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The aim of these lectures is to provide an intorduc-
tion to the theory of the Riemann Zeta-function for stu-
dents who might later want to do research on the subject.
The Prime Number Theorem, Hardy’s theorem on the
Zeros ofζ(s), and Hamburger’s theorem are the princi-
pal results proved here. The exposition is self-contained,
and required a preliminary knowledge of only the ele-
ments of function theory.
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Lecture 1

The Maximum Principle

Theorem 1. If D is a domain bounded by a contour C for whichCauchy’s 1

theorem is valid, and f is continuous on C regular in D, then “| f | ≤ M
on C” implies “| f | ≤ M in D”, and if | f | = M in D, then f is a constant.

Proof. (a) Letzo ∈ D, n a positive integer. Then

| f (zo)|n =
∣

∣

∣

1
2πi

∫

C

{ f (z)}ndz
z− zo

∣

∣

∣

≤ lc · Mn

2πδ
,

wherelc = length ofC, δ = distance ofzo from C. As n→ ∞

| f (z)| ≤ M.

(b) If | f (zo)| = M, then f is a constant. For, applying Cauchy’s inte-

gral formula to
d
dz

[{ f (z)}n], we get

|n{ f (zo)}n−1 · f ′(zo)| =
∣

∣

∣

1
2πi

∫

C

f ndz

(z− zo)2

∣

∣

∣

≤ lCMn

2πδ2
,

1



2 1. The Maximum Principle

so that

| f ′(zo)| ≤ lcM

2πδ2
· 1

n
→ 0, asn→ ∞

Hence
| f ′(zo)| = 0.

(c) If | f (zo)| = M, and| f ′(zo)| = 0, then f ′′(zo) = 0, for2

d2

dz2

[{ f (z)}n] = n(n− 1){ f (z)}n−2{ f ′(z)}2 + n{ f (z)}n−1 f ′′(z).

At zo we have

d2

dz2

[{ f (z)}n]z=zo
= n fn−1(Z0) f ′′(z0),

so that

|nMn−1 f ′′(z0)| =
∣

∣

∣

2!
2πi

∫

C

{ f (z)}ndz

(z− zo)3

∣

∣

∣

≤ 2!lc
2πδ3

Mn,

and lettingn→ ∞, we see thatf ′′(zo) = 0. By a similar reasoning
we prove that all derivatives off vanish atz0 (an arbitrary point
of D). Thus f is a constant.

�

Remark. The above proof is due to Landau [12, p.105]. We shall now
show that the restrictions on the nature of the boundaryC postulated in
the above theorem cab be dispensed with.

Theorem 2. If f is regular in a domain D and is not a constant, and
M = max

z∈D
| f |, then

| f (zo)| < M, zo ∈ D.

For the proof of this theorem we need a



1. The Maximum Principle 3

Lemma. If f is regular in |z− z0| ≤ r, r > 0, then

| f (z0)| ≤ Mr ,

where Mr = max
|z−zo|=r

| f (z)|, and | f (zo)| = Mr only if f(z) is constant for3

|z− zo| = r.

Proof. On using Cauchy’s integral formula, we get

f (zo) =
1

2πi

∫

|z−zo|=n

f (z)
z− z0

dz

=
1
2π

2π
∫

0

f (zo + reiθ)dθ. (1)

Hence
| f (zo)| ≤ Mr .

Further, if there is a pointζ (such that)|ζ − zo| = r, and | f (ζ)| <
Mr , then by continuity, there exists a neighbourhood ofζ, on the circle
|z − zo| = r, in which | f (z)| ≤ Mr − ε, ε > 0 and we should have
| f (zo)| < Mr ; so that “| f (zo)| = Mr ” implies “| f (z)| = Mr everywhere on
|z− zo| = r”. That is | f (zo + reiθ)| = | f (zo)| for 0 ≤ θ ≤ 2π, or

f (zo + reiθ) = f (zo)eiϕ, 0 ≤ ϕ ≤ 2π

On substituting this in (1), we get

1 =
1
2π

2π
∫

0

cosϕdθ

Sinceϕ is a continuous function ofθ and cosϕ ≤ 1, we get cosϕ · 1 for
all θ, i.e.ϕ = 0, hencef (s) is a constant. �

Remarks .The Lemma proves the maximum principle in the case of a4

circular domain. An alternative proof of the lemma is given below [7,
Bd 1, p.117].



4 1. The Maximum Principle

Aliter. If f (z0 + reiθ) = φ(θ) (complex valued) then

f (z0) =
1
2π

2π
∫

0

φ(θ)dθ

Now, if a andb are two complex numbers,|a| ≤ M, |b| ≤ M and
a , b, then|a+ b| < 2M. Hence ifφ(θ) is not constant for 0≤ θ < 2π,
then there exist two pointsθ1, θ2 such that

|φ(θ1) + φ(θ2)| = 2Mr − 2ε, say, whereε > 0

On the other hand, by regularity,

|φ(θ1 + t) − φ(θ1)| < ε/2, for 0 < t < δ

|φ(θ2 + t) − φ(θ2)| < ε/2, for 0 < t < δ















Hence

|φ(θ1 + t) + φ(θ2 + t)| < 2Mr − ε, for 0 < t < δ.

Therefore

2π
∫

0

φ(θ)dθ =

θ1
∫

0

+

θ1+δ
∫

θ1

+

θ2
∫

θ1+δ

+

θ2+δ
∫

θ2

+

2π
∫

θ2+δ

=























θ1
∫

0

+

θ2
∫

θ1+δ

+

2π
∫

θ2+δ























φ(θ)dθ +

δ
∫

0

[φ(θ1 + t) + φ(θ2 + t)] dt

Hence

|
2π

∫

0

φ(θ) dθ| ≤ Mr (2π − 2δ) + (2Mr − ε)δ = 2πMr − εδ

| 1
2π

2π
∫

0

φ(θ)dθ| < Mr
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Proof of Theorem 2. Let zo ∈ D. Consider the setG1 of pointsz such5

that f (z) , f (zo). This set is not empty, sincef is non-constant. It
is a proper subset ofD, sincezo ∈ D, zo < G1. It is open, becausef is
continuous inD. Now D contains at least one boundary point ofG1. For
if it did not, G′1 ∩ D would be open too, andD = (G1 ∪G′1)D would be
disconnected. Letz1 be the boundary point ofG1 such thatz1 ∈ D. Then
z1 < G1, sinceG1 is open. Thereforef (z1) = f (zo). Sincez1 ∈ BdG1

andz1 ∈ D, we can choose a pointz2 ∈ G1 such that the neighbourhood
of z1 defined by

|z− z1| ≤ |z2 − z1|
lies entirely inD. However, f (z2) , f (z1), since f (z2) , f (zo), and
f (zo) = f (z1). Therefore f (z) is not constant on|z − z1| = r, (see
(1) on page 3) for, if it were, thenf (z2) = f (z1). Hence if M′ =

max
|z−z1|=|z2−z1|

| f (z)|, then

| f (z1)| < M′ ≤ M = max
z∈D
| f (z)|

i.e. | f (zo)| < M

Remarks.The above proof of Theorem 2 [7, Bd I, p.134] does not make
use of the principle of analytic continuation which will of course provide
an immediate alternative proof once the Lemma is established.

Theorem 3. If f is regular in a bounded domain D, and continuous
in D̄, then f attains its maximum at some point in Bd D, unless f is a
constant.

Since D is bounded,̄D is also bounded. And a continuous function
on a compact set attains its maximum, and by Theorem 2 this maximum6

cannot be attained at an interior point of D. Note that the continuity of
| f | is used.

Theorem 4. If f is regular in a bounded domain D, is non-constant, and
if for every sequence{zn}, zn ∈ D, which converges to a pointξ ∈ Bd D,
we have

lim sup
n→∞
| f (zn)| ≤ M,

then| f (z)| < M for all z ∈ D. [17, p.111]



6 1. The Maximum Principle

Proof. D is an Fσ, for define setsCn by the property:Cn consists of
all z such that|z| ≤ n and such that there exists an open circular neigh-
bourhood of radius 1/n with centrez, which is properly contained inD.
ThenCn ⊂ Cn+1, n = 1,2, . . .; andCn is compact. �

Define

max
Z∈Cn

| f (z)| ≡ mn.

By Theorem 2, there exists azn ∈ Bd Cn such that| f (zn)| = mn. The
sequence{mn} is monotone increasing, by the previous results; and the
sequence{zn} is bounded, so that a subsequence{znp} converges to a
limit ξ ∈ Bd D. Hence

lim| f (znp)| ≤ M

i.e. lim mnp ≤ M

or mn < M for all n

i.e. | f (z)| < M. z ∈ D.

N.B. Thatξ ∈ Bd D can be seen as follows. Ifξ ∈ D, then there
exists anNo such thatξ ∈ CNo ⊂ D, and| f (ξ)| < mNo ≤ lim mn, whereas7

we havef (znp)→ f (ξ), so that| f (znp)| → | f (ξ)|, or lim mn = | f (ξ)|.

Corollaries. (1) If f is regular in a bounded domain D and contin-
uous in D, then by considering ef (z) and e−i f (z) instead of f(z),
it can be seen that the real and imaginary parts of f attain their
maxima on Bd D.

(2) If f is an entire function different from a constant, then

M(r) ≡ l.u.b
|z|=r
| f (z)|, and

A(r) ≡ l.u.b
|z|=r

Re{ f (z)}

are strictly increasing functions of r. Since f(z) is bounded if M(r)
is, for a non-constant function f , M(r)→ ∞ with r.
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(3) If f is regular in D, and f , 0 in D, then f cannot attain a
minimum in D.

Further if f is regular in D and continuous in̄D, and f , 0 in D̄,
and m= min

z∈Bd D
| f (z)|, then| f (z)| > m for all z ∈ D unless f is a

constant. [We see that m> 0 since f, 0, and apply the maximum
principle to1/ f ].

(4) If f is regular and, 0 in D and continuous inD̄, and | f | is a
constantγ on Bd D, then f= γ in D. For, obviouslyγ , 0, and,
by Corollary 3,| f (z)| ≥ γ for z ∈ D, se that f attains its maximum
in D, and hence f= γ.

(5) If f is regular in D and continuous in̄D, and | f | is a constant on 8

Bd D, then f is either a constant or has a zero in D.

(6) Definition: If f is regular in D, thenα is said to be aboundary
valueof f at ξ ∈ Bd D, if for everysequence zn → ξ ∈ Bd D,
zn ∈ D, we have

lim
n→∞

f (zn) = α

(a) It follows from Theorem 4 that if f is regular and non - con-
stant in D, andhas boundary-values{α}, and |α| ≤ H for
eachα, then| f (z)| < H, z∈ D. Further, if M′ = max

α∈b.v
|α| then

M′ = M ≡ max
z∈D
| f (z)|

For, |α| is a boundary value of| f |, so that|α| ≤ M, hence
M′ ≤ M. On the other hand, there exists a sequence{zn},
zn ∈ D, such that| f (zn)| → M. We may suppose that
zn → zo (for, in any case, there exists a subsequence{znp}
with the limit zo, say, and one can then operate with the
subsequence). Now zo < D, for otherwise by continuity
f (zo) = lim

n→∞
f (zn) = M, which contradicts the maximum

principle. Hence zo ∈ Bd D, and M is the boundary-value
of | f | at zo. Therefore M≤ M′, hence M= M′.

(b) Let f be regular and non-constant in D, and have boundary-
values{α} on Bd D. Let m= min

z∈D
| f |; m′ = min

α∈b.v.
|α| > 0.
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Then, if f, 0 in D, by Corollary (6)a, we get

max
z∈D

1
| f (z)| =

1
m′
=

1
m

;

so that| f | > m= m′ in D. Thus if there exists a point zo ∈ D9

such that| f (zo)| ≤ m′, then f must have a zero in D, so that
m′ > 0 = m. We therefore conclude that,if m′ > 0, then
m′ = m if and only if f , 0 in D [6, Bd. I, p.135].



Lecture 2

The Phragmen-Lindelof
principle

We shall first prove a crude version of the Phragmen-Lindelof theorem10

and then obtain a refined variant of it. The results may be viewed as
extensions of the maximum-modulus principle to infinite strips.

Theorem 1. [6, p.168] We suppose that

(i) f is regular in the stripα < x < β; f is continuous inα ≤ x ≤ β

(ii) | f | ≤ M on x= α and x= β

(iii) f is bounded inα ≤ x ≤ β
Then,| f | ≤ M in α < x < β; and | f | = M in α < x < β only if f is
a constant.

Proof. (i) If f (x + iy) → O asy→ ±∞ uniformly in x, α ≤ x ≤ β,
then the proof is simple. Choose a rectangleα ≤ x ≤ β, |y| ≤ η
with η sufficiently large to imply| f |(x ± iη) ≤ M for α ≤ x ≤
β. Then, by the maximum-modulus principle, for anyzo in the
interior of the rectangle,

| f (zo)| ≤ M.

9



10 2. The Phragmen-Lindelof principle

(ii) If | f (x + iy)| 6→ 0, asy → ±∞, consider the modified function
fn(z) = f (z)ez2/n. Now

| fn(z)| → 0 asy→ ±∞ uniformly in x, and

| fn(z)| ≤ Mec2/n

on the boundary of the strip, for a suitable constantc.
Hence11

| fn(zo)| ≤ Mec2/n

for an interior pointzo of the rectangle, and lettingn→ ∞, we get

| f (zo)| ≤ M.

If | f (zo)| = M, then f is a constant. For, iff were not a constant, in the
neighbourhood ofzo we would have pointsz, by the maximum-modulus
principle, such that| f (z)| > M, which is impossible. �

Theorem 1 can be restated as:

Theorem1′: Suppose that

(i) f is continuous and bounded inα ≤ x ≤ β

(ii) | f (α + iy)| ≤ M1, | f (β + iy)| ≤ M2 for all y

Then
| f (xo + iyo)| ≤ ML(xo)

1 M1−L(xo)
2

for α < xo < β, |yo| < ∞, whereL(t) is a linear function oft which takes
the value 1 atα and 0 atβ. If equality occurs, then

f (z) = cML(z)
1 M1−L(z)

2 ; |c| = 1.

Proof. Consider

f1(z) =
f (z)

ML(z)
1 M1−L(z)

2

and apply Theorem 1 tof1(z).12

More generally we have [12, p.107] �
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Theorem 2. Suppose that

(i) f is regular in an open half-strip D defined by:

z= x+ iy, α < x < β, y > η

(ii) lim
z→ξ
in D

| f | ≤ M, for ξ ∈ Bd D

(iii) f = O
[

exp
{

e
θπ|z|
β−α

}]

, θ < D

uniformly in D.
Then,| f | ≤ M in D; and | f | < M in D unless f is a constant.

Proof. Without loss of generality we can choose

α = −π
2
, β = +π/2, η = 0

Set

g(z) = f (z).exp(−σe−ikz)

≡ f (z).{ω(z)}σ, say,

whereσ > 0, θ < k < 1. Then, asy→ +∞,

g = O
[

exp

{

eθ|z| − σeky cos
kπ
2

]

uniformly in x, and 13

eθ|z| − σeky cos
kπ
2
≤ eθ(y+π/2) − σeky cos

kπ
2

→ −∞, asy→ ∞,

uniformly in x, sinceθ < k. Hence

|g| → 0 uniformly asy→ ∞,

so that
|g| ≤ M, for y > y′, α < x < β.
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Let zo ∈ D. We can then chooseH so that

|g(z)| ≤ M

for y = H, α < x < β, and we may also suppose thatH > y0 = im(zo).
Consider now the rectangle defined byα < x < β, y = 0, y = H.

Since|ωσ| ≤ 1 we have
lim
z→ξ
in D

|g| ≤ M

for every pointξ on theboundary of this rectangle. Hence, by the
maximum-modulus principle,

|g(zo)| < M, unlessg is a constant;

or | f (zo)| < M|eσe−ikzo |

Lettingσ→ 0, we get14

| f (zo)| < M.

�

Remarks.The choice ofω in the above proof is suggested by the critical
caseθ = 1 of the theorem when the result isno longer true. For take

θ = 1, α = −π/2, β = π/2, η = 0, f = ee−iz

Then
|ee−iz | = eRe(e−iz)

= eRe{ey−ix}
= eey cosx

So
| f | = 1 onx = ±π/2, and f = eey

on x = 0.

Corollary 1. If f is regular in D, continuous on Bd D,| f | ≤ M on Bd
D, and

f = O
(

ee|z|πθ
β−α

)

, θ < 1,

then| f | ≤ M in D.
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Corollary 2. Suppose that hypotheses (i) and (iii) of Theorem 2 hold;
suppose further that f is continuous on Bd D,

f = O(ya) on x= α, f = O(yb) on x= β. Then

f = O(yc) on x= γ,

uniformly inγ, where c= pγ+q, and px+q is the linear function which
equals a at x= α and b at x= β.

Proof. Let η > 0. Defineϕ(z) = f (z)ψ(z), whereψ is the single-valued 15

branch of (−zi)−(pz+q) defined inD, and apply Theorem 2 toϕ. We first
observe thatϕ is regular inD and continuous in̄D. Next

|ψ(z)| = |(y− ix)−(px+q)−ipy|

= |y− ix|−(px+q) exp(pyim
logy− ix

y
)

= y−(px+q)|1+O

(

1
y

)

|O(1) exp

[

py

{

− x
y
+O

(

1
y2

)}]

= y−(px+q)e−px{1+O

(

1
y

)

},

the O’s being uniform in thex′s.
Thusϕ = O(1) on x = α andx = β. Sinceψ = O(yk) = O(|z|k), we

see that condition (iii) of Theorem 2 holds forϕ if θ is suitably chosen.
Henceϕ = O(1) uniformly in the strip, which proves the corollary.�

Theorem 3. [12, p.108] Suppose that conditions (i) and (iii) of Theorem
2 hold. Suppose further that f is continuous in Bd D, and

lim
y→∞
| f | ≤ M on x= α, x = β

Then
lim
y→∞
| f | ≤ M uniformly in α ≤ x ≤ β.

Proof. f is bounded inD̄, by the previous theorem. Let η ≥ 0,
∑

> 0. 16

Let H = H(ε) be the ordinate beyond which| f | < M+ε on x = α, x = β.
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Let h > 0 be a constant. Then
∣

∣

∣

z
z+ hi

∣

∣

∣ < 1

in the strip. Chooseh = h(H) so large that
∣

∣

∣ f (z) · z
z+ hi

∣

∣

∣ < M + ε ony = H

(possible because
∣

∣

∣ f · z
z+ hi

∣

∣

∣ ≤ | f | < M). Then the function

g(z) = f · z
z+ hi

satisfies the conditions of Theorem 2 (withM + ε in place ofM) in the
stripabove y= H. Thus

|g| ≤ M + ε in this strip

and solim
y→∞
|g| ≤ M + ε uniformly.

That is,
lim| f | ≤ M + ε,

since
z

z+ hi
→ 1 uniformly in x. Hence

lim| f | ≤ M.

�

Corollary 1. If conditions (i) and (iii) of Theorem 2 hold, if f is contin-17

uous on Bd D, and if

lim| f | ≤














a on x= α,

b on x= β,

where a, 0, b , 0, then

lim
y→∞
| f | ≤ epx+q,

uniformly, p and q being so chosen that epx+q
= a for x= α and= b for

x = β.
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Proof. Apply Theorem 3 tog = f e−(pz+q)
�

Corollary 2. If f = O(1) on x= α, f = o(1) on x= β, then f= o(1) on
x = γ, α < γ ≤ β.

[if conditions (i) and (iii) of Theorem 2 are satisfied].

Proof. Takeb = ε in Corollary 1, and note thatepγ+q → 0 asε→ 0 for
fixedγ, providedp andq are chosen as specified in Corollary 1. �





Lecture 3

Schwarz’s Lemma

Theorem 1. Let f be regular in|z| < 1, f (o) = 0. 18

If, for |z| < 1, we have| f (z)| ≤ 1, then

| f (z)| ≤ |z|, for |z| < 1.

Here, equality holds only if f(z) ≡ c z and|c| = 1. We further have
| f ′(o)| ≤ 1.

Proof.
f (z)
z

is regular for|z| < 1. Giveno < r < 1 chooseρ such that

r < ρ < 1; then since| f (z)| ≤ 1 for |z| = ρ, it follows by the maximum
modulus principle that

∣

∣

∣

f (z)
z

∣

∣

∣ ≤ 1
ρ
,

also for|z| = r. Since the L.H.S is independent ofρ → 1, we letρ and
obtain| f (z)| ≤ |z|, for |z| < 1.

