ANSWERS FOR SRMEEE-2009 -VERSION CODE- A

PART 1 - PHYSICS

1. Ans: Torque

Sol: $\quad E=m c^{2}=p c$
2. Ans: 8%

Sol:

$=8 \%$
3. Ans: 9 m

Sol: $\mathrm{v}=\mathrm{kt}$
$\int d S=\int k t . d t$
$S=\frac{k t^{2}}{2}=\frac{2 \times 9}{2}$
4. Ans: $1: 3: 5$
5. Ans: $45 \mathrm{~m} / \mathrm{s}$

Sol: $\quad v=\int a . d t=\frac{1}{2} \times 10 \times 9=45$
6. Ans : $-\frac{4 u}{234}$

Sol: $\quad 4 u=234 v$

$$
v=-\frac{4 u}{234}
$$

7. Ans: $2 \pi \times 10^{-2}$

Sol: $\quad \frac{\omega}{\mathrm{t}}=\alpha \Rightarrow \frac{20 \times 2 \pi}{10}=4 \pi \mathrm{rad} \mathrm{s}^{-2}$
$\tau^{\prime}=\mathrm{I} \alpha=5 \times 10^{-3} \times 4 \pi=20 \pi \times 10^{-3}$
$=2 \pi \times 10^{-2}$
8. Ans: 1 J

Sol:
$K . E=\frac{1}{2} m v^{2}=\frac{m^{2} v^{2}}{2 m}$
$=\frac{\mathrm{p}^{2}}{2 \mathrm{~m}}=\frac{4}{4}=1$
9. Ans: Increases

Sol: $\quad F=Y . A . \frac{\Delta \ell}{\ell}$

$$
\begin{aligned}
& =0.9 \times 10^{11} \times \frac{\pi}{4} \times\left(0.6 \times 10^{-3}\right)^{2} \times 0.002 \\
& =51 \mathrm{~N}
\end{aligned}
$$

11. Ans: $1: 4$

Sol: $\left(\frac{r_{1}}{r_{2}}\right)^{2}=\frac{v_{1}}{v_{2}}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$
12. Ans : $2 \sqrt{2} \mathrm{~cm}$

Sol: $\frac{\mathrm{KE}}{\mathrm{PE}}=1=\frac{\mathrm{A}^{2}-\mathrm{y}^{2}}{\mathrm{y}^{2}} \Rightarrow \mathrm{y}^{2}$
$=\frac{A^{2}}{2} \Rightarrow y=\frac{A}{\sqrt{2}}$
$=\frac{4}{\sqrt{2}}=2 \sqrt{2} \mathrm{~cm}$
13. Ans: $\frac{10}{9}$

Sol: $\frac{f_{a}}{f}=\frac{C}{C-0.1 C}=\frac{10}{9}$
14. Ans: $\frac{81}{1}$

Sol: $y_{1}=5 \sin 300 \pi t=4 \sin 300 \pi t$
$+1 \sin 300 \pi t$
$y_{1}+y_{2}=1 \sin 300 \pi t+4 \sin 300 \pi t$ $+4 \sin 302 \pi t$
$=1 \sin 300 \pi t+8 \sin 301 \pi t \cos \pi t$
The maximum amplitude $=(8+1)=9$
Minimum = 1
[\therefore second term minimum $=0$]
$\therefore \frac{\mathrm{I}_{\max }}{\mathrm{I}_{\text {min }}}=\frac{9^{2}}{1^{2}}=\frac{81}{1}$
15. Ans: 4.24

$$
\begin{aligned}
\text { Sol: } & \frac{4+9+16+25+36}{5} \\
& =\frac{90}{5}=18 \\
& \mathrm{rms}=\sqrt{18}=4.24
\end{aligned}
$$

10. Ans: Nearly 51 N
11. Ans: Radiation
12. Ans: 0.68

Sol: $\quad \lambda_{1} T_{1}=\lambda_{2} T_{2}$
$\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{\lambda_{2}}{\lambda_{1}}=\frac{350}{510}=0.68$
18. Ans : 0.5 mA

