

KEY CONCEPT

		<u>KEY CONCEPT</u>	ding
	Reason	ns for Bond formation:	nical Bor
	+ +	Lowerisation of energy due to attractions. Attainment of Octet [ns ² np ⁶], assumed to be most stable.	of 28 Cher
	Types a	of bonds : Ionic, covalent, co-ordinate	Page 3
		IONIC BOND [ELECTROVALENT]	
	+ + +	Complete loss of e ⁻ to form ions. Electrostatic attraction between ions. Elements of 'p' & 'd' block may show variable electrovalency due to	BHOPAL
SS.com	(a)	Inert Pair effect (for p block): The reluctance of 's' electron pair to take part in bond formation on moving down a group in 'P' block elements.	8881 ,
lasse	Finds	application in	30 5
w.tekoc]	+ +	Stability of oxidation state of a particular metal atom. Oxidizing & reducing power of compounds.	, 0 989
	(b)	Unstability of core: For 'd' block elements the core may either have pseudo inert configuration (having 18 electrons in outermost shell)or any other.	000 00
osite	Proper	ties of Ionic compounds	- 32
rom websi	*	Ionic bonds are Non directional in nature High Melting points / Boiling points. In solid state they are conductor (due to absence of charge carrier) while in aqueous & molten state they	PH: (0755
ackage 1	+ +	are good conductor of electricity. Soluble in Polar solvents Show isomorphism.	R. K. Sir)
dy F	(°, °)	No sp. theories to understand bond formation.	∧ (S.
ad Stu	(0 0)	characteristics like various crystal lattices to be done in solid state.	KARIYI
wnlo		COVALENT BOND	С В
Do	++	Sharing of electrons Overlapping of orbitals	NHA
LEE	+	Types : single, double, triple, polar, non–polar bonds.	r: S
FR	+	Variable covalency : Shown by elements having vacant 'd' orbitals (caused due to excitation of the electron.)	Directo
	Proper	ties: Covalent honds are directional in nature	SES,
	+++++++++++++++++++++++++++++++++++++++	Low melting point & boiling point. (except Diamond / Graphite, due to their peculiear structure) Electrical conductivity due to auto-protolysis or self ionisation.	KO CLAS
	Ŧ	Snow isomerism.	Ξ

CO-ORDINATE BOND Bonding between lewis acid & lewis base or electron deficient & electron rich species. Lewis base: Species with lone pair on 'central atom' available for donation. eg. NH ₂ , H ₂ O							al Bonding
Lewis acid:	Electro	on deficient due to i	due to incomplete octal, vacant p or d orbital & high + ve $\frac{\text{ch arg e}}{\text{size}}$ ratio				ratio. 28
 Lewis Dot structures: Arrangement of various atoms & types of bonding present but no idea of geometry. Selection of central atom [least E.N. of all elements excluding hydrogen] In hydrogen containing proton donor oxy acids all 'H' atoms are attached to oxygen as –OH gro except in H₃PO₃(dibasic), H₃PO₂(monobasic) & H₄P₂O₅ (dibasic). 							Page 4 of 2
Application ← To k	us: mow variou	is linkages present					вноі
 ➡ To c 	calculate O.	S. of various eleme	ents.				2.
		Various Tl	heories Fo	r Expla	ining l	Bonding	930 588
✦ Elec✦ Vale	tronic theo	ry of valency (Kos theory (Heitler Lo	sel, Lewis) ;	Singlat li	nkages		86 0
+ M.C Dipo unit % ic % ic	D.T. (Hund ole moment) $1 D = 10^{-10}$ onic charac	, Mulliken). t is a vector quantit ⁻¹⁸ esu cm = 3.33 > ter = $\frac{\text{obse}}{\text{calculatedE}}$ ter = [16 (X _A - X	DIPOLE $y = \mu = q \times d$ $x = 10^{-30} \text{ col. } r$ prvedD.M. D.M.for100% (x = 0, -30) (x = 0, -3) (x = 0, -3)	$MOME I$. Units = n ionic × $(A - X_B)^2$	NT colm(\$ 100 %]%	(will be discussed in class 2 S.I.) or esu cm(cgs) or Debey(c [Hanny & Smyth equation]	(<i>t th</i>) (0755)- 32 00 000,
Dipole mon+Elec+Ang+Mag	<i>nent deper</i> ctronegativi gle between gnetic of po	nds on ty difference betwe various bonds larity of the molecu	en atoms le	+ + +	Direction Influen Symmet	on of bond dipole moment ice of unshared e ⁻ pairs etrical / Unsymmetrical shape.	RIYA (S. R. M
Bond Mom	ents:						К. КА
H–F (1.9 D) H–Cl (1.1 D H – Br (0.8 H – I (0.4 D) D)))	H–O (1.5 D) H–N (1.3 D) H– C (0.4 D)	C - C C = 0	(0 D) (2.3 D)		C-F (1.4 D) C-Cl (1.5 D) C - Br (1.4 D) C - I (1.2 D)	EKO CLASSES, Director : SUHAG F
	Bonding bet Lewis base Lewis acid: + Arra + Sele + In h exce Application + To k + To c + To k + To c + Wale + M.C Dipunit % id Dipole mon + Elec + M.C Dipunit % id Dipole mon + Elec + Ang + Mag Bond Mon H-F (1.9 D H-Cl (1.1 E H - Br (0.8 H - I (0.4 E	 Bonding between lewis Lewis base: Species Lewis acid: Electron Arrangement of Selection of cent In hydrogen context in H₃PO Applications: To know variou To calculate O. Kelectronic theo Valence bond Valence bond M.O.T. (Hund) Dipole moment unit) 1 D = 10⁻¹⁰ % ionic charace % ionic charace % ionic charace % ionic charace Magnetic of po Bond Moments: H-F (1.9 D) H-Cl (1.1 D) H - Br (0.8 D) H - I (0.4 D) 	 Bonding between lewis acid & lewis base Lewis base: Species with lone pair on ' Lewis acid: Electron deficient due to i Arrangement of various atoms & t Selection of central atom [least E.I.] In hydrogen containing proton do except in H₃PO₃(dibasic), H₃PO Applications: To know various linkages present To calculate O.S. of various element Valence bond theory (Heitler, Lo M.O.T. (Hund , Mulliken). Dipole moment is a vector quantitunit) 1 D = 10⁻¹⁸ esu cm = 3.33 × % ionic character = obse calculatedE % ionic character = [16 (X_A - X Dipole moment depends on Electronegativity difference betwee Angle between various bonds Magnetic of polarity of the molecu Bond Moments: H-F (1.9 D) H-O (1.5 D) H-Cl (1.1 D) H-N (1.3 D) H - Br (0.8 D) H - C (0.4 D) H - I (0.4 D) 	CO-ORDINBonding between lewis acid & lewis base or electron ofLewis base: Species with lone pair on 'central atomLewis base: Species with lone pair on 'central atomLewis base: Species with lone pair on 'central atomLewis DatLewis DatArrangement of various atoms & types of bondSelection of central atom [least E.N. of all elemIn hydrogen containing proton donor oxy acid except in H ₃ PO ₃ (dibasic), H ₃ PO ₂ (monobasicArrangement of various atoms & types of bondArrangement of various atoms & types of bondArrangement of various atoms & types of bondIn hydrogen containing proton donor oxy acid except in H ₃ PO ₃ (dibasic), H ₃ PO ₂ (monobasicArrangement of various linkages presentTo know various linkages presentTo know various linkages presentTo calculate O.S. of various elements.Various Theories ForElectronic theory of valency (Kossel, Lewis) ;;Valence bond theory (Heitler, London, PaulirM.O.T. (Hund , Mulliken).DIPOLE Dipole moment is a vector quantity = $\mu = q \times d$ untit) 1 D = 10 ⁻¹⁸ esu cm = 3.33 × 10 ⁻³⁰ col. r% ionic character = $\left[16 (X_A - X_B) + 3.5 (X_A) Dipole moment depends on $	CO-ORDINATE B. Bonding between lewis acid & lewis base or electron deficient Lewis base: Species with lone pair on 'central atom' availad Lewis base: Species with lone pair on 'central atom' availad Lewis base: Species with lone pair on 'central atom' availad Lewis Dot structure + Arrangement of various atoms & types of bonding pres * Selection of central atom [least E.N. of all elements exc + In hydrogen containing proton donor oxy acids all 'H' except in H ₃ PO ₃ (dibasic), H ₃ PO ₂ (monobasic) & H ₄ F Applications: + + To know various linkages present + To calculate O.S. of various elements. <i>Various Theories For Expla</i> + Electronic theory of valency (Kossel, Lewis) ;Singlat li + Valence bond theory (Heitler, London, Pauling, Slate + M.O.T. (Hund ; Mulliken). DIPOLE MOMEE. Dipole moment is a vector quantity = $\mu = q \times d$. Units = unit) 1 D = 10 ⁻¹⁸ esu cm = 3.33 × 10 ⁻³⁰ col. m % ionic character = $[16 (X_A - X_B) + 3.5 (X_A - X_B)^2$ Dipole moment depends on + Angle between various bonds + + <td< td=""><td>CO-ORDINATE BONDBonding between lewis acid & lewis base or electron deficient & electrLewis base:Species with lone pair on 'central atom' available for deLewis acid:Electron deficient due to incomplete octal, vacant p orLewis Dot structures:Arrangement of various atoms & types of bonding present but 1Selection of central atom [least E.N. of all elements excluding hIn hydrogen containing proton donor oxy acids all 'H' atoms a except in H₃PO₃(dibasic), H₃PO₂(monobasic) & H₄P₂O₅ (dilApplications:To know various linkages presentTo calculate O.S. of various elements.Dirole to Kory of valency (Kossel, Lewis) ;Singlat linkagesValence bond theory (Heitler, London, Pauling, Slater).M.O.T. (Hund , Mulliken).DIPOLE MOMENTDipole moment is a vector quantity = $\mu = q \times d$. Units = col m (fumit) 1 D = 10⁻¹⁸ esu cm = 3.33×10^{-30} col, m% ionic character = $\begin{bmatrix} 0 & 0$</td><td>CO-ORDINATE BOND Bonding between lewis acid & lewis base or electron deficient & electron rich species. Lewis base: Species with lone pair on 'central atom' available for donation, eg. NH₃, H₂O Lewis acid: Electron deficient due to incomplete octal, vacant p or d orbital & high + ve $\frac{charg e}{size}$ Arrangement of various atoms & types of bonding present but no idea of geometry. * Selection of central atom [least E.N. of all elements excluding hydrogen] In hydrogen containing proton donor oxy acids all 'H' atoms are attached to oxygen as -OH except in H₃PO₃(dibasic), H₃PO₂(monobasic) & H₄P₂O₃ (dibasic). <i>Applications:</i> * * To know various linkages present * To know various linkages present * To calculate O.S. of various elements. <i>Various Theories For Explaining Bonding</i> * Electronic theory of valency (Kossel, Lewis) ;Singlat linkages * Valence bond theory (Heitler, London, Pauling, Slater). * M.O.T. (Hund, Mulliken). <i>DiPOLE MOMENT</i> Wi onic character = $\frac{observedD.M}{calculatedD.Mfor100%ionic} \times 100 \%$ % ionic character = $\begin{bmatrix} 16 (X_A - X_B) + 3.5 (X_A - X_B)^2 \}$ [Hamny & Smyth equation] <i>Dipole moment depends on</i> * Influence of unshared e pairs</td></td<>	CO-ORDINATE BONDBonding between lewis acid & lewis base or electron deficient & electrLewis base:Species with lone pair on 'central atom' available for deLewis acid:Electron deficient due to incomplete octal, vacant p orLewis Dot structures:Arrangement of various atoms & types of bonding present but 1Selection of central atom [least E.N. of all elements excluding hIn hydrogen containing proton donor oxy acids all 'H' atoms a except in H ₃ PO ₃ (dibasic), H ₃ PO ₂ (monobasic) & H ₄ P ₂ O ₅ (dilApplications:To know various linkages presentTo calculate O.S. of various elements. Dirole to Kory of valency (Kossel, Lewis) ;Singlat linkagesValence bond theory (Heitler, London, Pauling, Slater).M.O.T. (Hund , Mulliken). DIPOLE MOMENT Dipole moment is a vector quantity = $\mu = q \times d$. Units = col m (fumit) 1 D = 10 ⁻¹⁸ esu cm = 3.33×10^{-30} col, m% ionic character = $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $	CO-ORDINATE BOND Bonding between lewis acid & lewis base or electron deficient & electron rich species. Lewis base: Species with lone pair on 'central atom' available for donation, eg. NH ₃ , H ₂ O Lewis acid: Electron deficient due to incomplete octal, vacant p or d orbital & high + ve $\frac{charg e}{size}$ Arrangement of various atoms & types of bonding present but no idea of geometry. * Selection of central atom [least E.N. of all elements excluding hydrogen] In hydrogen containing proton donor oxy acids all 'H' atoms are attached to oxygen as -OH except in H ₃ PO ₃ (dibasic), H ₃ PO ₂ (monobasic) & H ₄ P ₂ O ₃ (dibasic). <i>Applications:</i> * * To know various linkages present * To know various linkages present * To calculate O.S. of various elements. <i>Various Theories For Explaining Bonding</i> * Electronic theory of valency (Kossel, Lewis) ;Singlat linkages * Valence bond theory (Heitler, London, Pauling, Slater). * M.O.T. (Hund, Mulliken). <i>DiPOLE MOMENT</i> Wi onic character = $\frac{observedD.M}{calculatedD.Mfor100%ionic} \times 100 \%$ % ionic character = $\begin{bmatrix} 16 (X_A - X_B) + 3.5 (X_A - X_B)^2 \}$ [Hamny & Smyth equation] <i>Dipole moment depends on</i> * Influence of unshared e pairs

