1. ATOMIC STRUCTURE

PREVIOUS EAMCET BITS The wavelengths of electron waves in two orbits is 3:5. The ratio of kinetic energy of electron (E-2009)

- will be 1) 25:9
- 2)5:3
- 3) 9:25
- 4)3:5

Ans: 1

1.

Sol: According to de-Broglie equation

$$\lambda = \frac{h}{nv}$$
 But $\lambda_1 : \lambda_2 = 3:5$

$$v_1: v_2 = 5:3$$

$$K.E = \frac{1}{2}mv^2 \qquad KE_1: KE_2$$

$$=5^2:3^2=25:9$$

- With increases in principal quantum number n the energy difference between adjacent energy 2. levels in hydrogen atom (M-2009)
 - 1) increases
- 2) decreases
- 3) remain constant
- 4) decreases for lower values of n and increases for higher values of n

Sol:
$$E_n = \frac{-13.6}{n^2} ev$$

As value of n increases the energy difference between adjacent levels decreases.

- An electronic transition in hydrogen atom results in the formation of H_{α} line of hydrogen in 3. Lyman series, the energies associated with the electron in each of the orbits involved in the transition (in kcal mol⁻¹) are 1) -313.6.-34.84 2)-313.6-78.4 3)-78.4,-34.83 4) -78.4,-19.6 (E-2008)

Sol: H_{α} line in Lyman series mean electron transition is from n=2 to n=1 orbit.

$$E_1 = \frac{-313.6}{1^2} = -313.6 \text{ k.cal mole}^{-1}$$

$$E_2 = \frac{-313.6}{2^2} = -78.4 \text{ k.cal mole}^{-1}$$

- The velocities of two particles A and B are 0.05 and 0.02 ms⁻¹ respectively. The mass of B is five 4. times the mass of A. The ratio of their de-Broglie's wavelength is (E-2008)
 - 1)2:1Ans: 1
- 2)1:4
- 3) 1:1
- 4)4:1

Sol: $\lambda = \frac{h}{mv}$

$$\lambda_{_{A}} = \frac{h}{m \times 0.05} \quad \lambda_{_{B}} = \frac{\lambda}{5m \times 0.02}$$

$$\frac{\lambda_{A}}{\lambda_{R}} = \frac{5m \times 0.02}{m \times 0.05} = 2:1$$

The wavelength (in A°) of an emission line obtained for Li²⁺ during electronic transition from 5. $n_2 = 2$ to $n_1 = 1$ is (R = Rydberg constant) (M-2008)

(M-2008)

1)
$$\frac{3R}{4}$$

2)
$$\frac{27R}{4}$$

3)
$$\frac{4}{3R}$$

4)
$$\frac{4}{27R}$$

Ans: 4

Sol: For
$$\text{Li}^{2+}$$
 $\overline{v} = 3^2 R \left[\frac{1}{1^2} - \frac{1}{2^2} \right] = \frac{27R}{4}$

$$\lambda = \frac{4}{27R}$$

6. Match the following

List - I

A)
$$mvr = \frac{nh}{2\pi}$$

B) Infra-red

C)
$$\lambda = \frac{n}{p}$$

D)
$$\frac{-e^2}{2r}$$

List – II

- i) Paschen series
- ii) Electron total energy
- iii) de-Broglie equation
- iv) Schrodinger equation
- v) Bohr's equation

A B C iii ii v

v iv ii iii

D

Ans: 3

Sol: A)
$$mvr = \frac{nh}{2\pi}$$
 Bohr's equation $A - (v)$

- B) Infrared Paschen series B (i)
- C) $\lambda = \frac{n}{p}$ de-Broglie equation C = iii
- D) $\frac{-e^2}{2r}$ total energy of electron D ii
- 7. What is the wave number of 4th line in Balmer series of Hydrogen spectrum? (R=1,09,677cm⁻¹) (M-2007)

2) 24, 360
$$\,\mathrm{cm}^{-1}$$

Ans: 4

Sol: 4th line in Balmer series mean electron transition from 6th orbit to 2nd orbit.

$$= 109677 \left(\frac{1}{2^2} - \frac{1}{6^2} \right)$$

$$= 109677 \left(\frac{1}{4} - \frac{1}{36} \right)$$

$$= 109677 \left(\frac{9-1}{36} \right)$$

$$\overline{\gamma} = 109677 \times \frac{8}{36} = 24,372 \text{ cm}^{-1}$$

- 8. The atomic number of an element ' \underline{M} ' is 26. How many electrons are present in the M-shell of the element in its \underline{M}^{3+} state? (M-2007)
 - 1) 11
- 2) 15