Sol: $\quad \alpha=\frac{\Delta \mathrm{I}_{\mathrm{C}}}{\Delta \mathrm{I}_{\mathrm{E}}} \rightarrow \Delta \mathrm{I}_{\mathrm{C}}=\alpha \Delta \mathrm{I}_{\mathrm{E}}$
$\Delta \mathrm{I}_{\mathrm{E}}=\Delta \mathrm{I}_{\mathrm{C}}+\Delta \mathrm{I}_{\mathrm{B}}=\alpha \Delta \mathrm{I}_{\mathrm{E}}+\Delta \mathrm{I}_{\mathrm{B}}$
$\therefore \Delta \mathrm{I}_{\mathrm{E}}[1-\alpha]=\Delta \mathrm{I}_{\mathrm{B}}$
$\Rightarrow 10[1-0.95]=0.5 \mathrm{~mA}=\Delta \mathrm{I}_{\mathrm{B}}$
19. Ans: AND

Sol: $\quad \overline{\overline{\mathrm{A}}+\overline{\mathrm{B}}}=\mathrm{A} . \mathrm{B}$
Error in sketch
20. Ans : 18 and 8

Sol: $15+4-1=18$ mass number $7+2-1=8$ - atomic number
21. Ans: $5.47 \AA$

Sol: $\frac{12.27}{\sqrt{V}}=5.47 \AA$
22. Ans: Short range and charge independent.
23. Ans: Potential difference between cathode and target.
24. Ans: -3.4 eV

Sol: $\quad-\frac{13.6}{4}=-3.4 \mathrm{eV}$
25. Ans: 1215.4

$$
\begin{aligned}
\text { Sol: } & \frac{1}{\lambda}=R\left[\frac{1}{n_{f}{ }^{2}}-\frac{1}{n_{i}^{2}}\right] \\
& \frac{1}{\lambda_{\text {Balmer }}}=R\left[\frac{1}{4}-\frac{1}{9}\right]=R \frac{5}{36} \\
& =\frac{1}{6563}
\end{aligned}
$$

$\frac{1}{\lambda_{\text {Lyman }}}=\mathrm{R}\left[1-\frac{1}{4}\right]=\mathrm{R} \frac{3}{4}=\frac{1}{\lambda}$
$\frac{5}{36} \times \frac{4}{3}=\frac{1}{6563} \times \lambda$
$\lambda=6563 \times \frac{5}{27}=1215.4 \stackrel{0}{\mathrm{~A}}$
26. Ans : (ii) and (iv)
27. Ans: 180-2 A

Sol: $\quad \mu=\cot \left(\frac{A}{2}\right)=\frac{\sin \frac{A+\delta}{2}}{\sin \frac{A}{2}}$
$=\frac{\cos \frac{A}{2}}{\sin \frac{A}{2}}$
$\sin \frac{A+\delta}{2}=\sin \left(90-\frac{A}{2}\right)$
$\frac{A}{2}+\frac{\delta}{2}=90-\frac{A}{2} \Rightarrow A=90-\frac{\delta}{2}$
$\frac{\delta}{2}=90-\mathrm{A} \Rightarrow \delta=180-2 \mathrm{~A}$
28. Ans: 3

Sol: $d \sin \theta=n \lambda$

$$
d=\frac{1}{5000 \times 100}=\frac{1}{5 \times 10^{5}} \mathrm{~m}
$$

$$
\sin \theta=\sin 90^{\circ}=1
$$

$$
\therefore \mathrm{n}=\frac{\mathrm{d}}{\lambda}=\frac{1}{5 \times 10^{5} \times 6 \times 10^{-7}}
$$

$$
=\frac{100}{30}=3.3 \Rightarrow n=3
$$

29. Ans: Longitudinal waves in gas
30. Ans : -10 N

Sol: $\quad K \frac{3 \times 8}{d^{2}}=40 \Rightarrow \frac{K}{d^{2}}=\frac{40}{24}$

$$
\frac{K(-2)(3)}{d^{2}}=-6 \cdot \frac{40}{24}=-10 \mathrm{~N}
$$

31. Ans : $\varepsilon_{0}{ }^{-1}$

Sol: $\frac{q_{0}}{\varepsilon_{0}}=\varepsilon_{0}^{-1}$
32. Ans: 0.2 V

Sol: $V=\frac{W}{q}=\frac{6}{30}=\frac{1}{5}=0.2 \mathrm{~V}$
33. Ans : $9 \mu \mathrm{~F}$

Sol: All in parallel $=9 \mu \mathrm{~F}$
34. Ans: 0.10Ω

Sol: $\quad \mathrm{P}=\mathrm{I}^{2} \mathrm{R} \Rightarrow \mathrm{R}=\frac{\mathrm{P}}{\mathrm{I}^{2}}=\frac{22.5}{(15)^{2}}$ $=\frac{1}{10}=0.1 \Omega$
35. Ans: 11.11Ω

