ELECTRICAL ENGINEERING

Paper-I

(Conventional)
Time Allowed : Three Hours

INSTRUCTIONS

Please read each of the following instructions carefultr before attempting questions :
Candidates should attempt FIVE questions in all.
१uestion No. 1 is compulsory.
Ou" of the remaining SIXquestions aftempt any FOUR questions.
The number of marks qarried by a part/question is indicated against it.
Answers must be lwritten in ENGLISH only.
Unless otherwise mentioned, symbols and notations have their usual standard meanings.
Assume suitable data, if necessary, and indicate the same clearly.
Neat sketches may be drawn, wherever required.
All parts and sub-parts of a question are to be attempted together in the answer book.
Attempts of questions shall be counted in chronological order.
Unless struck off, attempt of a question shall be counted even if attempted partly.
Any page or portion of the page left blank in the answer book must be clearly struck off.

1. (a) Determine the Thevenin Resistance for the cizcuit shown in Fig. 1(a).

Fig. 1(a)
(b) Determine current I through the 10Ω resistances shown in Fig. 1(b) below.

Fig. 1(b)
(c) A PMMC instrument has ull scale deflection current of 1 mA and internal resistance of 50Ω. How this can be converted into an 1 A ammeter and 100 V voltmeter? How the above instrument can be converted to reac ac voltages?
(d) What are different types of Electrical resistence strain gauges? Strain gauge with gauge factcr of 2 is fastened to a metalliz member subjected to a stress of $1000 \mathrm{~kg} / \mathrm{cm}^{2}$. The nodulus of elasticity of metal is $2 \times 10^{6} \mathrm{~kg} / \mathrm{cm}^{2}$. Calculate percen-age change in resistance of the strain gauge. What is the value of Poisson's ratio?

$$
\stackrel{2}{* *}
$$

(e) A wattmeter is connected as indicated in the following Fig. 1(e).

Calculate the wattmeter readine, assuming, 3 phase, 400 volts, 50 Hz balanced supply, with phase sequence abc.

10
(f) Consider the feedback cont-c system shown in Figure given below:

Fig. 1(f)
The above system is subjected to unit impuls ϵ input.
(i) Obtain the expression for $\mathrm{c}(\mathrm{t})$ and time constant.
(ii) If the feedback loop is ojened, what would be $\mathrm{c}(\mathrm{t})$ and the associated tme constant?
(iii) In which of the above two cases, the response would be faster?
(Contd.:
(g) For the feedback control system shown below,

Fig. 1(g)
determine the sensitivity of closed loop transfer function with variation in parameter ' K ' at $\mathrm{w}=1.5 \mathrm{rad} / \mathrm{sec}$. Assume, the normal process parameter value of K is 1 .
(h) List at least two essential properties of each material that are necessary for construction of medium rating power transformer.
2. (a) Two mytually coupled identical coils are connected in sertes having self inductance $L=4 \mathrm{mH}$ and mutual inductance $M=2 \mathrm{mH}$, what is the maximum ratio of two possible values of effective inductances?
Determine the coefficient of coupling between the two coils.
(b) The following readings were observed when measuring a voltage.

S. No.	1	2	3	4	5	6	7	8
Volts	532	548	543	535	546	531	543	536

Calculate :

(i) Average deviation
(ii) Standard deviation
(iii) Probable error of one reading.

10
(c) Determine the E field using Gauss's law caused by a spherical cloud of electron with a volume charge density

$$
\begin{aligned}
\mathrm{P}_{v}(\mathrm{r}, \theta, \phi) & =\mathrm{P}_{\mathrm{o}} \frac{\mathrm{r}}{\mathrm{a}} ; 0<\mathrm{r}<\mathrm{a} \\
& =0 \quad ; a \leq \mathrm{r}<\infty .
\end{aligned}
$$

3. (a) Determine the value of the yariable resistor R ir Fig. 3(a) such that maximum power is absorbed by 2 ohm resistor.