3) 14

4) 13

- Ans: 4
- Sol: $Z = 26 = Fe = 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^6$

$$Fe^{3+} = \frac{1s^2}{K} \frac{2s^2 \, 2p^6}{L} \frac{3s^2 \, 3p^6 \, 3d^5}{M}$$

- ∴ Electron in M shell = 13
- 9. The wavelength of a spectral line emitted by hydrogen atom in the Lyman Series is $\frac{16}{15R}$ cm.

What is the value of n_2 ? (R = Rydberg constant)

(E-2007)

- 1) 2
- 2) 3

3) 4

4) 1

Ans: 3

Sol: Equation for Lyman series

$$\overline{\mathbf{v}} = \frac{1}{\lambda} = \mathbf{R} \left[\frac{1}{1^2} - \frac{1}{n_2^2} \right]$$

$$\frac{15R}{16} = R \left[\frac{1}{1^2} - \frac{1}{n_2^2} \right]$$

$$\frac{1}{n_2^2} = 1 - \frac{15}{16} = \frac{1}{16}$$

$$n_2 = 4$$

- 10. The maximum number of sub levels, orbitals and electrons in 'N' shell of an atoms respectively (E-2007)
 - 1) 4, 12, 32
- 2) 4, 16, 30
- 3) 4, 16, 32
- 4) 4, 32, 64

Ans: 3

- Sol: N shell has four (s, p, d, f) sub levels
 - N shell has 16 orbitals (1s, 3p, 5d, 7f)
 - N shell has 32 electron $(16 \times 2 = 32)$
- 11. The energy of a photon is 3×10^{-12} ergs, Its wavelength in nm

(E-2006)

- 1) 662
- 2) 1324
- 3) 66.2
- 4) 6.62

Ans: 1

Sol:
$$E = \frac{hc}{\lambda}$$
 $\lambda = \frac{hc}{E}$

$$= \frac{6.62 \times 10^{27} \text{ erg sec} \times 3 \times 10^{10} \text{ cms}^{-1}}{3 \times 10^{-12} \text{erg}}$$

$$\lambda = 6.62 \times 10^{-5} \text{ cm} = 662 \text{ nm}$$

- 12. What is the correct order of spin only magnetic moment (in BM) of Mn^{+2} and V^{+2} is (E 2006)
 - 1) $Mn^{2+} > V^{2+} > Cr^{2+}$

2) $V^{2+} > Cr^{2+} > Mn^{2+}$

3) $Mn^{2+} > Cr^{2+} > V^{2+}$

4) $Cr^{2+} > V^{2+} > Mn^{2+}$

Ans: 3

Sol. Spin only magnetic moment = $\sqrt{n(n+2)}$ B.M

N = number of unpaired electron

Magnetic moment is proportional to number of unpaired electron.

Number of unpaired electron in $Mn^{2+} = 5$

Number of unpaired electron in $Cr^{2+} = 4$

Number of unpaired electron in $V^{2+} = 2$

13. The angular momentum of an electron present in the excited state of Hydrogen is $\frac{1.5h}{\pi}$. The

electron present in (M-2006)

- 1) Third orbit
- 2) Second orbit
- 3) Fourth orbit
- 4) Fifth orbit

Áns: 1

Sol. Angular momentum =
$$\frac{\text{nh}}{2\pi} = \frac{1.5\text{h}}{\pi}$$

- 14. What is the wavelength (in m) of a particle of mass 6.62×10^{-29} g moving with a velocity of 10^3 ms⁻¹? (h = 6.62×10^{-34} j.s.) (M-2005)
 - 1) 6.62×10^{-4}
- 2) 6.62×10^{-3}
- 3) 10^{-5}
- 4) 10

Ans: 3

Sol.
$$m = 6.62 \times 10^{-29} g$$

= $6.62 \times 10^{-32} kg$
 $v = 10^3 ms^{-1}$

de-Broglie equation

$$\lambda = \frac{h}{mv} = \frac{6.625 \times 10^{-34}}{6.62 \times 10^{-32} \times 10^3} = 10^{-5} \,\text{m}$$

