University of Mumbai

Bachelor of Science (Yearly Pattern) 2010 - 2011 March

Semester 5 (TYBSc)

Organic Chemistry

www.shaalaa.com

(3 Hours)

[Total Marks: 100

3

3

3

2

2

2

2

- N.B.: (1) All questions are compulsory.
 - (2) Figures to the right indicate full marks.
 - (3) Use of Logtables/Non-programmable calculator is allowed.
- 1. (a) Explain the mechanism of radical polymerisation.

- (a) Explain condensation polymerisation with one example.
- (b) Discuss the stereochemistry of biphenyls.

- (b) Explain the stereochemistry of SN¹ reaction with one example. 3
- (c) What are polysaccharides? What is the action of following reagents on D(+) glucose :-
 - (i) NaBH. (ii) Periodic acid.

OR

- 3 (c) Explain mutarotation with its mechanism. 3
- (d) Discuss the mechanism of E₂ reaction with suitable example.
- (d) Give the mechanism of acid catalysed esterification of carboxylic acid. 3
- 2 (e) What are organometallic compounds? Give the preparation of iodomethylzinc iodide.

OR

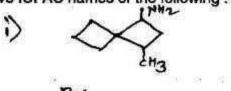
- (e) Write any two methods for the preparation of organolithium compounds. 2 2
- (f) What is green chemistry? Explain any one principle of it.

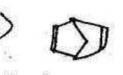
(f) Calculate the percentage atom economy of following reaction: —

CH3 CH3 BY + KOH $\frac{H_2O}{\Delta}$ CH3 CH3 CH + KBY.

(At. wt. C = 12, H = 1, BY = 80, K = 39, O = 16)

- (g) What are the different types of electronic transitions possible in a molecule during uv-spectroscopy?
- (g) How are the following compounds distinguished by IR spectroscopy.

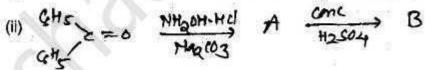

i) cts cts off and cts-10-645 ii) cts-0-cts and ets-cts off

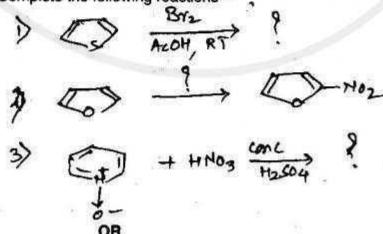

(h) What are Vitamins? Write the structure of Vitamin A.

(h) Explain gem-dialkyl rule.

TURN OVER

2. (a) Give IUPAC names of the following:-




- (a) (i) Give the structural formulae of the following -
 - (1) 2-Chlorobicyclo [3-2-1] octane
 - (2) Spiro [4 · 5] dec-2-ene
 - (3) 2-chloro-1,3-diazine.
 - (ii) Give the reaction of following reagents on acetaldehyde -
 - (1) Hydroxylamine (2) Phenylhydrazine.
- (b) (i) What is pinacol pinacolone rearrangement? Give its mechanism
 - (ii) Complete the reaction -

(i) Discuss the mechanism of Lossen rearrangement reaction

- (c) (i) 'Pyridine-N-Oxide undergoes electrophilic substitution at 2,4,6 positions'.
 Explain.
 - (ii) Complete the following reactions -

Visit www.shaalaa.com for more question papers

	(c)	(i) Write two methods for preparation of thiophene	5
	3 5 35/3	(ii) How will you convert -	
		(1) Furan to furan-2-sulphonic acid	
		(2) Thiophene to 2-acetylthiophene	
		(3) 4-picoline to isonicotinic acid?	19667
	(d)		5
		(ii) Explain aromacity of furan.	
		OR	2
	(d)	(i) Write the synthesis of H acid	5
		(ii) How will you convert acetylene to thiophene?	
3.	(a)	(i) Draw the conformations of cyclohexane. 'Chair form of cyclohexane is more	5
0.550	(-/	stable than boat form'. Explain.	
3		(ii) Explain : Steric strain.	
	(b)	(i) Give analytical evidence for the presence of following in tropine.	5
	17.4	(1) Secondary alcoholic group (2) >N-CH ₃ group.	
		(ii) Distinguish between thermal and photochemical reactions.	
	(c)	What are stereospecific reactions? Explain the mechanism and stereochemistry	5
		of addition of bromine to 2-butene.	
	(d)	How will you prove the following -	5
	W. 7.1K	(i) Tropic acid contains a benzene ring with one side chain.	
		(ii) Atropine is an ester.	
		(iii) α- pinene is bicyclic.	
		(iv) Tropinone contains $-CH_2 - CH_2 - CH_2 - CH_2$	
		(v) Presence of olefinic double bond in α-pinene.	
		OR	
3.	(p)	(i) Explain regioselectivity using the addition of HBr to 1,3-butadiene.	5
		(ii) Define the following –	
		(1) Plane of Symmetry	
	72 5	(2) Centre of Symmetry.	-
	(q)	(i) Write the structure of camphor and vitamin C	5
	7.	(ii) Give the synthesis of tropine from succinaldehyde.What are stereoselective reactions? Complete the following reactions and explain	5
	(r)	What are stereoselective reactions? Complete the following reactions and organism	12.70
		their mechanism with stereochemistry alkaline A	
		their mechanism with stereochemistry. (i) Cis-2-butone Kmn04 Kmn04 ii) Trans-2,3-dimethyl oxivane Acid B	
		A A A	
		Tranc-23-dimethyl oxivane Acia B	
		11) Harolysis	
	(s)	(i) Explain photochemical reduction of benzophenone to benzpinacol.	5
	(-)	(ii) Explain Norrish type-I reaction.	
			20
4.	(a)	(i) Describe preparation and uses of phenol-formaldehyde resin.	5
885	2 11888	(ii) Write complete reactions to represent the polymerization of -	
		(1) Vinvi chloride (2) Styrene	
		OR [TURN OVER	