If for z0, (|z0| < 1), we have| f (z0)| = |z0|, then
∣

∣

∣

f (z0)
z0

∣

∣

∣ = 1, (by the

maximum principle applied to
f (z)
z

) hencef = cz, |c| = 1.

Since f (z) = f ′(o)z+ f ′′(o)z2
+ · · · in a neighbourhood of the origin,

and since
∣

∣

∣

f (z)
z

∣

∣

∣ ≤ 1 in z 1, we get| f ′(o)| ≤ 1. More generally, we

have �

17
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Theorem 1′: Let f be regular and| f | ≤ M in |z| < R, and f (o) = 0.
Then

| f (z)| ≤ M|z|
R

, |z| < R.

In particular, this holds iff is regular in|z| < R, and continuous in19

|z| ≤ R, and| f | ≤ M on |z| = R.

Theorem 2(Caratheodory’s Inequality). [12, p.112] Suppose that

(i) f is regular in |z| < R f is non-constant

(ii) f (o) = 0

(iii) Re f ≤ ∪ in |z| < R. (Thus∪ > 0, since f is not a constant).

Then,

| f | ≤ 2∪ ρ
R− ρ, for |z| = ρ < R.

Proof. Consider the function

ω(z) =
f (z)

f (z) − 2∪ .

We have Re{ f − 2∪} ≤ −∪ < 0, so thatω is regular in|z| < R.
If f = u+ iv, we get

|ω| =

√

u2 + v2

(2∪ −u)2 + v2

so that
|ω| ≤ 1, since 2∪ −u ≥ |u|.

Butω(o) = o, since f (o) = o. Hence by Theorem 1,

|ω(z)| ≤ |z|
R
, |z| < R.

But f = −2∪ ω
1− ω . Now take|z| = ρ < R.

Then, we have,20
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| f | ≤ 2∪ |ω|
1− |ω| ≤

2∪ ρ
R− ρ

N.B. If | f (zo)| = 2∪ ρ
R− ρ, for |zo| < R, then

f (z) =
2U · cz
1− cz

, |c| = 1.

More generally, we have �

Theorem 2′: Let f be regular in|z| < R; f non-constant

f (o) = ao = β + iγ

Re f ≤ ∪(|z| < R), so that∪ ≥ β
Then

| f (z) − ao| ≤
2(∪ − β)ρ

R− ρ
for |z| = ρ < R

Remark . If f is a constant, then Theorem 2 is trivial. We shall now
prove Borel’s inequality which is sharper than Theorem 2.

Theorem 3 (Borel’s Inequality). [12, p.114] Let f(z) =
∞
∑

n=0
anzn, be

regular in |z| < 1. LetRe f ≤ ∪. f (o) = ao = β + iγ.
Then

|an| ≤ 2(∪ − β) ≡ 2 ∪1, say, n> 0.

Proof. We shall first prove that|a1| < ∪1, and then for generalan.

(i) Let f1 ≡
∞
∑

n=1
anzn. Then Ref1 ≤ ∪1. 21

For |z| = ρ < 1, we have, by Theorem 2,

| f1| ≤
2∪1 ρ

1− ρ

i.e.
∣

∣

∣

∣

∣

f1(z)
z

∣

∣

∣

∣

∣

≤ 2∪1

1− ρ
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Now lettingz→ 0, we get

|a1| ≤ 2∪1

(ii) Defineω = e2πi/k, k a+ve integer.

Then

k
∑

v=1

ωνm = o















if m, 0

& if m, a multiple ofk

= k















if m= 0

or if m= a multiple ofk.

We have

1
k

k−1
∑

r=0

f1(ωrz) =
∞
∑

n=1

ankz
nk
= g1(zk) ≡ g1(ζ), say.

The series forg1 is convergent for|z| < 1, and so for|ζ | < 1. Hence
g1 is regular for|ζ | < 1. Since Reg1 ≤ ∪1, we have
| coefficient of ζ | ≤ 2∪1 by the first part of the proof i.e.|ak| ≤22

2∪1. �

Corollary 1. Let f be regular in|z| < R, andRe{ f (z)− f (o)} ≤ ∪1. Then

| f ′(z)| ≤ 2∪1 R

(R− ρ)2
, |z| = ρ < R

Proof. SupposeR= 1. Then

| f ′(z)| ≤
∑

n|an|ρn−1 ≤ 2∪1

∑

nρn−1

This argument can be extended to thenth derivative. �

Corollary 2. If f is regular for every finite z, and

ef (z)
= O(e|z|

k
), as |z| → ∞,

then f(z) is a polynomial of degree≤ k.
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Proof. Let f (z) =
∑

anzn. For largeR, and a fixedζ, |ζ | < 1, we have

Re{ f (Rζ)} < cRk.

By Theorem 3, we have

|anRn| ≤ 2(2Rk − Reao), n > 0.

LettingR→ ∞, we get

an = 0 if n > k.

Apropos Schwarz’s Lemma we give here a formula and an inequal-
ity which are useful. �

Theorem 4. Let f be regular in|z− zo| ≤ r 23

f = P(r, θ) + Q(r, θ).

Then

f ′(zo) =
1
πr

2π
∫

o

P(r, θ)e−iθdθ.

Proof. By Cauchy’s formula,

(i) f (zo) =
1

2πi

∫

|z−zo|=r

f (z)dz

(z− zo)2
=

1
2πr

2π
∫

0

(P+ iQ)e−iθdθ

By Cauchy’s theorem,

(ii) 0 =
1
r2
· 1

2πi

∫

|z−zo|=r

f (z)dz=
1

2πr

2π
∫

0

(P+ iQ)eiθdθ

We may changei to −i in this relation, and add (i) and (ii).
Then

f ′(zo) =
1
πr

2π
∫

0

P(r, θ)e−iθdθ

�
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Corollary. If f is regular, and|Re f ≤ M in |z− z0| ≤ r, then

| f ′(zo)| ≤ 2M
r
.

Aliter: We have obtained a series of results each of which depended
on the preceding. We can reverse this procedure, and state one general
result from which the rest follow as consequences.

Theorem 5. [11, p.50] Let f(z) ≡
∞
∑

n=0
cn(z−z0)n be regular in|z−z0| < R,24

andRe f < ∪. Then

|en| ≤
2(∪ − Reco)

Rn , n = 1,2,3, . . . (5.1)

and in |z− zo| ≤ ρ < R, we have

| f (z) − f (z0)| ≤ 2ρ
R− ρ {∪ − Re f (zo)} (5.2)

∣

∣

∣

∣

∣

∣

f (n)(z)
n!

∣

∣

∣

∣

∣

∣

≤ 2R

(R− ρ)n+1
{∪ − Re f (zo)} n = 1,2,3, . . . (5.3)

Proof. We may supposezo = 0.

Set φ(z) = ∪ − f (z) = ∪ − c0 −
∞
∑

1

cnzn

≡
∞
∑

0

bnzn, |z| < R.

Let γ denote the circle|z| = ρ < R. Then

bn =
1

2πi

∫

γ

φ(z)dz

zn+1
=

1
2πρn

π
∫

−π

(P+ iQ)e−inθdθ,n ≥ 0, (5.4)

whereφ(r, θ) = P(r, θ) + iQ(r, θ). Now, if n ≥ 1, thenφ(z)zn−1 is regular
is γ, so that

0 =
ρn

2r

π
∫

−π

(P+ iQ)einθdθ,n ≥ 1 (5.5)
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Changingi to −i in (5.5) and adding this to (5.4) we get

bnρ
n
=

1
π

π
∫

−π

Pe−nθidθ, n ≥ 1.

But P = ∪ − Re f ≥ 0 in |z| < R and so inγ. Hence, ifn ≥ 1, 25

|bn|ρn ≤ 1
π

π
∫

−π

|Pe−nθi |dθ = 1
π

π
∫

−π

Pdθ = 2 Rebo, (5.6)

on using (5.4) withn = 0. Now lettingρ→ R, we get

|bn|Rn ≤ 2βo ≡ 2 Rebo.

Sincebo = ∪− co, andbn = −cn, n ≥ 1, we at once obtain (5.1). We
then deduce, for|z| ≤ ρ < R

|φ(z) − φ(o)| = |
∞
∑

1

bnzn| ≤
∞
∑

1

2β0

(

ρ

R

)n
=

2βoρ

R− ρ (5.7)

and ifn ≥ 1,

|φ(n)(z)| ≤
∞
∑

r=n

r(r − 1) . . . (r − n+ 1)
2β0ρ

r−n

Rr

=

(

d
dρ

)n ∞
∑

n=0

2β0

(

ρ

R

)r

=

(

d
dρ

)n 2βeR
R− ρ

= 2
βoR · n!

(R− ρ)n+1
(5.8)

(5.7) and (5.8) yield the required results on substitutingφ = ∪ − f and
β0 = ∪ − Re f (0). �





Lecture 4

Entire Functions

An entire function is an analytic function (in the complex plane) which26

has no singularities except at∞. A polynomial is a simple example. A
polynomial f (z) which has zeros atz1, . . . , zn can be factorized as

f (z) = f (0)

(

1− z
z1

)

. . .

(

1− z
zn

)

The analogy holds for entire functions in general. Before we prove this,
we wish to observe that ifG(z) is an entire function with no zeros it can

be written in the formeg(z) whereg is entire. For consider
G′(z)
G(z)

; every

(finite) point is an ‘ordinary point’ for this function, and so it is entire
and equalsg1(z), say. Then we get

log

{

G(z)
G(z0)

}

=

z1
∫

z0

g1(ζ)dζ = g(z) − g(z0), say,

so that
G(z) = G(z0)eg(z)−g(z0)

= eg(z)−g(z0)+logG(zo)

As a corollary we see that ifG(z) is an entire function withn zeros,
distinct or not, then

G(z) = (z− z1) . . . (z− zn)eg(z)

25
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whereg is entire. We wish to uphold this in the case whenG has an
infinity of zeros.

Theorem 1 (Weierstrass). [15, p.246] Given a sequence of complex27

numbers an such that

0 < |a1| ≤ |a2| ≤ . . . ≤ |an| ≤ . . .

whose sole limit point is∞, there exists an entire function with zeros at
these points and these points only.

Proof. Consider the function
(

1− z
an

)

eQν(z),

whereQν(z) is a polynomial of degreeq. This is an entire function which
does not vanish except forz= an. Rewrite it as

(

1− z
an

)

eQν(z) = eQν(z)+log
(

1− z
an

)

= e−
z

an
− z2

2a2 ...+Qν(z),

and choose

Qν(z) =
z
an
+ . . . +

zν

νaνn

so that
(

1− z
an

)

eQν(z) = e
−
(

z
an

)ν+1
1
ν+1

...

≡ 1+ ∪n(z), say.

We wish to determineν in such a way that

∞
∏

1

(

1− z
an

)

eQν(z)

is absolutely and uniformly convergent for|z| < R, however largeRmay28
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be.
Choose anR > 1, and anα such that 0< α < 1; then there exists a

q (+ ve integer) such that

|aq| ≤
R
α
, |aq+1| >

R
α
.

Then the partial product

q
∏

1

(

1− z
an

)

eQν(Z)

is trivially an entire function ofz. Consider the remainder

∞
∏

q+1

(

1− z
an

)

eQν(z)

for |z| ≤ R.

We have, forn > q, |an| >
R
α

or
∣

∣

∣

∣

∣

z
an

∣

∣

∣

∣

∣

< α < 1. Using this fact we

shall estimate each of the factors{1+ ∪n(z)} in the product, forn > q.

| ∪n (z)| =
∣

∣

∣

∣

∣

e−
1
ν+1

(

z
an

)ν+1−... − 1
∣

∣

∣

∣

∣

≤ e

∣

∣

∣

∣

∣

1
ν+1

(

z
an

)ν+1
...

∣

∣

∣

∣

∣ − 1

�

Since|em − 1| ≤ e|m| − 1, for em − 1 = m+
m2

2!
+ . . . or |em − 1| ≤ 29

|m| + |m
2|

2
. . . = e|m| − 1.

|Un(z)| ≤ e

∣

∣

∣

∣

z
an

∣

∣

∣

∣

ν+1(

1+
∣

∣

∣

∣

z
an

∣

∣

∣

∣

+...

)

− 1,

≤ e
∣

∣

∣

∣

z
an

∣

∣

∣

∣

ν+1
(1+α+α2

+··· ) − 1

= e
1

1−α

∣

∣

∣

∣

z
an

∣

∣

∣

∣

ν+1

− 1
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≤ 1
1− α

∣

∣

∣

∣

∣

z
an

∣

∣

∣

∣

∣

ν+1

· e
1

1−α

∣

∣

∣

∣

z
an

∣

∣

∣

∣

ν+1

, since ifx is

real,ex − 1 ≤ xex, for ex − 1 = x

(

1+
x
2!
+

x2

3!
+ · · ·

)

≤ x(1+ x+
x2

2!
+

· · · ) = xex

Hence

|Un(z)| ≤ e
1

1−α

1− α

∣

∣

∣

∣

∣

z
an

∣

∣

∣

∣

∣

ν+1

Now arise two cases: (i) either there exists an integerp > 0 such30

that
∞
∑

n=1

1
|an|p

< ∞ or (ii) there does not. In case (i) takeν = p − 1, so

that

|Un(z)| ≤ Rp

|an|p
· e

1
1−a

1− α, since|z| ≤ R;

and hence
∑ |Un(z)| < ∞ for |z| ≤ R, i.e.

∞
∏

q+1
(1+Un(z)) is absolutely and

uniformly convergent for|z| ≤ R.
In case (ii) takeν = n− 1, so that

|Un(z)| < e
1

1−α

1− α

∣

∣

∣

∣

∣

z
an

∣

∣

∣

∣

∣

n

, n > q
∣

∣

∣

∣

∣

z
an

∣

∣

∣

∣

∣

< 1

|z| ≤ R

|an| → ∞

Then by the ‘root-test’
∑ |Un(z)| < ∞, and the same result follows

as before. Hence the product

∞
∏

1

(

1− z
an

)

eQν(z)

is analytic in|z| ≤ R; sinceR is arbitrary andν does not depend onRwe31

see that the above product represents an entire function.
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Remark. If in addition z = 0 is also a zero ofG(z) then
G(z)

zmG(z)
has no

zeros and equalseg(z), say, so that

G(z) = eg(z) · zm
∞
∏

n=1

(

1− z
an

)

eQν(z)

In the above expression forG(z), the functiong(z) is anarbitrary
entire function. IfG is subject to further restrictions it should be possible
to say more aboutg(z); this we shall now proceed to do. The class of
entire functions which we shall consider will be called “entire functions
of finite order”.

Definition. An entire function f(z) is of finite order if there exists a con-
stantλ such that| f (z)| < erλ for |z| = r > r0. For a non-constant f , of
finite order, we haveλ > 0. If the above inequality is true for a certain
λ, it is also true forλ′ > λ. Thus there are an infinity ofλ′s o satisfying
this. Thelower boundof suchλ′s is called the “order of f ”. Let us
denote it byρ. Then, givenε > 0, there exists an ro such that

| f (z)| < erρ+ε

for |z| = r > r0.

This would imply that

M(r) = max
|z|=r
| f (z)| < erρ+ε , r > r0,

while 32

M(r) > erρ−ε for an infinity of values ofr tending

to +∞
Taking logs. twice, we get

log logM(r)
log r

< ρ + ε

and

log logM(r)
log r

> ρ − ε for an infinity of values ofr → ∞
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Hence

ρ = lim
r→∞

log logM(r)
logR

Theorem 2. If f (z) is an entire function of orderρ < ∞, and has an
infinity of zeros, f(0) , 0, then givenε > 0, there exists an R◦ such that
for R≥ Ro, we have

n
(R
3

)

≤ 1
log 2

· log
eRρ+ε

| f (o)|

Here n(R) denotes the number of zeros of f(z) in |z| ≤ R.

Proof. We first observe that iff (z) is analytic in|z| ≤ R, anda1 . . .an

are the zeros off inside|z| < R/3, then for

g(z) =
f (z)

(

1− z
a1

)

. . .
(

1− z
an

)

we get the inequality33

|g(z)| ≤ M

2n

whereM is defined by:| f (z)| ≤ M for |z| = R. For, if |z| = R, then since

|ap| ≤
R
3

, p = 1 . . .n, we get

∣

∣

∣

∣

∣

∣

z
ap

∣

∣

∣

∣

∣

∣

≥ 3 or

∣

∣

∣

∣

∣

∣

1− z
ap

∣

∣

∣

∣

∣

∣

≥ 2

By the maximum modules theorem,

|g(o)| ≤ M

2n
, i.e. | f (o)| ≤ M

2n

or

n ≡ n
(R
3

)

≤ 1
log 2

· log

(

M
f (o)

)

If, further, f is of orderρ, then forr > r◦, we haveM < erρ+ε which
gives the required results.

N.B. The result is trivial if the number of zeros is finite. �
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Corollary.
n(R) = O(Rρ+ε).

For

n
(R
3

)

≤ 1
log 2

· [Rρ+ε − log | f (o)|] ,

and − log | f (0)| < Rρ+ε, say.

Then for R≥ R′

n
(R
3

)

<
2

log 2
Rρ+ε

and hence the result.

Theorem 3. If f (z) is of orderρ < ∞, has an infinity of zeros 34

a1,a2, . . . , f (o) , 0, σ > ρ, then
∑ 1
|an|σ

< ∞

Proof. Arrange the zeros in a sequence:

|a1| ≤ |a2| ≤ . . .

Let
αp = |ap|

Then in the circle|z| ≤ r = αn, there are exactlyn zeros. Hence

n < c αρ+εn , for n ≥ N

or
1
n
>

1
c
· 1

α
ρ+ε
n

Letσ > ρ + ε (i.e. choose 0< ε < σ − ρ). Then

1

nσ/ρ+ε
>

1

cσ/ρ+ε
· 1
ασn

,

or
1
ασn

< cσ/ρ+ε · 1

nσ/ρ+ε
for n ≥ N

Hence
∑ 1
ασn

< ∞. �
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Remark. (i) There cannot be too dense a distribution of zeros, since
n < c < αρ+εn . Nor can their moduli increase too slowly, since, for

instance,
∑ 1

(logn)p does not converge.

(ii) The result is of course trivial if there are only a finite number of35

zeros.

Definition. Thelower boundof the numbers ‘σ’ for which
∑ 1
|an|σ

< ∞,

is called theexponent of convergenceof {an}. We shall denote it byρ1.
Then

∑ 1
|an|ρ1+ε

< ∞,
∑ 1
|an|ρ1−ε = ∞, ε > 0

By Theorem 1, we haveρ1 ≤ ρ

N.B. If the a′ns are finite in number or nil, thenρ1 = 0. Thusρ1 > 0
implies thatf has an infinity of zeros. Letf (z) be entire, of orderρ < ∞;
f (o) , 0, and f (zn) = 0, n = 1,2,3, . . .. Then there exists an integer

(p+ 1) such that
∑ 1
|zn|ρ+1

< ∞
(By Theorem 1, any integer> ρ will serve for ρ + 1). Thus, by

Weierstrass’s theorem, we have

f (z) = eQ(z)
∞
∏

1

(

1− z
zn

)

e
z

zn
+

z2
2zn2+···+

zν

νzνn ,

whereν = p (cf. proof of Weierstrass’s theorem).

Definition. The smallestintegerp for which
∑ 1
|zn|p+1 < ∞ is the ‘genus’

of the ‘canonical product’Π

(

1− z
zn

)

e
z

zn
+···+ zp

pz
p
n , with zeros zn. If z′ns36

are finite in number, we (including nil) define p= 0, and we define the

product asΠ

(

1− z
zn

)

Examples.(i) zn = n, p = 1 (ii) zn = en, p = 0
(iii) z1 =

1
2 log 2,zn = logn, n ≥ 2, no finitep.
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Remark. If σ > ρ1, then
∑ 1
|zn|σ

< ∞
Also,

∑ 1
|zn|p+1

< ∞

But
∑ 1
|zn|p

= ∞

Thus, ifρ1 is not an integer,p = [ρ1], and if ρ1 is an integer, then either
∑ 1
|zn|ρ1

< ∞ or
∑ 1
|zn|ρ1

= ∞; in the first case,p+ 1 = ρ1, which in the

second casep = ρ1. Hence,

φ ≤ ρ1

But ρ1 ≤ ρ. Thus
p ≤ ρ1 ≤ ρ

Also

p ≤ ρ1 ≤ p+ 1, since
∑ 1
|zn|p+1

< ∞.





Lecture 5

Entire Functions (Contd.)

Theorem 1(Hadamard). [8] Let f be an entire function with zeros 37

|z1| ≤ |z2| ≤ . . .→ ∞{zn} such that

Let f(o) , 0. Let f be of orderρ < ∞. Let G(z) be the canonical product
with the given zeros.