Fig. 3(a)
(b) A current of $-8+6 \sqrt{2} \sin \left(\mathrm{wt}+30^{\circ}\right)$ amperes is passed through a centre zero PMMC meter and moving iron mete:. What would be their readings ?
(c) If we consider yz-plane of a Cartesian co-ordinate system as an interface between two dielectric

$$
\begin{equation*}
{ }_{*}^{5} \tag{Contd.}
\end{equation*}
$$

mediums having $\epsilon_{1}=5 \epsilon_{0}(x>0)$ and $\epsilon_{2}=3 \epsilon_{0}(x<0)$, then find the expressions for D_{1} and E_{1} in medium 1 and D_{2} in medium 2 with known electric field in medium 2 is $\overline{\mathrm{E}}_{2}=10 \overline{\mathrm{i}}_{\mathrm{x}}+20 \overline{\mathrm{i}}_{z}$
4. (a) A two port network follows the following voltagecurrent relations :

$$
\begin{aligned}
& I_{1}=2 V_{1}-V_{2} \\
& 2 I_{2}=-2 V_{1}+4 V_{2}
\end{aligned}
$$

Determine z-parameters of the network and its T-equivalent circuit.
(b) The field of a dc servomotor is separately excited by means of a dc amplifief of gain $K_{A}=90$. A voltage propertional to field current is now fedback negatively to the amplifier input as indicated in following figure. Determine the value of K so that field time constant is reduced to 4 millisecond.

Fig. 4(b)
(c) Explain the behavior of ferromagnetic materials above and below the Curie temperature. 10
5. (a) Show that the voltage V across F. shown in Fig. 5(a) is incependent of F at radian. frequencr w of voltage source when $w^{2} L_{1} C_{1}=w^{2} L_{2} C_{2}=1$ Find also the expression of this voltage.

(b) A unity feedback control system is characterisec by openldop transfer function

$$
G(s)=\frac{K(s+13)}{s(s+3)(s+7)}
$$

Using Routh's criteria, determire the val 1 e of gain ' K ' for which system will be limitedly stable ? Also, determine the closed loop poles for this value of $\$ K.
(c) What is the term $\sigma / \omega \in$ called in the study of EM waves? Find general expression of athenuation constant α and relate with skin depth δ. Prove that the skin depth δ is independent of frequency when $\sigma / \omega \in \ll 1$ (poor conductor) and decreases with frequency when $\sigma^{\prime} \omega \in \gg 1$ (gcod conductor).
6. (a) Find all the four canonical forms of the impedance $z(s)=s+1$. State if you observe some specia_ity in these realisations.
(b) The system is described by $G(s)=\frac{K\left(s^{2}+6 s+10\right)}{s^{2}+2 s+10}$, $\mathrm{H}(\mathrm{s})=1$. Obtain $\mathrm{K}=0, \mathrm{~K}=\infty$ points in root-loci. Show that the root-loci are arcs of a circle centred at origin with radius equal to $\sqrt{10}$
(c) How the four quantities $\mathrm{E}, \mathrm{D}, \mathrm{H}$ and B are related to each other in static and time varying fields? Name the relation as laws. Give the value of divergence and curl of each quantity. 10
7. (a) Determine overall z-parameters when two identical 2-port networks with $\mathrm{z}_{11}=\mathrm{z}_{12}=\mathrm{z}_{21}=\mathrm{z}_{22}=2 \Omega$ are connected in cascade. $\quad 10$
(b) The block-diagram of the system is shown in Fig. 7 (b) given below :

Fig. 7(b)
Obtain the phase crossover frequency. 10
(c) What is the difference between the coaxial cable used for power line and the one used in an electronic circuit? Derive an expression of capacitance for such a cable per unit length. 10

ELECTRICAL ENGLNEERING

Paper II

(Conventional)
Time Allowed : Three Hours
Maximum Marks: 20

INSTRUCTIONS

Please read each of the following irstructions carefullo before attempting the questions.
Candidates should attempt FIVE questiore in all. Question No. 1 is compulsory.

Out of the remaining SIX questions, attempt any FOŪ questions.