135	(a)	Describe the preparation and uses of terylene. Give the structure and use of —	5
		(1) PAN (2) Polyurethan.	
	(b)	- 1922 - 1922 - 1922 - 1922 - 1923 - 1923 - 1924 -	5
	33° 80	(ii) Complete the following reactions :- Man Da	
		> CHOH - A	
		> C)-CH=CH-CHO NABH4 B	
		Jack Nite	
		3) D-COCH3 DHH2NH2 C	
		i) KoH	
		OR D	
(ē	(b)	(i) Explain the uses mCPBA and LAH in synthetic organic chemistry.	5
	- 10	(ii) Explain Oppenaur oxidation with suitable example.	
	(c)		-
		(ii) What is 'base ion peak' in mass spectrum? Give the fragmentation pattern of ethyl methyl ketone.	5
	8000	OR	92
	(c)	(i) Give the number of signals and splitting pattern in PMR spectra of – (1) 2, 2– dichlorobutane	5
		(2) Ethyl propionate.	
		(ii) Explain the importance of D ₂ O exchange.	
	(d)	Define : Chromophore	
	YEX	An organic compound having M.F. C ₄ H ₈ O showed the following spectral data -	5
Š		IR (cm ⁻¹) — 1740 cm ⁻¹ PMR (δ, ppm) - 1-1 (d,6H) ; 2-3 (m, 1H) ;	
		9.4 (d, 1H).	
		Assign the structure to the compound and justify your answer.	
		OR	
	(d)	Define : Hyperchromic effect.	5
	No.	An organic compound having M.F. C ₅ H ₁₀ O	333
		Showed the following spectral data –	
		IB (cm ⁻¹): 1720	
		PMR δ (ppm) : 1-2 (d,6H) ; 2-2 (s,3H) ; 2-8 (m, 1H).	
		2.0 (m, 111)	
5.	(a)	(i) Convert the following open chain structure to Haworth pyranose (β-form)	5
-	()	structure :- 1) CHO 11) CH20H	1250
		2 1 - 0	
		H-C-OH I - H	
		H-E-OH HO-E-II	
		H-6-0H H-6-07	
		I HOOH	
		CH20H CH20H	

- (ii) How is D(+) glucose converted into D(-)fructose ?
- (b) (i) Complete the following reaction and give its mechanism.

5

- (ii) Give the structure of sugar and pyrimidines which constitute DNA molecule.
- (c) Write the synthesis of α-amino acid by -
 - (1) Gabriel's phthalimide method
 - (2) Erlenmeyer method.
- (d) Complete the following reactions -

5

5

ii) GHSCHO + BYCHOCOGHS In/CHOY B HOOF

OR

5. (p) (i) Explain Kiliani Fischer synthesis of D(+) glucose.

5

- (ii) What is disaccharide? Give the structure of maltose.
- (q) What are nucleic acids? Write stepwise hydrolysis of nucleic acid. Give the name and structure of any nucleoside.
- (r) (i) What is Zwitter ion?

5

5

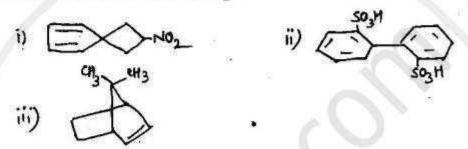
- (ii) Give Fischer's synthesis of polypeptide.
- (s) (i) Give the preparation of phenyllithium

5

- (ii) Write the mechanism of Refortmasky reaction.
- (iii) Complete the following reaction :-

[TURN OVER

3


2

(REVISED COURSE)

(3 Hours) [Total Marks : 100

- N.B.: (1) All questions are compulsory.
 - (2) Figures to the right indicate full marks.
 - (3) Use of Logtables/Non-programmable calculator is allowed.
- OR 3
 - (a) Write IUPAC names of the following -

(a) Discuss mechanism of E₂ reaction with a suitable example.