Sol:

PART 2 - CHEMISTRY

36. Ans : 2 - propanol

Sol: $\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{CH}_{3} \mathrm{MgCl} \rightarrow$
$\mathrm{CH}_{3}-\underset{\mathrm{CH}_{3}}{\mathrm{CH}}-\mathrm{OMgCl} \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}} \mathrm{CH}_{3}-\underset{\mathrm{CH}_{3}}{\mathrm{CH}-\mathrm{OH}}$
37. Ans: $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$

Sol: It is a non-ionic complex.
38. Ans: 82, 124

Sol: $\quad{ }_{92}^{238} \mathrm{U} \rightarrow 8_{2}^{4} \mathrm{He}+6{ }_{-1}^{0} \mathrm{e}+{ }_{82}^{206} \mathrm{~Pb}$
39. Ans: (i), (ii), (iii)

Sol: Fructose is a ketohexose.
40. Ans: $\mathrm{Al}^{3+}, \mathrm{Na}$

Sol: Along the group size decreases for isoelectronic species, size decreases with increase in charge.
41. Ans: P

Sol: P is oxidized to $\mathrm{NaH}_{2} \mathrm{PO}_{2}$ and reduced to PH_{3} in alkaline medium.
42. Ans: 1-Butyne

Sol: $\quad \mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CAg}$

43. Ans: Ruby copper and zincite

Sol: Ruby copper - $\mathrm{Cu}_{2} \mathrm{O}$
Zincite - ZnO
44. Ans: Buna - N - Rubber

Sol: Buna -N is a co-polymer of butadiene and acrylonitrile.
45. Ans : Antacid-lodoform

Sol: Antiseptic - Iodoform
46. Ans: 123.1

Sol: $\quad M=\frac{W R T}{P V}$
$=\frac{0.5 \times 0.0821 \times 300}{0.1 \times 1}$
$=123.1$
47. Ans: Pyrophosphoric acid

Sol:

48. Ans: 3-Ethyl-2-Hexene
49. Ans: $s p^{3}$, $s p, s p$ and $s p^{3}$
50. Ans: Propene

Sol: Propene has only one Pi bond.
51. Ans : $-4,+6$

Sol: $\quad \mathrm{NH}_{4}: \mathrm{N}=-4$
$\mathrm{NO}_{3}: \mathrm{N}=+6$
52. Ans : Both ΔH and $T \Delta S$ are +ve but $T \Delta S>\Delta H$.

Sol: $\quad \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
$=-$ ve when $T \Delta S>\Delta H$
53. Ans: $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$

Sol: $\Delta \mathrm{n}$ is +ve .
54. Ans: $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{NO}_{2}\right] \mathrm{Cl}_{2}$

Sol: One mole of the complex on ionization gives two moles of Cl .
55. Ans: It decreases the activation energy of a process.

Sol: Catalyst provides an alternative path with low activation energy.
56. Ans: $\mathrm{Ag}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{Ag}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$

Sol: $\mathrm{Ag}_{2} \mathrm{O}$ is reduced to Ag .
57. Ans: AgCl

Sol: AgCl is soluble in $\mathrm{NH}_{4} \mathrm{OH}$ due to complex formation.
58. Ans : No answer.

Mistake in question: Compounds (1) and (3) are same.
59. Ans : 1.0 atm

Sol: $\quad x_{\mathrm{CO}_{2}}=\frac{0.5}{0.5+0.2+0.1}=\frac{0.5}{0.8}$
$\mathrm{P}_{\mathrm{CO}_{2}}=\frac{0.5}{0.8} \times 1.6=1$
60. Ans : A and R are true, but R is not the correct explanation

Sol: Fructose on complete reduction using HI and red P gives n - hexane. This shows the presence of six carbons in fructose in straight chain.
61. Ans: $\mathrm{CO}_{2}, \mathrm{~N}_{2} \mathrm{O}, \mathrm{C}_{3} \mathrm{H} 8$

Sol: All these compounds have the same molar mass.
62. Ans: Metal excess defect gives colour to the crystal.