All questions carry equal marks. The numt ϵ r of marks carried by a part/question is indicated against it.
Answers must be $\overline{w r i t t e n}$ in ENGLISH only.
Unless otherwise mentioned, symbols ani notations have their usual standard meanings.

Assume suitable data, if necessary, and indieate the same clearty.
Neat sketches may be drawn, wherever requai.ed.
All parts and sub-parts of a question are to be attempted together in the answer book.

Attempts of questions shall be counted in chronclogical order. Unless struck off, attempt of a question sixall be counted even if attempted partly.

Any page or portion of the page left blarie in the answer book must be clearly struck off.

1. (a) A 37.3 kW de motor has a full load speed of 1145 rpm . The armature current at ${ }^{\text {n }}$ ull load is 75 A and the friction, windage and core-losses are 8000 W . If the flux in each pole of the motor is reduced to 60% of its rated value and armature current is 75 A , what is the electromagnetic torque developed by the motor?
(b) In a 4-pole, 50 Hz single-phase induction motor, the power absorbed by the forward and backward fields are respectively 200 W and 21 W at a motor speed of 1440 rpm . The no-load rotational loss is 41 W . Compute the shaft torque at the above speed.
(c) (i) Compare poirt-to-point HVDC links and back-to-back HVDC links anc mention their applications.
(ii) Distinguish between unit commitment and economic load dispatch.
(d) (i) What do you understand by infinite line and infinite bus?
(ii) Discuss the physical significance of Surge Impedance and Surge Impedance Loading?
(e) The parameters of FET used ir the amplifier given below are $g_{\mathrm{m}}=4 \mathrm{~m} \Omega$ and $\mathrm{r}_{\mathrm{d}}=3 \mathrm{C}_{\mathrm{k}} \mathrm{k}$. Assuming C to be a short circui- for the given frequency, determine the small signal vo tage

(f) The following figure shows two master-s.ave RS flip-flops having a common clock inout. Construct a timing diagram showing the responses of master and slave la-ches in each flip-flop to two clock pulses. Assume all latches are initially reset.

(g) Write the different modes of 8253 IC.
(h) What are the limitations of the first order PLL for FM demodulation ? Explain how this is overcome in second order PLL.
(i) Derive an expression for r.m.s. output voltaje of a 1-phase AC voltage controller feeding an R-L load. Draw the circuit and waveforms.
(j) A dc motor is fed from a 220 V DC supply through a chopper circuit operating on constant chopping frequency of 800 Hz . The armature and series field resistances are 0.08Ω and 0.04Ω respectively. The back emf of the motor is 170 V . Find the ON and OFF periods of the chopper. Assume armature current is 50 A .
2. (a) A transformer has a maximum efficiency of 38% at $3 / 4^{\text {th }}$ of its full load at unity p.f. The iron losses equil 314 watts. Compute the efficiency of the transformer at 50% and 100% rated full load at the same power factor.
(b) A 1000 MW control area- 1 is interconnested with control area-2. The 1000 MW area has the system parameters as follows :

$$
\mathrm{R}=2 \mathrm{~Hz} / \text { p.u. } \mathrm{MW}
$$

Damping coefficient $=0.01$ p.u. $\mathrm{MW} / \mathrm{Hz}$ and $\Delta \mathrm{P}_{\mathrm{D}_{1}}=0.01$ p.u. MW.