	SHAPES OF MOLECULES BASED ON VSEPR THEORY _ 을									
Total no. of hybrid orbitals	No. of b.p. (bond pairs)	No. of unshared pair i.e. <i>l_p</i>	General formula	Type of hybridisations	Stereo chemical formula	Shape	Exam.			
2	2	0	AB ₂	sp	B-A-B	linear	BeCl ₂			
3	3	0	AB ₃	sp ²	B A B B	Trigonal planar	BCl ₃ , GaF ₃			
3	2	1	AB ₂	sp ²	B B	Bent or angular	GeF ₂ , O ₃			
4	4	0	AB ₄	sp ³	B B B B B B	Tetrahedral	CH ₄			
4	3	1	AB ₃	sp ³	BBBB	Trigonal pyramid	NH ₃			
4	2	2	AB ₂	sp ³	B B	Bent or angular	H ₂ O			
4	1	3	АВ	sp ³		linear	HF			
5	5	0	AB ₅	sp ³ d	B-A'B B B	Trigonal bipyramidal	PF ₅ , NbBr ₅			
5	4	1	AB ₄	sp ³ d		Seesaw	SF ₄			
5	3	2	AB ₃	sp ³ d	$B - A \xrightarrow{B} B$	T-shaped	ClF _{3,} BrF ₃			
5	2	3	AB ₂	sp ³ d	$B \\ A \\ B \\ B \\ B$	Linear	ICI ₂ ⁻ XeF ₂			
6	6	0	AB ₆	sp ³ d ²	B B B B	Octahedral	SF_6			
6	5	1	AB ₅	sp ³ d ²	B B B A B B B	Square pyramidal	IF ₅			

FREE Download Study Package from website: www.tekoclasses.com

6	4	2	AB_4	sp ³ d ²	B B B B B B B B B B B B B B B B B B B	Square planar	IF ₄ XeF ₄
7	7	0	AB ₇	sp ³ d ³		Pentagonal bipyramidal	IF ₇

How To Decide The Type OF Hybridisation :

Type of hybridisation = (number of σ bonds + number of lone pairs)

- RESONANCEDelocalisations of π electron cloud in between orbitals of various atoms in a molecule (provided all the atoms are in the same plane)
- Exists where more than one Lewis dot structure are possible for a molecule. Resonance causes stablisation of the molecule & difference in the energies of hybrid & other structure is termed as Resonance energy.
- $R.E. \rightarrow Experimental heat of formation-Theoretical heat of formation.$
- The properties of the actual structure (Resonance hybrid) are decided by the weighed average (depending on stability) of the contributing molecule.
- More the resonating structure more stable the molecule becomes.

FORCES OF ATTRACTION (WEAKER BONDS)

FREE Download Study Package from website: www.tekoclasses.com Hydrogen bonding: When a hydrogen atom is linked to a highly electronegative atom (like F, O or N) comes under the influence of another strongly electronegative atom, then a weak bond is developed between them, which is called as hydrogen bond.

Types of H-bonding:

- Intermolecular
- Intramolecular

Applications in:

- Abnormal behaviour of water. (a)
- (b) Association of a molecule as in carboxylic acid.
- Dissociation of a polar species. (c)
- (d) Abnormal melting point & boiling point.
- Enhanced solubility in water. (e)

Ion dipole attraction

- **Dipole-dipole attraction**
- **Ion-induced dipole attraction**
- **Dipole-Induced Dipole attraction**
- **Induced -dipole Induced Dipole attraction**
 - **Metallic bonds:** Electron gas model or sea model, with metal atom existing as kernels along with less firmly held valence e^{-s} & bonds between various kernels (at the lattice site) & valence e^{-s} is known as metallic bonds.

SOME TYPICAL BOND

Back bonding: 1.

If among the bonded atoms, one atom has a vacant orbital & another has excess of + e^{-s} then a sort of π bonding takes place between he two. If this is between 'P' orbitals of the two, this is known as $p\pi$ - $p\pi$ back bonding.

98930 000 8 33 Sir) PH: (0755)-Я. Х. Director : SUHAG R. KARIYA (S. **Š**

- +
- 2.
- Most efficient when the atoms are very small & the orbitals involved of the two are of same energy level. **Banana bond:** This type of bonding is present in B_2H_6 . This structure shows that there are two types of hydrogen atom-Terminals and bridging. **MISCELLANEOUS CONCEPT Comparison of bond angles.**

1.

- (a)
- **name bond** is type of bonding is productive shows that there are approved by the shows that there are an approved by the shows that there are an approved by the shows that there are an approved by the shows that there are are approved by the shows the sho (b)

(c)

TEKO CLASSES, Director : SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 00 000,

- 2.
- (a)
- (b)

		EXI	<u>ERCISE - I</u>		dino
IONI	C BOND				Sone
Q.1	The combination of (A) They can gain to (B) They get eight e (C) They acquire sta (D) They get eighte	atoms take place so the wo electrons in the out lectrons in the outermo ability by lowering of e en electrons in the oute	nat ermost shell ost shell energy ermost shell.		8 of 28 Chemical F
Q.2	An ionic bond A^+B (A) the ionization er (B) the ionization er (C) the ionization er (D) the ionization er	⁻ is most likely to be for nergy of A is high and the regy of A is low and the regy of A and the electron nergy of A and the electron regy of A and the electron regy of A and the electron regulation of A and the electron regres electron of A and the electron regulation of A	ormed when : he electron affinity of <i>B</i> is l he electron affinity of <i>B</i> is h tron affinity of <i>B</i> is high tron affinity of <i>B</i> is low	ow igh	
Q.3	Which of the follow	ring compounds of eles	ments in group IV is expec	ted to be most ionic?	H H H
	(A) $PbCl_2$	(B) $PbCl_4$	(C) CCl_4	(D) $SiCl_4$	2
Q.4	The compound whit (A) $C_2H_4Cl_2$	ch contains ionic as we (B) CH ₃ I	ell as covalent bonds is (C) KCN	(D) H ₂ O ₂	8930 5885
Q.5	The hydration of ion (A) Evolution of hea (C) Dissociation int	iic compounds involve at o ions	s : (B) Weakening of at (D) All of these	tractive forces	
Q.6	In which of the follo (A) NCl ₃	wing species the bond (B) RbCl	ls are Non-directional ? (C) BeCl ₂	(D) BCl ₃	32 00
Q.7	Which has the lowe (A) <i>LiF</i>	st anion to cation size r (B) NaF	ratio : (C) <i>CsI</i>	(D) CsF	(0755)
Q.8	Which of the follow (A) They are good of (B) They are general (C) They consist of (D) They generally b	ing statement(s) is/are conductors at room ter illy soluble in polar sol- ions. have high melting and b	correct regarding ionic con nperature in aqueous solut vents. poiling points.	npounds? ion.	, R K Sir) DH
Q.9	Which of the follow (A) NH ₄ Cl	ing compounds contai (B) KCN	in/s both ionic and covalent (C) $CuSO_4 \cdot 5H_2O$	bonds? (D) NaOH	ARIYA (
Q.10	Among the following	ng isostructural compo	ounds, identify the compou	und, which has the highest I	Lattice
	energy (A) LiF	(B) LiCl	(C) NaCl	(D) MgO	ЫНДС
Q.11	A bond formed betw (A) ionic	ween two like atoms ca (B) covalent	annot be (C) coordinate	(D) metallic	ctor . S
Q.12	Which of the follow (A) Green Vitriol (C) Alcohol	ing, when dissolved in	water forms a solution, wh (B) Indian salt Petre (D) Potash alum	ich is Non-conductivity?	SSES_ Dire
Q.13	Most ionic compou (A) high melting poi (B) high melting poi (C) high solubilities	nds have : ints and low boiling poi ints and nondirectional in polar solvents and lo	ints bonds ow solubilities in nonpolar s	olvents	TEKO CLA

(D) three-dimensional network structures, and are good conductors of electricity in the molten state

 Q.14 An electrovalent compound does not exhibit space isomerism because of (A) Presence of oppositively charged ions (B) High melting points (C) Non-directional nature of the bond (D) Crystalline nature 									
	Q.15	Which of the following	g have an $(18 + 2)$ electro	on configuration ?		[28 CI			
		(A) Pb^{2+}	(B) Cd^{2+}	(C) Bi^{3+}	(D) SO_4^{2-}	ge 9 oi			
	Q.16	Which of the following (A) CH_4	g contains (electrovalent) (B) H_2O_2) and non-polar (covalen (C) NH_4Cl	t) bonds ? (D) <i>HCN</i>	Pa			
u	COVA Q.17	<i>LENT BOND</i> A sigma bond may be f along as the <i>x</i> -axis, wh	formed by the overlap of nich of the following ove	2 atomic orbitals of atom rlaps is acceptable ?	ns A and B. If the bond is formed	BHOPAL			
con		(A) s orbital of A and	p_z orbital of B	(B) p_x orbital of A and	d p_y orbital of B	81,			
sses.		(C) p_z orbital of A and	d p_x orbital of B	(D) p_x orbital of A and	d s orbital of B	588			
.tekoclas	Q.18	The maximum covalency is equal to (A) the number of unpaired p -electrons							
MMA		(C) the number of unp	baired s and p-electrons			00,			
te: v		(D) the actual number of <i>s</i> and <i>p</i> -electrons in the outermost shell.							
vebsit	Q.19	How many bonded ele (A) 6	ectron pairs are present i (B)7	n IF_7 molecule : (C) 5	(D) 8	55)- 3			
w mc	O.20	PCl_{ϵ} exists but NCl_{ϵ}	does not because :			1 : (07			
e fr		(A) Nitrogen has no va	acant 2 <i>d</i> -orbitals	(B) NCl_5 is unstable					
kag		(C) Nitrogen atom is n	nuch smaller than P	(D) Nitrogen is highly i	nert	Ś. Si			
idy Pac	Q.21	Which of the following (A) Cl-F	g has/have a strong coval (B) F-F	ent bond? (C) C-Cl	(D) C-F	A (S. R. I			
lload Stu	Q.22	Which of the following (A) Covalent bonds ar (B) Ionic bonds are no	statements is/are true? e directional ndirectional			r. kariy			
Down		(C) A polar bond is for (D) The presence of po	med between two atoms olar bonds in a polyatom	s which have the same el ic molecule suggests tha	ectronegativity value. at it has zero dipole moment	SUHAG			
REI	Q.23	Rotation around the bo	ond (between the underli	ined atoms) is restricted	in :				
1		(A) $\underline{C}_2 H_4$	(B) $H_2 \underline{O}_2$	(C) $\underline{Al}_2 Cl_6$	(D) $\underline{C}_2 H_6$	rect			
	Q.24	The octet rule is not ol	beyed in :			S, Di			
		(A) CO_2	(B) BCl_3	(C) PCl_5	(D) SiF_4	SSE			
	Q.25	Which of the following	g two substances are exp	bected to be more covale	ent :	CLA			
		(A) $BeCl_2$	(B) $SnCl_4$	(C) ZnS	(D) $ZnCl_2$	X0			
	Q.26	To which of the follow	ving species octet rule is 1	not applicable :		Ξ			
		(A) BrF_5	(B) SF_6	(C) IF_7	(D) <i>CO</i>				