Then
f (z) = eQ(z)G(z),

whereQ is a polynomial of degree≤ ρ.
We shall give a proof without using Weierstrass’s theorem. The proof

will depend on integrating the function
f ′(z)
f (z)

.
1

zµ(z− x)
over a sequence

of expending circles.
Given R> 0, let N be defined by the property:

|zN| ≤ R, |zN+1| > R.

We need the following

Lemma. Let0 < ε < 1. Then
∣

∣

∣

∣

∣

∣

∣

f ′(z)
f (z)
−

N
∑

n+1

1
z− zn

∣

∣

∣

∣

∣

∣

∣

< cRρ−1+ε

for |z| = R
2
> R0, and|z| = R

2
is free from any zn.

35



36 5. Entire Functions (Contd.)

For we can choose anR0 such that for|z| = R> R0,

(i) | f (z)| < eRρ+ε ,38

(ii) no zn lies on|z| = R
2

, and

(iii) log
1
| f (0)| < (2R)ρ+ε

For such anR> R0, define

gR(z) =
f (z)
f (0)

N
∏

n=1

(

1− z
zn

)−1

Then for|z| = 2R, we have

|gR(z)| < 1
| f (o)|e

(2R)ρ+ε

since| f | < e(2R)ρ+ε , and|1− z
zn
| ≥ 1 for 1≤ n ≤ N.

Hence, by the maximum modulus principle,

|gR(z)| < 1
f (0)

e(2R)ρ+ε for |z| = R.

That is
log |gR(z)| < 2ρ+2Rρ+ε. (0 < ε < 1)

If hR(z) ≡ loggR(z), and the log vanishes forz = 0, then, sincegR(z)
is analytic andgR(z) , 0 for |z| ≤ R, we see thathR(z) is analytic for
|z| ≤ R, andhR(0) = 0. Further, for|z| = R,

RehR(z) = log |gR(z)| < 2ρ+2Rρ+ε

Hence, by the Borel-Caratheodory inequality, we have for|z| = R/2,39

|h′R(z)| < cRρ−1+ε,

which gives the required lemma.
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Proof of theorem. Let µ = [ρ] Then consider

I ≡
∫

f ′(z)
f (z)
· 1

zµ(z− x)
dz

taken along|z| = R/2, where|x| < R
4

. The only poles of the inte-

grand are: 0,x and thosez′ns which lie inside|z| = R/2. Calculating the
residues, we get

1
2πi

∫

|z|=R/2

f ′(z)
f (z)

1
zµ(z− x)

dz=
∑

|Zn|<R/2

1

zµn · (zn − x)

+
f ′(x)
f (x)

· 1
xµ

+
1

(µ − 1)!

(

Dµ−1
)

z=0

(

f ′(z)
f (z)
− 1

z− x

)

We shall prove that the l.h.s tends too asR→ ∞ in such a way that
|z| = R/2 is free from anyzn. RewritingI as

I =
∫

















f ′

f
−

N
∑

1

1
z− zn

















dz
zµ(z− x)

+

N
∑

1

∫

1
z− zn

· dz
zµ(z− x)

≡ I1 + I2,

we get for|z| = R/2 (by the Lemma), 40

|I1| = O(Rρ−µ−1+ε) = O(1).

Let k denote the number ofz′ns lying inside|z| = R/2
Then

I2 =

k
∑

n=1

∫

|z|=R/2

. . . +

N
∑

n=k+1

∫

. . .

≡ I2,1 + I2,2, say.



38 5. Entire Functions (Contd.)

The value ofI2,1 remains unaltered when we integrate along|z| =
3R/4, and along the new path,|z− zn| ≥ R/4 sincen ≤ k. SinceN =
O(Rρ+ε) we get

I2,1 = O(Rρ−µ−1+ε) = O(1)

Similarly integratingI2,2 over |z| = R/4, we get

I2,2 = O(1)

ThusI = o(1). Hence

f ′(x)
f (x)

1
xµ
+

∞
∑

n=1

· 1

zµn(z− x)

1
(µ − 1)!

[

D
]µ−1

z=0

(

f ′

f
1

z− x

)

= 0

i.e.
f ′(x)
f (x)

+

µ−1
∑

0

bnxn
∞
∑

n=1

(

x−1

zµn(z− x)

)

= 0, bn = aµ−n,an = −

[

f ′

f

](µ−n)

z=0

(µ − n)!

i.e.
f ′(x)
f (x)

=

µ−1
∑

0

cnxn
+

∞
∑

n=1













xµ−1

zµn
+

xµ−2

zµ−1
n

+ · · · + 1
x− zn
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Integrating and raising to the power ofewe get the result:

f (x) = e

µ
∑

0
dnxn ∞∏

1

(

1− x
zn

)

ex/zp+·+xµ/µzµn ,dn =
cn−1

n
.

If f is an entire functions of orderρ, which is not a constant, and
such thatf (o) , 0, and f (zn) = 0, n = 1,2,3, . . . |zn| ≤ |zn+1|, then

f (z) = eQ1(z)G1(z),

whereQ1(z) is a polynomial of degreeq ≤ ρ and

G1(z) =
∞
∏

n=1

(

1− z
zn

)

e
z

zn
+···+ 1

p

(

z
zn

)p

,

wherep+ 1 is the smallest integer for which
∑ 1
|zn|p+1

< ∞, this integer

existing, sincef is of finite order.
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Remark. This follows at once from Weierstrass’s theorem but can also
be deduced from the infinite-product representation derived in the proof
of Hadamard’s theorem (without the use of Weierstrass’s theorem). One
has only to notice that

∏

e−
1

p+1

(

z
zn

)p+1−...− 1
µ

(

z
zn

)µ

is convergent, wherep is the genus of the entire function in question, so42

that f (z) = eQ(z)G(z) may be multiplied by this product yieldingf (z) =
eQ1(z)G1(z), whereQ1 is again of degree≤ µ.

We recall the convention that if thez′ns are finite in number (or if
there are noz′ns), thenp = 0 andρ1 = 0.

We have also seen that

q ≤ ρ, ρ1 ≤ ρ i.e. max(q, ρ1) ≤ ρ

We shall now prove the following

Theorem 2. ρ ≤ max(q, ρ1)
Let

E(u) ≡ (1− u)e
u+

u2

2
+···+

up

p

If |u| ≤ 1
2, then

|E(u)| =
∣

∣

∣

∣

∣

elog(1−u)+u+...+ up
p

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

e
−up+1

p+1 −
up+2
p+2 −···

∣

∣

∣

∣

∣

≤ e|u|
p+1(1+ 1

2+
1
4+··· )

= e2|u|p+1 ≤ e|2u|p+1

≤ e|2u|τ , if τ ≤ p+ 1

If |u| > 1
2, then

|E(u)| ≤ (1+ |u|)e|u|+···+
|u|p

p

≤ (1+ |u|)e|u|p·(|u|1−p
+···+1)

≤ (1+ |u|)e|u|p(2p−1
+···+1)
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< e|2u|p+log(1+|u|)

≤ e|2u|τ+log(1+|u|), if p ≤ τ, since|2u| > 1.

43

Hence, for all u, we have

|E(u)| ≤ e|2u|τ+log(1+|u|),

if p ≤ τ ≤ p+ 1.
It is possible to chooseτ in such a way that

(i) p ≤ τ ≤ p+ 1,

(ii) τ > 0,

(iii)
∑ 1
|zn|τ

< ∞, (if there are an infinity of z′ns) and

(iv) ρ1 ≤ τ ≤ ρ1 + ε

For, if
∑ 1
|zn|ρ1

< ∞ (if the series is infinite this would imply that

ρ1 > 0), we have only to takeτ = ρτ > 0. And in all other cases we must

have p≤ ρ1 < p+ 1, [for, if ρ1 = p+ 1, then
∑ 1
|zn|ρ1

< ∞] and so we

chooseτ such thatρ1 < τ < p+ 1; this implies again that
∑ 1
|zn|τ

< ∞
andτ > 0. For such aτ we can write the above inequality as

|E(u)| ≤ ec1|u|τ , c1 is a constant.

Hence44

| f (z)| ≤ e|Q(z)|+c1 ·
∞
∑

n=1

∣

∣

∣

∣

∣

z
zn

∣

∣

∣

∣

∣

τ

i.e. M(r) < ec2rq
+c3rτ , |z| = r > 1, and c1

∑

|1/zn|τ = c3.

Hence

log M(r) = O(rq) +O(rτ), as r→ ∞,
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= O(rmax(q,τ)), as r→ ∞ (2.1)

so that
ρ ≤ max(q, τ)

Sinceτ is arbitrarily nearρ1, we get

ρ ≤ max(q, ρ1),

and this proves the theorem.

Theorem 3. If the order of the canonical product G(z) isρ′, thenρ′ = ρ1

Proof. As in the proof of Theorem 2, we have

|E(u)| ≤ ec1|u|τ















































p ≤ τ ≤ p+ 1;

τ > 0
∑ 1
|zn|τ

< ∞

ρ1 ≤ τ ≤ ρ + ε, ε > 0

Hence

c1

∞
∑

n=1

∣

∣

∣

∣

∣

z
zn

∣

∣

∣

∣

∣

τ

|G(z)| ≤ e

≤ ec3rτ , |z| = r.

If M(r) = max
|z|=r
|G(z)| , then 45

M(r) < ec3rτ

Hence
ρ′ ≤ τ

which impliesρ′ ≤ ρ1; butρ1 ≤ ρ′. Henceρ′ = ρ1 �

Theorem 4. If, either
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(i) ρ1 < q or

(ii)
∑ 1
|zn|ρ1

< ∞ (the series being infinite),

then
log M(r) = O(rβ), for β = max(ρ1,q).

Proof. (i) If ρ1 < q, then we takeτ < q and from (2.1) we get

log M(r) = O(rq) = O(rmax(ρ1,q))

(ii) If
∞
∑

n=1

1
|zn|ρ1

< ∞, then we may takeτ = ρ1 > 0 and from (2.1) we

get

log M(r) = O(rq) +O(rρ1)

= O(rβ)

�

Theorem 5. (i) We have

ρ = max(ρ1,q)

(The existence of either side implies the other)

(ii) If ρ > 0, and if log M(r) = O(rρ) does not hold, thenρ1 = ρ, f (z)46

has an infinity of zeros zn, and
∑ |zn|−τ is divergent.

Proof. The first part is merely an affirmation of Hadamard’s theorem,
ρ1 ≤ ρ and Theorem 2.

For the second part, we must haveρ1 = ρ; for if ρ1 < ρ, thenρ = q
by the first part, so thatρ1 < q, which implies, by Theorem 4, that
logM(r) = O(rq) = O(rρ) in contradiction with our hypothesis. Since
ρ > 0, andρ1 = ρ we have thereforeρ1 > 0, which implies that f(z) has

an infinity of zeros.Finally
∞
∑

1
|zn|−ρ1 is divergent, for if

∑ |zn|ρ1 < ∞,

then by Theorem 4, we would have logM(r) = O(rρ) which contradicts
the hypothesis. �
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Remarks. (1) ρ1 is called the ‘real order’ off (z), andρ the ‘apparent
order Max (q, p) is called the ‘genus’ off (z).

(2) If ρ is not an integer, thenρ = ρr , for q is an integer andρ =
max(ρ1,q). In particular, ifρ is non-integral, thenf must have an
infinity of zeros.





Lecture 6

The Gamma Function

1 Elementary Properties [15, p.148]
47

Define the functionΓ by the relation.

Γ(x) =

∞
∫

0

tx−1e−tdt, x real.

(i) This integral converges at the ‘upper limit’∞, for all x, since
tx−1e−t

= t−2tx+1e−t
= O(t−2) ast → ∞; it converges at the lower

limit o for x > 0.

(ii) The integral converges uniformly for 0< a ≤ x ≤ b. For

∞
∫

0

tx−1e−tdt =

1
∫

0

+

∞
∫

1

= O





















1
∫

0

ta−1dt





















+O





















∞
∫

1

tb−1e−tdt





















= O(1), independently ofx.

Hence the integral represents acontinuous function for x> 0.

(iii) If z is complex,
∞
∫

0

tz−1e−tdt is again uniformly convergent over any

finite region in which Rez≥ a > 0. For if z= x+ iy, then

|tz−1| = tx−1,

45
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and we use (ii). HenceΓ(z) is ananalytic function forRez> 0

(iv) If x > 1, we integrate by parts and get

Γ(x) =
[

−tx−1e−t
]∞
0
+ (x− 1)

∞
∫

0

tx−2e−tdt

= (x− 1)Γ(x− 1).

However,48

Γ(1) =

∞
∫

0

e−tdt = 1; hence

Γ(n) = (n− 1)!,

if n is a+ve integer. ThusΓ(x) is a generalization ofn!

(v) We have

logΓ(n) = (n− 1
2

) logn− n+ c+O(1),

wherec is a constant.

logΓ(n) = log(n− 1)! =
n−1
∑

r=1

log r.

We estimate logr by an integral: we have

r+ 1
2

∫

r− 1
2

log t dt =

1
2

∫

− 1
2

log(s+ r)ds=

1
2

∫

0

+

0
∫

− 1
2

=

1/2
∫

0

[

log(t + r) + log(r − t)
]

dt
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=

1/2
∫

0

[

log r2
+ log

(

1− t2

r2

)]

dt

= log r + cr , wherecr = O

(

1
r2

)

.

Hence

logΓ(n) =
n−1
∑

r=1



























r+ 1
2

∫

r− 1
2

log t dt− cr



























=

n− 1
2

∫

1
2

log t dt−
n−1
∑

r=1

cr

=

{(

n− 1
2

)

log

(

n− 1
2

)

− 1
2

log
1
2

}

− (n− 1
2

) +
1
2

−
∞
∑

r=1

cr +

∞
∑

n

Cr

= (n− 1
2

) logn− n+ c+ o(1), wherec is a constant.

49

Hence, also
(n!) = a.e−nnn+ 1

2 eo(1),

where ‘a’ is a constant such thatc = loga

(vi) We have

Γ(x)Γ(y)
Γ(x+ y)

=

∞
∫

O

ty−1

(1+ t)x+ydt, x > 0, y > 0.

For

Γ(x)Γ(y) =

∞
∫

0

tx−1e−tdt ·
∞

∫

0

sy−1e−sds, x > o, y > 0
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Puts= tv; then

Γ(x)Γ(y) =

∞
∫

0

tx−1e−t dt

∞
∫

0

tyvy−1e−tv dv

=

∞
∫

0

vy−1dv

∞
∫

0

tx+y−1e−t(1+v)dt

=

∞
∫

0

vy−1dv

∞
∫

0

ux+y−1e−u

(1+ v)x+ydu

= Γ(x+ y)

∞
∫

0

vy−1

(1+ v)x+ydv.

The inversion of the repeated integral is justified by the use of the50

fact that the individual integrals converge uniformly forx ≥ ε > 0,
y ≥ ε > 0.

(vii) Putting x = y =
1
2

in (vii), we get [using the substitutiont =

tan2 θ]

{Γ(1
2

)}2 = 2Γ(1)

π/2
∫

0

dθ = π.

SinceΓ(1
2) > 0, we getΓ(1

2) =
√
π

Puttingy = 1− x, on the other hand, we get the important relation

Γ(x)Γ(1− x) =

∞
∫

0

u−x

1+ u
du=

π

sin(1− x)π
, 0 < x < 1,

since

∞
∫

0

xa−1

1+ x
dx=

π

sinaπ
for 0 < a < 1, by contour
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integration. Hence

Γ(x)Γ(1− x) =
π

sinxπ
, 0 < x < 1.

2 Analytic continuation of Γ(z) [15, p. 148]

We have seen that the function

Γ(z) =

∞
∫

o

e−ttz−1 dt

is a regular function for Rez> 0. We now seek to extend it analytically
into the rest of the complexz-plane. Consider

I (z) ≡
∫

C

e−ζ(−ζ)z−1dζ,

whereC consists of the real axis from∞ to δ > 0, the circle|ζ | = δ in 51

the ‘positive’ directionx and again the real axis fromδ to∞.
We define

(−ζ)z−1
= e(z−1) log(−ζ)

by choosing log(−ζ) to be real whenζ = −δ
The integralI (z) is uniformly convergent in any finite region of the

Z-plane, for the only possible difficulty is atζ = ∞, but this was covered
by case (iii) in§ 1. Thus I(z) is regular for all finite values of z.

We shall evaluateI (z). For this, set

ζ = ρeiϕ

so that
log(−ζ) = logρ + i(ϕ − π) on the contour

[so as to conform with the requirement that log(−ζ) is real whenζ = −δ]
Now the integrals on the portion ofC corresponding to (∞, δ) and

(δ,∞) give [sinceϕ = 0 in the first case, andϕ = 2π in the second]:

δ
∫

∞

e−ρ+(z−1)·(logρ−iπ)dρ +

∞
∫

δ

e−ρ+(z−1)(logρ+iπ)dρ
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=

∞
∫

δ

[

−e−ρ+(z−1)(logρ−iπ)
+ e−ρ+(z−1)(logρ+iπ)

]

dρ

=

∞
∫

δ

e−ρ+(z−1) logρ
[

e(z−1)iπ − e−(z−1)iπ
]

dρ

= −2i sinzπ

∞
∫

δ

e−ρ · ρz−1dρ

On the circle|ζ | = δ, we have

|(−ζ)z−1| = |e(z−1) log(−ζ)| = |e(z−1)[logδ+i(ϕ−π)] |
= e(x−1) logδ−y(ϕ−π)

= O(δx−1).

52

The integral round the circle|ζ | = δ therefore gives

O(δx) = O(1), asδ→ 0, if x > 0.

Hence, lettingδ→ 0, we get

I (z) = −2i sinπz

∞
∫

0

e−ρρz−1dρ,Rez> 0

= −2i sinπzΓ(z), Rez> 0.

We have already noted thatI (z) is regular for all finitez; so

1
2

iI (z) cosecπz

is regular for all finitez, except (possibly) for the poles of cosecπz
namely,z= 0,±1,±2, . . .; and it equalsΓ(z) for Rez> 0.

Hence -1
2 iI (z) coseczπ is the analytic continuation ofΓ(z) all over

the z-plane.
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We know, however, by (iii) of§ 1, that Γ(z) is regular forz =

1,2,3, . . .. Hence the only possible poles of
1
2

iI (z) cosecπx are z =

0,−1,−2, . . .. These are actually poles ofΓ(z), for if z is one of these
numbers, say−n, then (−ζ)z−1 is single-valued in 0 andI (z) can be eval-
uated directly by Cauchy’s theorem. Actually

(−1)n+1
∫

C

e−ζ

ζn+1
dζ =

2πi
n!

(−1)n+n+1
=
−2πi
n!

i.e. I (−n) = −−2πi
n!

.

So the poles of cosecπz, atz= 0,−n, are actually poles ofΓ(z). The 53

residue atz= −n is therefore

lim
z→−n

(

−2πi
n!

)

( z+ n
−2i sinzπ

)

=
(−1)n

n!

The formula in (viii) of§ 1 can therefore be upheld for complex values.
Thus

Γ(z) · Γ(1− z) = π cosecπz

for all non-integral values of z. Hence, also,

1
Γ(z)

is an entire function.

(Since the poles ofΓ(1− z) are cancelled by the zeros of sinπz)

3 The Product Formula

We shall prove that
1
Γ(z)

is an entire function of order 1.

SinceI (z) = −2i sinzπ Γ(z), and

Γ(z) · Γ(1− z) =
π

sinπz
,

we get

I (1− z) = −2i sin(π − zπ)Γ(1− z)
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= −2i sinzπ
π

sinπz
· 1
Γ(z)

= − 2iπ
Γ(z)

or
1
Γ(z)
=

I (1− z)
−2iπ

.

Now54

I (z) = O























eπ|z|























1
∫

0

e−ttx−1dt+

∞
∫

1

e−ttx−1dt













































= O





















eπ|z|



















1+

∞
∫

1

e−tt|z|dt







































= O























eπ|z|























1+

1+|z|
∫

1

+

∞
∫

1+|z|













































= O
[

eπ|z|(|z| + 1)|z|+1
]

= O
[

e|z|
1+ε]

, ε > 0.

Hence
1
Γ(z)

is of order≤ 1. However, the exponent of convergence

of its zeros equals 1. Hence the order is= 1, and the genus of the
canonical product is also equal to 1.