Area-2 has the same parameters of the 5000 MW base. Compute the static frequency drop and static tie-line power. Cons-der 5000 MW as base.
(c) A 1-quadrant chopper feeds an RL load comprising a resistance of 10 ohms and an inductance of 15 mH and is fed from a 110 V dc . Determine the (i) minimum and maximum values of load current (ii) peak-to-peak ripple (iii) average value of load current. Assame chopper frequency is 500 Hz , duty cycle $=0.5$ and current is contiruous.
(d) Why is TDM superior to FDM in PAM system? Draw the circuit diagram of a PWM modulator using 555 timer.
3. (a) A 3-phase, 4-pole alternator is to be synchronized to an infinite bus of frequency 50 Hz . Three synchronizing lamps $\mathrm{L}_{1}, \mathrm{~L}_{2}$ and L_{3} are connected between the phases RYB and RBY of the alternator and the bus bar respectively. Determine the sequence in which the lamps will become dark and the frequency of lamps becoming dark if the speed of incoming generator is (i) 1490 rpm (ii) 1510 rpm . In which case synchronizing switch should be closed and why?
(b) A single-phase ac regulator is usəd to cortrol the power output of a heater. The supplr voltage is $220 \mathrm{~V}, 50 \mathrm{~Hz}$ and the resstance of the heater is 100Ω. If the regulator is operated at ε firing angle (α) of 90°, draw the voltage waveform across the regulctor. Derive the expression for input p.f., power output and input current and determine their values. 10
(c) The following circuit is used for simulation of inductance by OP-AMP:

Show that we can have a tuned circuit, if we connect a capacitance between A and B and the maximum Q of the inductance is obta-ned when

$$
\omega=\frac{1}{\mathrm{C} \sqrt{\mathrm{R}_{1} \mathrm{R}_{2}}} . \quad 16+5
$$

4. (a) A single-phase fully contro led bridge converter is used to control the speed of a separately excited dc motor. A reactor of 50 mH is connested in the armature circuit. The converter is ccnnected to $92 \mathrm{C} V, 50 \mathrm{~Hz}$ supply and is operated at a firing angle (α) of 90°. The back emf of the motor is 18 J V. Draw the output voltage waveform of the converter and determine the peak value (f current drawn. Neglect the resistance and reactance of dc machine armazure.
(b) A power system to which a zenerator is to be connected at a certain bu may be represented by the Thevenin's voltage. $\mathrm{F}_{\text {th }}=0.9 \angle 0^{\circ}$ p.u. in series wi-h $Z_{t h}=0.25 \angle 90^{\circ}$ p.u. When connected to the system, E_{g} of the generator is $1.4 \angle 30^{\circ}$ p.u. Synchronous reactance of the generator on the system bcse is 1.0 p.u.
(i) Find the bus voltage V_{t} and real power (P) (and reactive power (Q) transferred to the system ct the bus.
(ii) If the bus voltage is to be raised to $\left|V_{t}\right|=1.0$ p.u. for the same P transferred to the system, find the value of E_{g} required and the value of Q transferred to the system at the same bus. Assume all the other system erff's are unchanged in magnitude and angle, that is, Thevenin's voltage and impedance are constant.
(c) Draw a logic diagram showing how four exclusive-OR gates, four AYD gates and two OR gates can be connected to construct ₹ 2-bit parallel adder.
5. (a) The figure shows single line aiagram of a power system with generators at kuses 1 and 3 . Tre voltage at bus-1 is $1.05 \angle 0^{\circ}$ p.u. and at kus-3, $|\mathrm{V}|=1.04 \mathrm{p} . \mathrm{u}$. Line impedarass are in p.u and the line charging susceptances are neglested. Obtain the state vector after ore jteration using Fast Decoupled Load Flow.
(1)

$$
(0.02+j 0.04) \text { p.u. }
$$

Slack-bus
$V_{1}=105 \angle 0^{\circ} \mathrm{Ru}$.

$$
\left|V_{3}\right|=1.04 \text { p.u. }
$$

$$
\mathbf{0} \cdot 1 \leq \partial_{3} \leq 1 \cdot 5 \text { p.u. }
$$

(b) The following circuit is used as a CE amplifier employing potential divider bias. If $h_{f e}=53$ and $\mathrm{v}_{\mathrm{BE}}=0.6 \mathrm{~V}$, determine the values of $\mathrm{R}_{\mathrm{C}}, \mathrm{R}_{\mathrm{E}}$, $\mathrm{R}_{\mathrm{B}_{1}}$ and $\mathrm{R}_{\mathrm{B}_{2}}$ for quiescent operating $\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$ and $\mathrm{v}_{\mathrm{CE}}=7.5 \mathrm{~V}$.