- (b) Discuss stereochemistry of spirans. 3
- (b) Explain the use of microwave assisted organic reaction with two examples. 3 3
- (c) Give the number of signals and splitting pattern expected in PMR spectra of : (ii) Butanone. (i) 2-propanol
- (d) How is alpha amino acid prepared by strecker synthesis? 3
- (e) How is lithium diethyl cuprate prepared? What is its action on phenyl-iodide? 2
- (f) Explain linear synthesis with a suitable example. 2 2
- (g) Write the structure and use of -
 - (1) Polystyrene (2) Polycarbonate. OR
- (g) Explain the mechanism of free radical addition polymerisation.
- 2 (h) What are Vitamins? Write the structure of Vitamin A.
- OR (h) Explain the terms: 2 (1) Iodine value (2) Transesterification.
- (a) What is benzilic acid rearrangement? Explain its mechanism. 5 OR
 - (a) What is Michael addition reaction? Explain its mechanism with one application. 5

Attempt any three from the following -

- 3 (b) (i) Write the structural formula for each of the following compound:
 - (1) 2,5-Dibromo hepta 2,3,4-triene
 - (2) 1,4-Dioxadiene
 - (3) 2 Nitro bicyclo [2-2-2] octane
 - (ii) Explain the use of Lindlar catalyst with a suitable example.

- 3 (c) (i) Complete the following reactions: CH3 CH2 C-M2 LIAIH4 Pd-Baso4 111) 2 (ii) Explain allylic and benzylic bromination using NBS. (d) (i) Write the mechanism of Reformatsky reaction. (ii) Starting with Grignard reagent, how will you prepare : (2) Ketone? (1) Secondary alcohol 3 (e) (i) What are kinetically and thermodynamically controlled reactions? Explain with a suitable example. 2 (ii) Explain the mechanism for the formation of ketals. (a) (i) Draw various conformations of cyclohexane. "Chair form of cyclohexane is more 3 3. stable than boat form". Explain. 2 (ii) Assign Z or E notation to the following -OR (i) Explain the stereochemistry of SN1 reaction with a suitable example. 3 (ii) Complete the following reaction and explain its mechanism. Attempt any three from the following -(b) (i) Explain aromaticity in furan. (ii) Discuss sulphonation of pyridine with and without catalyst. (c) Write the synthesis of the following compounds -(i) Paracetamol (Green Synthesis) (ii) Indigo. (d) (i) Complete the following reactions --> (1) SO2H SO2CI2 (excess)
 ether, 273K
 - (ii) [1] + cH3-6-CI ? []-6-CH3
 - (II) 'Electrophilic substitution in thiophene takes place of position 2 or 5'. Explain on the basis of stability of intermediate.

C	on. 4	34(a)-SK-1674-11. 8	
	(e)	(i) Enantiotopic ligands (ii) Enantiomeric excess reaction.	3
		(II) Explain the following terms – (i) Angle strain (ii) Plane of symmetry.	2
4.	(a)	Define: Chromophore – An organic compound has molecular formula C ₄ H ₉ NO. Find the hydrogen deficiency index and assign the structure to the compound, showing following spectral data – IR: 3500 – 3400 cm ⁻¹ , 1680 cm ⁻¹ , 1610 cm ⁻¹ 1399 – 1380 cm ⁻¹ . PMR:δ (ppm) 1·1(d), 2·1(m), 8·1 (s, D ₂ O exchangable).	5
	90940	OR -	
	(a)	 (i) Explain different types of electronic transitions possible in a molecule in UV-spectroscopy. (ii) Explain anisotropic effect on aldehydic proton. 	3
		Attempt any three from the following –	
-45	(b) (c) (d)	 (i) What is diene polymerisation? Explain 1,2 and 1,4 addition polymerisation. (ii) Explain with example, the use of plasticizer in manufacture of polymers. (i) Give one example each of Norrish type I and Norrish type II cleavage of ketones. (ii) What is di-π-methane rearrangement? Explain its mechanism with an example (i) Write the structure and use of — 	3 2 3 2 3
	90007.51	(1) PHA (2) TPA.	
	(e)	Describe the preparation and use of epoxy resin. Explain the principle of mass spectroscopy. Discuss various modes of vibrations in IR spectroscopy.	3 2
5.	(a)	(I) Convert the following open chain formulae to Haworth pyranose (α form) formulae: i) CH2OH ii) CH0 c=0 H-c-OH H-c-OH H-c-OH CH2OH CH2OH	3
		(II) Explain α – helical structure of proteins. OR	2
	(a)		3
		(ii) Explain Hofmann exhaustive methylation and elimination with a suitable example.	2
	(b)	Attempt any three from the following – (i) Assuming the configuration of D(+) glucose, how is the configuration of D(-) fructose determined?	3
		(ii) What are anomers and polysaccharides ?	2
	(c)	Explain the importance of Pinner's work in the determination of structure of nicotine.	5
	(d)	Write the synthesis of nerol from citral. How will you convert D (-) fructose into D(+) glucose ? Write the structures of - (i) Sucrose (ii) Maltose.	5
00	(e)		63 68