	Q.27	Which of the following 1. ClO_4^{-} , (A) 1.2.3	species are hypervalent ⁴ 2. BF ₃ , (B) 1. 3	? 3. SO_4^{2-} ,	4. CO_3^{2-}	3 onding
	Q.28	(A) 1, 2, 3The types of bond pres(A) only covalent(C) ionic and covalent	Sent in N_2O_5 are	(B) only ionic(D) covalent & coordin	nate	i 28 Chemical I
	<i>CO-0</i>	RDINATE BOND				10 of
	Q.29	NH_3 and BF_3 combined (A) a covalent bond	e readily because of the f (B) a hydrogen bond	formation of : (C) a coordinate bond	(D) an ionic bond	Page
	Q.30	Which of the following	species contain covalen	t coordinate bond :		PAL
		(A) AlCl ₃	(B) <i>CO</i>	(C) $[Fe(CN)_6]^{4-}$	(D) N_3^-	вно
S.com	Q.31	Which of the following	molecules does not have	e coordinate bonds?		881, 1
ISSee		(A) CH ₃ –NC	(B) CO	(C) O ₃	(D) CO_3^{2-}	0 58
v.tekoclá	LEWI , Q.32	S STRUCTURE Which of the following	Lewis diagrams is(are) i	incorrect ?		0 9893
osite: wwv		(A) <i>Na</i> -O-Cl:	:či: (B) <u>;</u> či – c – či: ; <u>c</u> i:	$(\mathbf{C}) \begin{bmatrix} H \\ I \\ H - N - H \\ H \end{bmatrix}_{2}^{T}$	$f(D) = \begin{pmatrix} H & H \\ I & I \\ H - N - N - H \\ \bullet \bullet & \bullet \bullet \end{pmatrix}$)- 32 00 000,
ckage from weł	Q.33	The possible structure(s	s) of monothiocarbonate :C: (B):0:5:0:0	e ion is : (C) C C C C	(D)	K. Sir) PH: (0755
l Study Pa	Q.34	The valency of sulphur (A) 2	in sulphuric acid is : (B) 8	(C) 4	(D) 6	ARIYA (S. R.
ownload	Q.35	The total number of val (A) $2.2 N$	lence electrons in 4.2g o (B) 4.2 N	of N_3^- ion are : (C) 1.6 N	(D) 3.2 <i>N</i>	HAG R. K
FREE D	Q.36	No $X - X$ bond exists (A) B_2H_6	in which of the followin (B) C_2H_6	g compounds having ge (C) Al_2H_6	neral form of X_2H_6 ? (D) Si_2H_6	ector : SUF
	Q.37	Pick out among the follo $(\Delta) N^{-}$	owing species isoelectro (B) $(CNO)^{-}$	pnic with CO_2 :	(D) <i>NO</i> -	ES, Dire
	Q.38	Which of the following (A) SiO_2	have a three dimensiona (B) $(BN)_x$	al network structure ? (C) P_4 (white)	(D) CCl_4	EKO CLASS
	Q.39	Which of the following (A) $H_2 S_2 O_8$	oxyacids of sulphur con (B) $H_2S_2O_6$	ttain $S - S$ bonds? (C) $H_2 S_2 O_4$	(D) $H_2 S_2 O_5$	F

	RESO	NANCE			ding
	Q.40	(A) identical bonding(C) nearly the same energy content	(B) identical arranger (D) the same number	nent of atoms of paired electrons	nical Bone
	Q.41	Which of the following conditions apply to r (A) The contributing structures should have (B) The contributing structures should be re-	esonating structures ? similar energies epresented such that unlike	e formal charges reside on atoms	l of 28 Chem
		that are far apart(C) The more electropositive element shoelectronegative element have negative formation(D) The contributing structures must have the	uld preferably have posit al charge he same number of unpaire	ive formal charge and the more	Page 1
n	Q.42	N_2O has a linear, unsymmetrical structure the a resonance form must have a satisfactory Letter the manufactory of N_2O	nat may be thought of as a lewis structure, which of the	hybrid of two resonance forms. If e five structures shown below are	, BHOPAL
lasses.con		(A) $\mathbf{\hat{N}} = \mathbf{\hat{N}} = \mathbf{O}$ (B) $\mathbf{\hat{N}} = \mathbf{N} = \mathbf{O}$	(C) $\cdot N = O \cdot (D) \cdot D$	$\mathbf{N} = \mathbf{N} - \mathbf{O} \bullet (\mathbf{E}) \bullet \mathbf{N} \equiv \mathbf{N} - \mathbf{O} \bullet$	930 58881
ww.tekoo	Q.43	Resonance occurs due to the (A) delocalization of a lone pair of electrons (C) delocalization of pi electrons	(B) delocalization of s (D) migration of proto	sigma electrons	00, 0 989
m website: w	V.B.T. Q.44	& HYBRIDISATION The strength of bonds by $s-s$, $p-p$, $s-p$ (A) $s-s < s-p < p-p$ (C) $s-p < s-s < p-p$	overlap is in the order : (B) $s - s p - p < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s < s - s <$: (0755)- 32 00 0(
ckage fro	Q.45	In the following compound $\overset{1}{\mathbf{C}}\overset{1}{\mathbf{H}_{2}} = \overset{2}{\mathbf{C}}\overset{1}{\mathbf{H}_{2}}$ (A) $sp - sp^{2}$ (B) $sp^{3} - sp^{3}$	$-CCH_2 - C \equiv CH, \text{ the } C$ (C) $sp - sp^3$	$C_2 - C_3$ bond is of the type : (D) $sp^2 - sp^3$	K. Sir) PH
y Pad	Q.46	Which of the following has a geometry different	ent from the other three spe	cies (having the same geometry)?	S. R.
Study		(A) BF_4^- (B) SO_4^{2-}	(C) XeF_4	(D) PH_4^+	IYA (
wnload S	Q.47	Maximum bond energy is in : (A) F_2 (B) N_2	(C) <i>O</i> ₂	(D) equal	G R. KAR
Do	Q.48	Among the following species, identify the iso	ostructural pairs : NF_3, NC	$D_{3}^{-}, BF_{3}, H_{3}O^{+}, HN_{3}$	SUHA
REE		(A) $[NF_3, NO_3^-]$ and $[BF_3, H_3O^+]$	(B) $[NF_3, HN_3]$ and $[A$	NO_3^-, BF_3]	or : S
Ŧ		(C) $[NF_3, H_3O^+]$ and $[NO_3^-, BF_3]$	(D) $[NF_3, H_3O^+]$ and	$[HN_3, BF_3]$	Direct
	Q.49	Number and type of bonds between two ca (A) one sigma (σ) and one pi (π) bond (C) one σ and one and a half π bond	arbon atoms in CaC_2 are : (B) one σ and two π (D) one σ bond	bonds	CLASSES, D
	Q.50	In $C - C$ bond is C_2H_6 undergoes heterolytic (A) sp^2 both (B) sp^3 both	c fission, the hybridisation of $(C) sp^2, sp^3$	f two resulting carbon atoms is/are (D) sp, sp ²	TEKO

	Q.51	The hybridisation and geometry of BrF_3 molecules are :								
		(A) sp^3d and T shape	ed	(B) sp^2d^2 and tetragonal						
		(C) sp^3d and bent		(D) none of these		emical				
	Q.52	2 The shape of methyl cation (CH_3^+) is likely to be: (A) linear (B) pyramidal (C) planar (D) spherical								
	0.53	The structure of V.E. involves hybridization of the type								
	Q.55	(A) sn^3	(B) dsp^2	(C) sn^3d	(D) $sp^{3}d^{2}$	ĥ				
	Q.54	In the XeF ₄ molecule, the Xe atom is in the (A) sp^2 -hybridized state (B) sp^3 -hybridized state (C) sp^2d -hybridized state (D) sp^3d^2 -hybridized state G								
es.com	Q.55	How many σ - and π - bonds are there in salicyclic acid? (A) 10σ , 4π (B) 16σ , 4π (C) 18σ , 2π (D) 16σ , 2π								
koclass	Q.56	Which of the following statements are not correct?P(A) Hybridization is the mixing of atomic orbitals of large energy difference.P68								
w.te		(B) sp^2 – hybrid orbitals are formed from two p - atomic orbitals and one s - atomic orbitals								
ΜM		(C) dsp^2 – hybrid orbitals are all at 90° to one another (D) $u^2 = 3$, hybrid orbitals are directed towards the second sec								
e:		(D) d^2sp^3 – hybrid or	bitals are directed towar	ds the corners of a regul	lar octahedron	2 00				
bsit	Q.57	Which of the following	g has been arranged in in	acreasing order of size of	f the hybrid orbitals ?	5)- 3				
n we		(A) $sp < sp^2 < sp^3$ (B) $sp^3 < sp^2 < sp$ (C) $sp^2 < sp^3 < sp$ (D) $sp^2 < sp < sp^3$								
fron	Q.58	In the context of carbon, which of the following is arranged in the correct order of electronegativity:								
age		(A) $sp > sp^2 > sp^3$ (B) $sp^3 > sp^2 > sp$ (C) $sp^2 > sp > sp^3$ (D) $sp^3 > sp > sp^2$								
udy Pack	Q.59	When $2s-2s$, $2p-2p$ and $2p-2s$ orbitals overlap, the bond strength decreases in the order : (A) $p-p>s-s>p-s$ (B) $p-p>p-s>s-s$ (C) $s-s>p-p>p-s$ (D) $s-s>p-s>p-p$								
wnload St	Q.60	The shapes of IF_5 and IF_7 are respectively: (A) square pyramidal and pentagonal bipyramidal (C) trigonal bipyramidal and square antiprismatic (D) distorted square planar and distorted octahedral								
\mathbf{D}_{0}	Q.61	Carbon atoms in $C_2(C$	$(CN)_4$ are :			NH ^A				
REE		(A) sp-hybridized		(B) sp^2 -hybridized		or : 5				
Ξ		(C) <i>sp</i> - and sp^2 hybrid	dized	(D) sp , sp^2 and sp^3 -	hybridized	irect				
	Q.62	CO_2 has the same geo	ometry as :			ES, D				
		(I) H_gCl_2 (A) I and III	(II) NO₂(B) II and IV	(III) SnCl₄(C) I and IV	(IV) C_2H_2 (D) III and IV) CLASS				
	Q.63	Strongest bond is form (A) $2s$ - and $2p$ - orbita (C) $2s$ - and $2s$ - orbita	ned by the head on overl ıls ls	apping of : (B) 2 <i>p</i> - and 2 <i>p</i> - orbita (D) All	als	TEKO				

	Q.64	The ratio of σ and π be (A) 2	onds in benzene is : (B) 6	(C) 4	(D) 8	Bonding				
	Q.65	The bond angle and hy	bridization in ether (CH	$_{3}OCH_{3}$) is :		nical]				
		(A) $106^{\circ}51'$, sp^3	(B) $104^{\circ}31'$, sp^3	(C) 109° 28' sp ³	(D) None of these	8 Chen				
	Q.66	 6 The enolic form of acetone contains: (A) 9 sigma, 1 pi bond and 2 lone pairs (C) 10 sigma, 1 pi bond and 1 lone pairs (B) 8 sigma, 2 pi bond and 2 lone pairs (D) 9 sigma, 2 pi bond and 1 lone pairs 								
	Q.67	The shape of a molecu (A) Octahedral	lle which has 3 bond pair (B) Pyramidal	rs and one lone pair is : (C) Triangular planar	(D) Tetrahedral	PAL				
	Q.68	w hich moiocuio is Tst	naped :			вно				
om		(A) BeF_2	(B) BCl_3	(C) NH_3	(D) ClF_3	- , _				
es.c	Q.69	Maximum s-character	is in bonds formed by ()	atom:		5888				
oclass		(A) $\overset{*}{C}H_4$	(B) $_{XeO_{3}}^{*}$	(C) XeO ₆ ^{4–}	(D) SF ₄	8930 5				
.tek	Q.70	Which of the following		0						
ими		(A) ICl_4^-	(B) I_5^-	(C) BrF_4^-	(D) <i>XeO</i> ₄	0 000,				
ite:	Q.71	A hydrazine molecule i	is split in NH_2^+ and NH_2^-	ions. Which of the follo	wing statements is/are correct f	32 0				
ebsi	~	(A) NH_2^+ shows sp^2 – hybridisation whereas NH_2^- shows sp^3 – hybridisation								
M M	(B) $Al(OH)_4^-$ has a regular tetrahedral geometry									
fro		(C) sp^2 – hybridized orbitals have equal <i>s</i> - and <i>p</i> - character								
age			. Sir)							
ack	Q.72	There is change in the t	type of hybridisation whe	en:		R. K				
ly P		(A) NH_3 combines wi	th H^+	(B) AlH_3 combines with	ith H^-	(s.				
Stud		(C) NH_3 forms NH_2^- (D) SiF_4 forms SiF_6^{2-}								
nload	Q.73	Which of the following statement is/are correct (A) Hybridisation is the mixing of atomic orbitals prior to their combining into molecular orbitals :								
WOC		(B) sp^3d^2 – hybrid or	bitals are at 90° to one a	nother		HAG				
E I		(C) sp^3d – hybrid orbit	tals are directed towards	s the corners of a regular	tetrahedron	: su				
FRF		(D) sp^3d^2 – hybrid ort	bitals are directed toward	ds the corners of a regula	aroctahedron	ctor				
	Q.74	2.74 A σ -bond may between two p_x orbitals containing one unpaired electron each when they								
		(A) x - axis	(B) y - axis	(C) z - axis	(D) any direction	ASSE				
	Q.75	Indicate the wrong stat (A) A sigma bond has n (B) <i>p</i> -orbitals always h (C) <i>s</i> -orbitals never fo (D) There can be more	tement : no free rotation around i nave only sideways over orm π - bonds than one sigma bond be	ts axis lap etween two atoms		TEKO CL				