- 15. What is the lowest energy of the spectral line emitted by the hydrogen atom in the Lyman series? (h=Plank constant; C=Velocity of light; R=Rydberg constant). (M-2005)
 - $1) \frac{5hcR}{36}$
- $2) \frac{4hcR}{3}$
- 3) $\frac{3hcR}{4}$
- 4) $\frac{7hcR}{144}$

Ans: 3

Sol. Lyman series equation
$$= \overline{v} = \frac{1}{\lambda} = R \left[\frac{1}{1^2} - \frac{1}{n_2^2} \right]$$

Lowest energy is emitted when electron moves from n=2 to n=1

$$\overline{v} = R \left[\frac{1}{1^2} - \frac{1}{2^2} \right] = \frac{3}{4} R$$

$$E = hv = hc\overline{v} = hc \times \frac{3}{4}R = \frac{3hcR}{4}$$

16. **Assertion(A):**The spin only magnetic moment of SC³⁺ is 1.73 BM.

Reason(R): The spin only magnetic (in BM) of an ion is equal to $\sqrt{n(n+2)}$ where n is the number of unpaired electrons present in the ion. (M-2005)

The correct answer is:

- 1) Both (A) and (R) are true and (R) is the correct explanation of (A)
- 2) Both (A) and (R) true and (R) is not the correct explanation of (A)
- 3) (A) is true but (R) is not true
- 4) (A) is not true but (R) is not true

Ans: 4 Sol. Sc³⁺ has zero unpaired electron. So its spin only magnetic moment in BM is zero Spin only magnetic moment $\mu_s = \sqrt{n(n+2)}$ Where n = no of unpaired electron An electron is moving in Bohr's orbit. Its deBrogile wavelength is λ . What is the circumference 17. (E-2005)of the fourth orbit? 1) $2/\lambda$ $2) 2\lambda$ 3) 4λ 4) $4/\lambda$ Ans: 3 Sol. $2\pi r = n\lambda$ n = 4 $\therefore 2\pi r = 4\lambda$ The atomic numbers of elements X,Y and Z are 19, 21 and 25 respectively. The number of 18. electrons present in the M shells of these elements follow the order. (E-2005)1) Z>X>Y2) X>Y>Z3) Z>Y>X 4) Y>Z>X Ans: 3 Sol. $X = 19 = 1s^2 2s^2 2p^6 \underbrace{3s^2 3p^6}_{M \text{ shell}} 4s^1$ $Y = 21 = 1s^{2} 2s^{2} 2p^{6} \underbrace{3s^{2} 3p^{6} 3d^{1}}_{M \text{ shell}} 4s^{2}$ $Z = 25 = 1s^2 2s^2 2p^6 \underbrace{3s^2 3p^6 3d^5}_{M \text{ shell}} 4s^2$ $\therefore Z > Y > X$ Which of the following pair of ions have same paramagnetic moment? 19. (E-2004)2) Mn^{+2} , Cu^{+2} 1) Cu^{+2} , Ti^{+3} 3) Ti⁺⁴, Cu⁺² Ans:1 Sol. $Cu^{2+}(3d^9)$ and $Ti^{3+}(3d^1)$ have one unpaired electron each. So they have same para magnetic moment. 20. Which of the following elements has least number of electrons in its M shell (E-2004)Ans: 1 $K = 19 = 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$ k has only 8 electron in M shell 21. The values of four quantum numbers of valence electrons an element X n = 4, 1 = 0, m = 0, $s = \frac{1}{2}$. The element is (M-2004)1) K 2) Ti 3) Na 4) Sc Ans: 1 Sol. The given quantam numbers indicate the valence electron is in 4s orbital. Valance electron of K is in 4s orbital 22. An element has 2 electrons in K shell, 8 electrons in L shell, 13 electrons in M shell and one electron in N shell. The element is (M-2004)