Thus
1
Γ(z)
= z,eaz+b

∞
∏

n=1

(1+
z
n

)e
−z
n

by Hadamard’s theorem. However, we know that lim
z→0+

1
zΓ(z)

= 1 and

Γ(1) = 1. These substitutions giveb = 0, and

1 = ea
Π

(

1+
1
π

)

e−1/n

or,

0 = a+
∞
∑

1

[

log

(

1+
1
n

)

− 1
n

]
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= a− lim
m→∞















m
∑

1

[

log

(

1+
1
n

)

− 1
n

]















= a+ lim
m→∞















m
∑

1

[

log(n+ 1)− logn
] −

m
∑

1

1
n















= a+ lim
m→∞















log(m+ 1)−
m

∑

1

1
n















= a− γ, whereγ is Euler’s constant.
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Hence
1
Γ(z)
= eγzz

∞
∏

n=1

{(

1+
z
n

)

e−z/n
}

As a consequence of this we can derive Gauss’s expression forΓ(z).
For

Γ(z) = lim
n→∞

[

ez(logn−1− 1
2−...−

1
n ) 1

z
· ez/1

1+ z
1

. . .
ez/n

1+ z
n

]

= lim
n→∞

[

nz · 1
z
· 1

z+ 1
· 2

z+ 2
. . .

n
z+ n

]

= lim
n→∞

[

nz · n!
z(z+ 1) . . . (z+ n)

]

We shall denote

nz · n!
z(z+ 1) . . . (z+ n)

≡ Γn(z),

so that 56

Γ(z) = lim
n→∞
Γn(z).

Further, we get by logarithmic-differentiation,

Γ
′(z)
Γ(z)

= −γ − 1
z
−
∞
∑

n=1

(

1
z+ n

− 1
n

)

.
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Thus
d2

dz2
[logΓ(z)] =

∞
∑

n=0

1
(n+ z)2

;

Hence
d2

dz2
[logΓ(z)] > 0 for real, positivez.



Lecture 7

The Gamma Function:
Contd

4 The Bohr-Mollerup-Artin Theorem
[7, Bd.I, p.276]

We shall prove that the functional equation ofΓ(x), namelyΓ(x + 1) = 57

xΓ(x), together with the fact that
d2

dx2
[logΓ(x)] > 0 for x > 0, deter-

minesΓ(x) ‘essentially’ uniquely-essentially, that is, except for a con-
stant of proportionality. If we add the normalization conditionΓ(1) = 1,
then these three properties determineΓ uniquely. N.B. The functional
equationalonedoes not defineΓ uniquely sinceg(x) = p(x)Γ(x), where
p is any analytic function of period 1 also satisfies the same functional
equation.

We shall briefly recall the definition of ‘Convex functions’. A real-
valued functionf (x), defined forx > 0, isconvex, if the corresponding
function

φ(y) =
f (x+ y) − f (x)

y
,

defined for ally > −x, y , 0, is monotone increasing throughout the
range of its definition.

If 0 < x1 < x < x2 are given, then by choosingy1 = x1 − x and

55
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y2 = x2 − x, we can express the condition of convexity as:

f (x) ≤ x2 − x
x2 − x1

f (x1) +
x− x1

x2 − x1
f (x2)

Letting x → x1, we get f (x1 + 0) ≤ f (x1); and lettingx2 → x, we58

get f (x) ≤ f (x + 0) and hencef (x1 + 0) = f (x1) for all x1. Similarly
f (x1 − 0) = f (x1) for all x1.

Thusa convex function is continuous.
Next, if f (x) is twice (continuously) differentiable, we have

ϕ′(y) =
y f ′(x+ y) − f (x+ y) + f (x)

y2

and writingx+ y = u, we get

f (x) = f (u− y) = f (u) − y f ′(u) +
y2

2
f ′′[u− (1− θ)y],0 ≤ θ ≤ 1

which we substitute in the formula forϕ′(y) so as to obtain

ϕ′(y) =
1
2

f ′′[x+ θy].

Thus if f ′′(x) ≥ 0 for all x > 0, thenϕ′(y) is monotone increasing andf
is convex. [The converse is also true].

Thus logΓ(x) is a convex function; by the last formula of the previ-
ous section we may say thatΓ(x) is ‘logarithmically convex’for x > 0.
FurtherΓ(x) > 0 for x > 0.

Theorem.Γ(x) is the positive function uniquely defined for x> 0 by the
conditions:

(1.) Γ(x+ 1) = xΓ(x)

(2.) Γ(x) is logarithmically convex

(3.) Γ(1) = 1.
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Proof. Let f (x) > 0 be any function satisfying the above three condi-
tions satisfied byΓ(x).

Choose an integern > 2, and 0< x ≤ 1.59

Let
n− 1 < n < n+ x ≤ n+ 1.

By logarithmic convexity, we get

log f (n− 1)− log f (n)
(n− 1)− n

<
log f (n+ x) − log f (n)

(n+ x) − n

≤ log f (n+ 1)− log f (n)
(n+ 1)− n

Because of conditions 1 and 3, we get

f (n− 1) = (n− 2)!, f (n) = (n− 1)!, f (n+ 1) = n!

and
f (n+ x) = x(x+ 1) . . . (x+ n− 1) f (x).

Substituting these in the above inequalities we get

log(n− 1)x < log
f (n+ x)
(n− 1)!

≤ lognx,

which implies, since log is monotone,

or (n− 1)x <
f (n+ x)
(n− 1)!

≤ nx

(n− 1)!(n− 1)x

x(x+ 1) . . . (x+ n− 1)
< f (x) ≤ (n− 1)!nx

x(x+ 1) . . . (x+ n− 1)

Replacing (n− 1) byn in the first inequality, we get

Γn(x) < f (x) ≤ Γn(x) · x+ n
n

,n = 2,3, . . .

whereΓn is defined as in Gauss’s expression forΓ.
Lettingn→ ∞, we get

f (x) = Γ(x), 0 < x ≤ 1.

For values ofx > 1, we uphold this relation by the functional equa-
tion. �



58 7. The Gamma Function: Contd

5 Gauss’s Multiplication Formula. [7, Bd.I, p.281]

Let p be a positive integer, and60

f (x) = px
Γ

(

x
p

)

Γ

(

x+ 1
p

)

. . .Γ

(

x+ p− 1
p

)

[If p = 1, then f (x) = Γ(x)]. For x > 0, we then have

dx

dx2
[log f (x)] > 0.

Further
f (x+ 1) = x f(x).

Hence by the Bohr-Artin theorem, we get

f (x) = apΓ(x).

Putx = 1. Then we get

ap = pΓ

(

1
p

)

· Γ
(

2
p

)

. . .Γ

(

p
p

)

(5.1)

[a1 = 1, by definition]. Putk = 1,2, . . . p, in the relation

Γn

(

k
p

)

=
nk/pn!pn+1

k(k+ p) . . . (k+ np)
,

and multiply out and take the limit asn→ ∞. We then get from (5.1),

ap = p. lim
n→∞

n
p+1
2 (n!)ppnp+p

(np+ p)!

However

(np+ p)! = (np)!(np)p
[(

1+
1

np

) (

1+
2

np

)

. . .

(

1+
p

np

)]

Thus, for fixedp, asn→ ∞, we get

ap = p lim
n→∞

(n!)ppnp

(np)!n(p−1)/2
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Now by the asymptotic formula obtained in (v) of§ 1, [see p.49]61

(n!)p
= apnnp+p/2e−npeo(1)

(np)! = annp+ 1
2 pnp+ 1

2 e−npeo(1)

Hence
ap =

√
p · ap−1.

Puttingp = 2 and using (5.1) we get

a =
1√
2
, a2 =

1√
2

2Γ

(

1
2

)

Γ(1) =
√

2π (5.2)

Hence
ap =

√
p(2π)(p−1)/2.

Thus

px
Γ

(

x
p

)

. . . Γ

(

x+ p− 1
p

)

=
√

p(2π)(p−1)/2
Γ(x)

For p = 2 andp = 3 we get:

Γ

( x
2

)

Γ

(

x+ 1
2

)

=

√
π

2x−1
Γ(x); Γ

( x
3

)

Γ

(

x+ 1
3

)

Γ

(

x+ 2
3

)

=
2π

3x− 1
2

Γ(x).

6 Stirling’s Formula [15, p.150]

From (v) of§ 1, p.49 and (5.2) we get

(n!) =
√

2π · e−n · nn+ 1
2 eo(1),

which is the same thing as

log(n− 1)! =

(

n− 1
2

)

logn− n+ log
√

2π + o(1) (6.1)

Further 62

1+
1
2
+ · · · + 1

N − 1
− logN = γ + 0(1), asN→ ∞ (6.2)
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and

log(N + z) = logN + log
(

1+
z
N

)

= logN +
z
N
+O

(

1
N2

)

, asN→ ∞. (6.3)

We need to use (6.1)-(6.3) for obtaining the asymptotic formula for
Γ(z) wherez is complex.

From the product-formula we get

logΓ(z) =
∞
∑

n=1

{ z
n
− log

(

1+
z
n

)}

− γz− logz, (6.4)

each logarithm having its principal value.
Now

N
∫

0

[u] − u+ 1
2

u+ z
du=

N−1
∑

n=0

n+1
∫

n















n+ 1
2 + z

u+ z
− 1















du

=

N−1
∑

n=0

(n+
1
2
+ z)[log(n+ 1+ z) − log(n− z)] − N

=

N−1
∑

n=0

n[log(n+ 1+ z) − log(n+ z)] +

(

z+
1
2

) N−1
∑

n=0
[

log(n+ 1+ z) − log(n+ z)
] − N

= (N − 1) log(N + z) −
N−1
∑

n=1

log(n+ z) +

(

z+
1
2

)

log(N + z)

−
(

z+
1
2

)

logz− N

=

(

N − 1
2
+ z

)

log(N + z) −
(

z+
1
2

)

logz

− N −
N−1
∑

n=1

[

logn+ log
(

1+
z
n

)]
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=

(

N − 1
2
+ z

)

log(N + z) −
(

z+
1
2

)

logz− N − log(N − 1)!

+

N−1
∑

n=1

{ z
n
− log

(

1+
z
n

)}

− z
N−1
∑

1

1
n

63

Now substituting for log(N + z) etc., from (6.1)-(6.3), we get

N
∫

0

[u] − u+ 1
2

u+ z
du= (N − 1

2
+ z)

{

logN +
z
N
+O

(

1
N2

)}

−
(

z+
1
2

)

logz− N −
(

N − 1
2

)

logN + N − c+O(1)+

N−1
∑

n=1

{ z
n
− log

(

1+
z
n

)}

− z
N−1
∑

1

1
n

= z

















logN −
N−1
∑

1

1
n

















+ z+O(1)− log
√

2π

−
(

z− 1
2

)

logz− logz+
N−1
∑

n=1

{ z
n
− log

(

1+
z
n

)}

Now lettingN→ ∞, and using (6.4), and (6.2), we get 64

∞
∫

0

[u] − u+ 1
2

u+ z
du+

1
2

log 2π − z+

(

z− 1
2

)

logz= logΓ(z) (6.5)

If ϕ(u) =
u
∫

0

([v] − v+ 1
2)dv, then

ϕ(u) = O(1), sinceϕ(n+ 1) = ϕ(n),

if n is an integer.
Hence

∞
∫

0

[u] − u+ 1
2

u+ z
du=

∞
∫

0

dϕ(u)
u+ z

=

∞
∫

0

ϕ(u)
(u+ z)2
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= O





















∞
∫

0

dv

|u+ z|2





















If we write z= reiθ, andu = ru1, then

∞
∫

0

[u] − u+ 1
2

u+ z
du= O





















1
r

∞
∫

0

du1

|u1 + θiθ|2





















The last integral is finite ifθ , π. Hence

∞
∫

0

[u] − u+ 1
2

u+ z
du= O

(

1
r

)

, uniformly for |arg z| ≤ π − ε < π

Thus we get from (6.5):

logΓ(z) =

(

z− 1
2

)

logz− z+
1
2

log 2π +O

(

1
|z|

)

for |arg z| ≤ π − ε < π

Corollaries. (1) logΓ(z+α) = (z+α− 1
2) logz− z+ 1

2 log 2π+O
(

1
|z|
)

as |z| → ∞ uniformly for |arg z| ≤ π − ε < π. α bounded.65

(2) For any fixed x, as y→ ±∞

|Γ(x+ iy)| ∼ e−
1
2π|y||y|x− 1

2
√

2π

(3)
Γ
′(z)
Γ(z)

= logz− 1
2z
+O

(

1
|z|2

)

, |arg z| ≤ π − ε < π [11, p.57]

This may be deduced from (1) by using

f ′(z) =
1

2πi

∫

C

f (ζ)
(ζ − z)2

dζ,

where f(z) = logΓ(z)−
(

z− 1
2

)

logz+z− 1
2 log 2π and C is a circle

with centre atζ = z and radius|z| sinε/2.



Lecture 8

The Zeta Function of
Riemann

1 Elementary Properties ofζ(s) [16, pp.1-9]

We defineζ(s), for scomplex, by the relation 66

ζ(s) =
∞
∑

n=1

1
ns , s= σ + it, σ > 1. (1.1)

We definexs, for x > 0, aseslog x, where logx has its real determination.
Then |ns| = nσ, and the series converges forσ > 1, and uniformly
in any finite region in whichσ ≥ 1 + δ > 1. Henceζ(s) is regular
for σ ≥ 1 + δ > 1. Its derivatives may be calculated by termwise
differentiation of the series.

We could expressζ(s) also as an infinite product called theEuler
Product:

ζ(s) =
∏

p

(

1− 1
ps

)−1

, σ > 1, (1.2)

wherep runs through all the primes (known to be infinite in number!).
It is the Euler product which connects the properties ofζ with the prop-
erties of primes.The infinite product is absolutely convergent forσ > 1,
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since the corresponding series

∑

p

∣

∣

∣

∣

∣

1
ps

∣

∣

∣

∣

∣

=

∑

p

1
pσ

< ∞, σ > 1

Expanding each factor of the product, we can write it as

∏

p

(

1+
1
ps +

1
p2s
+ · · ·

)

Multiplying out formally we get the expression (1.1) by the unique67

factorization theorem. This expansion can be justified as follows:

∏

p≤p

(

1+
1
ps +

1
p2s
+ · · ·

)

= 1+
1
ns

1

+
1
ns

2

+ · · · ,

wheren1,n2, . . . are those integers none of whose prime factors exceed
P. Since all integers≤ P are of this form, we get

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

n=1

1
ns −

∏

p≤P

(

1− 1
p2

)−1
∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∞
∑

n=1

1
ns − 1− 1

ns
1

− 1
ns

2

− · · ·
∣

∣

∣

∣

∣

∣

∣

≤ 1
(P+ 1)σ

+
1

(P+ 2)σ
+ · · ·

→ 0, asP→ ∞, if σ > 1.
Hence (1.2) has been established forσ > 1, on the basis of (1.1).

As an immediate consequence of (1.2) we observe thatζ(s) has no zeros
for σ > 1, since a convergent infinite product of non-zero factors is
non-zero.

We shall now obtain a few formulae involvingζ(s) which will be of
use in the sequel. We first have

logζ(s) = −
∑

p

log

(

1− 1
p2

)

, σ > 1. (1.3)
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If we write π(x) =
∑

p≤x
1, then

logζ(s) = −
∞
∑

n=2

{π(n) − π(n− 1)} log

(

1− 1
ns

)

= −
∞
∑

n=2

π(n)

[

log

(

1− 1
ns

)

− log

(

1− 1
(n+ 1)s

)]

=

∞
∑

n=2

π(n)

n+1
∫

n

s
x(xs− 1)

dx

68

Hence

logζ(s) = s

∞
∫

2

π(x)
x(xs− 1)

dx, σ > 1. (1.4)

It should be noted that the rearrangement of the series preceding the
above formula is permitted because

π(n) ≤ n and log

(

1− 1
ns

)

= O(n−σ).

A slightly different version of (1.3) would be

logζ(s) =
∑

p

∑

m

1
mpms, σ > 1 (1.3)′

where p runs through all primes, andm through all positive integers.
Differentiating (1.3), we get

−ζ
′(s)
ζ(s)

=

∑

p

p−s log p
1− p−s =

∑

p,m

∑ logρ
pms ,

or

ζ′(s)
ζ(s)

=

∞
∑

n=1

∧(n)
ns , σ > 1 , (1.5)
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where∧(n) =















log p, if n is a+ ve power of a primep

0, otherwise.
69

Again

1
ζ(s)
=

∏

p

(

1− 1
ps

)

=

∞
∑

n=1

µ(n)
ns , σ > 1 (1.6)

(1.6) whereµ(1) = 1, µ(n) = (−1)k if n is the product ofk different
primes,µ(n) = 0 if n contains a factor to a power higher than the first.

We also have

ζ2(s) =
∞
∑

n=1

d(n)
ns , σ > 1

whered(n) denotes the number of divisors ofn, including 1 andn. For

ζ2(s) =
∞
∑

m=1

1
ms ·

∞
∑

n=1

1
ns =

∞
∑

µ=1

1
µs

∑

mn=µ

1

More generally

ζk(s) =
∞
∑

n=1

dk(n)
ns , σ > 1 (1.7)

wherek = 2,3,4, . . ., anddk(n) is the number of ways of expressingn70

as a product ofk factors.
Further

ζ(s) · ζ(s− a) =
∞
∑

m=1

1
ms

∞
∑

n=1

na

ns ,

=

∞
∑

µ=1

1
µs ·

∑

mn=µ

na,

so that

ζ(s) · ζ(s− a) =
∞
∑

µ=1

σ2(µ)
µδ

(1.8)
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whereσa(µ) denotes the sum of theath powers of the divisors ofµ.
If a , 0, we get, from expanding the respective terms of the Euler

products,

ζ(a)ζ(s− a) =
∏

p

(

1+
1
ps +

1
p2s
+ · · ·

) (

1+
pa

ps +
p2a

p2a
+ · · ·

)

=

∏

p

(

1+
1+ pa

ps +
1+ pa

+ p2a

p2s
+ · · ·

)

=

∏

p

(

1+
1− p2a

1− pa ·
1
ps + · · ·

)

Using (1.8) we thus get

σ2(n) =
1− p(m1+1)a

1

1− pa
1

. . .
1− p(mr+1)a

r

1− pa
r

(1.9)

if n = pm1
1 , pm2

2 . . . pmr
r by comparison of the coefficients of

1
ns. 71

More generally, we have

ζ(s) · ζ(s− a) · ζ(s− b) · ζ(s− a− b)
ζ(2s− a− b)

=

∏

p

1− p−2s+a+b

(1− p−s)(1− p−s+a)(1− p−s+b)

(1− p−s+a+b)

for σ > max{1,Rea+ 1, Reb+ 1,Re(a+ b) + 1}. Puttingp−s
= z, we

get the general term in the right hand side equal to

1− pa+bz2

(1− z) · (1− paz) · (1− pbz)(1− pa+bz)

=
1

(1− pa)(1− pb)

{

1
1− z

− pa

1− paz
− pb

1− pbz
+

pa+b

1− pa+bz

}

=
1

(1− pa)(1− pb)

∞
∑

m=0

{

1− p(m+1)a − p(m+1)b
+ p(m+1)(a+b)

}

zm

=
1

(1− pa)(1− pb)

∞
∑

m=o

{

1− p(m+1)a
} {

1− p(m+1)b
}

zm
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Hence 72

ζ(s) · ζ(s− a)ζ(s− b) · ζ(s− a− h)
ζ(2s− a− b)

=

∏

p

∞
∑

m=0

1− p(m+1)a

1− pa · 1− p(m+1)b

1− pb
· 1

pms

Now using (1.9) we get

ζ(s) · ζ(s− a) · ζ(s− b)ζ(s− a− b)
ζ(2s− a− b)

=

∞
∑

n=1

σa(n)σb(n)
ns (1.10)

σ > max{1,Rea+ 1,Reb+ 1,Re(a+ b) + 1}

If a = b = 0, then

{ζ(s)}4
ζ(2s)

=

∞
∑

n=1

{d(n)2}
ns , σ > 1. (1.11)

If α is real, andα , 0, we writeαi for a and−αi for b in (1.10), and
get

ζ2(s)ζ(s− αi)ζ(s+ αi)
ζ(2s)

=

∞
∑

n=1

|σαi(n)|2
ns , σ > 1, (1.12)

whereσαi(n) =
∑

d/n
dαi .



Lecture 9

The Zeta Function of
Riemann (Contd.)

2 Elementary theory of Dirichlet Series [10]
73

The Zeta function of Riemann is the sum-function associated with the

Dirichlet series
∑ 1

ns. We shall now study, very briefly, some of the

elementary properties of general Dirichlet series of the form

∞
∑

n=1

ane−λns,o ≤ λ1 < λ2 < . . .→ ∞

Special cases are:λn = logn; λn = n, e−s
= x. We shall first prove a

lemma applicable to the summation of Dirichlet series.