Sol: Crystals with metal excess defect has F-centres.
63. Ans : $\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}$
$\begin{array}{llll}\text { Sol: } & \mathrm{MnO}_{4}^{-} \\ & +7 \text { oxidation state }\end{array} \rightarrow \begin{aligned} & \mathrm{Mn}\end{aligned}$
64. Ans: $\mathrm{Na}_{2} \mathrm{O}_{2}$

Sol: $\quad \mathrm{Na}_{2} \mathrm{O}_{2}$ is a true peroxide.
65. Ans: NaOH

Sol: $\mathrm{Na}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaOH}+\frac{1}{2} \mathrm{H}_{2}$
$2 \mathrm{NaOH}+\mathrm{Zn} \rightarrow \mathrm{Na}_{2} \mathrm{ZnO}{ }_{2}+\mathrm{H}_{2}$
66. Ans: Sucrose

Sol: $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ - Ratio in number of atoms cannot be reduced.
67. Ans: 2, 3-dichlorobutane

Sol: The isomer having plane of symmetry is the meso form.
68. Ans: Short and strong

Sol: Resonance makes the bond shorter and stronger.
69. Ans : Cu^{2+} and Al^{3+}

Sol: Cu^{2+} is in gp. II and Al^{3+} in gp. III in qualitative analysis.
70. Ans: Atomic chlorine

Sol: Atomic chlorine from CFC can decompose ozone.

PART 3 - MATHEMATICS

71. Ans: 4

Sol: $\mathrm{x}<0$

$$
\begin{aligned}
& x^{2}+3 x+2=0 \Rightarrow x=-2,-1 \\
& x>0 \\
& x^{2}-3 x+2=0 \Rightarrow x=1,2
\end{aligned}
$$

No. of solutions $=4$.
72. Ans: $(n-1) 2^{n+1}+2$

Sol: $u_{n}=n \times 2^{n}$
$S=1.2+2.2^{2}+3.2^{3}+\ldots .+n .2^{n}$
$2 S=\quad 1 \cdot 2^{2}+2 \cdot 2^{3}+\ldots \ldots+(n-1) \cdot 2^{n}+n \cdot 2^{n}$
$-S=2+2^{2}+2^{3}+\ldots \ldots \ldots+2^{n}-n .2^{n+1}$

$$
\begin{aligned}
\therefore & =2\left(2^{n}-1\right)-n \cdot 2^{n+1} \\
\therefore & S=2^{n+1} \times n-2^{n+1}+2 \\
& =(n-1) 2^{n+1}+2
\end{aligned}
$$

73. Ans: $\left(\frac{x-7}{2}\right)^{1 / 3}$

Sol: $f(g(x))=2\left(x^{3}+5\right)-3$

$$
=2 x^{3}+10-3=2 x^{3}+7
$$

$$
y=2 x^{3}+7 \Rightarrow x^{3}=\frac{1}{2}(y-7)
$$

$$
\therefore \mathrm{x}=\left(\frac{\mathrm{y}-7}{2}\right)^{1 / 3}
$$

$$
\Rightarrow[\mathrm{f}(\mathrm{~g})]^{-1}(\mathrm{x})=\left(\frac{\mathrm{x}-7}{2}\right)^{1 / 3}
$$

74. Ans: $x-2$

Sol: Arranging in ascending order the middle most item is $\mathrm{x}-2$.
75. Ans: $\sqrt{\mathrm{e}}-1$

$$
\text { Sol: } \begin{aligned}
u_{n} & =\frac{1 \times 3 \times 5 \times \ldots \times(2 n-1)}{(2 n)!} \\
& =\frac{1 \times 2 \times 3 \times 4 \times \ldots \ldots \times(2 n)}{(2 n)!(2 \times 4 \times 6 \times \ldots \times(2 n))} \\
& =\frac{1}{2^{n} n!} \\
\therefore \quad \sum u_{n} & =\frac{1}{2 \times 1!}+\frac{1}{2^{2} \times 2!}+\ldots \ldots \infty \\
& =\sqrt{e}-1
\end{aligned}
$$

76. Ans: 90°

Sol: Differentiating,
slope of the first curve $m_{1}=\frac{3\left(x^{2}-y^{2}\right)}{6 x y}$
Similarly $m_{2}=\frac{-6 x y}{3\left(x^{2}-y^{2}\right)}$
$m_{1} m_{2}=-1$
\Rightarrow angle between the curves is 90°
77. Ans: $x e^{\tan ^{-1} x}+C$