Assume $\mathrm{R}_{\mathrm{B}}=\mathrm{R}_{\mathrm{B}_{1}} \| \mathrm{R}_{\mathrm{B}_{2}}=10 \mathrm{R}_{\mathrm{E}}$.

(c) A manufacturing plant uses 100 kVA at $(1.6 \mathrm{p} . \tilde{\AA}$. lagging under normal operation. A synchronous motor is added to the system to improve the overall power factor. The power required by the synchronous motor is 10 kW . Determine the overall power factor when the synchronous motor operates at 0.5 p.f. leading. What must be the power factor of the motor to improve the overall power factor to 0.9 lagging ?
6. (a) A three-phase power system consists 0_{-}^{\sim} a synchronous mach ne connected through a lossless double circuit transmission line to an infinite bus-bar. A fault occurs on the transmission line. The masimum power transfer to this system is 5) p.u. during pre-facilt condition and immediately pricr to the instant of the fault, the power transfer is 2.5 p.u. The power angle curves d aring the fault and post-fault conditions have peak 1 values of 2 p.u. and 4 p.u. respectivery. Determine the permissible increase in the angular displacement, between the voltages at the two ends of the system beyond which the circu.t breakers could not clear the fault in time for the system to remain in synchronism.
(b) A 1-phase bridge inverter is feeding an R-L load with $R=8 \Omega, L=0.04 \mathrm{H}$. Find the load voltage and current expressions for the frst two hals cycles with rectangular wave outp at at 50 Hz The input to the inverter is 220 V .
(c) Show how the counter shown in tine following figure can be configured to operate $3 s$ a mod-12 counter:

(d) Two synchronous generators are operating in parallel and supplying a load of 2.5 MW at 0.8 pF lagging. Generator ' 1 ' has a no-load frequency of 51.5 Hz and a slope $\left(\mathrm{S}_{\mathrm{P}_{1}}\right)$ of $1 \mathrm{MW} / \mathrm{Hz}$. Generator ' 2 ' has a no-load frequency of 51 Hz and a siope $\left(\mathrm{S}_{\mathrm{P}_{2}}\right)$ of $0.8 \mathrm{MW} / \mathrm{Hz}$.
(i) At what frequency is this system operating, end how mush power is shared by each of the two generators?
(ii) What will be the system frequency and generated powers, if the governor set point on G_{2} is increased ty 0.5 Hz ?
(iii) How can the load be transferred from Generator ' 1 ' to Generator ' 2 ' w thout changing the system frequency ?
7. (a) The single area control system shown in the figure has the following data:
$T \mathrm{p}=10 \mathrm{sec}$
$\mathrm{T}_{\mathrm{g}}=\mathrm{T}_{\mathrm{t}}=0$
$\mathrm{K}_{\mathrm{p}}=100 \mathrm{~Hz} /$ p.u. MW
$\mathrm{R}=3 \mathrm{~Hz} /$ p.u. MW
$\Delta \mathrm{P}_{\mathrm{D}}=0.1$ p.u. MW
$K_{I}=0 \cdot 1$

Compute the error caused by the step disturbance of magnitide given abore. Frove that the error is redaced ky increasing the given K_{I}. Express the error in seconds and cycles, if the system frequency is 50 Hz .

(b) What type of data transfer schemes arə used when there is a speed mismatch between microprocessor and $1 / \mathrm{O}$ derjcee ! Explein crele stealing tecknique.
(c) (i) How is charge stored in an EPROM cell? How is it removed? Briefly desc-ibe the mechanisms involved.
(ii) A $128 \mathrm{~K} \times 8$ memo-y is to be constructed using $16 \mathrm{~K} \times 8$ circ its eack. of which K as an active-low chip-select input. Draw a logic diagram showirg only the connections necessery for the chip-select inputs. It is not necessary to show address or data pins on the individral $16 \mathrm{~K} \times 8$ circuits.
(d) Differentiate between type tests and routine tests. What are the different tests sarriec cut to prove the ability of circuit breaker?