Lemma. Let A(x) =
∑

λn≤x
an, where an may be real or complex. Then, if

x ≥ λ1, andφ(x) has a continuous derivative in(0,∞), we have

∑

λn≤ω
anφ(λn) = −

ω
∫

λ1

A(x)φ′(x)dx+ A(ω)φ(ω).

69
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If A(ω)φ(ω)→ 0 asω→ ∞, then

∞
∑

n=1

anφ(λn) = −
∞

∫

λ1

A(x)φ′(x)dx,

provided that either side is convergent.

Proof.

A(ω)φ(ω) −
∑

λn≤ω
anφ(λn)

=

∑

λn≤ω
an{φ(ω) − φ(λn)}

=

∑

λn≤ω

ω
∫

λn

anφ
′(x)dx

=

ω
∫

λ1

A(x)φ′(x)dx

�74

Theorem 1. If
∞
∑

n=1
ane−λns converges for s= s0 ≡ σ0 + ito, then it

converges uniformly in the angular region defined by

|am(s− s0)| ≤ θ < π/2, for 0 < θ < π/2

Proof. We may suppose thatso = 0. For
∑

ane−λns
=

∑

ane−λns0e−λn(s−s0) ≡
∑

bne−λns′ , say,

and the new series converges ats′ = 0. By the above lemma, we get

ν
∑

µ+1

ane−λns
=















ν
∑

1

−
µ

∑

1















ane−λns
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=

λν
∫

λµ

A(x) · e−xs · sdx+ A(λν)e
−λνs− A(λµ)e

−λµs

= s

λν
∫

λµ

{A(x) − A(λµ)}e−xsdx+ [A(λν) − A(λµ)]e
−λνs

We have assumed that
∑

an converges, therefore, givenǫ > 0, there 75

exists ann0 such that forx > λµ ≥ n0, we have

|A(x) − A(λµ)| < ε

Hence, for suchµ, we have

∣

∣

∣

∣

∣

∣

∣

∣

ν
∑

µ+1

ane−λns

∣

∣

∣

∣

∣

∣

∣

∣

≤ ε|s|
λν

∫

λµ

e−xσdx+ εe−λνσ

≤ 2ε
|s|
σ
+ ε

< 2ε (secθ + 1),

if σ , 0, since
|s|
σ

< secθ, and this proves the theorem. As a conse-

quence of Theorem 1, we deduce �

Theorem 2. If
∑

ane−λns
converges for s= s0, then it converges for

Res > σo, and uniformly in any bounded closed domain contained in
the half-planeσ > σo. We also have

Theorem 3. If
∑

ane−λns converges for s= s0 to the sum f(s0), then
f (s)→ f (s0) as s→ s0 along any path in the region|am(s− s0)| ≤ θ <
π/2.

A Dirichlet series may converge forall values ofs, or somevalues
of s, or novalues ofs.

Ex.1.
∑

ann−s, an =
1
n!

converges forall values ofs.
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Ex.2.
∑

ann−s, an = n! converges fornovalues ofs.

Ex.3.
∑

n−s converges for Res> 1, and diverges for Res≤ 1.

If a Dirichlet series converges for some, but not all, values ofs, and76

if s1 is a point of convergence whiles2 is a point of divergence, then,
on account of the above theorems, we haveσ1 > σ2. All points on the
real axis can then be divided into two classesL andU; σ ∈ U if the
series converges atσ, otherwiseσ ∈ L. Then any point ofU lies to the
right of any point ofL, and this classification defines a numberσo such
that the series converges for everyσ > σo and diverges forσ < σo,
the casesσ = σ0 begin undecided. Thus the region of convergence is a
half-plane. The lineσ = σ0 is called theline of convergence, and the
numberσo is called theabscissa of convergence. We have seen thatσ0

may be±∞. On the basis of Theorem 2 we can establish

Theorem 4. A Dirichlet series represents in its half-plane of conver-
gence a regular function of s whose successive derivatives are obtained
by termwise differentiation.

We shall now prove a theorem which implies the ‘uniqueness’ of
Dirichlet series.

Theorem 5. If
∑

ane−λ
s
n converges for s= 0, and its sum f(s) = 0 for

an infinity of values of s lying in the region:

σ ≥ ε > 0, |am s| ≤ θ < π/2,

then an = 0 for all n.

Proof. f(s) cannot have an infinite number of zeros in the neighbour-
hood of anyfinite point of the giver region, since it is regular there.
Hence there exists an infinity of valvessn = σn + itn, say, withσn+1 >

ση, limσn = ∞ such thatf (sn) = 0.
However,77

g(s) ≡ eλ1s f (s) = a1 +

∞
∑

2

ane−(λn−λ1)s,
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(here we are assumingλ1 > 0) converges fors = 0, and is therefore
uniformly convergent in the region given; each term of the series on the
right→ 0, ass→ ∞ and hence the right hand side, as a whole, tends
to a1 ass→ ∞. Thusg(s) → a1 ass→ ∞ along any path in the given
region. This would contradict the fact thatg(sn) = 0 for an infinity of
sn→ ∞, unlessa1 = 0. Similarlya2 = 0, and so on. �

Remark . In the hypothesis it is essential thatε > 0, for if ε = 0, the
origin itself may be a limit point of the zeros off , and a contradiction
does not result in the manner in which it is derived in the above proof.

The above arguments can be applied to
∑

ane−λns so as to yield the
existence of anabscissa of absolute convergencēσ, etc. In general,
σ̄ ≥ σ0. The strip that separates ¯σ from σo may comprise the whole
plane, or may be vacuous or may be a half-plane.

Ex.1. σ0 = 0, σ̄ = 1

(1− 21−s)ζ(s) =

(

1
1s +

1
2s +

1
3s + · · ·

)

− 2

(

1
2s +

1
4s + · · ·

)

=

(

1
1s −

1
2s +

1
3s −

1
4s + · · ·

)

Ex.2.
∑ (−1)n√

n
(logn)−s converges for alls but never absolutely. In the78

simple caseλn = logn, we have

Theorem 6. σ̄ − σ0 ≤ 1.

For if
∑

ann−s < ∞, then|an| · n−σ = O(1), so that
∑ |an|

ns+1+ε
< ∞

for ε > 0
While we have observed that the sum-function of a Dirichlet series

is regular in the half-plane of convergence, there is no reason to assume
that the line of convergence contains at least one singularity of the func-
tion (see Ex 1. above!). In the special case where the coefficients are
positive, however we can assert the following

Theorem 7. If an ≥ 0, then the point s= σ0 is a singularity of the
function f(s).
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Proof. Sincean ≥ 0, we haveσ0 = σ̄, and we may assume, without
loss of generality, thatσ0 = 0. Then, if s = 0 is a regular point, the
Taylor series forf (s) at s = 1 will have a radius of convergence> 1.
(since the circle of convergence of a power series must have at least one
singularity). Hence we can find a negative value ofs for which

f (s) =
∞
∑

ν=0

(s− 1)ν

ν!
f (ν)(1) =

∞
∑

ν=0

(1− s)ν

ν1

∞
∑

n=1

anλ
ν
ne−λn

Here every term is positive, so the summations can be interchanged and
we get79

f (s) =
∞
∑

n=1

ane−λn

∞
∑

ν=0

(1− s)νλνn
ν!

=

∞
∑

n=1

ane−λ
s
n

Hence the series converges for a negative value ofs which is a contra-
diction. �
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The Zeta Function of
Riemann (Contd)

2 (Contd). Elementary theory of Dirichlet series
80

We wish to prove a formula for the partial sum of a Dirichlet series. We
shall give two proofs, one based on an estimate of the order of the sum-
function [10], and another [14, Lec. 4] which is independent of suchan
estimate. We first need the following

Lemma 1. If σ > 0, then

1
2πi

σ+i∞
∫

σ−i∞

eus

s
ds=



























1, if u > 0

0, if u < 0
1
2, if u = 0

where
σ+i∞
∫

σ−1∞
= lim

T→∞

σ+iT
∫

σ−iT

.

Proof. The caseu = 0 is obvious. We shall therefore study only the
casesu ≷ 0. Now

σ+iT
∫

σ−iT

eusds
s
=

eus

us

σ+iT
∫

σ−iT

+

σ+iT
∫

σ−iT

eus

us2
ds

75
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However
|eu(σ+iT )| = euσ

and|s| > T; hence, lettingT → ∞, we get

σ+i∞
∫

σ−i∞

eusds
s
=

σ+i∞
∫

σ−i∞

eus

us2
ds≡ I , say.

We shall evaluateI on the contour suggested by the diagram. If81

u < 0 , we use the contourL +CR; and ifu > 0, we useL +CL.
If u < 0, we have, onCR,

∣

∣

∣

∣

∣

eus

s2

∣

∣

∣

∣

∣

≤ euσ

r2
, since Res> σ.

If u > 0, we have, onCL,
∣

∣

∣

∣

∣

eus

s2

∣

∣

∣

∣

∣

≤ euσ

r2
, since Res< σ.

Hence
∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

CR,CL

eusds

us2

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ 2πr · euσ

|u|γ2
→ 0, asr → ∞.

By Cauchy’s theorem, however, we have
∫

L

= −
∫

CR

;
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hence

(1)
1

2πi

σ+i∞
∫

σ−i∞

eus

us2
ds= 0, if u < 0.

If, however,u > 0, the contourL + CL encloses a pole of the second
order at the origin, and we get

∫

L

= −
∫

CL

+1,

so that

(2)
1

2πi

σ+i∞
∫

σ−i∞

eus

us2
ds= 1, if u > 0.

�

Remarks.We can rewrite the Lemma as: ifa > 0, 82

1
2πi

a+i∞
∫

a−i∞

e(λ−λn)s

s
ds=



























0, if λ < λn

1, if λ > λn
1
2, if λ = λn

Formally, therefore, we should have

1
2πi

a+i∞
∫

a−i∞

f (s)
eλs

s
ds=

1
2πi

∞
∑

1

an

a+i∞
∫

a−i∞

e(λ−λn)s

s
ds

=

∑

λn≤λ

′
an

the dash denoting that ifλ = λn the last term should be halved. We wish
now to establish this on a rigorous basis.

We proceed to prove another lemma first.
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Lemma 2. Let
∑

ane−λns converge for s= β real. Then

n
∑

1

aνe
−λνs = o(|t|),

the estimate holding uniformly both inσ ≥ β + ε > β and in n. In
particular, for n= ∞, f (s) = o(|t|) uniformly forσ ≥ β + ε > β

Proof. Assume thatβ = 0, without loss of generality. Then

aν = O(1) andA(λν) − A(λµ) = O(1) for all ν andµ

If 1 < N < n, then

n
∑

1

aνe
−λνs =

N
∑

1

+

n
∑

N+1

aνe
−λνs

=

N
∑

1

aνe
−λνs+ s

λn
∫

λN

{A(x) − A(λN)}e−xsdx

{A(λn) − A(λN)}e−λs
n

= O(N) +O(1)+O























|s|
λn

∫

λN

e−xσdx























= O(N) +O

(

|s|
σ

e−λNσ

)

= O(N) +O
(

|t|e−λNε
)

since|s|2 = t2 + σ2 andσ ≥ ε.83

Hence
n

∑

1

aνe
−λνs = O(N) +O(|t|e−λNε), if 1 < N < n

If N ≥ n, then, trivially,

n
∑

1

aνe
−λνs = O(N).
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If we chooseN as a function of|t|, tending to∞more slowly than|t|, we
get

n
∑

1

aνe
−λνs = O(|t|)

in either case. � 84

Theorem (Perron’s Formula). Letσ0 be the abscissa of convergence of
∑

ane−λns whose sum-function is f(s). Then forσ > σ0 andσ > 0, we
have

′
∑

λν≤ω
an =

1
2πi

σ+i∞
∫

σ−i∞

f (s)
s

eωsds,

where the dash denotes the fact that ifω = λn the last term is to be
halved.

Proof. Let λm ≤ ω < λm+1, and

g(s) = eωs















f (s) −
m

∑

1

ane−λns















(This has a meaning since Res≡ σ > σ0). Now

1
2πi

σ+i∞
∫

σ−i∞

g(s)
s

ds

=
1

2πi

σ+i∞
∫

σ−i∞

f (s)eωs

s
ds−

∑

λn≤ω

′
an

by the foregoing lemma. We have to show that the last expression is
zero.

Applying Cauchy’s theorem to the rectangle

σ − iT1, σ + iT2,Ω + iT2,Ω − iT1,
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whereT1,T2 > 0, andΩ > σ, we get

1
2πi

σ+i∞
∫

σ−i∞

g(s)
s

ds= 0,

for85

1
2πi

σ+iT2
∫

σ−iT1

=
1

2πi























Ω−iT1
∫

σ−iT1

+

Ω+iT2
∫

Ω−iT1

+

σ+iT2
∫

Ω+iT2























= I1 + I2 + I3, say.

Now, if we fix T1 andT2 and letΩ → ∞, then we see thatI2 → 0,

for g(s) is the sum-function of
∞
∑

1
b−µns

n , wherebn = am+n, µn = λm+n−ω,

with µ1 > 0, and henceg(s) = o(1) ass→ ∞ in the angle|ams| ≤ π

2
−δ.

Thus

1
2πi

σ+iT2
∫

σ−iT1

g(s)
s

ds=
1

2πi























∞−iT1
∫

σ−iT1

−
∞+iT2
∫

σ+iT2























if the two integrals on the right converge.
Now if

h(s) ≡ g(s)e(λm+1−ω)s
= am+1 + am+2e−(λm+2−λm+1)s

+ · · ·

then by lemma 2, we have

|h(s)| < εT2

for s= σ + iT2, σ ≥ σ0 + ε, T2 ≥ T0. Therefore for the second integral
on the right we have86

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞+iT2
∫

σ+iT2

g(s)
s

ds

∣

∣

∣

∣

∣

∣

∣

∣

∣

<
εT2

√

σ2 + T2
2

∞
∫

σ

e−µ1ξdi < ε/µ1

µ1 > 0. This proves not only that the integral converges for a finiteT2,
but also that asT2→ ∞, the second integral tends to zero. Similarly for
the first integral on the right. �
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N.B. An estimate forg(s) alone (instead ofh(s)) will not work!

Remarks.More generally we have forσ > σ0 andσ > σ∗

∑

λn≤ω

′
ane−λns∗

=
1

2πi

σ+i∞
∫

σ−i∞

f (s)
s− s∗

eω(s−s∗)ds,

for
∑

ane−λnS∗ · eλn(s−s∗)
=

∑

ane−λns
= f (s),

and writing s′ = s − s∗ andbn = ane−λns∗ , we have f (s) ≡ f (s′) =
∑

bne−λns′ .
We shall now give an alternative proof of Person’s formulawithout

using the order off (s) ass→ ∞ [14, Lec. 4]

Aliter. If f (s) =
∞
∑

1
ane−λns hasσ0 , ∞ as its abscissa of convergence,

and ifa > 0, a > σ0, then forω , λn, we have

∑

λn<ω

an =
1

2πi

a+i∞
∫

a−i∞

f (s)
eωs

s
ds

Proof. Define 87

fm(s) =
m

∑

1

ane−λns

and rm(s) =
∞
∑

m+1

an.e
−λns
= f (s) − fm(s)

Then

(A)
1

2πi

a+iT
∫

a−iT

f (s)
eωs

s
ds=

1
2πi

a+iT
∫

a−iT

fm(s)
eωs

s
ds+

1
2πi

a+iT
∫

a−iT

rm(s)
eωs

s
ds

Here the integral on the left exists sincef (s) is regular onσ = a > σ0.
By Lemma 1, as applied to the first integral on the right hand side, we
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get

(B) lim
T→∞

1
2πi

a+iT
∫

a−iT

f (s)
eωs

s
ds−

∑

λn<ω

an = lim
T→∞

1
2πi

a+iT
∫

a−iT

rm(s)
eωs

s
ds

the limits existing.
Sinceλn → ∞, we can choosem0 such that for allm≥ m0 we have

λm > ω. For all suchm the last relation holds.
Now write bn = ane−λnσ

′
, φ(x) = e−x(s−σ′), so that

∑

ane−λns
=

∑

bnφ(λ). Write B(x) =
∑

n≤x
bn.

Then applying the Lemma of the 9th lecture, we get

N
∑

m+1

ane−λns
=

N
∑

1

−
m

∑

1

= (s− σ′)
λN
∫

λm

B(x)e−x(s−σ′) dx

+ B(λN)e−λN(s−σ′) − B(m)e−λm(s−σ′)

= {B(λN) − B(λm)}e−λN(s−σ′)

+ (s− σ′)
λN
∫

λm

{B(x) − B(λm)}e−x(s−σ′) dx.

88

Now chooseσ′ > 0 anda > σ′ > σ0. [If σo ≥ 0 the second
condition implies the first; ifσ0 < 0, then sincea > 0, choose 0< σ′ <
a].

ThenB(x) tends to a limit asx→ ∞, so thatB(x) = o(1) for all x;
while |e−x(s−σ′)| = e−x(σ−σ′) → 0 asx→ ∞ for σ > σ′. Hence, letting
N→ ∞, we get

rm(s) = (s− σ′)
∞

∫

λm

{B(x) − B(λm)}e−x(s−σ′)dx,
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or

|rm(s)| ≤ c
|s− σ′|
σ − σ′ e

−λm(σ−σ′)

Now consider
1

2πi

∫

L+CR

rm(s)
eωs

s
ds

whereL +CR is the contour indicated in the diagram.

rm(s) is regular in this contour, and the integral is therefore zero.89

Hence
∫

L

= −
∫

CR

OnCR, however,s= σ′ + reiθ andσ ≥ a, so that

|rm(s)| ≤ c · r
a− σ′ · e

−λmr cosθ

|eωs| = eω(σ′+r cosθ), |s| ≥ r.

Hence
∣

∣

∣

∣

∣

∣

∣

∣

∣

1
2πi

∫

CR

rm(s)
eωs

s
ds

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ cr
2π(a− σ′)eωσ

′
π/2
∫

−π/2

e(ω−λm)r cosθdθ

=
cr

π(a− σ′)eωσ
′
π/2
∫

0

e(ω−λm)r sinθdθ
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However, sinθ ≥ 2θ
π

for 0 ≤ θ ≤ π/2; hence

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
2πi

a+iT
∫

a−iT

rm(s)
eωs

s
ds

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ creωσ
′

π(a− σ′)

π/2
∫

0

e
2
π
(ω−λm)rθdθ

≤ creωσ
′

2(a− σ′)(λm− ω)r
,

for all T. Hence

(C) lim
T→∞

∣

∣

∣

∣

∣

∣

∣

∣

∣

a+iT
∫

a−iT

rm(s)
eωs

s
ds

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ c1

(λm− ω)

for all m ≥ mo.90

Now reverting to relation (A), we get

(D) lim
T→∞

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
2πi

a+iT
∫

a−iT

f (s)
eωs

s
ds− 1

2πi

a+iT
∫

a−iT

fm(s)
eωs

s
ds

∣

∣

∣

∣

∣

∣

∣

∣

∣

= lim
T→∞

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
2πi

a+iT
∫

a−iT

rm(s)
eωs

s
ds

∣

∣

∣

∣

∣

∣

∣

∣

∣

for everym. However,

lim
T→∞

1
2πi

a+iT
∫

a−iT

fm(s)
eωs

s
ds=

∑

λn<ω

an

independently ofm. Hence1

1We use the fact that if
lim
T→∞
| f (T) − g(T)| = α

and lim
T→∞

g(T) = β, then

lim
T→∞
| f (T) − β| ≤ α
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lim
T→∞

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
2πi

a+iT
∫

a−iT

f (s)
eωs

s
ds−

∑

λn<ω

an

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ left hand side in (D)

≤ c1

λm− ω
for m> mo.

Lettingm→ ∞ we get the result. � 91

Remarks. (i) If ω = λn the last term in the sum
∑

λn<ω

an has to be

multiplied by
1
2

.

(ii) If a < 0, (anda > σ0) then in the contour-integration the residue
at the origin has to be taken, and this will contribute a term -f (0).
In the proof, the relation between|s| andr has to be modified.
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3 Analytic continuation of ζ(s). First method [16,
p.18]

92
We have, forσ > 0,

Γ(s) =

∞
∫

0

xs−1e−xdx.