Sol: $\int \frac{1+x+x^{2}}{1+x^{2}} e^{\tan ^{-1} x} d x$
Put $t=\tan ^{-1} x \Rightarrow d t=\frac{1}{1+x^{2}} d x$
Integral $=\int\left(\sec ^{2} t+\tan t\right) e^{t} d t$
$=e^{t} \times \tan t+C$

$$
=x e^{\tan ^{-1} x}+C
$$

78. Ans: $\frac{1}{10100}$

Sol: $\int_{0}^{1} x(1-x)^{99} d x=\int_{0}^{1}(1-x) x^{99} d x$
$=\left(\frac{x^{100}}{100}-\frac{x^{101}}{101}\right)_{0}^{1}=\frac{1}{100}-\frac{1}{101}$

$$
=\frac{1}{10100}
$$

79. Ans: $x^{2}-y^{2}=x$

Sol: $\left(x^{2}+y^{2}\right) d x=2 x y d y, y(1)=0$
$y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
Substituting in the given equation,
$2 v x \frac{d v}{d x}=1-v^{2}$
$\Rightarrow \frac{2 v d v}{\left(1-v^{2}\right)}=\frac{d x}{x}$
Integrating we get,
$-\ln \left(1-\frac{y^{2}}{x^{2}}\right)=\ell n x+C$
When $x=1, y=0 \Rightarrow C=0$
$\therefore \ln \left[x\left(\frac{\mathrm{x}^{2}-\mathrm{y}^{2}}{\mathrm{x}^{2}}\right)\right]=0$
\therefore Solution is $\mathrm{x}^{2}-\mathrm{y}^{2}=\mathrm{x}$
80. Ans: $\frac{\pi}{3}$

Sol: $(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})=|c|^{2}$

$$
\begin{aligned}
& 9+25+30 \cos \theta=49 \\
& \Rightarrow \theta=\frac{\pi}{3}
\end{aligned}
$$

81. Ans: $(-1,-1,-1)$

Sol: $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=r_{1}$
$2 \mathrm{r}_{1}+1=5 \mathrm{r}_{2}+4$
$3 r_{1}+2=2 r_{2}+1$
$4 r_{1}+3=r_{2}$
Solving, $r_{1}=-1 ; r_{2}=-1$.
\therefore Point of intersection is $(-1,-1,-1)$
82. Ans: Transitive

Sol: As per definition.
83. Ans: $|z|=1$

Sol: Putting $z=x+i y$ and equating the real part to zero, we get $\mathrm{x}^{2}+\mathrm{y}^{2}=1$.
84. Ans: $-\frac{11}{97}$

Sol: Given determinant

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
4 x & 6 x+2 & 8 x+1 \\
2 x+2 & 3 x+1 & 4 x-1 \\
1 & -4 & 0
\end{array}\right| \\
& \quad\left(R_{2} \rightarrow R_{2}-R_{1} \& R_{3} \rightarrow R_{3}-2 R_{1}\right)
\end{aligned}
$$

Expanding we get,
$-\quad 97 x-11=0 \Rightarrow x=-\frac{11}{97}$.
85. Ans: 0

Sol: $\cos 90^{\circ}=0 . \therefore$ the expression vanishes.
86. Ans: $\frac{n}{3 n+1}$

$$
\text { Sol: } \begin{aligned}
t_{n} & =\frac{1}{(3 n-2)(3 n+1)} \\
& =\frac{1}{3(3 n-2)}-\frac{1}{3(3 n+1)} \\
\therefore S & =\frac{1}{3}-\frac{1}{3(3 n+1)}=\frac{n}{(3 n+1)}
\end{aligned}
$$

87. Ans: 48

Sol: No. of arrangements $=4!\times 2!=48$
88. Ans: 11

Sol: No.of diagonals of a polygon

$$
=\frac{\mathrm{n}(\mathrm{n}-3)}{2}=44
$$

$$
\Rightarrow(\mathrm{n}-11)(\mathrm{n}+8)=0
$$

$$
\therefore \mathrm{n}=11
$$

89. Ans: 0

Sol: $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}$ and expanding the determinant, value of determinant is zero.
90. Ans: $x \cos \theta-y \sin \theta-a \cos 2 \theta=0$

Sol: Slope of the required line $=\frac{\cos \theta}{\sin \theta}$
\therefore Equation of the line passing through $\left(\operatorname{acos}^{3} \theta, \operatorname{asin}^{3} \theta\right)$ is
$y-\operatorname{asin}^{3} \theta=\frac{\cos \theta}{\sin \theta}\left(x-\operatorname{acos}^{3} \theta\right)$
$x \cos \theta-y \sin \theta-a \cos 2 \theta=0$
91. Ans: $y=3 \sqrt{\frac{2}{7}} x+\frac{15}{\sqrt{7}}$