	Q.76	sp^3 hybridisation is in :				nding
		(A) AlH_4^-	(B) CH_3^-	(C) ClO_2^-	(D) NH_2^-	al Bor
	Q.77	Which of the following	pairs is (are) isostructur	al?		emic
		(A) SF_4 and SiF_4	(B) SF_6 and SiF_6^{2-}	(C) SiF_6^{2-} and SeF_6^{2-}	(D) XeO_6^{4-} and TeF_6^{2-}	28 Ch
	Q.78	Which of the following	has (have) octahedral ge	eometry:		14 of
		(A) $SbCl_6^-$	(B) $SnCl_6^{2-}$	(C) XeF_6	(D) IO_6^{5-}	Page
	Q.79	Shape of NH_3 is very s	similar to :			_
		(A) SeO_3^{2-}	(B) CH_3^-	(C) BH_3	(D) CH_3^+	HOPA
m	Q.80	Which of the following	, have same shape as <i>NI</i>	$H_2^+?$		
ies.co		(A) <i>CO</i> ₂	(B) $SnCl_2$	(C) <i>SO</i> ₂	(D) $BeCl_2$	58881
lass	Q.81	Which of the following	is (are) linear ?			30 1
ekoc		(A) I_3^-	(B) I_3^+	(C) $PbCl_2$	(D) XeF_2	986 (
vw.t	Q.82	Which of the following	species are linear?			ő
ΛM		(A) <i>ICl</i> ²⁻	(B) <i>I</i> ^{3–}	(C) N_3^-	(D) <i>ClO</i> ₂	00 00
ebsite:	Q.83	The structure of XeF_6 (A) pentagonal bipyra	is : nidal (B) distorted octa	hedral (C) capped octa	hedral (D) square pyramidal	5)- 32 0
kage from w	OTHE Q.84	CR FORCES Which of the following (A) metallic bonding (C) non-metallic covak	models best describes t	he bonding within a layer (B) ionic bonding (D) van der Waals forc	r of the graphite structure ?	(. Sir) PH: (07
Pac	Q.85	The critical temperatur	re of water is higher than	that of O_2 because the	H_2O molecule has :	2
Study		(A) fewer electrons that(C) V - shape	$n O_2$	(B) two covalent bond(D) dipole moment	S	RIYA (S
Download	Q.86	Ethanol has a higher bo is due to : (A) resonance	iling point than dimethyl (B) coordinate bonding	ether though they have t g (C) hydrogen bonding	he same molecular weight. This (D) ionic bonding	HAG R. KA
FREE	Q.87	Arrange the following i (I) <i>n</i> -Butane (II) <i>n</i> -I (A) $IV > III > II > I$	in order of decreasing bo Butanol (III) <i>n</i> - (B) <i>IV</i> > <i>II</i> > <i>III</i> > <i>I</i>	iling point : Butyl chloride (IV) Is (C) I > II > III > IV	obutane (D) $II > III > I > IV$	irector : SU
	Q.88	Which of the following HF, CH_3OH, N_2O_4, C	compounds would have H_4	significant intermolecula	ar hydrogen bonding ?	SSES, D
		(A) HF , N_2O_4	(B) HF , CH_4 , CH_3OH	$H(\mathbf{C}) HF, CH_3OH$	(D) CH_3OH, CH_4	CLA
	Q.89	For H_2O_2, H_2S, H_2O_2	and HF, the correct or	der of increasing extent of	of hydrogen bonding is :	OX3.
		(A) $H_2O > HF > H_2O_2$	$_2 > H_2 S$	(B) $H_2O > HF > H_2S$	$>H_2O_2$	-
		(C) $HF > H_2O > H_2O_2$	$_{2} > H_{2}S$	(D) $H_2O_2 > H_2O > HF$	$T > H_2 S$	

(B) iron atoms are more closely packed(D) metallic bonds are stronger in iron	al Bonding
(C) HF (D) CH ₃ COOH	28 Chemic:
: (B) $ClHCl < NHN < OHO < FHF$ (D) $ClHCl < NHN < OHO > FHF$	Page 15 of 2
? (C) $N_2 H_4$ (D) $H_2 S$	DAL
are maximum in (C) LiCl (D) AgBr	1, BHC
ented as: (B) H_{F} H_{F} H_{F}	8930 5888
$(\mathbf{D}) F F F F F$	0 000, 0 9
(B) the weak dispersion interaction between the molecules (D) its strong hydrogen bonding	0755)- 32 0
hat of SiF_4 is - 77° C (it sublimes) because : nic character of the $AI - F$ and $Si - F$ bonds	Sir) PH: (
with the neighbouring F^- ions to give a three dimensional ble	. R. K.
molecule is not shielded effectively from the fluoride ions on all sides	RIYA (S
blecules are strong whereas those between the AIF_3 molecules	G R. KA
and unite to form one cube. Which force is responsible for (B) Covalent attraction	r : SUHA
(D) Dipole-dipole attraction	Directo
(C) Acetaldehyde (D) Phenol	ASSES,
(C) Phosphate groups (D) Deoxyribose groups	TEKO CL

	(A) iron atoms are sma(C) metallic bonds are	aller stronger in sodium	(B) iron atoms are more cle(D) metallic bonds are strong
Q.91	Which one of the follo (A) H ₂ O	wing does not have inter (B) <i>o</i> -nitro phenol	molecular H-bonding? (C) HF (D)
Q.92	The order of strength (A) <i>ClHCl</i> > <i>NHN</i> (C) <i>ClHCl</i> < <i>NHN</i>	of hydrogen bonds is: > OHO > FHF V > OHO > FHF	 (B) ClHCl < NHN < O. (D) ClHCl < NHN < O.
Q.93	Which of the following (A) CH ₄	exhibit/s H-bonding? (B) H ₂ Se	(C) $N_2 H_4$ (D)
Q.94	Among the following, (A) HBr	van der Waals forces are (B) LiBr	maximum in (C) LiCl (D)
Q.95	The <i>H</i> bond in solid <i>H</i>	F can be best represente	ed as:
	(A) $H - F \dots H - F \dots H$	H - F	(B) H_{F}
	$(C) \stackrel{H}{\longrightarrow} \stackrel{F}{\longrightarrow} H$	H ^{F.} H	(D) F F F F F
Q.96	The volatility of <i>HF</i> is (A) its low polarizabilit (C) its small molecular	low because of : y (B) mass (D)	the weak dispersion interact its strong hydrogen bonding
Q.9/	The melting point of A	A/F_3 is 104° C and that c	of SiF_4 is - //° C (it sublimes character of the AL = E and
	(B) in AlF_3 , Al^{3+} interstructure but in SiF_4 n	e unreference in the folia eracts very strongly with o interaction is possible	the neighbouring F^- ions t
	(C) the silicon ion in t	he tetrahedral SiF_4 mol	ecule is not shielded effective
	whereas in AlF_3 , the	Al^{3+} ion is shielded on a	ll sides
	(D) the attractive forces are weak	between the SiF_4 molecular	ules are strong whereas those b
Q.98	Two ice cubes are pre holding them together	ssed over each other and	l unite to form one cube. Wh
	(A) van der Waal's for (C) Hydrogen bond fo	rmation	(B) Covalent attraction (D) Dipole-dipole attraction

Iron is harder than sodium because

Q.90

FREE Download Study Package from website: www.tekoclasses.com

(B) Covalent attraction (D) Dipole-dipole attraction

Q.99 Intramolecular hydrogen bonding is found in : (A) Salicylaldehyde (B) Water

Q.100 The pairs of bases in DNA are held together by : (C) Phosphate groups (D) (A) Hydrogen bonds (B) Ionic bonds Q.101 In dry ice there are : (A) Ionic bond (B) Covalent bond (C) Hydrogen bond (D) None of these

	Q.102	OH CHO (A) has intermolecular l	H - bonding	(B) has intramolecular	H- bonding	Chemical Bonding					
		(C) has low boiling point	nt	(D) is steam-volatile		of 28					
	Q.103	3 Which of the following bonds/forces is/are weakest?(A) covalent bond(B) vander Waals force (C) hydrogen bond(D) london force									
	Q.104	Compare O–O bond er	hergy among O_2 , H_2O_2	and O_3 with reasons.		Ł					
com	Q.105	05Which of the following is/are observed in metallic bonds ?(A) Mobile valence electrons(B) Overlapping valence orbitals(C) Highly directed bond(D) Delocalized electrons									
.tekoclasses.	Q.106	 Which of the following factors are responsible for van der Waals forces ? (A) Instantaneous dipole-induced dipole interaction (B) Dipole-induced dipole interaction and ion-induced dipole interaction (C) Dipole-dipole interaction and ion-induced dipole interaction (D) Small size of molecula 									
website: www	Q.107	Which of the following are true ? (A) Van der Waals forces are responsible for the formation of molecular crystals (B) Branching lowers the boiling points of isomeric organic compounds due to van der Waals forces of attraction (C) In graphite, van der Waals forces act between the carbon layers (D) In diamond, van der Waals forces act between the carbon layers									
Package from	Q.108	 108 Intermolecular hydrogen bonding increases the enthalpy of vapourization of a liquid due to the: (A) decrease in the attraction between molecules (B) increase in the attraction between molecules (C) decrease in the molar mass of unassociated liquid molecules (D) increase in the effective molar mass of hydrogen - bonded molecules 									
udy	Q.109	Which of the following	molecules have intermo	blecular hydrogen bonds	?	YA (S					
ad Si		(A) KH_2PO_4	(B) H_3BO_3	(C) $C_6H_5CO_2H$	(D) <i>CH</i> ₃ <i>OH</i>	KAR					
E Downlo	Q.110	Which of the following (A) nitrobenzene (C) <i>m</i> -dichlorobenzene	have dipole moment ?	(B) <i>p</i> -chloronitrobenzene (D) <i>o</i> -dichlorobenzene	ne	SUHAG R.					
FRE	Q.111	In which of the following compounds, breaking of covalent bond takes place? (A) Boiling of H_2O (B) Melting of KCN (C) Boiling of CF_4 (D) Melting of SiO_2									
	MISCI	ELLEANEOUS	- 1	1, . ,.		ES, D					
	Q.112	Among KO_2 , AlO_2^- , Ba	$(O_2 \text{ and } NO_2^+ \text{ unpaired})$	electron is present in : (C) KO and AIO^{-}	(D) $R_{a}O$ only	-ASSI					
		(11) KO ₂ Olly	(D) WO_2 and BuO_2	(C) AO_2 and AO_2	$(D) DuO_2$ Only	to cl					
	Q.113	Cyanogen, $(CN)_2$, has (A) Linear	a shape/structure (B) Zig-zag	: (C) Square	(D) Cyclic	TEK					

Which of the following statements are correct? (A) The crystal lattice of ice is mostly formed by covalent as well as hydrogen bonds (B) The density of water increases when heated from 0° C to 4° C due to the change in the structure of a Q.126 Which of the following statements are correct? the cluster of water molecules (C) Above 4° C the thermal agitation of water molecules increases. Therefore, intermolecular distance increases and water starts expanding (D) The density of water increases from 0° C to a maximum at 4° C because the entropy of the system increases **S** ANGLES & BOND LENGTH The correct order of increasing X - O - X bond angle is (X = H, F or Cl): (A) $H_2O > Cl_2O > F_2O$ (B) $Cl_2O > H_3O > F_3O$ **BONDS ANGLES & BOND LENGTH** Q.127 The correct order of increasing X - Q - X bond angle is (X = H, F or Cl): (C) $F_2O > Cl_2O > H_2O$ (D) $F_2O > H_2O > Cl_2O$ 0 98930 58881, BHOPAL Q.128 Which of the following is true? (A) Bond order $\propto \frac{1}{\text{bond length}} \propto \text{bond energy}$ (B) Bond order $\propto \text{bond length} \propto \frac{1}{\text{bond energy}}$ FREE Download Study Package from website: www.tekoclasses.com (C) Bond order $\propto \frac{1}{\text{bond length}} \propto \frac{1}{\text{bond energy}}$ (D) Bond order \propto bond length \propto bond energy Q.129 Which of the following has been arranged in order of decreasing bond length? (A) P - O > Cl - O > S - O(B) P - O > S - O > Cl - OTEKO CLASSES, Director : SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 00 000, (C) S - O > Cl - O > P - O(D) Cl - O > S - O > P - OQ.130 If a molecule MX_3 has zero dipole moment, the sigma bonding orbitals used by M (atm. no. < 21) are (C) sp^2 hybrid (D) sp^3 hybrid (A) pure p (B) sp hybrid Q.131 How many sigma and pi bonds are present in tetracyanoethylene? (A) Nine σ and nine π (B) Five π and nine σ (C) Nine σ and seven π (D) Eight σ and eight π Q.132 Among the following species, which has the minimum bond length? $(\mathbf{B}) C_{2}$ (C) F_2 (A) B_2 (D) O_2^- Q.133 Which has higher bond energy: (A) F_2 (B) Cl_2 (C) Br_2 (D) *I*₂ Q.134 The bond angle in PH_3 is : (A) Much lesser than NH_3 (B) Equal to that in NH_3 (C) Much greater than in NH_3 (D) Slightly more than in NH_3 Q.135 H-B-H bond angle in BH_4^- is : (A) 180° (B) 120° (C) 109° (D) 90° Q.136 In the series ethane, ethylene and acetylene, the C - H bond energy is : (A) The same in all the three compounds (B) Greatest in ethane (C) Greatest in ethylene (D) Greatest in acetylene Q.137 Which one of the following compounds has bond angle as nearly 90°? (C) *H*₂*O* (A) NH_3 (B) *H*₂*S* (D) SF_6