Writing nx for x, and summing overn, we get

∞
∑

n=1

Γ(s)
ns =

∞
∑

n=1

∞
∫

n=0

xs−1e−nxdx

=

∞
∫

0















∞
∑

n=1

e−nx















xs−1dx, if σ > 1.

since

∞
∑

n=1

∣

∣

∣

∣

∣

∣

∣

∣

∞
∫

xs−1e−nxdx

∣

∣

∣

∣

∣

∣

∣

∣

≤
∞
∑

n=1

∞
∫

0

xσ−1e−nxdx=
∞
∑

n=1

Γ(σ)
nσ

< ∞,

87
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if σ > 1. Hence

∞
∑

n=1

Γ(s)
ns =

∞
∫

0

e−x

1− e−x xs−1dx=

∞
∫

0

xs−1dx
ex − 1

or

Γ(s)ζ(s) =

∞
∫

0

xs−1

ex − 1
dx, σ > 1

In order to continueζ(s) analytically all over thes-plane, consider
the complex integral

I (s) =
∫

C

zs−1

e− 1
dz

whereC is a contour consisting of the real axis from+∞ to ρ, 0 < ρ <

2π, the circle|z| = ρ; and the real axis fromρ to∞. I (s), if convergent,93

is independent ofρ, by Cauchy′s theorem.
Now, on the circle|z| = ρ, we have

|zs−1| = |e(s−1) logz| = |e{(σ−1)+it}{log |z|+i argz}|
= e(σ−1) log|z|−t argz

= |z|σ−1e2π|t|,

while
|ez− 1| > A|z|;

Hence, for fixeds,

|
∫

|z|=ρ

| ≤ 2πρ · ρσ−1

Aρ
· e2π|t| → 0 asρ→ 0, if σ > 1.

Thus, on lettingρ→ 0, we get, ifσ > 1,

I (s) = −
∞

∫

0

xs−1

ex − 1
dx+

∞
∫

0

(xe2πi)s−1

ex − 1
dx
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= −Γ(s)ζ(s) + e2πis
Γ(s)ζ(s)

= Γ(s)ζ(s)(e2πs− 1).

Using the result

Γ(s)Γ(1− s) =
π

sinπs
we get 94

I (s) =
ζ(s)
Γ(1− s)

· 2πi.
e2πis − 1

eπis − e−πis

=
ζ(s)
Γ(1− s)

· 2πi · eπis,

or

ζ(s) =
e−iπs
Γ(1− s)
2πi

∫

C

zs−1dz
ez− 1

, σ > 1.

The integral on the right is uniformly convergent in any finite region of
the s-plane (by obvious majorization of the integrand), and so defines
an entire function. Hence the above formula, proved first forσ > 1,
definesζ(s), as a meromorphic function, all over thes-plane. This only
possible poles are the poles ofΓ(1− s), namelys= 1,2,3, . . .. We know
thatζ(s) is regular fors = 2,3, . . . (As a matter of fact,I (s) vanishes at
these points). Hence the only possible pole is ats= 1.

Hence

I (1) =
∫

C

dz
ez− 1

= 2πi,

while

Γ(1− s) = − 1
s− 1

+ · · ·

Hencethe residue ofζ(s) at s= 1 is 1.
We see in passing, since

1
ez− 1

=
1
z
− 1

2
+ B1

z
2!
− B2

z3

4!
+ · · ·

that 95

ζ(0) = −1
2
, ζ(−2m) = 0, ζ(1− 2m) =

(−1)mBm

2m
,m= 1,2,3, . . .
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4 Functional Equation (First method) [16, p.18]

Consider the integral
∫

zs−1dz
ez− 1

taken alongCn as in the diagram.

BetweenC andCn, the integrand has poles at

±2iπ, . . . ,±2niπ.

The residue at
2mπi is (2mπe

π
2 i)s−1

while the residue at−2mπi is (2mπe3/2πi)s−1; taken together they amount
to

(2mπ)eπi(s−1)
[

e
πi
2 (s− 1)+ e−

πi
2 (s−1)

]

= (2mπ)s−1eπi(s−1)2 cos
π

2
(s− 1)

= −2(2mπ)s−1eπis sin
π

2
s
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Hence96

I (s) =
∫

Cn

zs−1dz
ez− 1

+ 4πi
sinπs

2
eπis

n
∑

m=1

(2mπ)s−1

by the theorem of residues.
Now letσ < 0, andn→ ∞. Then, onCn,

|zs−1| = O(|z|σ−1) = O(nσ−1),

and
1

ez− 1
= O(1),

for

|ez− 1|2 = |ex+iy − 1|2 = |ex(cosy+ i siny) − 1|2

= e2x − 2ex cosy+ 1,

which, on the vertical lines, is≥ (ex − 1)2 and, on the horizontal lines,
= (ex

+ 1)2. (since cosy = −1 there).
Also the length of the square-path isO(n). Hence the integral round

the square→ 0 asn→ ∞.
Hence

I (s) = 4πieπissinπs
2

∞
∑

m=1

(2mπ)s−1

= 4πieπis sin
πs
2
· (2π)s−1ζ(1− s), if σ < 0.

or 97

ζ(s)Γ(s)(e2πis − 1) = (4πi)(2π)s−1eπis sin
πs
2
ζ(1− s)

= 2πieπis ζ(s)
Γ(1− s)

Thus

ζ(s) = Γ(1− s)ζ(1− s)2sπs−1 sin
πs
2

,
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for σ < 0, and hence, by analytic continuation, for all values ofs (each
side is regular except for poles!).

This is the functional equation.
Since

Γ

( x
2

)

Γ

(

x+ 1
2

)

=

√
π

2x−1
Γ(x),

we get, on writingx = 1− s,

2−s
Γ

(

1− s
2

)

Γ

(

1− s
2

)

=
√
πΓ(1− s);

also
Γ

( s
2

)

Γ

(

1− s
2

)

=
π

sin πs
2

Hence

Γ(1− s) = 2−s
Γ

(

1− s
2

)

{

Γ

( s
2

)}−1√
π{sin

πs
2
}−1

Thus

π−s/2
Γ(s/2)ζ(s) = π−

(1−s)
2 Γ

(

1− s
2

)

ζ(1− s)

If98

ξ(s) ≡ 1
2

s(s− 1)π−s/2
Γ(s/2)ζ(s)

≡ 1
2

s(s− 1)η(s),

thenη(s) = η(1 − s) andξ(s) = ξ(1 − s). If ≡ (z) = ξ(1
2 + iz), then

≡ (z) ≡ (−z).

5 Functional Equation (Second Method) [16, p.13]

Consider the lemma given in Lecture 9, and writeλn = n, an = 1,
φ(x) = x−s in it. We then get

∑

n≤x

n−s
= s

X
∫

1

[x]
xs+1

dx+
[X]
Xs , if X ≥ 1.
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=
s

s− 1
− s

(s− 1)Xs−1
− s

X
∫

1

x− [x]
xs+1

dx+
1

Xs−1
− X − [X]

Xs

Since
∣

∣

∣

∣

∣

1
Xs−1

∣

∣

∣

∣

∣

= 1/Xσ−1, and
∣

∣

∣

∣

∣

X − [X]
Xs ≤ 1/Xσ,

∣

∣

∣

∣

∣

we deduce, on makingX→ ∞,

ζ(s) =
s

s− 1
− s

∞
∫

1

x− [x]
xs+1

dx, if σ > 1

or

ζ(s) = s

∞
∫

1

[x] − x+ 1
2

xs+1
dx+

1
s− 1

+
1
2

, if σ > 1

5.1 Since [x] − x +
1
2

is bounded, the integral on the right hand side99

converges forσ > 0, and uniformly in any finite region to the right of
σ = 0. Hence it represents an analytic function ofs regular forσ > 0,
and so provides the continuation ofζ(s) up toσ = 0, ands= 1 is clearly
a simple pole with residue 1.

For 0< σ < 1, we have, however,

1
∫

0

[x] − x

xs+1
dx= −

1
∫

0

x−sdx=
1

s− 1
,

and

s
2
=

∞
∫

1

dx

xs+1
=

1
2

Hence
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5.2

ζ(s) = s

∞
∫

0

[x] − x

xs+1
dx, 0 < σ < 1

We have seen that (5.1) gives the analytic continuation up toσ = 0.
By refining the argument dealing with the integral on the right-hand side
of (5.1) we can get the continuation all over thes-plane. For, if

f (x) ≡ [x] − x+
1
2
, f1(x) ≡

x
∫

1

f (y)dy,

then f1(x) is alsobounded, since
n+1
∫

n
f (y)dy= 0 for any integern.

Hence100

x2
∫

x1

f (x)
xs+1

dx=
f1(x)
xs+1























x2

x1

+ (s+ 1)

x2
∫

x1

f1(x)
xs+2

dx

→ 0, asx1→ ∞, x2→ ∞,
if σ > −1.

Hence the integral in (5.1) converges forσ > −1.
Further

s

1
∫

0

[x] − x+ 1
2

xs+1
dx=

1
s− 1

+
1
2
, for σ < 0;

ζ(s) = s

∞
∫

0

[x] − x+ 1
2

xs+1
dx, −1 < σ < 0 (5.3)

Now the function [x] − x+ 1
2 has the Fourier expansion

∞
∑

n=1

sin 2nπx
nπ
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if x is not an integer. The series is boundedly convergent. If we substi-
tute it in (5.3), we get

ζ(s) =
s
π

∞
∑

n=1

1
n

∞
∫

0

sin 2nπx

xs+1
dx

=
s
π

∞
∑

n=1

(2nπ)s

n

∞
∫

0

siny

ys+1
dy

ζ(s) =
s
π

(2π)s{−Γ(1− s)} sin
sπ
2
ζ(1− s),

5.4 If termwise integration is permitted,for −1 < σ < 0. The right 101

hand side is, however, analytic for all values ofssuch thatσ < 0. Hence
(5.4) provides the analytic continuation (not only for−1 < σ < 0) all
over thes-plane.

The term-wise integration preceding (5.4) is certainly justified over
anyfinite range since the concerned series is boundedly convergent. We
have therefore only to prove that

lim
X→∞

∞
∑

n=1

1
n

∞
∫

X

sin 2nπx

xs+1
dx= 0,−1 < σ < 0

Now

∞
∫

X

sin 2nπx

xs+1
dx=

[

−cos 2nπx

2nπxs+1

]∞

X
− s+ 1

2nπ

∞
∫

X

2nπx

xs+2
dx

= O

(

1
nXσ+1

)

+O





















1
n

∞
∫

X

dx

xσ+2





















= O

(

1
nXσ+1

)
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and hence

lim
X→∞

∞
∑

n=1

1
n

∞
∫

X

sin 2nπx

xs+1
dx= 0, if − 1 < σ < 0

This completes the analytic continuation and the proof of the Func-
tional equation by the second method.

As a consequence of (5.1), we get

lim
s→1

{

ζ(s) − 1
s− 1

}

=

∞
∫

1

[x] − x+ 1
2

x2
dx+

1
2

= lim
n→∞

n
∫

1

[x] − x

x2
dx+ 1

= lim
n→∞























n−1
∑

m=1

m

m+1
∫

m

dx

x2
− logn+ 1























= lim
n→∞















n−1
∑

m=1

1
m+ 1

+ 1− logn















= γ

102

Hence, nears= 1, we have

ζ(s) =
1

s− 1
+ γ +O(|s− 1|)
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6 Some estimates forζ(s) [11, p.27]
103

In any fixed half-planeσ ≥ 1 + ε > 1, we know thatζ(s) is bounded,
since

|ζ(s)| ≤ ζ(σ) ≤ ζ(1+ ε).

We shall now use the formulae of§5 to estimate|ζ(s)| for larget, where
s= σ + it.

Theorem.

|ζ(s)| < A log t, σ ≥ 1, t ≥ 2.

|ζ(s)| < A(δ)t1−δ, σ ≥ δ, t ≥ 1, if 0 < δ < 1.

Proof. From (5.1) we get

ζ(s) =
s

s− 1
− s

∞
∫

1

x− [x]
xs+1

dx, σ > 0

97
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Also from§5 of the 11th Lecture,

∑

n≤X

1
ns = s

X
∫

1

[x]
xs+1

dx+
[X]
Xs , if X ≥ 1, s, 1

If σ > 0, t ≥ 1, X ≥ 1, we get

ζ(s) −
∑

n≤X

1
ns = −s

∞
∫

X

x− [x]
xs+1

dx+
1

(s− 1)Xs−1
+

X − [X]
Xs

Hence

|ζ(s)| <
∑

n≤X

1
nσ
+

1
tXσ−1

+
1

Xσ
+ |s|

∞
∫

X

dx

xσ+1

<
∑

n≤X

1
nσ
+

1
txσ−1

+
1

Xσ
+

(

1+
t
σ

) 1
Xσ

, since|s| < σ + t.

If σ ≥ 1,104

|ζ(s)| <
∑

n≤X

1
n
+

1
t
+

1
X
+

1+ t
X

≤ (logX + 1)+ 3+
t
X
, sincet ≥ 1, X ≥ 1.

TakingX = t, we get the first result.
If σ ≥ η, where 0< η < 1,

|ζ(s)| <
∑

n≤X

1
nη
+

1
tXη−1

+

(

2+
1
η

)

1
xη

<

[X]
∫

0

dx
xη
+

X1−η

t
+

3t
ηXη

≤ X1−η

1− η + X1−η
+

3t
ηXη
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TakingX = t, we deduce

|ζ(s)| < t1−η
(

1
1− η + 1+

3
η

)

, σ ≥ η, t ≥ 1.

�

7 Functional Equation (Third Method) [16, p.21]

The third method is based on the ‘theta-relation’

ϑ(x) =
1
√

x
ϑ

(

1
x

)

,

where

ϑ(x) =
∞
∑

n=−∞
e−πn2x,Rex > 0

This relation can be proved directly, or obtained as a special case of105

‘Poisson’s formula’. We shall here give a proof of that formula [2, p.37]
Let f (x) be continuous in (−∞,∞). Let

φ(α) =

∞
∫

−∞

f (x)e2πiαxdx≡ lim
T→∞

T
∫

−T

f (x)e2πiαxdx,

if the integral exists. Then, forα and pro-positive integers, we have

p+ 1
2

∫

−p− 1
2

f (x)e2πiαxdx=

1
2

∫

− 1
2















p
∑

−p

f (x+ k)















e2πiαxdx.

If we assume that

lim
p→∞

p
∑

−p

f (x+ k) = g(x) (7.1)
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uniformlyin −1
2 ≤ x ≤ 1

2, theng(x) is continuous, and on lettingp→ ∞
in (7.1), we get

φ(α) =

1
2

∫

− 1
2

g(x)e2πiαxdx.

Thusφ(α) is the Fourier coefficient of the continuous periodic function
g(x). Hence, by Fejer’s theorem,

g(o) =
∑

(C,1)

φ(α)

If we assume, however, that
∞
∑

−∞
φ(α) < ∞, then

∑

(C,1)
φ(α) =

∞
∑

−∞
φ(α)

Hence

lim
p→∞

p
∑

−p

f (k) = lim
p→∞

p
∑

−p

φ(α)

or106
∞
∑

−∞
f (k) =

∞
∑

−∞
φ(α) (7.2)

This is Poisson’s formula. We may summarize our result as follows.
Poisson’s Formula. If

(i) f (x) is continuous in (−∞,∞),

(ii)
∞
∑

−∞
f (x+ k) converges uniformly in−1

2 ≤ x < 1
2 and

(iii)
∞
∑

−∞
φ(α) converges,

then
∞
∑

−∞
f (k) =

∞
∑

−∞
φ(α)

Remarks.This result can be improved by a relaxation of the hypothe-
ses.
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The Theta Relation. If we take f (x) = e−πx2t, t > 0, in the above
discussion, we obtain the required relation. However, we have to show
that for this function the conditions of Poisson’s formula are satisfied.
This is easily done.f (x) is obviously continuous in (−∞,∞). Secondly

e−π(x+k)2t ≤ e|k|t for |k| ≥ k0(t)

This proves the uniform convergence of

∞
∑

k=−∞
e−π(x+k)2t, t > 0. − 1

2
≤ x <

1
2

Thirdly we show that, fort > 0

φ(α) ≡
∞

∫

−∞

e−y2πt+2παyidy=
1

t1/2
e−πα

2/t

For 107

φ(α) = e−
πα2

t

∞
∫

−∞

e−πt
(

y− α
t
i
)2

dy, and

If α ≷ 0, we consider the contour integral

∫

C

e−πts2
ds, s= σ + iτ

taken overC as indicated. Then on the vertical lines, we have
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e−πt Re(±σ+τi)2
= e−πt(σ2−τ2) ≤ e−πt(σ2− α2

t2
)

Lettingσ→ ∞, we thus see that the integrals along the vertical lines
vanish. Hence we have, for all realα,

∞
∫

−∞

e−πtσ2
dσ =

∞
∫

−∞

e−πt(σ− αt i)2
dσ

Thus

φ(α) = e−πα
2/t

∞
∫

−∞

e−πtσ2
dσ

= e−πα
2/t 1√

t

∞
∫

−∞

e−πu2
du

=
e−πα

2/t

√
t

2√
π

∞
∫

0

e−ν
2
dv=

e−πα
2/t

√
t

1
π

∞
∫

0

e−zz−
1
2 dz

=
e−πα

2/t

√
t

1√
π
Γ(

1
2

) =
e−πα

2/t

√
t

Hence we have the desired relation:108

∞
∑

−∞
e−πk2t

=
1√
t

∞
∑

−∞
e−πk2/t, for t > 0, (7.3)

or, writing

ψ(t) =
∞
∑

1

e−πk2t, we get

2ψ(t) + 1 =
1√
t

{

2ψ

(

1
t

)

+ 1

}

(7.4)

Remark. (7.3) holds fort complex, with Re(t) > 0.
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Functional Equation (Third method).
We have, forσ > 0,

Γ

( s
2

)

=

∞
∫

0

e−xxs/2−1dx.

If σ > 0, n > 0, we then have on writingπn2x for x,

Γ

( s
2

)

=

∞
∫

0

e−πn2x(πn2x)
s
2−1πn2dx

= πs/2ns

∞
∫

0

e−πn2dxxs/2−1dx

or
1
ns =

πs/2

Γ(s/2)

∞
∫

0

e−πn2xxs/2−1 dx.

Now if σ > 1, we have 109

ζ(s) =
∞
∑

1

1
ns =

πs/2

Γ(s/2)

∞
∑

n=1

∞
∫

0

e−πn2xxs/2−1dx

=
πs/2

Γ(s/2)

∞
∫

0















∞
∑

1

e−πn2x















xs/2−1dx

the inversion being justified by absolute convergence. Hence, forσ > 1,
we have

ζ(s) =
πs/2

Γ(s/2)

∞
∫

0

ψ(x)xs/2−1dx.

Using (7.4) we rewrite this as

π−s/2
Γ(s/2)ζ(s) =

1
∫

0

xs/2−1ψ(x)dx+

∞
∫

1

ψ(x)xs/2−1dx
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=

1
∫

0

xs/2−1
{

1√
x
ψ

(

1
x

)

+
1

2
√

x
− 1

2

}

dx+

∞
∫

1

ψ(x)xs/2−1dx

=
1

s− 1
− 1

s
+

1
∫

0

xs/2−3/2ψ

(

1
x

)

dx+

∞
∫

1

=
1

s(s− 1)
+

∞
∫

1

(

x−s/2− 1
2 + xs/2−1

)

ψ(x)dx, (7.5)

for σ > 1.
Now the integral on the right converges uniformly ina ≤ s ≤ b, for110

if x ≥ 1, we have
∣

∣

∣x−s/2−1/2
+ xs/2−1

∣

∣

∣ ≤ xb/2−1
+ x−a/2−1/2

while

ψ(x) <
∞
∑

1

e−πnx
=

1
eπx − 1

,

and hence the integral on the right hand side of (7.5) is an entire func-
tion. Hence (7.5) provides the analytic continuation to the left ofσ = 1.
It also yields the functional equation directly. We have also deduced that

π−s/2
Γ(s/2)ζ(s) − 1

s(s− 1)

is an entire function; so isπs/2{Γ(s/2)}−1. Hence

ζ(s) − 1
s(s− 1)

· πs/2

Γ(s/2)
= ζ(s) − 1

s− 1
· πs/2

2Γ(s/2+ 1)

is an entire function. But
π1/2

2Γ(1/2+ 1)
= 1. Henceζ(s) − 1

s− 1
is an

entire function.
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8 The zeros ofζ(s)
111

In the 11th Lecture, (p.98) we defined

ξ(s) ≡ 1
2

s(s− 1)π−s/2
Γ(s/2)ζ(s) ≡ 1

2
s(s− 1)η(s).

The following theorem aboutξ(s) is a consequence of the results which
we have already proved.

