x$ (b) $\cos \sqrt{x} + \cos^2 x$ (c) $\cos 4x + \tan^2 x$ (d) $\cos 2x + \sin x$ 54. $\lim_{n \to \infty} \frac{1^p + 2^p + 3^p + \dots + n^p}{n^{p+1}}$ is (a) $\frac{1}{p+1}$ (b) $\frac{1}{1-p}$ (c) $\frac{1}{p} - \frac{1}{p-1}$ (d) $\frac{1}{p+2}$ 55. $\lim_{x \to 0} \frac{\log x^n - [x]}{[x]}$, $n \in \mathbb{N}$ ([x] denotes greatest integer less than or equal to x) (a) has value -1 (b) has value 0 (c) has value 1 (d) does not exist 56. If $f(1) = 1$, $f'(1) = 2$, then $\lim_{x \to 1} \frac{\sqrt{f(x)} - 1}{\sqrt{x} - 1}$ is (a) 2 (b) 4 (c) 1 (d) 1/2 57. If is defined in [-5, 5] as $f(x) = x$ if x is rational and $f(x) = x$ is irrational. Then (a) $f(x)$ is continuous at every x, except $f(x) = x$ is irrational. Then (b) $f(x)$ is discontinuous at every x, except $f(x)$ is discontinuous everywhere (c) $f(x)$ is discontinuous everywhere (d) $f(x)$ is discontinuous everywhere (e) $f(x)$ and $f(x)$ are two differentiable functions on $f(x)$ is such that $f''(x) - g''(x) = 0$					
53. Which one is not periodic (a) $ \sin 3x + \sin^2 x$ (b) $\cos \sqrt{x} + \cos^2 x$ (c) $\cos 4x + \tan^2 x$ (d) $\cos 2x + \sin x$ 54. $\lim_{n \to \infty} \frac{1^p + 2^p + 3^p + \dots + n^p}{n^{p+1}}$ is (a) $\frac{1}{p+1}$ (b) $\frac{1}{1-p}$ (c) $\frac{1}{p} - \frac{1}{p-1}$ (d) $\frac{1}{p+2}$ 55. $\lim_{x \to 0} \frac{\log x^n - [x]}{[x]}$, $n \in \mathbb{N}$ ([x] denotes greatest integer less than or equal to x) (a) has value -1 (b) has value 0 (c) has value 1 (d) does not exist 56. If $f(1) = 1$, $f'(1) = 2$, then $\lim_{x \to 1} \frac{\sqrt{f(x)} - 1}{\sqrt{x} - 1}$ is (a) 2 (b) 4 (c) 1 (d) 1/2 57. If is defined in [-5, 5] as $f(x) = x$ if x is rational and $f(x) = x$ is irrational. Then (a) $f(x)$ is continuous at every x, except $f(x) = x$ is irrational. Then (b) $f(x)$ is discontinuous at every x, except $f(x) = x$ is irrational. Then (c) $f(x)$ is continuous everywhere (d) $f(x)$ is discontinuous everywhere (e) $f(x)$ is discontinuous everywhere (f(x)) and $f(x)$ are two differentiable functions on $f(x)$ is such that $f''(x) - g''(x) = 0$					
(a) $ \sin 3x + \sin^2 x$ (b) $\cos \sqrt{x} + \cos^2 x$ (c) $\cos 4x + \tan^2 x$ (d) $\cos 2x + \sin x$ 54. $\lim_{n \to \infty} \frac{1^p + 2^p + 3^p + \dots + n^p}{n^{p+1}} \text{ is}$ (a) $\frac{1}{p+1}$ (b) $\frac{1}{1-p}$ (c) $\frac{1}{p} - \frac{1}{p-1}$ (d) $\frac{1}{p+2}$ 55. $\lim_{x \to 0} \frac{\log x^n - [x]}{[x]}, n \in \mathbb{N} \text{ ([x] denotes greatest integer less than or equal to } x\text{)}$ (a) has value -1 (b) has value 0 (c) has value 1 (d) does not exist 56. If $f(1) = 1$, $f'(1) = 2$, then $\lim_{x \to 1} \frac{\sqrt{f(x)} - 1}{\sqrt{x} - 1}$ is (a) 2 (b) 4 (c) 1 (d) 1/2 57. If is defined in [-5, 5] as $f(x) = x$ if x is rational and $x = -x$ is irrational. Then (a) $f(x)$ is continuous at every x , except $x = 0$ (b) $f(x)$ is discontinuous at every x , except $x = 0$ (c) $f(x)$ is continuous everywhere (d) $f(x)$ is discontinuous everywhere 58. $f(x)$ and $g(x)$ are two differentiable functions on $[0, 2]$ such that $f''(x) - g''(x) = 0$					
54.					