3) V

4) Ti

1) Cr

Ans: 1

2) Fe

Atomic structure Sol. Electronic configuration of given element 2, 8, 13, 1. This indicate the element is chromium 23. If the wave length of an electromagnetic radiation is 2000 A°. What is the energy in ergs? (E-2003)1) 9.94×10^{-12} 2) 9.94×10^{-10} 3) 4.97×10^{-12} 4) 4.97×10^{-19} Ans: 1 Sol. $E = \frac{hc}{\lambda}$ $=\frac{6.63\times10^{-27}\,\mathrm{erg\,sec}\times3\times10^{10}\,\mathrm{cm\,sec}^{-1}}{2000\times10^{-9}}$ $= 9.94 \times 10^{-12} \text{ erg}$ 24. If the electron of a hydrogen atom is present in the first orbit, the total energy of the electron is (E-2003)3) $-e^2/2r$ 1) $-e^2/r$ 2) $-e^2/r^2$ Ans: 3 Sol. Total energy of electron in 1st orbit = $\frac{-e^2}{2r}$ Which one of the following expressions represent the electron probability function (D) (M-2003) 25. 1) $4\pi r dr \psi^2$ 2) $4\pi r^2 dr \psi$ 3) $4\pi r^2 dr \psi^2$ 4) $4\pi r dr \psi$ Ans: 3 Sol. D function is = $4\pi r^2$.dr. φ^2 = probability function The total number of electrons present in all the S orbitals, all the P orbitals and all the d orbitals 26. (M-2003)of caesium ion are respectively. 2) 10,24,20 3) 8, 22, 24 4) 12, 20, 23 1) 6, 26, 10 Ans: 2 Sol. $C_s^+ = 55 - 1 = 54$ $= 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6 4d^{10} 5s^2 5p^6$ Total s electron = 10Total p electron = 24Total d electron = 2027. The atomic number of an element is 35. What is the total number of electrons present in all the Porbitals of the ground state atom of the element (M-2003)1) 6 2) 11 3) 17 4) 23

Ans: 3 Sol. $(Z=35)1s^22s^22p^63s^23p^63d^{10}4s^24p^5$ P = 17The calculated magnetic moment (in Bohr magneton) of Cu²⁺ ion is 28. (E-2002)1) 1.73 2) 0 3) 2.6 4) 3.4 Ans: 1 Sol. $Cu^{2+} = [Ar]3d^9$

$$\mu_{s} = \sqrt{n(n+2)} = \sqrt{3} = 1.732B.M$$

n = number of unpaired electrons

29. Which one of the following statement is *not* correct? (E-2002)

- 1) Rydberg's constant and wave number have same units
- 2) Lyman series of hydrogen spectrum occur in the ultraviolet region
- 3) The angular momentum of the electron in the ground state hydrogen atom is equal to $\frac{h}{2\pi}$
- 4) The radius of first Bohr orbit of hydrogen atom is 2.116 x 10-8 cm.

Ans: 4

Sol. Radius of 1^{st} orbit = 0.529×10^{-8} cm

Therefore 4 is wrong answer

How many 'd' electrons are present in Cr²⁺ ion ? 30.

2) 5

(M-2002)

1)4

Ans: 1 Sol. $Cr = [Ar] 4s^{1} 3d^{5}$

$$Cr^{2+} = [Ar]3d^4$$

- \therefore the number of d electrons = 4
- 31. Which one of the following statements is correct?

(M-2002)

- 1) 2's' orbital is spherical with two nodal planes
 - 2) The de Broglie wavelength (λ) of a particle of mass 'm' and velocity 'V' is equal to mV/h
 - 3) The principal quantum number (n) indicates the shape of the orbital
 - 4) The electronic configuration of phosphorous is given by [Ne] 3s² 3p¹_x 3p¹_y 3p¹_z

Ans: 4

Sol. Electronic configuration of p is

[Ne]
$$3s^2 3p_x^1 3p_y^1 3p_z^1$$

Alternate 4 is correct

All other are wrong

Which one of the following ions exhibit highest magnetic moment? 32. (E-2001)

1) Cu²⁺

2) Ti³⁻

3) Ni²⁺

4) Mn²⁺

Ans: 4

Sol.
$$Cu^{2+} = [Ar]4s^0 3d^9 \qquad \boxed{1 | 1 | 1 | 1 | 1 | 1} \rightarrow 1 \text{ unpaired electron}$$

$$Ti^{3+} = [Ar]4s^0 \ 3d^1$$
 1 unpaired electron

$$Ni^{2+} = [Ar] 4s^0 3d^8$$
 $\boxed{1 | 1 | 1 | 1 | 1} \rightarrow 2 \text{ unpaired electrons}$

$$Mn^{2+} = [Ar]4s^0 \ 3d^5 \ \boxed{1 \ 1 \ 1 \ 1} \rightarrow 5 \text{ unpaired electrons}$$

Magnetic moment increases with increase in number of unpaired electron.