Theorem 1. [11, p.45]

(i) ξ(s) is an entire function, and

ξ(s) = ξ(1− s);

(ii) ξ(s) is real on t= 0 andσ = 1
2;

(iii) ξ(0) = ξ(1) = 1
2.

Proof. Thatξ(s) = ξ(1 − s) is immediate from the functional equation
of ζ(s) (cf. p.97, Lecture 11) Clearlyξ(s) is regular forσ > 0, and since
ξ(s) = ξ(1− s) it is also regular forσ < 1, and hence it is entire.

105
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This proves (i)

ξ(s) is obviously real for reals. Hence by a general theorem it takes
conjugate values at conjugate points. Thusξ(1

2 + ti) andξ(1
2 − ti) are

conjugate; they are equal by the functional equation. So they are real.
This proves (ii).

To prove (iii) we observe that

ξ(s) = π−s/2
Γ

( s
2
+ 1

)

· (s− 1)ζ(s),

so that

ξ(1) = π−1/2
Γ(3/2) · 1 = 1

2
,

and by the functional equation,ξ(0) = 1
2. �

We shall next examine the location of the zeros ofξ(s) and ofζ(s).112

Theorem 2. [11, p.48] (i) The zeros ofξ(s) (if any !) are all situated in
the strip0 ≤ σ ≤ 1, and lie symmetrical about the lines t= 0 andσ = 1

2

(ii) The zeros ofζ(s) are identical (in position and order of multi-
plicity) with those ofξ(s), except thatζ(s) has a simple zero at each of
the points s= −2,−4. − 6, . . .

(iii) ξ(s) has no zeros on the real axis.

Proof. (i) ξ(s) = (s− 1)π−s/2
Γ

(

s
2 + 1

)

ζ(s)

≡ h(s)ζ(s), say.

Now ζ(s) , 0; for σ > 1; (Euler Product!) alsoh(s) , 0, for
σ > 1; henceξ(s) , 0, for σ > 1; henceξ(s) , 0, for σ < 0; since
ξ(s) = ξ(1− s).
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The zeros, if any, are symmetrical about the real axis sinceξ(σ ± ti)
are conjugates, and aboutthe point s= 1

2, sinceξ(s) = ξ(1− s); they are
therefore also symmetrical about the lineσ = 1

2.
(ii) The zeros ofζ(s) differ from those ofξ(s) only in so far ash(s)

has zeros or poles. The only zero ofh(s) is at s = 1. But this is not a
zero ofξ(s) sinceξ(1) = 1

2, nor ofζ(s) for it is a pole of the latter.
The poles ofh(s) are simple ones ats= −2,−4,−6, . . .. Since these

are points at whichξ(s) is regularand not zero, they must besimple zeros 113

of ζ(s). We have already seen this by a different argument onp.95.
(iii) Sinceξ(s) , 0 forσ < 0 andσ > 1, it is enough, in view of (ii),

to show that
ζ(σ) , 0, for 0 < σ < 1.

Now

(1− 21−s)ζ(s) = (1− 2−s) + (3−s− 4−s) + · · · , for σ > 0.

To prove this we first notice that the relation is obvious forσ > 1,
and secondly each side is regular forσ > 0; the left side is obviously
regular forσ > 0 (in fact it is entire); and, as for the right side, we have

∣

∣

∣

∣

∣

1
(2n− 1)s

− 1
(2n)s

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

s

2n
∫

2n−1

dx

xs+1

∣

∣

∣

∣

∣

∣

∣

∣

∣
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≤ |s|
(2n− 1)σ+1

<
∆

(2n− 1)δ+1

if σ > δ and|s| < ∆ for any fixedδ and∆
But, if 0 < σ < 1, the above relation gives

(1− 21−σ)ζ(σ) > 0, or ζ(σ) < 0.

This establishes (iii). �

Remarks .The strip 0≤ σ ≤ 1 is called the ‘critical strip’; the line
σ = 1

2 the ‘critical line’; the zeros at−2,−4,−6, . . . are the ‘trivial zeros’
of ζ(s). We still have to show thatξ(s) actually has zeros, i.e.ζ(s) has
‘non-trivial’ zeros. This is done by an appeal to the theory of entire114

functions gives in the first few lectures.

Theorem 3. [11, p.56] If M(r) ≡ max
|s|=r
|ξ(s)|, then

log M(r) ∼ 1
2

r log r, as r→ ∞

Proof. Forσ ≥ 2, we have

|ζ(s)| ≤ ζ(2),

and forσ ≥ 1
2, |t| ≥ 1, we have

|ζ(s)| < c1|t|1/2,

so that

|ζ(s)| < c2|s|1/2, for σ ≥ 1
2
, |s| > 3.

Applying Stirlingl’s formula toΓ(s/2), we get, for

σ ≥ 1
2
, |s| = r > 3,

|ξ(s)| < e|
1
2 slog 1

2 s|+c3|s|

< e
1
2 r log r+c4r ,
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since log
s
2
= log |s| − log 2+ i args, |args| < π

2. From the equation

ξ(s) = ξ(1− s), we infer that

|ξ(s)| < e
1
2 |1−s| log |1−s|+c4|1−s|

< e
1
2 r log r+c5r

for σ ≤ 1
2, |s| = r > 4. Combining the results we get

M(r) < e
1
2 r log r+c6r , r > 4.

On the other hand, ifr > 2, 115

M(r) ≥ ξ(r) > 1.π−
1
2 r
Γ

(

1
2

r

)

e
1
2 r log r−c7r

Thus we have, forr > 4,

1
2

r log r −C7r < log M(r) <
1
2

r log r + c6r,

and hence the result. �

Theorem 4. [11, p.57]

(i) ξ(s) has an infinity of zeros;

(ii) If they are denoted by ‘ρ’, then
∑ |ρ|−α converges forα > 1, di-

verges forα ≤ 1;

(iii)

ξ(s) = eb0+b1sπρ

{(

1− s
ρ

)

es/ρ
}

,

where b0, b1 are constants;

(iv)
ξ′(s)
ξ(s)

= b1 +
∑

(

1
s− ρ +

1
ρ

)

(v)
ζ′(s)
ζ(s)

= b− 1
s− 1

− 1
2

Γ
′

Γ

( s
2
+ 1

)

+
∑

ρ

(

1
s− ρ +

1
ρ

)

,
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where b= b1 +
1
2 log 2π.

Proof. ξ(0) = 1
2 , 0, and we apply the theory of entire functions as

developed in the earlier lectures. By Theorem 3,ξ(s) is of order 1, and
the relation logM(r) = O(r) does not hold. Henceρ1 = 1, ξ(s) has

an infinity of zeros and
∑ 1
|ρ| diverges (by a previous theorem). This

proves (i), (ii) and (iii). (iv) follows by logarithmic differentiation. (v)
is obtained fromξ(s) = (s− 1)π−s/2

Γ( s
2 + 1)ζ(s).

We shall now show thatζ(s) has no zeros on the lineσ = 1. �

Theorem 5. [11, p.28] ζ(1+ it) , 0.

First Proof. 2(1+ cosθt)2
= 3+ 4 cosθ + cos 2θ ≥ 0 for realθ. Since116

logζ(s) =
∑

m

∑

p

1
mpms, for σ > 1,

we have

log |ζ(s)| = Re
∞
∑

n=2

cnn−σ−ti

=

∞
∑

n=2

cnn−σ cos(t logn),

wherecn =















1/m if n is themth power of a prime

0 otherwise.
Hence

log
∣

∣

∣ζ3(σ) · ζ(σ + ti)ζ(σ + 2ti)
∣

∣

∣

=

∑

cnn−σ
{

3+ 4 cos(t logn) + cos(2t logn)
}

≥ 0,

becausecn ≥ 0 and we have the trigonometric identity above.
Thus

{(σ − 1)ζ(σ)}3
∣

∣

∣

∣

∣

ζ(σ + ti)
σ − 1

∣

∣

∣

∣

∣

4

|ζ(σ + 2ti)| ≥ 1
σ − 1

,
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if σ > 1.
Now suppose 1+ ti(t ≷ 0) were a zero ofζ(s); then, on letting

σ → 1+ 0, we see that the left hand side in the above inequality would
tend to a finite limit, viz.|ζ′(1+ ti)|4|ζ(1+2ti)|, while the right hand side117

tends to∞. Henceζ(1+ it) , 0.

Second Proof.[11, p.89] We know from the 8th Lecture (1.12) that ifα
is real, andα , 0, then

f (s) ≡ ζ2(s)ζ(s− αi)ζ(s+ αi)
ζ(2s)

=

∞
∑

n=1

|σαi(n)|2
ns , σ > 1 (8.1)

Let σ0 be the abscissa of convergence of the series on the right hand
side. Thenσ0 ≤ 1. The sum-function of the series is then regular in
the half-planeσ > σ0, and hence, by analytic continuation, (8.1) can be
upheld forσ > σ0. And since the coefficients of the series are positive,
the points= σ0 is a singularity off (s).

Now, if 1 + αi is a zero ofζ(s), then so is (1− αi), and these two
zeros cancel the double pole ofξ2(s) at s = 1. Hencef (s) is regular
on the real axis, as far to the left ass = −1, whereζ(2s) = 0. Hence
σ0 = −1. This is, however, impossible since (8.1) gives

f

(

1
2

)

≥ |σαi(1)|2 = 1,

while f (1
2) = 0. Thusζ(1+ αi) , 0.

Remarks. (i) We shall show later on that this fact (ζ(1 + it) , 0) is
equivalent to the Prime Number Theorem.

(ii) If ρ = β + γi is a zero ofξ(s), then we have seen that 0≤ β ≤ 1,
and sinceζ(1 + it) , 0, we actually have 0≤ β < 1, and by
symmetry about the lineσ = 1

2, we have 0< β < 1.
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9 Riemann-Von Magoldt Formula [11, p.68]

Let N(T) denote the number of zeros (necessarily finite) ofζ(s) in 0 ≤ 118

σ ≤ 1, 0 ≤ t ≤ T. Then, by what we have proved,N(T) is the number
of zerosρ = β + iγ of ζ(s), or of ξ(s), for which 0< γ ≤ T

Theorem 1. N(T) =
T
2n

log
T
2π
− T

2π
+O(logT) as T→ ∞.

Proof. Suppose first thatT is not equal to anyγ. Also letT > 3. Con-
sider the rectangleR as indicated.ξ(s) has 2N(T) zerosinside it, and
none on the boundary. Hence, by the principle of the argument,

2N(T) =
1
2π

[argξ(s)]R,

where [argξ(s)]R denotes the increase in argξ(s), as s describes the
boundary ofR.

113
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Now

[argξ(s)]R = [arg
1
2

s(s− 1)]R+ [argη(s)]R,

whereη(s) = π−s/2
Γ(s/2)ζ(s). Here

[arg
1
2

s(s− 1)]R = 4π,

andη(s) has the properties:η(s) = η(1− s), andη(σ± ti) are conjugates.119

Hence

[argη(s)]R = 4[argη(s)]ABC

Hence

πN(T) = π + arg[π−s/2] + [argΓ(s/2)]ABC

+ [argζ(s)]ABC (9.1)

Now

[argπ−s/2]ABC =

[

− t
2

logπ
]

ABC
= −T

2
logπ. (9.2)

Next, sinceΓ(z+α) = (z+α− 1
2) logz−z+ 1

2 log 2π+O(|z|−1) as|z| → ∞,
in any angle|argz| ≤ π − ε < π, we have
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[

argΓ

(

1
2

)]

ABC
=

[

im logΓ(s/2)
]

ABC

= im logΓ

(

1
4
+

1
2

iT

)

− im logΓ(1)

= im

{(

−1
4
+

1
2

iT

)

log

(

1
2

iT

)

− 1
2

iT +
1
2

log 2π +O(T−1)

}

=
1
2

T log

(

1
2

T

)

− 1
8
π − T

2
+O

(

T−1
)

, asT → ∞ (9.3)

Using (9.2) and (9.3) in (9.1), we get

N(T) =
T
2π

log
T
2π
− T

2π
+

7
8
+

1
π

[argζ(s)]ABC+ 0

(

1
T

)

(9.4)

Consider the broken line ABC exclusive of the end-pointsA andC.
If m is the number of distinct pointss′ on ABC at which Reζ(s) = 0,
then

[argζ(s)]ABC ≤ (m+ 1)π, (9.5)

since argζ(s) cannot vary by more thanπ (since Reζ does not change120

sign here) on any one of them+ 1 segments into which ABC is divided
by the points′

Now no points′ can be on AB, for

Reζ(2+ iT ) ≥ 1−
∞
∑

2

1
n2

> 1− 1
22
−
∞

∫

2

du

u2
=

1
4

(9.6)

Thus m is the number of distinct pointsσ of 1
2 < σ < 2 at which

Reζ(σ + iT ) = 0, i.e. the number of distinct zeros of

g(s) =
1
2
{ζ(s+ iT ) + ζ(s− iT )}

on the real axis for which12 < σ < 2, becauseg(σ) = Reζ(σ + iT ) for
realσ, sinceζ(σ ± iT ) are conjugate.
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Now sinceg(s) is regular except fors = 1 ± iT , m must be finite,
and we can get an upper bound formby using a theorem proved earlier.

Consider the two circles:|s− 2| ≤ 7
4

, |s− 2| ≤ 3
2

. SinceT > 3, g(s)

is regular in the larger circle. At all pointssof this circle, we have

σ ≥ 1
4
, 1 < |t ± T | < 2+ T.

Hence, by an appeal to the other ofζ(s) obtained in the 12th Lecture
(with δ = 1

4), we get

|g(s)| < 1
2

c1(|t + T |3/4 + |t − T |3/4)

< c1(T + 2)3/4,

on the larger circle. At the centre, we have

g(2) = Reζ(2+ iT ) >
1
4

by (9.6)

Hence, by using the theorem (given in the Appendix), we get121

(

7
6

)m

<
c1(T + 2)3/4

1
4

< T, for T > T0 ≥ 3.

Thus
m< c2 logT, for T > T0.

Substituting this into (9.5) and (9.4) we get
∣

∣

∣

∣

∣

N(T) − T
2π

log
T
2π
+

T
2π

∣

∣

∣

∣

∣

≤ c3 logT, T > T0,

provided thatT , γ for any ‘γ’. The last restriction may be removed
by first takingT′ larger thanT and distinct from theγ′sand then letting
T′ → T + 0. �

Remarks .The above theorem was stated by Riemann but proved by
Von Mangoldt in 1894. The proof given here is due to Backlund (1914).
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Corollary 1. If h > 0 (fixed), then

N(T + h) − N(T) = O(logT), as T→ ∞

Proof. If we write

f (t) =
t

2π
log

t
2π
− t

2π
,

we get
f (t + h) − f (t) = h f ′(t + θh),0 < θ < 1,

where f ′(t) =
1
2π

log
t

2π
. Now use the Theorem. �

Corollary 2.

S ≡
∑

0≤γ≤T

1
γ
= O(log2 T); S′∃

∑

γ>T

1
γ2
= O

(

logT
T

)

(summed over all zerosρ whose imaginary partsγ satisfy the given con-
ditions).

Let 122

sm =

∑ 1
γ
, m< γ ≤ m+ 1, and

s′m =
∑ 1

γ2
, m< γ ≤ m+ 1.

Then

S ≤
[T]
∑

m=0

sm, S′ ≤
∞
∑

m=[T]

s′m

If m ≥ 1, the number of terms in sm (or s′m) is

N(m+ 1)− N(m) = νm, say.

By Corollary 1,νm = O(logm) as m→ ∞; and

sm ≤
νm

m
, sm ≤

νm

m2
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Hence, as T→ ∞,

S = O(1)+O

















[T]
∑

2

logm
m

















= O(log2 T)

S′ = O

















∞
∑

[T]

logm

m2

















= O

(

logT
T

)

Corollary 3. If the zeros ‘ρ’ for whichγ > 0 are arranged as a sequence
ρn = βn + iγn, so thatγn+1 ≥ γn, then

|ρn| ∼ γn ∼
2πn
logn

, as n→ ∞

Proof. SinceN(γn − 1) < n ≤ N(γn + 1), and

2πN(γn ± 1) ∼ (γn ± 1) log(γn ± 1)

∼ γn logγn,

we have first123

2πn ∼ γn logγn

whence
logn ∼ logγn,

and γn ∼
2πn

logγn
∼ 2πn

logn
And γn ≤ |ρn| < γn + 1. �

Remarks. (i) The main theorem proves incidentally the existence of
an infinity of complex zeros ofζ(s), without the use of the theory
of entire functions.

(ii) We see from corollary 3 that

∑ 1
|ρ|(log |ρ|)α

converges forα > 2 and diverges forα ≤ 2.
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(iii) Corollary 1 may be obtained directly by applying the theorem
(on the number of zeros) toζ(s) and to two circles with centre at
c+ iT and passing through12 + (T +2h)i, 1

2 + (T +h)i respectively,
wherec = c(h) is sufficiently large, and using the symmetry about
σ = 1/2

(iv) If N0(T) denotes the number of complex zeros ofζ(s) with real
part 1

2 and imaginary part between 0 andT, then Hardy and Lit-
tlewood proved thatN0(T) > cT in comparison withN(T) ∼
1
2π

T log A. Selberg has shown, however, thatN0(T) > cT logT.

Appendix

Theorem.Let f(z) be regular in|z− z0| ≤ R and have n zeros (at least)124

in |z− z0| ≤ r < R. Then, if f(z0) , 0.
(R

r

)n

≤ M
| f (z0)| ,

where M= max
|z−z0|=R

| f (z)|

Proof. Multiple zeros are counted according to multiplicity. Suppose
z0 = 0 (for otherwise putz = z0 + z′). Let a1, . . . an be the zeros off (z)
in |z| ≤ r.

Then

f (z) = ϕ(z)
n

∏

ν=1

R(z− aν)

R2 − λ̄νz

whereaν, aν are conjugates andϕ is regular in|z| ≤ R. On |z| = R, each
factor has modulus 1; hence

|ϕ(z)| = | f (z)| ≤ M on |z| = R

Sinceϕ is regular in|z| ≤ R, we have

|ϕ(0)| ≤ M

Hence | f (0)| = |ϕ(0)|
n
∏

ν=1

|aν|
R
≤ M

(

r
R

)n
and f (0) , 0, hence the

result. �
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Theorem. If f is analytic inside and on C and N is the number of zero
inside C, then

1
2πi

∫

C

f ′(z)
f (z)

dz= N

= ∆c log{ f (z)}

so that

N =
1
2π
∆c arg f (z).
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10 Hardy’s Theorem [16, p.214]

We have proved thatζ(s) has an infinity of complex zeros ino < σ < 1. 125

Riemann conjectured that all these zeros lie on the lineσ = 1
2. Though

this conjecture is yet to be proved, Hardy showed in 1914 that an infinity
of these zeros do lie on the ‘critical’ line. We shall prove this result.

In obtaining the functional equation by the third method, we have
used the formula:

π−s/2
Γ(s/2)ζ(s) =

1
s(s− 1)

+

∞
∫

1

ψ(x)(x
s
2−1
+ x−s/2−1/2)dx,

whereψ(x) =
∞
∑

n=1
e−n2πx, x > 0. Multiplying by

1
2

s(s− 1), and writing

x = 1
2 + it, we get

ζ

(

1
2
+ it

)

=≡ (t) =
1
2
−

(

t2 +
1
4

)

∞
∫

1

ψ(x)x−3/4 cos

(

1
2

t log x

)

dx

It is a question of showing that≡ (t), which is an even, entire function
of t, real for realt, has an infinity of real zeros.

121



122 15. The Zeta Function of Riemann (Contd)

Writing x = e4u, we get

≡ (t) =
1
2
− 4

(

t2 +
1
4

)

∞
∫

0

ψ(04u)eu cos(2ut)du.

If we write
ψ(u) = ψ(e4u)eu,

we obtain126

≡
( t
2

)

=
1
2
− (t2 + 1)

∞
∫

0

φ(u) cosut du

We wish now to get rid of the factor (t2 + 1) and the additive constant1
2

so as to obtain≡ (t/2) as a cosine transform ofφ. This we can achieve
by two integrations (by parts). However, to get rid of the extra term
arising out of partial integration we need to knowφ′(0). We shall show
thatφ′(0) = −1

2. For, by the functional equation of the theta-function,

1+ 2ψ(x) =
1√
x

[

1+ 2ψ

(

1
x

)]

or
1+ 2ψ(e4u) = e−2u[1 + 2ψ(e−4u)]

or
eu
+ 2euψ(e4u) = e−u

+ 2e−uψ(e−4u)

or
eu
+ 2φ(u) = e−u

+ 2φ(−u)

so that
d
du

[

eu
+ 2φ(u)

]

u=0 = 0

i.e. φ′(0) = −1
2
.