(a) $\frac{1}{p+1}$ (b) $\frac{1}{1-p}$ (c) $\frac{1}{p}-\frac{1}{p-1}$ (d) $\frac{1}{p+2}$ 55. $\lim_{x\to 0}\frac{\log x^n-[x]}{[x]}$, $n\in N$ ([x] denotes greatest integer less than or equal to x) (a) has value -1 (b) has value 0 (c) has value 1 (d) does not exist 56. If $f(1)=1$, $f'(1)=2$, then $\lim_{x\to 1}\frac{\sqrt{f(x)}-1}{\sqrt{x}-1}$ is (a) 2 (b) 4 (c) 1 (d) 1/2 57. If is defined in [-5, 5] as $f(x)=x$ if x is rational and $f(x)=x$ is irrational. Then (a) $f(x)=x$ is continuous at every x, except $f(x)=x$ is discontinuous at every x, except $f(x)=x$ is discontinuous everywhere (b) $f(x)=x$ is discontinuous everywhere (c) $f(x)=x$ is discontinuous everywhere (d) $f(x)=x$ is discontinuous everywhere (e) $f(x)=x$ is discontinuous everywhere (f) $f(x)=x$ is discontinuous everywhere (g) $f(x)=x$ is discontinuous everywhere (g) $f(x)=x$ is discontinuous everywhere					
55. $\lim_{x\to 0}\frac{\log x^n-[x]}{[x]}$, $n\in \mathbb{N}$ ([x] denotes greatest integer less than or equal to x) (a) has value -1 (b) has value 0 (c) has value 1 (d) does not exist 56. If $f(1)=1$, $f'(1)=2$, then $\lim_{x\to 1}\frac{\sqrt{f(x)}-1}{\sqrt{x}-1}$ is (a) 2 (b) 4 (c) 1 (d) 1/2 57. If is defined in [-5, 5] as $f(x)=x$ if x is rational and $=-x$ is irrational. Then (a) $f(x)$ is continuous at every x, except $x=0$ (b) $f(x)$ is discontinuous at every x, except $x=0$ (c) $f(x)$ is continuous everywhere (d) $f(x)$ is discontinuous everywhere 58. $f(x)$ and $g(x)$ are two differentiable functions on $[0, 2]$ such that $f''(x)-g''(x)=0$					
55. $\lim_{x\to 0}\frac{\log x^n-[x]}{[x]}$, $n\in \mathbb{N}$ ([x] denotes greatest integer less than or equal to x) (a) has value -1 (b) has value 0 (c) has value 1 (d) does not exist 56. If $f(1)=1$, $f'(1)=2$, then $\lim_{x\to 1}\frac{\sqrt{f(x)}-1}{\sqrt{x}-1}$ is (a) 2 (b) 4 (c) 1 (d) 1/2 57. If is defined in [-5, 5] as $f(x)=x$ if x is rational and $=-x$ is irrational. Then (a) $f(x)$ is continuous at every x, except $x=0$ (b) $f(x)$ is discontinuous at every x, except $x=0$ (c) $f(x)$ is continuous everywhere (d) $f(x)$ is discontinuous everywhere 58. $f(x)$ and $g(x)$ are two differentiable functions on $[0, 2]$ such that $f''(x)-g''(x)=0$					
(a) has value -1 (b) has value 0 (c) has value 1 (d) does not exist 56. If $f(1) = 1$, $f'(1) = 2$, then $\lim_{x \to 1} \frac{\sqrt{f(x)} - 1}{\sqrt{x} - 1}$ is (a) 2 (b) 4 (c) 1 (d) 1/2 57. If is defined in [-5, 5] as $f(x) = x$ if x is rational and x is irrational. Then (a) $f(x)$ is continuous at every x , except $x = 0$ (b) $f(x)$ is discontinuous at every x , except $x = 0$ (c) $f(x)$ is continuous everywhere (d) $f(x)$ is discontinuous everywhere 58. $f(x)$ and $g(x)$ are two differentiable functions on [0, 2] such that $f''(x) - g''(x) = 0$					