	Q.138	State whether each statement is true or false. If false, write the correct statement.	ing
	(i)	The polarising power of a cation is directly proportional to its charge.	ondi
	(ii)	The polarising power of a cation is directly proportional to its size.	l B
	(iii)	The polarisability of an anion is directly proportional to its charge.	micɛ
	(iv)	The polarisability of an anion is directly proportional to its size.	her
	(v)	For a given anion, greater the polarising power of the cation, more the ionic character.	80
	(vi)	For a given cation, greater the polarisability of the anion, more the covalent character.	of 2
	(vii)	An element with low ionization potential is most likely to form a covalent bond with an other element	19
		having a high electron affinity.	age
	(viii)	Ionic interactions are stronger than covalent bonds.	
	(ix)	Two non-metal atoms are likely to form covalent bonds on combination.	
	(x)	Ionic interactions are directional.	AL
			Ō
	Q.139	State whether each statements is T or F, if F rectify.	Ш
Om	(i)	All diatomic molecules are non-polar.	-
S.C	(ii)	All molecules having polar bonds are polar (i.e., have a net dipole)	è8
Se	(iii)	The lone pairs of electrons do not contribute to the net dipole of a molecule.	58
las	(iv)	The CH_2Cl_2 molecule may be polar or nonpolar depending on its geometry.	30
NO NO NO NO NO NO NO NO NO NO NO NO NO N	(v)	The net dipole in the water molecule is the resultant of its bond dipoles.	986
tel	(vi)	SO_2 is polar whereas CO_2 is non-polar.	0
Ŵ.	(vii)	NH_3 is less polar than NF_3	ò
M	(viii)	If all bonds in a molecule are polar, the molecule as a whole must be polar.	8
			8
••	0 1 10		-
ite:	Q.140	Fill in the blanks.	32 (
ebsite:	Q.140 (i)	Fill in the blanks. π -bonds are formed by the lateral overlap of a p-orbital with another orbital.	5)- 32 (
website:	Q.140 (i) (ii)	Fill in the blanks. π -bonds are formed by the lateral overlap of a p-orbital with another orbital. Free rotation is possible if two atoms are bonded together only by a bond.	0755)- 32 (
om website:	Q.140 (i) (ii) (iii)	Fill in the blanks. π -bonds are formed by the lateral overlap of a p-orbital with another orbital. Free rotation is possible if two atoms are bonded together only by a bond. The maximum number of σ bonds that can be formed between two atoms is	H: (0755)- 32 (
from website:	Q.140 (i) (ii) (iii) (iv)	Fill in the blanks. π -bonds are formed by the lateral overlap of a p-orbital with another orbital. Free rotation is possible if two atoms are bonded together only by a bond. The maximum number of σ bonds that can be formed between two atoms is The repulsion between is greater than the repulsion between two bonded pairs	PH: (0755)- 32 (
ge from website:	Q.140 (i) (ii) (iii) (iv) (v)	Fill in the blanks. π -bonds are formed by the lateral overlap of a p-orbital with another orbital. Free rotation is possible if two atoms are bonded together only by a bond. The maximum number of σ bonds that can be formed between two atoms is The repulsion between is greater than the repulsion between two bonded pairs A lone pair is polarisable compared to a σ bonded pair which in turn is	Sir) PH: (0755)- 32 (
kage from website:	Q.140 (i) (ii) (iii) (iv) (v) (v)	Fill in the blanks. π -bonds are formed by the lateral overlap of a p-orbital with another orbital. Free rotation is possible if two atoms are bonded together only by a bond. The maximum number of σ bonds that can be formed between two atoms is The repulsion between is greater than the repulsion between two bonded pairs A lone pair is polarisable compared to a σ bonded pair which in turn is polarisable compared to a π - bonded pair.	K. Sir) PH: (0755)- 32 (
Package from website:	Q.140 (i) (ii) (iii) (iv) (v) (v) (vi)	Fill in the blanks. π -bonds are formed by the lateral overlap of a p-orbital with another orbital. Free rotation is possible if two atoms are bonded together only by a bond. The maximum number of σ bonds that can be formed between two atoms is The repulsion between is greater than the repulsion between two bonded pairs A lone pair is polarisable compared to a σ bonded pair which in turn is polarisable compared to a π - bonded pair. In nitro benzene the total number of bonded electrons equals	R. K. Sir) PH: (0755)- 32 (
ly Package from website:	Q.140 (i) (ii) (iii) (iv) (v) (v) (vi)	Fill in the blanks. π -bonds are formed by the lateral overlap of a p-orbital with another orbital. Free rotation is possible if two atoms are bonded together only by a bond. The maximum number of σ bonds that can be formed between two atoms is The repulsion between is greater than the repulsion between two bonded pairs A lone pair is polarisable compared to a σ bonded pair which in turn is polarisable compared to a π - bonded pair. In nitro benzene the total number of bonded electrons equals	(S. R. K. Sir) PH: (0755)- 32 (
tudy Package from website:	Q.140 (i) (ii) (iii) (iv) (v) (v) (vi)	Fill in the blanks. π -bonds are formed by the lateral overlap of a p-orbital with another orbital. Free rotation is possible if two atoms are bonded together only by a bond. The maximum number of σ bonds that can be formed between two atoms is The repulsion between is greater than the repulsion between two bonded pairs A lone pair is polarisable compared to a σ bonded pair which in turn is polarisable compared to a π - bonded pair. In nitro benzene the total number of bonded electrons equals	YA (S. R. K. Sir) PH: (0755)- 32 (
l Study Package from website:	Q.140 (i) (ii) (iii) (iv) (v) (v) (vi) Q.141	Fill in the blanks. π -bonds are formed by the lateral overlap of a p-orbital with another orbital. Free rotation is possible if two atoms are bonded together only by a bond. The maximum number of σ bonds that can be formed between two atoms is The repulsion between is greater than the repulsion between two bonded pairs A lone pair is polarisable compared to a σ bonded pair which in turn is polarisable compared to a π - bonded pair. In nitro benzene the total number of bonded electrons equals $AgNO_3$ gives a white precipitate with <i>NaCl</i> but not with <i>CCl</i> ₄ . Why ?	ARIYA (S. R. K. Sir) PH: (0755)- 32 (
oad Study Package from website:	Q.140 (i) (ii) (iii) (iv) (v) (v) (vi) Q.141	Fill in the blanks. π -bonds are formed by the lateral overlap of a p-orbital with another orbital. Free rotation is possible if two atoms are bonded together only by a bond. The maximum number of σ bonds that can be formed between two atoms is The repulsion between is greater than the repulsion between two bonded pairs A lone pair is polarisable compared to a σ bonded pair which in turn is polarisable compared to a π - bonded pair. In nitro benzene the total number of bonded electrons equals $AgNO_3$ gives a white precipitate with <i>NaCl</i> but not with <i>CCl</i> ₄ . Why ?	KARIYA (S. R. K. Sir) PH: (0755)- 32 (
rnload Study Package from website:	Q.140 (i) (ii) (iii) (iv) (v) (v) (vi) Q.141	Fill in the blanks. π -bonds are formed by the lateral overlap of a p-orbital with another orbital. Free rotation is possible if two atoms are bonded together only by a bond. The maximum number of σ bonds that can be formed between two atoms is The repulsion between is greater than the repulsion between two bonded pairs A lone pair is polarisable compared to a σ bonded pair which in turn is polarisable compared to a π - bonded pair. In nitro benzene the total number of bonded electrons equals $AgNO_3$ gives a white precipitate with <i>NaCl</i> but not with <i>CCl</i> ₄ . Why ?	i R. KARIYA (S. R. K. Sir) PH: (0755)- 32 (
ownload Study Package from website:	Q.140 (i) (ii) (iv) (v) (v) (vi) Q.141 Q.142	Fill in the blanks. π -bonds are formed by the lateral overlap of a p-orbital with another orbital. Free rotation is possible if two atoms are bonded together only by a bond. The maximum number of σ bonds that can be formed between two atoms is The repulsion between is greater than the repulsion between two bonded pairs A lone pair is polarisable compared to a σ bonded pair which in turn is polarisable compared to a π - bonded pair. In nitro benzene the total number of bonded electrons equals $AgNO_3$ gives a white precipitate with $NaCl$ but not with CCl_4 . Why ? Using VSEPR theory identify the type of hybridisation and draw the structure of OF_2 .	IAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 (
Download Study Package from website:	Q.140 (i) (ii) (iii) (iv) (v) (vi) Q.141 Q.142	Fill in the blanks. π -bonds are formed by the lateral overlap of a p-orbital with another orbital. Free rotation is possible if two atoms are bonded together only by a bond. The maximum number of σ bonds that can be formed between two atoms is The repulsion between is greater than the repulsion between two bonded pairs A lone pair is polarisable compared to a σ bonded pair which in turn is polarisable compared to a π - bonded pair. In nitro benzene the total number of bonded electrons equals A_{gNO_3} gives a white precipitate with <i>NaCl</i> but not with <i>CCl</i> ₄ . Why ? Using <i>VSEPR</i> theory identify the type of hybridisation and draw the structure of OF_2 .	iuhag R. Kariya (S. R. K. Sir) PH: (0755)- 32 (
EE Download Study Package from website:	Q.140 (i) (ii) (iii) (iv) (v) (v) (vi) Q.141 Q.142	Fill in the blanks. π -bonds are formed by the lateral overlap of a p-orbital with another orbital. Free rotation is possible if two atoms are bonded together only by a bond. The maximum number of σ bonds that can be formed between two atoms is The repulsion between is greater than the repulsion between two bonded pairs A lone pair is polarisable compared to a σ bonded pair which in turn is polarisable compared to a π - bonded pair. In nitro benzene the total number of bonded electrons equals A_{gNO_3} gives a white precipitate with <i>NaCl</i> but not with CCl_4 . Why ? Using <i>VSEPR</i> theory identify the type of hybridisation and draw the structure of OF_2 .	· : SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 (
FREE Download Study Package from website:	Q.140 (i) (ii) (iv) (v) (v) (vi) Q.141 Q.142 Q.143	Fill in the blanks. π -bonds are formed by the lateral overlap of a p-orbital with another orbital. Free rotation is possible if two atoms are bonded together only by a bond. The maximum number of σ bonds that can be formed between two atoms is The repulsion between is greater than the repulsion between two bonded pairs A lone pair is polarisable compared to a σ bonded pair which in turn is polarisable compared to a π - bonded pair. In nitro benzene the total number of bonded electrons equals A_{gNO_3} gives a white precipitate with <i>NaCl</i> but not with <i>CCl</i> ₄ . Why ? Using <i>VSEPR</i> theory identify the type of hybridisation and draw the structure of OF_2 . What should be the structure of the following as per <i>VSEPR</i> theory ? (a) Y_{2E} (b) Y_{2E} (c) <i>PBr</i> (d) <i>OE</i> (e) <i>I</i> and (f) <i>I</i>	:tor : SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 (
FREE Download Study Package from website:	Q.140 (i) (ii) (iii) (iv) (v) (vi) Q.141 Q.142 Q.143	Fill in the blanks. π -bonds are formed by the lateral overlap of a p-orbital with another orbital. Free rotation is possible if two atoms are bonded together only by a bond. The maximum number of σ bonds that can be formed between two atoms is The repulsion between is greater than the repulsion between two bonded pairs A lone pair is polarisable compared to a σ bonded pair which in turn is polarisable compared to a π - bonded pair. In nitro benzene the total number of bonded electrons equals $AgNO_3$ gives a white precipitate with <i>NaCl</i> but not with <i>CCl</i> ₄ . Why ? Using <i>VSEPR</i> theory identify the type of hybridisation and draw the structure of OF_2 . What should be the structure of the following as per <i>VSEPR</i> theory ? (a) XeF_2 (b) XeF_4 (c) PBr_5 (d) OF_2 (e) I_3^- and (f) I_3^+	irector : SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 (
FREE Download Study Package from website:	Q.140 (i) (ii) (iii) (iv) (v) (vi) Q.141 Q.142 Q.143	Fill in the blanks. π -bonds are formed by the lateral overlap of a p-orbital with another orbital. Free rotation is possible if two atoms are bonded together only by a bond. The maximum number of σ bonds that can be formed between two atoms is The repulsion between is greater than the repulsion between two bonded pairs A lone pair is polarisable compared to a σ bonded pair which in turn is polarisable compared to a π - bonded pair. In nitro benzene the total number of bonded electrons equals $AgNO_3$ gives a white precipitate with <i>NaCl</i> but not with CCl_4 . Why ? Using <i>VSEPR</i> theory identify the type of hybridisation and draw the structure of OF_2 . What should be the structure of the following as per <i>VSEPR</i> theory ? (a) XeF_2 (b) XeF_4 (c) PBr_5 (d) OF_2 (e) I_3^- and (f) I_3^+	, Director : SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 (
FREE Download Study Package from website:	Q.140 (i) (ii) (iii) (iv) (v) (vi) Q.141 Q.142 Q.143	Fill in the blanks. π -bonds are formed by the lateral overlap of a p-orbital with another orbital. Free rotation is possible if two atoms are bonded together only by a bond. The maximum number of σ bonds that can be formed between two atoms is The repulsion between is greater than the repulsion between two bonded pairs A lone pair is polarisable compared to a σ bonded pair which in turn is polarisable compared to a π - bonded pair. In nitro benzene the total number of bonded electrons equals $AgNO_3$ gives a white precipitate with <i>NaCl</i> but not with CCl_4 . Why ? Using <i>VSEPR</i> theory identify the type of hybridisation and draw the structure of OF_2 . What should be the structure of the following as per <i>VSEPR</i> theory ? (a) XeF_2 (b) XeF_4 (c) PBr_5 (d) OF_2 (e) I_3^- and (f) I_3^+ The percent ionic character in HCl is 18.08. The observed dipole moment is 1.08.D. Find the inter-nuclear	ES, Director : SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 (
FREE Download Study Package from website:	Q.140 (i) (ii) (iii) (iv) (v) (vi) Q.141 Q.142 Q.143 Q.144	Fill in the blanks. π -bonds are formed by the lateral overlap of a p-orbital with another orbital. Free rotation is possible if two atoms are bonded together only by a bond. The maximum number of σ bonds that can be formed between two atoms is The repulsion between is greater than the repulsion between two bonded pairs A lone pair is polarisable compared to a σ bonded pair which in turn is polarisable compared to a π - bonded pair. In nitro benzene the total number of bonded electrons equals $AgNO_3$ gives a white precipitate with <i>NaCl</i> but not with CCl_4 . Why ? Using <i>VSEPR</i> theory identify the type of hybridisation and draw the structure of OF_2 . What should be the structure of the following as per <i>VSEPR</i> theory ? (a) XeF_2 (b) XeF_4 (c) PBr_5 (d) OF_2 (e) I_3^- and (f) I_3^+ The percent ionic character in <i>HCl</i> is 18.08. The observed dipole moment is 1.08 <i>D</i> . Find the inter-nuclear distance in <i>HCl</i>	3SSES, Director : SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 (