Mn²⁺ has more number of unpaired electron

: it has highest magnetic moment.

33.	The energy of an electron present in Bohr's second orbit of hydrogen atom is				(E 2001)
	1) -1312J atom ⁻¹ Ans: 2	2) -328kJ mol ⁻¹	3) -328 J mol ⁻¹	4) -164kJ mol ⁻¹	(E-2001)
Sol.	$E_{n} = \frac{-1312}{n^{2}} \text{kJ mole}^{-1}$ $E_{2} = \frac{-1312}{4} = -328 \text{kJ mole}^{-1}$				
34.	In the ground state	he ground state, an element has 13 electrons in its "M-shell". The element is			
	1) Copper Ans: 2	2) Chromium	3) Nickel	4) Iron	(E-2001)
Sol.	$Cr = 1s^2 2s^2 2p^6 \underbrace{3s^2 3p^6 3d^5}_{Materill} 4s^1$				
	Cr has 13 electron in M shell				
35.	Which one of the form 1) Co ²⁺	following is a diamagnet 2) Cu ²⁺	ic ion? 3) Mn ²⁺	4) Sc ³⁺	(M-2001)
Sol.	Ans:4 $Co^{2+} = [Ar]4s^{0}3d^{7}$	1111111		•	
	$Mn^{2+} = [Ar]4s^0 3d$	5 111111			
	$Sc^{3+} = [Ar]4s^0 3d^0$		8		
	$Cu^{2+} = [Ar]4s^0 3d^9$	11/11/11/11/1			
	Diamagnetic ion should have no unpaired electrons only Sc^{3+} in has all the electron paire				
36.	in diamagnetic. Which one of the following t	following pairs of ions had 2) Fe ⁺³ ,Mn ⁺²	ave the same electronic 3) Fe ⁺³ ,CO ⁺³	configuration? 4) Sc+3,Cr+3	(M-2001)
Sol.	Ans: 2 $Fe^{3+} = [Ar]3d^5$	111			
	$Mn^{2+} = [Ar]3d^5$				
37.	The atomic number (Z) on an element is 25. In its ground state how many electrons are present the "N" shell? (M-200				
	1) 13	2) 2	3) 15	4) 3	
Sol.	Ans: 2 Z = 25				
501.	$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^5$				
	$N = 4^{th}$ orbit				
38.	\therefore In 4 th orbit 2 electrons are present What are the values of n_1 and n_2 respectively for H_{β} line in the Lyman series of hydrogen atomic				
	spectrum?		,	-	(E-2000)
	1) 3 and 5 Ans: 3	2) 2 and 3	3) 1 and 3	4) 2 and 4	

 $H_{\scriptscriptstyle B}$ line is formed when e^- jumps from 3^{rd} orbit to 1^{st} orbit in lyman series Sol.

$$\therefore n_1 = 1 \quad n_2 = 3$$

How many electrons are present in the M-shell of an atom of the element with atomic number 39. Z=24?(E-2000)

- 1)5
- 2) 6

3) 12

4) 13

Ans: 4

Sol. $Z = 24 = 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^5$

M shell = 3^{rd} orbit

:. In M shell 13 electron are present

40. The probability of finding an electron in an orbital is approximately?

(M-2000)

- 1) 95%
- 2) 50%
- 3) 60%
- 4) 25%

Ans: 1

Sol. The probability of finding an electron in an orbital is approximately 95%.

What is the wavelength of H_{β} line the Balmer series of hydrogen spectrum?

(R = Rydberg constant)

(M-2000)

- 1) 36/5R
- 2) 5R/36
- 3) 3R/16

Ans: 4

Sol. $n_1 = 2 n_2 = 4$

$$\overline{\upsilon} = \frac{1}{\lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

$$\Rightarrow \overline{\upsilon} = R \left[\frac{1}{2^2} - \frac{1}{4^2} \right] \Rightarrow \overline{\upsilon} = R \left[\frac{1}{4} - \frac{1}{16} \right]$$

$$\Rightarrow \overline{v} = R \left[\frac{3}{16} \right] \Rightarrow \overline{v} = \frac{3R}{16}$$

$$\lambda = \frac{1}{\overline{v}} = \frac{16}{3R}$$

$$\lambda = \frac{1}{\overline{\upsilon}} = \frac{16}{3R}$$