 56. If f(1) = 1, f'(1) = 2, then Lim_{x→1} √f(x) - 1/√x - 1 is (a) 2 (b) 4 (c) 1 (d) 1/2 57. f is defined in [-5, 5] as f(x) = x if x is rational and = -x is irrational. Then (a) f(x) is continuous at every x, except x = 0 (b) f(x) is discontinuous at every x, except x = 0 (c) f(x) is continuous everywhere (d) f(x) is discontinuous everywhere 58. f(x) and g(x) are two differentiable functions on [0, 2] such that f"(x) - g"(x) = 0 					
 (a) 2 (b) 4 (c) 1 (d) 1/2 57. f is defined in [-5, 5] as f(x) = x if x is rational and = -x is irrational. Then (a) f(x) is continuous at every x, except x = 0 (b) f(x) is discontinuous at every x, except x = 0 (c) f(x) is continuous everywhere (d) f(x) is discontinuous everywhere 58. f(x) and g(x) are two differentiable functions on [0, 2] such that f"(x) - g"(x) = 0 					
 (a) 2 (b) 4 (c) 1 (d) 1/2 57. f is defined in [-5, 5] as f(x) = x if x is rational and = -x is irrational. Then (a) f(x) is continuous at every x, except x = 0 (b) f(x) is discontinuous at every x, except x = 0 (c) f(x) is continuous everywhere (d) f(x) is discontinuous everywhere 58. f(x) and g(x) are two differentiable functions on [0, 2] such that f"(x) - g"(x) = 0 					
 (a) f(x) is continuous at every x, except x = 0 (b) f(x) is discontinuous at every x, except x = 0 (c) f(x) is continuous everywhere (d) f(x) is discontinuous everywhere 58. f(x) and g(x) are two differentiable functions on [0, 2] such that f"(x) - g"(x) = 0 					
 (b) f(x) is discontinuous at every x, except x = 0 (c) f(x) is continuous everywhere (d) f(x) is discontinuous everywhere 58. f(x) and g(x) are two differentiable functions on [0, 2] such that f"(x) - g"(x) = 0 					
 (c) f(x) is continuous everywhere (d) f(x) is discontinuous everywhere 58. f(x) and g(x) are two differentiable functions on [0, 2] such that f"(x) - g"(x) = 0 					
(d) $f(x)$ is discontinuous everywhere 58. $f(x)$ and $g(x)$ are two differentiable functions on [0, 2] such that $f''(x) - g''(x) = 0$					
58. $f(x)$ and $g(x)$ are two differentiable functions on [0, 2] such that $f''(x) - g''(x) = 0$					
f'(1)=2g'(1)=4f(2)=3g(2)=9 then $f(x)-g(x)$ at $x=3/2$ is					
(a) 0 (b) 2 (c) 10 (d) 5					
59. If $f(x + y) = f(x)$. $f(y) \forall x.y$ and $f(5) = 2$, $f'(0) = 3$ then $f'(5)$ is					
(a) 0 (b) 1 (c) 6 (d) 2					
60. The maximum distance from origin of a point on the curve $x = a \sin t - b \sin \left(\frac{at}{b}\right)$					
					$y = a \cos t - b \cos \left(\frac{at}{b}\right)$, both a, b > 0 is
(a) a - b (b) a + b (c) $\sqrt{a^2 + b^2}$ (d) $\sqrt{a^2 - b^2}$					
61. If $2a + 3b + 6c = 0$ $(a,b,c \in R)$ then the quadratic equation $ax^2 + bx + c = 0$ has					
(a) at least one root in [0, 1] (b) at least one root in [2, 3]					