Q.145 In the hydrides of group VI elements the central atoms involve sp^3 hybridisation but the bond angles decrease in the order, H_2O , H_2S , H_2Si , H_2Te . How would you account for this ?

- Q.146 Assuming that all the four valency of carbon atom in propane pointing towards the corners of a regular for tetrahedron. Calculate the distance between the terminal carbon atoms in propane. Given, *C C* single bond length is 1.54 Å.
 Q.147 The dipole moment of *HBr* is 7.95 debye and the intermolecular separation is 1.94×10⁻¹⁰ m Find the % ionic character in *HBr* molecule.
- Q.148 *HBr* has dipole moment 2.6×10^{-30} cm. If the ionic character of the bond is 11.5 %, calculate the
- Q.148 *HDF* has upped inoment 2.6×10 *Cm*. If the folic character of the bond is 11.5 *b*, calculate the interatomic spacing.
 Q.149 Dipole moment of *LiF* was experimentally determined and was found to be 6.32 *D*. Calculate percentage ionic character in *LiF* molecule *Li F* bond length is 0.156 pm.
 Q.150 A diatomic molecule has a dipole moment of 1.2 *D*. If bond length is 1.0 Å, what percentage of an electronic charge exists on each atom.

TEKO CLASSES, Director : SUHAG R. KARIYA (S. R. K. Sir) PH: (0755)- 32 00 000,

		<u>EXER</u>	<u>CISE - II</u>					
Q.1	The bond between of	carbon atom(1) & ca	correct answer). rbon atom(2) in comp	oound				
	$N \equiv C - C H = C H_2$ in	nvolves the hybrids as	5:		[JEE '87]			
	(A) $sp^2 \& sp^2$	(B) $sp^3 \& sp$	(C) sp & sp^2	(D) sp & sp				
Q.2	Hydrogen bonding is (A) Ethanol	maximum in (B) Diethylether	(C) Ethyl chloride	(D) Triethyla	[JEE '87] mine			
Q.3	The species which t (A) PH ₃	he central atom uses (B) NH ₃	sp ² hybrid orbitals in (C) CH ₃ ⁺	its bonding is (D) SbH ₃	[JEE '88]			
Q.4	The molecule that has (A) CO ₂	as linear stucture is (B) NO ₂	(C) SO ₂	(D) SiO ₂	[JEE '88]			
Q.5	The compound which (A) CH_2Cl_2	(D) ClO ₂	[JEE '89]					
Q.6	Which of the following is paramagnetic (A) O_2^{-} (B) CN^{-} (C) CO (D) NO ⁺							
Q.7	The molecule which (A) PCl ₃	has pyramidal shape (B) SO ₃	is (C) CO ₃ ²⁻	(D) NO ₃ ⁻	[JEE '89]			
Q.8	The compound in w (A) $H COOH$	which C uses its sp ³ h (B) $(H_2N)CO$	ybrid orbitals for bond (C) $(CH_3)_3 COH$	l formation is : (D) _{CH3} CH0	[JEE '89] 0			
Q.9	The C - H bond dist (A) C_2H_2	ance is the longest in (B) C ₂ H ₄	(C) C ₂ H ₆	(D) C_2H_2Br	[JEE '89]			
Q.10	Which one of the fo (A) N ^{3–}	llowing is the smalles (B) O ^{2–}	t in size (C) F ⁻	(D) Na ⁺	[JEE '89]			
Q.11	The number of sigma and pi bonds in 1-butene-3-yne are(A) 5 sigma 5 pi(B) 7 sigma 3 pi(C) 8 sigma 2 pi(D) 6 sigma 4							
Q.12	Amongst the followi (A) [Ne] $3 s^2 3 p^1$	ng the one having hig (B) [Ne] $3 s^2 3 p^3$	hest I.E. is (C) [Ne] $3 s^2 3 p^2$	(D) [Ar] 3 d	[JEE '90] ° 4 s ² 4 p ³			
Q.13	The hybridisation of C atoms in C - C single bond of $HC \equiv C - CH = CH_2$ is (A) $sp^3 - sp^3$ (B) $sp^2 - sp^3$ (C) $sp - sp^2$ (D) $sp^3 - sp^3$							
Q.14	The type of hybrid (A) sp ³	orbitals used by the orbitals (B) sp ²	chlorine atom in ClO ₂ (C) sp	is (D) none	[JEE '92]			
Q.15	The CN^- & N_2 are (A) Low bond energy (B) Absence of bond (C) Unsymmetrical e (D) Presence of more	isoelectronic. But in gy d polarity lectron distribution re number of electron	contrast to CN^- , N_2 in bonding orbitals	is chemically in	nert because [JEE '92]			

	Q.16	The maximum possil (A) 2	ble number of hydroge (B) 4	en bonds a water mole (C) 3	cule can form (D) 1	is [JEE '92]	3 onding			
	Q.17	Pick out the isoelectron I. CH_3^+ II. H_3^+ (A) I and II	(D) II, III and	[JEE '93] IV	28 Chemical H					
	Q.18	The number of electro (A) 7	ns that are paired in oxyg (B) 8	gen molecule is (C) 16	(D) 14	[JEE '95]	Page 22 of 2			
	Q.19	Allyl isocyanide has (A) 9s, 4p bonds (C) 8s, 5p bonds	(B) 9s, 3p bonds and 2 (D) 8s, 3p bonds and 4	2 non-bonding e 4 non- bonding e	[JEE '95] lectrons electrons	BHOPAL				
com	Q.20	The order of increasin	g thermal stabilities of 1	$K_2CO_3(I), MgCO_3(II),$	CaCO ₃ (III), B	aCO ₃ (IV) is	81,1			
ISSES.		(A) II < III < IV < I	(B) IV < II < III < I	(C) IV < II < I < III	(D) II < IV < I	[JEE 90] III < I	0 588			
v.tekocla	Q.21	.21 Identify isostructural pairs from $NF_3(I)$, $NO_3^-(II)$, $BF_3(III)$, $H_3O^+(IV)$, $HN_3(V)$ [JF (A) I & II, III & IV (B) I & V, II & III (C) I & IV, II & III (D) I & IV, III & V								
e: www	Q.22	(i)The number and t (A) 1 sigma 1 pi	ype of bonds between (B) 1 sigma 2 pi	n two C - atom in CaC (C) 1 sigma , ½ pi	C ₂ are (D) 1 sigma	[JEE '96]	2 00 000,			
om website	Q.23	 Which is correct for CsBr₃? (A) it is a covalent compound (C) it contains Cs⁺ & Br₃⁻ ions (B) it contains Cs³⁺ & Br⁻ ions (D) it contains Cs⁺, Br⁻ & lattice F 								
ickage fro	Q.24	Among KO_2 , AlO_2^- (A) NO_2^+ & BaO_2^-	$\begin{array}{c} BaO_2 \& NO_2^+ \text{ unpair } \\ (B) KO_2 \& AlO_2^- \end{array}$	ired electron is presen (C) KO ₂ only	t in (D) BaO ₂ only	[JEE '97] y	. K. Sir) PF			
tudy Pa	Q.25	Which of the following $(A) Mg^{2+}$	g has maximum number of (B) Ti ³⁺	of unpaired electrons? (C) V ³⁺	(D) Fe ²⁺	[JEE '96]	IYA (S. R.			
vnload S	Q.26	KF combines with HF (A) K ⁺ , F ⁻ and H ⁺	[JEE '97] nd F ⁻	G R. KARI						
REE Dov	Q.27	7 Among the following compounds the one that is polar and has the central atom v hybridisation is $(A) H_2CO_3$ (B) SiF ₄ (C) BF ₃ (D) HClO ₂								
H	Q.28	Which contains both (A) NH ₄ Cl	polar & non polar cov (B) HCN	valent bonds (C) H ₂ O ₂	(D) CH ₄	[JEE '97]	ES, Direc			
	Q.29	The type of hybrid orbitals used by the chlorine atom in ClO_3^{-1} is (A) sp ³ (B) sp ³ d (C) sp ³ d ² (D) sp ²								
	Q.30	Hybridisation seen in c (A) sp ³ d	cation of solid PCl ₅ (B) sp ³	(C) sp^3d^2	(D) sp	[JEE '97]	TEK			

	Q.44	The hybridization of	[JEE 2000]	ding							
		(A) sp^2 , sp^3 and sp^2	respectively	(B) sp, sp ² and sp ³ (D) sp^2 sp^3 and sp	respectively		al Bor				
		(C) sp ² , sp and sp ³ I	espectively	(D) sp ² , sp ³ and sp	respectively		emic				
	Q.45	Specify the coordina	tion geometry around a	and hybridization of N and	d B atoms in a 1 : 1	complex of BF_3	28 Ch				
		(A) N : tetrahedral,	sp ³ ; B : tetrahedral, sp	3 (B) N : pyramidal, s	sp ³ ; B : pyramidal	sp^3	4 of				
		(C) N : pyramidal, s	p^3 ; B : planar, sp^2	(D) N : pyramidal,	sp ³ ; B : tetrahedra	l, sp^3	1ge 2				
	0.46	The nodel plane in the	$ha \pi$ hand of others is	lo astad in		[IEE 2002]	ď				
	Q.40	(A) the molecular plane	[JEE 2002]	_							
		(B) a plane parallel t	o the molecular plane				DPAI				
		(C) a plane perpendi	cular to the molecular p	lane which bisects, the ca	arbon-carbon σ bo	nd at right angle.	BHG				
om		(D) a plane perpendi	cular to the molecular	plane which contains, the	e carbon-carbon b	oond.	.				
ses.c	Q.47	Which of the followi	ng molecular species ha	as unpaired electron(s)?		[JEE 2002]	5888				
ekoclass		(A) N ₂	$(\mathbf{B})\mathbf{F}_2$	(C) O_{2}^{-}	(D) O_2^{2-}		930				
				-	-		80 6				
w.te	Q.48	Which of the followi	ng are isoelectronic and	d isostructural ? NO_3^- , C	$O_{3}^{2-}, ClO_{3}^{-}, SO_{3}$	[JEE 2003]	o Ś				
ΜM		(A) $NO^{-} CO^{2-}$	(\mathbf{D}) SO NO ⁻	$(C) C (O^{-} C O^{2-})$	$(D) CO^{2-} S(C)$		000				
		$(A) \operatorname{NO}_3, \operatorname{CO}_3$	(b) SO_3 , NO_3	$(C) ClO_3, CO_3$	$(D) CO_3, SC$	U ₃	8				
osite	0.49	Which species has th	e maximum number of	flone pair of electrons or	the central atom?	? LIEE 20051	- 33				
weł		(A) ClO_3^-	(B) XeF ₄	(C) SF ₄	(D) I_3^{-}	10	755				
m							0) #				
fr	Fill in	the blanks.				$[12 \times 2 = 24]$	i di ci				
age	Q.1	Silver chloride is s	paringly soluble in w	ater because its lattice	energy is greate	r than	. Sir				
ack	0.2	phosphorous is reactive because of its highly strained tetrahedral structure. [JEE '87]									
V V	Q.3	The shape of CH_3^+	[JEE '90]	(s. I							
tud	Q.4	The valence atomic	[JEE '90]	Υ							
d S	Q.5	Amongst the three is	[JEE '94]	ARI							
lloa	Q.6	The kind of deloca	[JEE '94]	ц Х							
IM	Q.7	The two types of	·	[JEE '94]	AG -						
Ď	Q.8	When N_2 goes to	, the O - O bond	H D							
EE		distance	-•			[JEE '96]	S.:				
FR	Q.9	Among N_2O , SO_2	$, I_3^+ \& I_3^-, \text{ the linear }$	ar species are	&	[JEE '97]	cto				
	Q.10	Among PCl_3 , CH_3	$^{+}, \mathrm{NH}_{2}^{-} \& \mathrm{NF}_{3}, _$	is least relative t	owards water.	[JEE '97]	Dire				
	Q.11	Ine P - P - P angle	In P_4 molecule is		$a Dh^{2+}$ The i	[JEE '9/]					
	Q.12	compounds that f	ormally contain Pb ⁺⁺	are easily reduced to	o PD ² '. The sta	IDIIITY OF lower	SSE				
		origation state is u				[זי יוטון	CLA				
							9				
							х Ш				