Sol: Let $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ be a common tangent to the curves.

$$
\therefore c^{2}=16 m^{2}-9 \text { and } c^{2}=9\left(1+m^{2}\right)
$$

Solving the two equations, $\mathrm{m}^{2}=\frac{18}{7}$
$\therefore \mathrm{m}= \pm 3 \sqrt{\frac{2}{7}}$
$c= \pm \frac{15}{\sqrt{7}}$
Appropriate answer among the choices
given is $y=3 \sqrt{\frac{2}{7}} x+\frac{15}{\sqrt{7}}$
92. Ans: $\frac{4}{5}$

Sol: The given equation can be written as

$$
\begin{aligned}
& \frac{(x-3)^{2}}{9}+\frac{(y-5)^{2}}{25}=1 \\
& e^{2}=1-\frac{b^{2}}{a^{2}}=\frac{16}{25} \\
& \therefore e=\frac{4}{5}
\end{aligned}
$$

93. Ans: $\frac{\pi}{6}$

Sol: Given that the matrix is skew symmetric, the diagonal elements $=0$.

$$
\begin{aligned}
& \Rightarrow 2 \sin \theta-1=0 \text { and } 2 \cos \theta-\sqrt{3}=0 \\
& \Rightarrow \sin \theta=\frac{1}{2} \text { and } \cos \theta=\frac{\sqrt{3}}{2} \\
& \Rightarrow \theta=\frac{\pi}{6}
\end{aligned}
$$

94. Ans: $-\frac{1}{2}$

Sol: $\lim _{x \rightarrow 1} \frac{1+\log x-x}{1-2 x+x^{2}} \quad\left(\frac{0}{0}\right)$ form

$$
\begin{aligned}
& =\lim _{x \rightarrow 1} \frac{\frac{1}{x}-1}{-2+2 x} \quad\left(\frac{0}{0}\right) \text { form } \\
& =\lim _{x \rightarrow 1} \frac{\frac{-1}{x^{2}}}{2}=-\frac{1}{2}
\end{aligned}
$$

95. Ans: $3 a^{2}=4$

Sol: Let $P\left(x_{1}, y_{1}\right)$ be the point of intersection.
Slope of the first curve at $P, m_{1}=\frac{-4 x_{1}}{a^{2} y_{1}}$
Slope of the second curve at $P, m_{2}=\frac{16}{3 y_{1}{ }^{2}}$
Since $m_{1} m_{2}=-1, \frac{64 x_{1}}{3 a^{2} y_{1}{ }^{3}}=1$.
Since P lies on the curve, we get $3 a^{2}=4$.
96. Ans: $\frac{16}{3}$

Sol: Required area $=\int_{-1}^{3}\left(x_{2}-x_{1}\right) d y$

$$
\frac{1}{2} \int_{-1}^{3}\left(y^{2}-2 y-3\right) d y=\frac{16}{3}
$$

97. Ans: $\frac{21}{2}$

Sol:

Required area $=\int_{0}^{3}\left(\left(x^{2}+2\right)-x\right) d x=\frac{21}{2}$
98. Ans: $x e^{\tan ^{-1} y}=\tan ^{-1} y+C$

Sol: $\left(1+y^{2}\right) \frac{d x}{d y}+x=e^{\tan ^{-1} y}$
Putting $\mathrm{z}=\tan ^{-1} \mathrm{y}, \therefore\left(1+\mathrm{y}^{2}\right) \frac{\mathrm{dx}}{\mathrm{dy}}=\frac{\mathrm{dx}}{\mathrm{dz}}$

$$
\frac{d x}{d z}+x=e^{-z} \Rightarrow x e^{z}=z+C
$$

$$
x e^{\tan ^{-1} y}=\tan ^{-1} y+C
$$

99. Ans: $\sqrt{34}: \sqrt{45}: 39$

Sol: $|\vec{a}|=\sqrt{3^{2}+5^{2}}=\sqrt{34}$
$|b|=\sqrt{6^{2}+3^{2}}=\sqrt{45}$
$\overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=39 \hat{\mathrm{k}} \Rightarrow|\overrightarrow{\mathrm{c}}|=39$
$\therefore|\overrightarrow{\mathrm{a}}|:|\overrightarrow{\mathrm{b}}|:|\overrightarrow{\mathrm{c}}|=\sqrt{34}: \sqrt{45}: 39$
100.Ans: $\mathrm{k}=7$