(c) at least one root in [4, 5] (d) none of these 62. If $y = f(x)$ makes +ve intercept of 2 and 0 unit on x and y axes and encloses an area	of 3/4				
square unit with the axes then $\int_{0}^{2} xf'(x) dx$ is					
(a) 3/2 (b) 1 (c) 5/4 (d) -3/4					
	(17)				

63.	The area bounded to (a) 4 sq. units		y = ln x , y = ln x and y (c) 10 sq. units	= In x is (d) none of these		
64.	If $ \vec{a} =4$, $ \vec{b} =2$ and the angle between \vec{a} and \vec{b} is $\pi/6$ then $(\vec{a}\times\vec{b})^2=2$ is equal to					
	(a) 48	(b) 16	(c) ā	(d) none of these		
65.	If $\vec{a}, \vec{b}, \vec{c}$ are vectors	such that $\left[\vec{a}\ \vec{b}\ \vec{c}\right]=4$ th	en $\left[\vec{a} \times \vec{b} \ \vec{b} \times \vec{c} \ \vec{c} \times \vec{a}\right] =$			
	(a) 16	(b) 64	(c) 4	(d) 8		
66.	6. If $\vec{a}, \vec{b}, \vec{c}$ are vectors such that $\vec{a} + \vec{b} + \vec{c} = 0$ and $ \vec{a} = 7$, $ \vec{b} = 5$, $ \vec{c} = 3$ then angle between					
	vector \vec{b} and \vec{c} is					
	(a) 60	(b) 30°	(c) 45°	(d) 90°		
67.	If a =5, b = 4, c	=3 thus what will be t	he value of a.b + b.c + c.a	, given that $\vec{a} + \vec{b} + \vec{c} = 0$		
	(a) 25	(b) 50	(c) - 25	(d) - 50		
68.	$3\lambda\vec{c}+2\mu(\vec{a}\times\vec{b})=0$	then				
	(a) $3\lambda + 2\mu = 0$	(b) $3\lambda = 2\mu$	(c) $\lambda = \mu$	(d) $\lambda + \mu = 0$		
69.	9. $\vec{a} = 3\hat{i} - 5\hat{j}$ and $\vec{b} = 6\hat{i} + 3\hat{j}$ are two vectors and \vec{c} is a vector such that $\vec{c} = \vec{a} \times \vec{b}$					
	ā : b : c					
	(a) $\sqrt{34}$: $\sqrt{45}$: $\sqrt{39}$	(b) $\sqrt{34}$: $\sqrt{45}$: 39	(c) 34 : 39 : 45	(d) 39:35:34		
70.	If $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{c}$	\vec{a} then $\vec{a} + \vec{b} + \vec{c} =$				
	(a) abc	(b) -1	(c) 0	(d) 2		
71.	A and B are events	such that $P(A \cup B) = 3$	$B/4$, $P(A \cap B) = 1/4$, $P(\overline{A})$	= $2/3$ then $P(\overline{A} \cap B)$ is		
	(a) 5/12	(b) 3/8	(c) 5/8	(d) 1/4		
72.	A die is tossed 5 time distribution of succe	-	mber is considered a succe	ess. Then the variance of		
	(a) 8/3	(b) 3/8	(c) 4/5	(d) 5/4		
73.	The d.r. of normal to $x + y = 3$ are	the plane through (1, 0	0, 0) , (0, 1, 0) which makes	an angle $\pi/4$ with plane		
	(a) 1, $\sqrt{2}$,1	(b) 1, 1, $\sqrt{2}$	(c) 1, 1, 2	(d) $\sqrt{2}$, 1, 1		
74. The sum of two forces is 18 N and resultant whose direction is at right angles to						
	force is 12 N. The magnitude of the two forces are					
7-	(a) 13, 5	(b) 12, 6	(c) 14, 4	(d) 11, 7		
75.	ne. The bead is attached thread is taut and make					
	an angle θ with the vertical then tension of the thread and reaction of the wire on the bead are					
	(a) $T = w \cos \theta$	$R = w \tan \theta$	(b) $T = 2w \cos \theta$	R = W		
	(c) T = w	$R = w \sin \theta$	$(d)T = w \sin \theta$	$R = w \cot \theta$		