	State v	whether true or false.	$[16 \times 2 = 32]$
	Q.1	In benzene carbon uses all the three p-orbitals for hybridisation.	[JEE '87]
	Q.2	sp ² hybrid orbitals have equal S & P character .	[JEE '87]
	Q.3	In group I A of alkali metals, the ionisation potential decreases down the group. This a poor reducing agent .	erefore lithium
	Q.4	All the Al-Cl bond in Al_2Cl_6 are equivalent .	[JEE '88]
	Q.5	Both potassium ferrocyanide & potassium ferricyanide are diamagnetic.	[JEE '88] v
	Q.6	The presence of polar bonds in a polyatomic molecule suggests that the molecule dipole moment .	has non - zero
	Q.7	Nitric oxide, though an odd electron molecule, is diamagnetic in liquid state.	[JEE '91]
	Q.8	The decreasing order of EA of F, Cl, Br is $F > Cl > Br$.	[JEE '93]
	Q.9	Diamond is harder than graphite .	[JEE '93]
я	Q.10	The basic nature of hydroxides of group 13 (III B) decreases progressively down	the group.
[0]			[JEE '93]
ses.	Q.11	The tendency for catenation is much higher for C than Si.	[JEE '93]
las	Q.12	The dipolemoment of CH_3F is greater than CH_3Cl .	[JEE '93]
koc	Q.13	HBr is stronger acid than HI because of H-bonding.	[JEE '97]
v.te]	Q.14	F atom has less negative E A than Cl atom.	[JEE '97] •
MM	Q.15	LiCl is predominantly a covalent compound.	[JEE '97] g
A	Q.16	$Al(OH)_3$ is amphoteric in nature.	[JEE '97]
te:			
bsi			
websi	Explai	n the following.	$[10 \times 3 = 30]$
om websi	Explai Q.1	n the following. Explain the molecule of magnesium chloride is linear whereas that of stannous chloride is	$[10 \times 3 = 30]$ sangular.
e from websi	Explai Q.1	n the following. Explain the molecule of magnesium chloride is linear whereas that of stannous chloride is	[10 × 3 = 30] angular. [JEE '87]
ickage from websi	Explai Q.1 Q.2	n the following. Explain the molecule of magnesium chloride is linear whereas that of stannous chloride is Give reason carbon oxygen bond lengths in formic acid are 1.23 A° & 1.36 A° carbon oxygen bonds in sodium formate have the same value i.e. 1.27 A°.	$[10 \times 3 = 30]$ sangular. [JEE '87] and both the [JEE '88]
Package from websi	Explai Q.1 Q.2 Q.3	n the following. Explain the molecule of magnesium chloride is linear whereas that of stannous chloride is Give reason carbon oxygen bond lengths in formic acid are 1.23 A° & 1.36 A° carbon oxygen bonds in sodium formate have the same value i.e. 1.27 A°. Give reason that valency of oxygen is generally two whereas sulphur shows of 2, 4, &	$[10 \times 3 = 30]$ sangular. [JEE '87] and both the [JEE '88] & 6. $[JEE '88]$
Study Package from websi	Explai Q.1 Q.2 Q.3 Q.4	n the following. Explain the molecule of magnesium chloride is linear whereas that of stannous chloride is Give reason carbon oxygen bond lengths in formic acid are $1.23 \text{ A}^{\circ} \& 1.36 \text{ A}^{\circ}$ carbon oxygen bonds in sodium formate have the same value i.e. 1.27 A° . Give reason that valency of oxygen is generally two whereas sulphur shows of 2, 4, & Explain the first I.E. of carbon atom is greater than that of boron atom whereas true for the second I.E.	$[10 \times 3 = 30]$ sangular. [JEE '87] and both the [JEE '88] the reverse is [JEE '89]
ad Study Package from websi	Explai Q.1 Q.2 Q.3 Q.4 Q.5	n the following. Explain the molecule of magnesium chloride is linear whereas that of stannous chloride is Give reason carbon oxygen bond lengths in formic acid are $1.23 \text{ A}^{\circ} \& 1.36 \text{ A}^{\circ}$ carbon oxygen bonds in sodium formate have the same value i.e. 1.27 A° . Give reason that valency of oxygen is generally two whereas sulphur shows of 2, 4, & Explain the first I.E. of carbon atom is greater than that of boron atom whereas true for the second I.E. Explain why the dipolemoment of NH ₃ is more than that of NF ₃ .	$[10 \times 3 = 30]$ s angular. [JEE '87] and both the [JEE '88] the reverse is [JEE '89] [JEE '95]
ıload Study Package from websi	Explai Q.1 Q.2 Q.3 Q.4 Q.5	n the following. Explain the molecule of magnesium chloride is linear whereas that of stannous chloride is Give reason carbon oxygen bond lengths in formic acid are $1.23 \text{ A}^{\circ} \& 1.36 \text{ A}^{\circ}$ carbon oxygen bonds in sodium formate have the same value i.e. 1.27 A° . Give reason that valency of oxygen is generally two whereas sulphur shows of 2, 4, & Explain the first I.E. of carbon atom is greater than that of boron atom whereas true for the second I.E. Explain why the dipolemoment of NH ₃ is more than that of NF ₃ .	$[10 \times 3 = 30]$ sangular. [JEE '87] and both the [JEE '88] the reverse is [JEE '89] [JEE '95]
Download Study Package from websi	Explai Q.1 Q.2 Q.3 Q.4 Q.5 Q.6	n the following. Explain the molecule of magnesium chloride is linear whereas that of stannous chloride is Give reason carbon oxygen bond lengths in formic acid are $1.23 \text{ A}^{\circ} \& 1.36 \text{ A}^{\circ}$ carbon oxygen bonds in sodium formate have the same value i.e. 1.27 A° . Give reason that valency of oxygen is generally two whereas sulphur shows of 2, 4, & Explain the first I.E. of carbon atom is greater than that of boron atom whereas true for the second I.E. Explain why the dipolemoment of NH ₃ is more than that of NF ₃ . The experimentally determined N - F bond length in NF ₃ is greater than the sum covalent radii of N & F. Explain.	$[10 \times 3 = 30]$ s angular. [JEE '87] and both the [JEE '88] the reverse is [JEE '89] [JEE '95]
EE Download Study Package from websi	Explai Q.1 Q.2 Q.3 Q.4 Q.5 Q.6 Q.7	The experimentally determined N - F bond length in NF ₃ is greater than the sum covalent radii of N & F. Explain. Explain the difference in the nature of bonding in LiF & LiI.	$[10 \times 3 = 30]$ s angular. [JEE '87] and both the [JEE '88] the reverse is [JEE '89] [JEE '95] of single bond [JEE '95] [JEE '96]
REE Download Study Package from websi	Explai Q.1 Q.2 Q.3 Q.4 Q.5 Q.6 Q.7 Q.8	The experimentally determined N - F bond length in NF ₃ is greater than the sum covalent radii of N & F. Explain. Explain the difference in the nature of bonding in LiF & LiI. Explain PCl ₅ is formed but NCl ₅ cannot.	$[10 \times 3 = 30]$ s angular. [JEE '87] and both the [JEE '88] the reverse is [JEE '89] [JEE '95] [JEE '95] [JEE '96] [JEE '97]
FREE Download Study Package from websi	Explai Q.1 Q.2 Q.3 Q.4 Q.5 Q.6 Q.7 Q.8 Q.9	The experimentally determined N - F bond length in NF ₃ is greater than the sum covalent radii of N& F. Explain. Explain the difference in the nature of bonding in LiF & LiI. Explain the difference in the nature of two sentences only.	$[10 \times 3 = 30]$ s angular. [JEE '87] and both the [JEE '88] the reverse is [JEE '89] [JEE '95] [JEE '95] [JEE '96] [JEE '97] [JEE '99]
FREE Download Study Package from websi	Explai Q.1 Q.2 Q.3 Q.4 Q.5 Q.6 Q.7 Q.8 Q.9	n the following. Explain the molecule of magnesium chloride is linear whereas that of stannous chloride is Give reason carbon oxygen bond lengths in formic acid are $1.23 \text{ A}^{\circ} \& 1.36 \text{ A}^{\circ}$ carbon oxygen bonds in sodium formate have the same value i.e. 1.27 A° . Give reason that valency of oxygen is generally two whereas sulphur shows of 2, 4, & Explain the first I.E. of carbon atom is greater than that of boron atom whereas true for the second I.E. Explain why the dipolemoment of NH ₃ is more than that of NF ₃ . The experimentally determined N - F bond length in NF ₃ is greater than the sum covalent radii of N & F. Explain. Explain the difference in the nature of bonding in LiF & LiI. Explain PCl ₅ is formed but NCl ₅ cannot. Give reasons for the following in one or two sentences only. (a) BeCl ₂ can be easily hydrolyed (b) CrO ₃ is an acid anhydride .	$[10 \times 3 = 30]$ s angular. [JEE '87] and both the [JEE '88] the reverse is [JEE '89] [JEE '95] [JEE '95] [JEE '96] [JEE '97] [JEE '99]
FREE Download Study Package from websi	Explai Q.1 Q.2 Q.3 Q.4 Q.5 Q.6 Q.7 Q.8 Q.9 Q.10	n the following. Explain the molecule of magnesium chloride is linear whereas that of stannous chloride is Give reason carbon oxygen bond lengths in formic acid are $1.23 \text{ A}^{\circ} \& 1.36 \text{ A}^{\circ}$ carbon oxygen bonds in sodium formate have the same value i.e. 1.27 A° . Give reason that valency of oxygen is generally two whereas sulphur shows of 2, 4, & Explain the first I.E. of carbon atom is greater than that of boron atom whereas true for the second I.E. Explain why the dipolemoment of NH ₃ is more than that of NF ₃ . The experimentally determined N - F bond length in NF ₃ is greater than the sum covalent radii of N & F. Explain. Explain the difference in the nature of bonding in LiF & LiI. Explain PCl ₅ is formed but NCl ₅ cannot. Give reasons for the following in one or two sentences only. (a) BeCl ₂ can be easily hydrolyed (b) CrO ₃ is an acid anhydride . Explain why o-hydroxybenzaldehyde is a liquid at room temperature, while p-hydroxyben high melting solid.	[10 × 3 = 30] angular. [JEE '87] and both the [JEE '88] the reverse is [JEE '89] [JEE '95] [JEE '95] [JEE '96] [JEE '97] [JEE '99] nzaldehyde is a [JEE '99]