Sol: $\frac{x-4}{1}=\frac{y-2}{1}=\frac{z-k}{2}$ passes through ($4,2, k$).
If this lies on the plane $2 x-4 y+z-7=0$, then $2 \times 4-4 \times 2+k-7=0 \Rightarrow k=7$
101.Ans: $\frac{24}{25}$

Sol: Required Probability $=1-1 \times \frac{1}{25}=\frac{24}{25}$

Sol: Refer Figure,
$B^{\prime}=1+4$
$(A \cup B) \cap B^{\prime}=1$
$\therefore A^{\prime} \cup\left((A \cup B) \cap B^{\prime}\right)$

$$
=3+4+1 \text {. }
$$

When $\mathrm{A} \cap \mathrm{B}=\phi$, then the answer is the Universal set.
Since in the given problem $A \cap B \neq \phi$ (in fact $A \cap B=\{16\}$), the answer is $N-\{16\}$
103.Ans: $\sqrt{31}$ No correct option

Sol: Refer figure

$\frac{P}{2 \sqrt{31}}=\sin \frac{\pi}{6}=\frac{1}{2}$
$P=\sqrt{31}$.
\therefore Minimum value of $\sqrt{31}$
104.Ans: $7 x^{2}+12 x y-2 y^{2}-2 x+4 y-7=0$

Sol: $\mathrm{SP}^{2}=\mathrm{e}^{2} \mathrm{PM}^{2}$
$\Rightarrow(x-1)^{2}+(y-1)^{2}=3 \frac{(2 x+y-1)^{2}}{5}$
$\Rightarrow 7 x^{2}+12 x y-2 y^{2}-2 x+4 y-7=0$
105.Ans: $5^{n+1}-4^{n+1}$

Sol: $\left(1-9 x+20 x^{2}\right)^{-1}$

$$
\begin{aligned}
& =(1-4 x)^{-1}(1-5 x)^{-1} \\
& =5(1-5 x)^{-1}-4(1-4 x)^{-1}
\end{aligned}
$$

\therefore The coefficient of x^{n}

$$
=5.5^{n}-4.4^{n}=5^{n+1}-4^{n+1}
$$

71. Ans: Carolus Linnaeus

Sol: Carolus Linnaeus suggested binomial system.
72. Ans : 5% sodium hypochlorite and 20% alcohol.

Sol:
73. Ans : Apical meristem

Sol: Left behind part of apical meristem is the intercalary meristem.
74. Ans: $\mathrm{H}_{2} \mathrm{~F}$

Sol: $\mathrm{H}_{2} \mathrm{~A}$ and $\mathrm{H}_{2} \mathrm{~B}$ are the part of octamer histone protein and $\mathrm{H}_{1}, \mathrm{H}_{3}, \mathrm{H}_{4}$ also form the histone proteins.
75. No correct option. The option should be of $1-\mathrm{c}, 2-\mathrm{d}, 3-\mathrm{b}, 4$ - a
76. Ans: Fab region

Sol: Fab is the fragment of antigen binding site.
77. Ans: Two identical single strand RNA's

Sol: Retroviruses contain two helix RNA strands.
78. Ans : 2 and 3 only

Sol: Thymus develops at about sixth week of gestation and red blood production is known as haematopoiesis.
79. Ans : 3 ATP and 2 NADPH $_{2}$

Sol: 3 ATP and $2 \mathrm{NADPH}_{2}$ are required for the fixation of one molecule CO_{2} in dark reaction.
80. Ans: CO 15

Sol: CO15 is a variety of sugarcane.
81. Ans:
(a) In Abelomoschus esculentus, the fruit is schizocarp
(d) ovary superior trilocular ovules on axile placentation in Musaceae

Sol: Loculicidal capsule is seen in Abelmoschus esculentus. Ovary is inferior in Musaceae.
82. Ans: 1-b 2-a 3 -d 4-c

Sol: All the pairing matches given in option a are correct.
83. Ans : From going back to left auricle

Sol: Mitral valve prevents back flow of blood to left auricle.
84. Ans: 2,3 and 4

Sol: Diastolic pressure is monitored by sphygmomanometer.
85. Ans : Sibling species