	Arran	ge as directed.	$[9 \times 2 = 18]$	ling					
	Q.1	N_2, O_2, F_2, Cl_2 in increasing order of bond dissociation energy.	[JEE '88]	buoð					
	Q.2	CO_2 , N_2O_5 , SiO_2 , SO_3 is the increasing order of acidic character.	[JEE '88]	cal B					
	Q.3	HOCl, HOClO ₂ , HOClO ₃ , HOClO in increasing order of thermal stability.	[JEE '88]	emi					
	Q.4	Increasing order of ionic size : N^{3-} , Na^+ , F^- , O^{2-} , Mg^{2+}		SCh					
	Q.5	Increasing strength of H-bonding . $(X \dots H - X) O, S, F, Cl, N$.		of 28					
	Q.6	Increasing order of extent of hydrolysis CCl ₄ , MgCl ₂ , AlCl ₃ , PCl ₅ , SiCl ₄		26					
	Q.7	Arrange in increasing order of dipole moment.	[JEE '96]	Page					
		Toluene, m - dichcorobenzene, O - dichlorobenzene, p - dichlorobenzene.		_					
	Q.8	The decreasing order of acid strength of CIOH, BrOH, IOH.	[JEE '97]	Ļ					
	Q.9	Arrange in order of increasing radii, Li^+ , Mg^{2+} , K^+ , Al^{3+} .							
				BH					
om	Miscel		-						
SS.C	0.1	Write two resonance structures of ozone which satisfy the octet rule.	[JEE '91]	888					
asse	0.2	Using VSEPR theory, identify the type of hybridisation & draw the structure of Q							
oclá	~	oxidation states of O & F.	[JEE '94]	893					
tek	Q.3	What are the types of bond present in B_2H_6 ?	[IIT 1994]	6 O					
W.	Q.4	Arrange toluene, m-dichlorobenzene, o-dicholorobenzene and p-dichlorobenzene in orde	er of increasing	ò					
M		dipole moment.	[IIT 1996]	000					
ы.	Q.5	Draw the structures of	[JEE '97]	00					
osite		(i) XeF_2 (ii) XeO_3 (iii) XeF_4 (iv) BrF_5 (v) SO_3^{2-}		т Э					
weł				755					
'n	Q.6	Interpret the non-linear shape of H ₂ S molecule & non planar shape of PCl ₃ using VSEP	R theory.	0					
\mathbf{fr}_0			[JEE '98]	H					
lge	Q.7	Discuss the hybridisation of C - atoms in allene (C_3H_4) and show the π – orbital overla	aps.[JEE '99]	Sir)					
acka	Q.8	Using VSEPR theory, draw the shape of PCl_5 and BrF_5 .	[JEE 2003]	Υ. Υ.					
y P	Q.9	Draw the structure of XeF_4 and OSF_4 according to VSEPR theory, clearly indicating	ng the state of	່ <u>ເ</u>					
tud		hybridisation of the central atom and lone pair of electrons (if any) on the central atom.	[JEE 2004]	¥					
d S				ARI					
load				X					
wn				U U					
Do				HI					
E				ls :					
R				tor					
н і н				irec					
				D,					
				SES					
				AS					

ANSWER KEY

EXERCISE - I

Image: Construction of the second state of the second s	Idy Package from website: www.tekoclasses.com	Q.6 Q.11 Q.16 Q.21 Q.26 Q.31 Q.26 Q.31 Q.36 Q.41 Q.46 Q.51 Q.56 Q.61 Q.56 Q.61 Q.56 Q.71 Q.76 Q.81 Q.96 Q.91 Q.96 Q.101 Q.96 Q.101 Q.105 Q.109 Q.114 Q.124 Q.124 Q.124 Q.124 Q.124 Q.124 Q.124 Q.124 Q.125 Q.25 Q.25 Q.25 Q.25 Q.25 Q.25 Q.25 Q.	$\stackrel{\circ}{B}$ A C D A,B,C D A,C A,B,C, C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A C A A B,C, C A B D B A,D C B B C C B B C C C C A,B,C, C C A,B,C, C A A,B,C, C A,B,C, C A,B,C, C A,B,C, C A,B,C, C A A,B,C, C A,B,C, C A,B,C, C A,B,C, C A,B,C, C A,B,C, C A,B,C, C A,B,C, C B B B,C,C A,B,C,C C B B,C,C A,B,C,C C A,B,C,C A,B,C,C A,B,C,C A,B,C,C A,B,C,C A,B,C,C A,B,C,C A,B,C,C A,B,C,C A,B,C,C A,B,C,C A,B,C,C A,B,C,C A,B,C,C A,B,C,C A,B,C,C A,B,C,C C B,C,C,C,C,C C B,C,C,C,C,C,C,C,C	D D T, F, F, bital, (i ear, (b) s	Q.7 Q.12 Q.17 Q.22 Q.27 Q.32 Q.37 Q.42 Q.47 Q.52 Q.47 Q.52 Q.57 Q.62 Q.77 Q.62 Q.77 Q.82 Q.97 Q.92 Q.97 Q.102 Q.97 Q.102 Q.106 Q.115 Q.120 Q.125 Q.130 Q.125 Q.130 Q.135 F, T, T, i) σ-bor	\tilde{D} C D A,B B A A,B,C A,E B B,C B B,D B B,C,D B B,C,D A,B,C A,B,C A,B,C A,B,C A,B,C A,B,C A,B,C A,B,C A,B,C A,B,C A,B,C A,B,C A,B,C A,B,C A,C B B,C,D A,B,C A,B,C A,B,C A,B,C A,B,C A,B,C A,B,C A,C B B,C,D A,B,C C B,C,D C C F A,A,(iii) Ianar, (c)	D 1, (iv) I) T.B.P.	Q.8 Q.13 Q.18 Q.23 Q.28 Q.28 Q.33 Q.28 Q.33 Q.43 Q.48 Q.43 Q.48 Q.53 Q.58 Q.63 Q.68 Q.73 Q.78 Q.78 Q.83 Q.78 Q.93 Q.98 Q.103 Q.107 Q.111 Q.116 Q.121 Q.126 Q.131 Q.136 Q.139 LP-LP & (d) bent	A,B,C,D D,A,C D,A,C D,A,B A,C C,C C,A B,D A,B,A,C C,C C,C C,C B,D A,B,D C,C C,C C,C C,C B,D A,B,D C,C C,C C,C B,D A,B,C,D D,A,C C,C C,C B,C,D D,A,C C,C C,C B,C,D C,C C,C B,C,D C,C C,C B,C,D C,C C,C B,C,D C,C C,C B,C,D C,C C,C B,C C,C C,C B,C C,C C,C	D F, T, T, P, (v) mo ear, (f) b	Q.9 Q.14 Q.29 Q.24 Q.29 Q.34 Q.29 Q.34 Q.39 Q.44 Q.49 Q.54 Q.59 Q.64 Q.79 Q.64 Q.79 Q.74 Q.79 Q.84 Q.99 Q.94 Q.99 Q.104 Q.99 Q.104 Q.108 Q.112 Q.117 Q.122 Q.127 F, F ore, less ent	A,B,C,C B B,C C D B,C,D A B D B C A A A,B C C D A A A A A B C A A A A A A A A	,D 3>H ₂ O ₂	Q.10 Q.15 Q.20 Q.25 Q.30 E Q.35 Q.40 E Q.45 Q.45 Q.45 Q.45 Q.45 Q.55 Q.60 Q.65 Q.70 A Q.75 Q.80 Q.95 Q.100 Q.95 Q.100 Q.113 Q.118 Q.128 Q.133	D A,C A A,B 3,C,D C 3,C,D C B A C A,C,D C B A C A,C,D C B A C A,B B,C D C A A A A,C A B B,C A C A C A C B A C A C B A C A C B A C A C	`A. (S. R. K. Sir) PH: (0755). 32.00.000. 0.98930.58881 . BHOPAL Page 27.0f 28.(
	oad Stu	Q.144 Q.149	1.2Å 84.5%		Q.146 Q.150	2.33 Å 25%		Q.147	85%	, ()	Q.148	1.4 Å				KARIY
	ED	Q.1	C C	Q.2	A C	Q.3	C D	Q.4	A B	Q.5	B B	Q.6	A C	Q.7	A A	SUF
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RE	Q.0 0.15	B	Q.16	B	Q.10 Q.17	D	Q.11 Q.18	D	Q.12 Q.19	A	0.21	C C	0.22	B	
Q.1 C Q.2 A Q.3 C Q.4 A Q.5 B Q.6 A Q.7 A H Q.8 C Q.9 C Q.10 D Q.11 B Q.12 B Q.13 C Q.14 A H Q.15 B Q.16 B Q.17 D Q.18 D Q.19 A Q.21 C Q.22 B	T	Q.23	С	Q.24	С	Q.25	D	Q.26	С	Q.27	А	Q.28	A	Q.29	А	rect
Q.1 C Q.2 A Q.3 C Q.4 A Q.5 B Q.6 A Q.7 A Q.8 C Q.9 C Q.10 D Q.11 B Q.12 B Q.13 C Q.14 A Q.15 B Q.16 B Q.17 D Q.18 D Q.19 A Q.21 C Q.22 B Q.23 C Q.24 C Q.25 D Q.26 C Q.27 A Q.28 A Q.29 A		Q.30	В	Q.31	В	Q.32	А	Q.33	В	Q.34	С	Q.35	D	Q.36	В	ā
Q.1 C Q.2 A Q.3 C Q.4 A Q.5 B Q.6 A Q.7 A Q.8 C Q.9 C Q.10 D Q.11 B Q.12 B Q.13 C Q.14 A Q.15 B Q.16 B Q.17 D Q.18 D Q.19 A Q.21 C Q.22 B Q.23 C Q.24 C Q.25 D Q.26 C Q.27 A Q.28 A Q.29 A Q.30 B Q.31 B Q.32 A Q.33 B Q.34 C Q.35 D Q.36 B		Q.37	В	Q.38	D	Q.39	В	Q.40	А	Q.41	В	Q.42	С	Q.43	А	ES.
Q.1 C Q.2 A Q.3 C Q.4 A Q.5 B Q.6 A Q.7 A Q.8 C Q.9 C Q.10 D Q.11 B Q.12 B Q.13 C Q.14 A Q.15 B Q.16 B Q.17 D Q.18 D Q.19 A Q.21 C Q.22 B Q.23 C Q.24 C Q.25 D Q.26 C Q.27 A Q.28 A Q.29 A Q.30 B Q.31 B Q.32 A Q.33 B Q.34 C Q.35 D Q.36 B Q.37 B Q.38 D Q.39 B Q.40 A Q.41 B Q.42 C Q.43 A		Q.44	В	Q.45	А	Q.46	А	Q.47	С	Q.48	А	Q.49	D			ASS
Q.1 C Q.2 A Q.3 C Q.4 A Q.5 B Q.6 A Q.7 A Q.8 C Q.9 C Q.10 D Q.11 B Q.12 B Q.13 C Q.14 A Q.15 B Q.16 B Q.17 D Q.18 D Q.19 A Q.21 C Q.22 B Q.23 C Q.24 C Q.25 D Q.26 C Q.27 A Q.28 A Q.29 A Q.30 B Q.31 B Q.32 A Q.33 B Q.34 C Q.35 D Q.36 B Q.37 B Q.38 D Q.39 B Q.40 A Q.41 B Q.42 C Q.43 A Q.44 B Q.45 A Q.46 A Q.47 C Q.48 A Q.49 D C		Fill in t	the blan	ıks.) CLA
Q.1 C Q.2 A Q.3 C Q.4 A Q.5 B Q.6 A Q.7 A Q.8 C Q.9 C Q.10 D Q.11 B Q.12 B Q.13 C Q.14 A Q.15 B Q.16 B Q.17 D Q.18 D Q.19 A Q.21 C Q.22 B Q.23 C Q.24 C Q.25 D Q.26 C Q.27 A Q.28 A Q.29 A Q.30 B Q.31 B Q.32 A Q.33 B Q.34 C Q.35 D Q.36 B Q.37 B Q.38 D Q.39 B Q.40 A Q.41 B Q.42 C Q.43 A Q.44 B Q.45 A Q.46 A Q.47 C Q.48 A Q.49 D Fill in the blanks.		Q.1	hydratic	on		Q.2	white		Q.3	trigona	l planar	Q.4	sp			EKC
Q.1 C Q.2 A Q.3 C Q.4 A Q.5 B Q.6 A Q.7 A Q.8 C Q.9 C Q.10 D Q.11 B Q.12 B Q.13 C Q.14 A Q.15 B Q.16 B Q.17 D Q.18 D Q.19 A Q.21 C Q.22 B Q.23 C Q.24 C Q.25 D Q.26 C Q.27 A Q.28 A Q.29 A Q.30 B Q.31 B Q.32 A Q.33 B Q.34 C Q.35 D Q.36 B Q.37 B Q.38 D Q.39 B Q.40 A Q.41 B Q.42 C Q.43 A Q.44 B Q.45 A Q.46 A Q.47 C Q.48 A Q.49 D Fill in the blanks. Q.1 hydration Q.2 </th <td></td> <td>Q.5</td> <td>ortho</td> <td></td> <td></td> <td>Q.7</td> <td>banana</td> <td></td> <td>Q.8</td> <td>increas</td> <td>es, decr</td> <td>eases</td> <td>-</td> <td></td> <td></td> <td>F</td>		Q.5	ortho			Q.7	banana		Q.8	increas	es, decr	eases	-			F
Q.1 C Q.2 A Q.3 C Q.4 A Q.5 B Q.6 A Q.7 A Q.8 C Q.9 C Q.10 D Q.11 B Q.12 B Q.13 C Q.14 A Q.15 B Q.16 B Q.17 D Q.18 D Q.19 A Q.21 C Q.22 B Q.23 C Q.24 C Q.25 D Q.26 C Q.27 A Q.28 A Q.29 A Q.30 B Q.31 B Q.32 A Q.33 B Q.34 C Q.35 D Q.36 B Q.37 B Q.38 D Q.39 B Q.40 A Q.41 B Q.42 C Q.43 A Q.44 B Q.45 A Q.46 A Q.47 C Q.48 A Q.49 D Fill in the blanks. Q.5 ortho Q.7		Q.9	N ₂ O, I	3		Q.10	$\rm NH_2^-$		Q.11	60°		Q.12 i	nert pair	effect		

• -2 . 2 5

mical Bonding lge