Sol: Sibling species are closely related species of morphologically identical but are not involved in interbreeding.
86. Ans : 5' TTAAGC 3' 3'AATTCG5'

Sol: DNA base sequences read as same in both directions in a double strand stretch of DNA.
87. Ans: Carbon-di-oxide

Sol: CO_{2} accounts 60% in green house gas. The others are $\mathrm{CH}_{4} \therefore 20 \%$ CFCs -14% and $\mathrm{N}_{2} \mathrm{O}-6 \%$.
88. Ans : D loop, anticodon loop, Extra arm, Tyloop

Sol: 1 - Dihydrouridine (d loop), 2 - Anticodon, 3 - Extra arm, 4 - Thymine pseudouridine cytosine arm.
89. Ans: Calcitonin

Sol: Calcitonin decreases HCl secretion.
90. Ans: Copper and zinc

Sol: Cu and Zn are required in trace quantity level for nutrition.
91. Ans: CD4 plus T - helper cells

Sol: HIV causes the depletion of WBC and results in the CD_{4} plus T -helper cells.
92. Ans: Plymouth rock

Sol: Plymouth rack fowl is the oldest and most popular breed of America.
93. Ans : Schizanthus pinnatus

Sol: Schizanthus pinnatus plant shows 2 fertile stamens and 3 staminodes.
94. Ans: Parenchyma

Sol: Bundle sheath or border parenchyma present in the leaf vascular bundle.
95. Ans: Fluorescence

Sol: Fluorescence results immediate loss of light energy from the chlorophyll molecules.
96. Ans: 2 and 3

Sol: Photorespiration protects the plant when CO_{2} supply is limited under high light. Viscum is a partial stem parasite.
97. Ans: 1-c $2-a \quad 3-\mathrm{d} 4-\mathrm{b}$

Sol: All the paired matchings given in option d are correct.
98. Ans: Group C, B, D and G

Sol: 23 pairs human chromosomes are grouped into seven categories as A, B, C, D, E, F and G.
99. Ans: Nuclear radiation

Sol: Nuclear radiation results Chernobyl disaster.
100.Ans: Mycoprotein

Sol: Mycoprotein is used in SCP production.
101.Ans : 2 only

Sol: Fertilization membrane prevents polyspermy.
102.Ans: Ravenala medagascariensis

Sol: Traveller's palm is an ornamental plant in Musaceae.
103.Ans : Variola virus - small pox

Sol: Treponema palladium causes syphilis, salmonella typhi causes typhoid and yersinia pestis causes plague diseases.
104.Ans: 1:7:7:1

Sol: Repulsion shows the linkage genes and its inheritance results parental forms in higher frequency.
105.Ans : Restriction enzyme

Sol: Restriction enzyme (REN) involved in specific nick of DNA sequence.
106.Ans: Thymus

Sol: Thymus develops at about $6^{\text {th }}$ week of gestation.
107.Ans: Glyceric acid

Sol: Glyceric acid is directly formed from hydroxypyruvic acid.
108.Ans: 1-d $2-a \quad 3-b \quad 4-c$

Sol: All the matching pairs given in a are correct.
109.Ans: Chloroflurocarbon

Sol: CFCs are used in coolant refrigerator.
110.Ans: 0.1\%

Sol: 0.1% fungicides are used in mounted specimens.
111.Ans : Glucoma - Decrease IOP

Sol: Glucoma increase IOP.
112.Ans: 1 and 4

Sol: Solanum nigrum is black night shade plant and tungro is a viral disease seen in rice.
113.Ans: RBC

Sol: Hayem's solution is used to count RBC.
114.Ans: Recessive gene disease

Sol: r-globulin synthesis fails in Agammaglobulinemia.
115.Ans: Bos indicus

Sol: Humped cattle is Bos indicus.
116.Ans: Transversion

Sol: Transversion is a kind of mutation.
117.Ans: $\frac{\text { Volume of } \mathrm{CO}_{2} \text { evolved }}{\text { Volume of } \mathrm{O}_{2} \text { evolved }}$

Sol: $R Q$ is used for the detection of respiratory substrate.
118.Ans : Copper sulphate - 9 kgs

Quick lime-9 kgs
Water - 250 litres

Sol: Bordeaux mixture is a well known fungicide compound.
119.Ans: $1,4,2,3$ and 5

Sol: Natural selection of Darwin accounts for species formation.
120.Ans : 2, 3 and 4

Sol: Gobar gas plant is an anaerobic degration of organic waste.