We also know thatψ(x) = O(e−πx) asx→ ∞. Hence

t2
∞

∫

0

φ(u) cosut du=
1
2
−
∞

∫

0

φ′′(u) cosut du
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Hence127

≡ (t/2) =

∞
∫

0

[φ′′(u) − φ(u)] cosut du (10.1)

By actual computation it may be verified that

φ′′(t) − φ(t) = 4[6e5tψ′(e4t) + 4e9tψ′′(e4t)]

Again if we write

φ(u) = euψ(e4u) +
1
2

eu
= φ(u) +

1
2

eu

=
1
2

euϑ(e4u),

then by the theta relation, we have

Φ(u) = Φ(−u), andΦ′′(u) − Φ(u) = φ′′(u) − φ(u)

Let us now write (10.1) in the form

≡ (t) = 2

∞
∫

0

f (u) cosut du

We wish to deduce that

f (u) =
1
π

∞
∫

0

≡ (t) cosut dt, (10.2)

by Fourier’s integral theorem. We need to establish this result.

Fourier Inversion Formula. [5, p.10] If f (x) is absolutely integrable in
(−∞,∞), then

φ(α) ≡
∞

∫

−∞

f (x)eiαxdx
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exists for every realα, −∞ < α < ∞, is continuous and bounded in
(−∞,∞). We wish to find out when

f (x) =
1
2π

∞
∫

−∞

φ(α)e−iαxdα

for a givenx. The conditions will bear on the behaviour off in a neigh-
bourhood ofx.128

If

SR(x) =
1

2πi

R
∫

−R

e−iαxφ(α)dα

=
1
π

∞
∫

−∞

sinRt
t

f (x+ t) dt

=
2
π

∞
∫

0

sinRt
t

f (x+ t) + f (x− t)
2

dt,

and

gx(t) =
1
2

[

f (x+ t) + f (x− t)
] − f (x),

then

SR(x) − f (x) =
2
π

∞
∫

0

sinRt
t

gx(t) dt

=
2
π





















ε
∫

0

+

∞
∫

ǫ





















= I1 + I2, say,

for a fixedǫ > 0.

I2→ 0 asR→ ∞, by the Riemann-Lebesgue Lemma. So, if
gx(t)

t
is absolutely integrable in (0, ε), thenI1 → 0 asε → 0. Hence we have
the



10. Hardy’s Theorem 125

Theorem . [5, p.10] If
gx(t)

t
is absolutely integrable in(0, ε), then

lim
R→∞

SR(x) = f (x).

If, in particular, f is absolutely integrable in (−∞,∞) and differen- 129

tiable in (−∞,∞) then lim
R→∞

SR(x) = f (x) for every x in (−∞,∞). It

should be noted that sufficient conditions for the validity of the the-
orem are: (i) f (x) is of bounded variation in a neighbourhood ofx,
and (ii) f (x) is absolutely integrable in (−∞,∞). Then lim

R→∞
SR(x) =

1
2[ f (x+ 0)+ f (x− 0)].

We now return to (10.2) which is an immediate deduction from the
formula for≡ (t), on using Fourier’s inversion formula.

Now we know that≡ (t) = ξ(1
2 + it) = O(tε1e−

π
4 t); and≡ (t) is an en-

tire function oft. Hence we are justified in obtaining, by differentiation
of (10.2),

f (2n)(u) =
(−1)n

π

∞
∫

0

≡ (t)t2n cosut dt.

Sinceψ(x) is regular for Rex > 0, f (u) is regular for−π/4 < Im u <
π

4
(Note thatx = e2u). Let

f (iu) = c0 + c1u2
+ c2u4

+ · · ·

Then

cn =
(−1)n f (2n)(0)

(2n)!
=

1
(2n)!π

∞
∫

0

≡ (t)t2ndt

If ≡ (t) had only a finite number of zeros, then≡ (t) would be of constant
sign fort > T. Let≡ (t) > 0 for t > T. Thencn > 0 for n > 2n0, since

∞
∫

0

≡ (t)t2n dt >

T+2
∫

T+1

≡ (t)t2n dt−
T

∫

0

| ≡ (t)|t2n dt

> (T + 1)2n

T+2
∫

T+1

≡ (t)dt− T2n

T
∫

0

| ≡ (t)| dt
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> 0 for n > 2n0, say.

130

Hence f (n)(iu) increases steadily withu for n > 2n0. However we

shall se thatf (u), and all its derivatives, tend to zero asu → πi
4

along

the imaginary axis.
We know that

ψ(x) = x−1/2ψ

(

1
x

)

+
1
2

x−
1
2 − 1

2

Further

ψ(i + δ) =
∞
∑

n=1

e−n2(i+δ)π
=

∞
∑

n=1

(−1)ne−n2πδ

= 2
∞
∑

1

e−(2n)2πδ −
∞
∑

1

e−n2πδ

= 2ψ(4δ) − ψ(δ)

=
1√
δ
ψ

(

1
4δ

)

− 1
δ
ψ

(

1
δ

)

− 1
2

i.e.
1
2
+ ψ(i + δ) =

1√
δ
ψ

(

1
4δ

)

− 1√
δ
ψ

(

1
δ

)

Thus 1
2 + ψ(x)→ 0 asδ→ 0, and so do its derivatives (by a similar

argument). Hence12 + ψ(u) → 0 asu → πi
4

along the imaginary axis,

and so do its derivatives. Thusf (u) and all its derivatives→ 0 asu− πi
4

.
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We have seen that the functional equation of the Gamma function,
together with its logarithmic convexity, determine the Gamma function
‘essentially’ uniquely (i.e. up to a constant). A corresponding result can
be proved for a the zeta function.

Theorem 1. Let f(s) =
G(s)
P(s)

, where G(s) is an entire function of finite

order and P(s) is a polynomial, and let

f (s) =
∞
∑

n=1

an

ns , (1.1)

the series on the right converging absolutely forσ > 1.
Let

f (s)Γ
( s
2

)

π−s/2
= g(1− s)Γ

(

1
2
− s

2

)

π−
(1−s)

2 (1.2)

where

g(1− s) =
∞
∑

n=1

bn

n1−s
, (1.3)

127
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The series on the right converging absolutely forσ < −α < 0. Then
f (s) = a1ζ(s)(= g(s)).

For the proof we need to evaluate two integrals:

e−y
=

1
2πi

1+∞i
∫

1−∞i

y−s
Γ(s)ds, y > 0 (1)

∞
∫

0

e−a2x− b2
x

dx√
x
=

√
π

a
e−2ab, a > 0, b ≥ 0. (2)

132

The first formula is a classic example ofMellin’s inversion formula
which can be obtained as an instance of Fourier’s inversion formula dis-
cussed in the last lecture. We have seen that iff (x) ∈ L1(−∞,∞), then
its Fourier transformφ(α) is defined in−∞ < α < ∞, and if in a neigh-
bourhood ofx0, f (x) is differentiable, then

f (x0) =
1
2π

∞
∫

−∞

e−ix0αdα

∞
∫

−∞

f (y)eiαydy.

If we define

F (s) =

∞
∫

0

f (x)xs−1dx, (3)

for s = c+ it, c > 0, wheref (x)xc−1 ∈ L1(0,∞), so that the integral on
the right exists absolutely, we can look upon this as a Fourier transform
by a change of variable:x→ ey, for

F (c+ it) =

∞
∫

−∞

f (ey)eyceit ydy

Hence, provided thatf (ey)eyc satisfies a suitable ‘local’ condition, such
as differentiability in the neighbourhood of a point, we can invert this
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relation and obtain

f (ey) · eyc
=

1
2π

∞
∫

−∞

F (c+ it)e−iytdt

or 133

f (ey) =
1
2π

∞
∫

−∞

F (c+ it)e−(c+it)ydt

=
1

2πi

c+i∞
∫

c−i∞

F (s)e−ysds

or f (x) =
1

2πi

c+i∞
∫

c−i∞

F (s)x−sds, c > 0. (4)

Relations (3) and (4) give the Mellin inversion formulae. Since

Γ(s) =
∞
∫

0

e−xxs−1dx, Res> 0, we get (1) as in immediate application.

We know that, fork > 0
A

∫

0

e−(k−iα)xdx=
1

k− iα

(

1− e−kAeiαA
)

so that

2

∞
∫

0

e−kx cosαxdx=
2.k

k2 + α2

and by Fourier’s inversion formula,
∞

∫

0

cosαx

k2 + α2
dα =

πe−kx

2k
, k > 0 (5)

On the other hand, we have fork ≥ 0

Γ(1)
x2 + k2

=

∞
∫

0

e−(x2
+k2)ydy,
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so that134

∞
∫

0

cosαx

x2 + k2
dx=

√
π

2

∞
∫

0

y−
1
2 e−(k2y+ α

2
4y )dy

=
π

2k
e−|α|k, from (5).

Settingk2
= a2, α2

= 4b2, we get

∞
∫

0

e−a2x− b2
x

dx√
x
=

√
π

a
e−2ab,a > 0 b ≥ 0

which proves formula (2).

Proof of Theorem 1. For anyx > 0, we have by (1.1) and (1.2), (Here
f (s) = O(1))

S1 ≡
1

2πi

2+i∞
∫

2−i∞

f (s)Γ
(s)
2
π(−s/2) · x−s/2ds

=

∞
∑

n=1

an

2πi

2+i∞
∫

2−i∞

Γ(s/2)(πn2x)−s/2ds

= 2
∞
∑

n=1

ane−πn2x

We have, however, by (1.2),S1 = S2, where

S2 =
1

2πi

2+i∞
∫

2−i∞

g(1− s)Γ

(

1− s
2

)

π
−(1−s)

2 x−s/2ds.

Now we wish to move the line of integration here fromσ = 2 toσ =135

−1− α.
By the hypothesis on the ‘order’ off (s) and (1.2), it follows that

there exist two numbersT > 0,γ > 0, such that for|t| ≥ T and−1−α ≤
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σ ≤ 2, the functiong(1− s) is regular andO(e|t|
γ

). By (1.3), we see that
g(1− s) = O(1) onσ = −1− α; and, sincef (s) = O(1) onσ = 2, while

Γ(s/2)

Γ(1−s
2 )
= O(|t|3/2), onσ = 2,

it follows thatg(1− s) = O(|t|3/2) onσ = 2. Hence, by the principle of
Phragmen-Lindelöf, we observe that

g(1− s) = O(|t|3/2)

for |t| ≥ T, −α − 1 ≤ σ ≤ 2. Taking a suitable rectangle, and applying
Cauchy’s theorem, we get

S2 =
1

2πi

−α−1+i∞
∫

−α−1−i∞

g(1− s)Γ

(

1− s
2

)

π−
(1−s)

2 x−s/2ds+
m

∑

v=1

Rν

whereRν is the residue of the integrand at the polesν lying in the
region−α − 1 < σ < 2. The integrand, however, equals 136
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f (s)Γ
( s
2

)

π−s/2x−s/2

The residue of this at a polesν of orderqν is

x
−sν

2

(

A(ν)
qν−1 logqν−1 x+ · · · + A(ν)

1 log x+ A(ν)
0

)

Hence

m
∑

ν=1

Rν =
m

∑

ν=1

x−sν/2Qν(log x) = Q(x), say, where

Qν is a polynomial

Here Resν ≤ 2− θ, θ > 0. (i.e. we are using the absolute convergence
of

∑

ann−s only forσ > 2− θ).
Hence

S2 =
1√
x

∞
∑

n=1

bn

2πi

−α−1+i∞
∫

−α−1−i∞

Γ(1− s)
2

(

πn2

x

)− (1−s)
2

ds+ Q(x)

=
2√
x

∞
∑

n=1

bn

2πi

α
2+1+i∞
∫

α
2+1−i∞

Γ(s)

(

πn2

x

)−s

ds+ Q(x)

=
2√
x

∞
∑

n=1

bne−πn2/x
+ Q(x)

Hence (sinceS1 = S2) we have137

2
∞
∑

1

ane−πn2x
=

2√
x

∞
∑

n=1

bne−πn2/x
+ Q(x)

Multiplying this bye−πt2x, t > 0, and integrating over (0,∞) w.r.t. x, we
get

2
∞
∑

n=1

an

π(t2 + n2)
= 2

∞
∑

n=1

bn

t
e−2πnt

+

∞
∫

0

Q(x)e−πt2xdx
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by (2).
The last integral is convergent. Since Resν ≤ 2− θ, ν = 1,2, . . .m,

each term ofQ(x) is O(x−1+ θ4 ) asx→ 0.
Now

∞
∫

0

Q(x)e−πt2xdx=
1
t2

∞
∫

0

Q
( x

t2

)

e−πxdx=
m

∑

1

tsν−2Hν(log t),

whereHν is a polynomial,= H(t), say.
Hence

∞
∑

n=1

an

(

1
t + ni

+
1

t − ni

)

− πtH(t) = 2π
∞
∑

n=1

bne−2πnt

The series on the left hand side is uniformly convergent in any finite
region of thet-plane which excludest = ±ki, k = 1,2, . . . ; It is a mero-
morphic function with poles of the first order att = ±ki.

H(t) is regular and single-valued in thet-plane with the negative real138

axis deleted andt , 0.
The right hand side is a periodic function oft with period i for

Ret > 0. Hence, by analytical continuation, so is the function on the
left. Hence the residues atki, (k+ 1)i are equal. Soak = ak+1
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12 The Prime Number Theorem [11, pp.1-18]

The number of primes is infinite. For consider any finite set of primes;139

let P denote their product, and letQ = P+1. Then (P,Q) = 1, since any
common prime factor would divideQ− P, which would be impossible
if (P,Q) , 1. But Q > 1, and so divisible by some prime. Hence there
exists at least one prime distinct from those occurring inP. If there were
only a finite number of primes, by takingP to be their product we would
arrive at a contradiction.

Actually we get a little more by this argument: ifpn is thenth prime,
the integerQn = p1 . . . pn + 1 is divisible by somepm with m > n, so
that

pn+1 ≤ pm ≤ Qn

from which we get, by induction,pn < 22n
. For if this inequality was

true forn = 1,2, . . .N, then

pN+1 ≤ p1 . . . pN + 1 < 22+4+···+2N
+ 1 < 22N+1

,

and the inequality is known to be true forn = 1.

135
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The fact that the number of primes is infinite is equivalent to the
statement thatπ(x) =

∑

p≤x
1→ ∞ asx→ ∞. Actually far more is true;

we shall show thatπ(x) ∼ x
log x

. Again the relationpn < 22n
is far

weaker than the asymptotic formula:pn ∼ n logn, which is know to be140

equivalent to the formula:π(x) ∼ x
log x

(The Prime Number Theorem!).

We shall prove the Prime Number Theorem, and show that it is equiv-
alent to the non-vanishing of the zeta function on the lineσ = 1. We
shall state a few preliminary results on primes.

Theorem 1. The series
∑ 1

p
and the productπ

(

1− 1
p

)−1

are divergent.

Proof. Let S(x) =
∑

p≤x

1
p

, P(x) =
∏

p≤x

(

1− 1
p

)−1

, x > 2.

Then, for 0< u < 1,

1
1− u

>
1− um+1

1− u
= 1+ u+ · · · + um

Hence
P(x) ≥

∏

p≤x

(1+ p−1
+ · · · + p−m),

wherem is any positive integer. The product on the right is
∑ 1

n
summed

over a certain set of positive integersn, and ifm is so chosen that 2m+1 >

x, this set will certainly include all integers from 1 to [x]. Hence

P(x) >
[x]
∑

1

1
n
>

[x]+1
∫

1

du
u
> log x. (1)

Since141

− log(1− u) − u <
1
2u2

1− u
, for 0 < u < 1,

we have

logP(x) − S(x) <
∑

p≤x

− p−2

2(1− p−1)



12. The Prime Number Theorem 137

<

∞
∑

n=2

1
2n(n− 1)

=
1
2

Hence, by (1),

S(x) > log logx− 1
2
. (2)

(1) and (2) prove the theorem.

The Chebyschev Functions.Let

ϑ(x) =
∑

p≤x

log p, ψ(x) =
∑

pm≤x

log p, x > 0.

Grouping together terms ofψ(x) for whichmhas the same value, we
get

ψ(x) = ϑ(x) + ϑ(x1/2) + ϑ(x1/3) + · · · , (3)

this series having only a finite number of non-zero terms, sinceϑ(x) = 0
if x < 2.

Grouping together terms for which ‘p’ has the same value (≤ x), we
obtain

ψ(x) =
∑

p≤x

[

log x
log p

]

log p, (4)

since the number of values ofm associated with a givenp is equal to
the number of positive integersm satisfyingmlog p ≤ x, and this is 142
[

log x
log p

]

�

Theorem 2. The functions

π(x)
x/ log x

,
ϑ(x)

x
,

ψ(x)
x

have the same limits of indetermination as x→ ∞.

Proof. Let the upper limits (may be∞) be L1, L2, L3 and the lower
limits be l1, l2, l3, respectively. Then by (3) and (4),

ϑ(x) ≤ ψ(x) ≤
∑

p≤x

log x
log p

log p = π(x) log x.
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Hence
L2 ≤ L3 ≤ L1. (5)

On the other hand, if 0< α < 1, x > 1, then

ϑ(x) ≥
∑

xα<p≤x

log p ≥ {π(x) − π(xα)} log xα

andπ(xα) < xα, so that

ϑ(x)
x
≥ α

(

π(x) log x
x

− log x

x1−α

)

Keepα fixed, and letx→ ∞; then
log x

x1−α → 0143

Hence
L2 ≥ αL1,

i.e.
L2 ≥ L1, asα→ 1− 0.

This combined with (5) givesL2 = L3 = L1, and similarly for the l’s. �

Corollary . If
π(x)

x/ log x
or

ϑ(x)
x

or
ψ(x)

x
tends to a limit, then so do all,

and the limits are equal.

Remarks. If ∧(n) =















log p, if n is a+ve power of a primep

0, otherwise,
then

ψ(x) =
∑

pm≤x

log p =
∑

n≤x

∧(n), and

−ζ
′(s)
ζ(s)

=

∞
∑

1

∧(n)
ns , σ > 1 [p.69]

Also

−ζ
′(s)
ζ(s)

= s

∞
∫

1

ψ(x)
xs+1

dx, σ > 1.
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The Wiener-Ikehara theorem. [3, 4] Let A(u) be a non-negative non-
decreasing function defined for 0≤ u < ∞. Let

f (s) ≡
∞

∫

0

A(u)e−usdu, s= σ + iτ,

converge forσ > 1, and be analytic forσ ≥ 1 except ats = 1, where it 144

has a simple pole with residue 1. Thene−uA(u)→ 1 asu→ ∞

Proof. If σ > 1,

1
s− 1

=

∞
∫

0

e−(s−1)udu

Therefore

g(s) ≡ f (s) − 1
s− 1

=

∞
∫

0

{A(u) − eu}e−usdu

≡
∞

∫

0

{B(u) − 1}e−(s−1)udu,

where
B(u) ≡ A(u)e−u

Take
s= 1+ ε + iτ.

Then

g(1+ ε + iτ) ≡ gε(τ) =

∞
∫

0

{B(u) − 1}e−εu · e−iτudu

Now g(s) is analytic forσ ≥ 1; therefore

gε(t)→ g(1+ it) asε→ 0.

uniformly in any finite interval−2λ ≤ t ≤ 2λ.
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We should like to form the Fourier transform ofgε(τ), but since we
do not know that it is bounded on the whole line, we shall introduce a
smoothing kernel. Thus

1
2

2λ
∫

−2λ

gε(τ)

(

1− |τ|
2λ

)

eiyτdτ

=
1
2

2λ
∫

−2λ

eiyτ
(

1− |τ|
2λ

)

dτ

∞
∫

0

{B(u) − 1}e−εu−iτudu.

For a fixedy, a finite τ-interval, and an infiniteu-interval we wish to145

change the order of integration. This is permitted if

∞
∫

0

{B(u) − 1}e−εu · e−iτudu

converges uniformly in−2λ ≤ τ ≤ 2λ. This is so, because it is equal to

∞
∫

0

B(u)e−εue−iτudu−
∞

∫

0

e−εu e−ετudu.

For a fixedε > 0, the second converges absolutely and uniformly inτ.
In the first we have

B(u) · e−(ε/2)u
= A(u) · e−(1+ε/2)u→ 0 asu→ ∞

HenceB(u) = O(e(ε/2)u), which implies the first integral converges uni-
formly and absolutely.

Thus

1
2

2λ
∫

−2λ

eiyτ
(

1− |τ|
2λ

)

gε(τ)dτ

=





















∞
∫

0

{B(u) − 1}e−εudu

2λ
∫

−2λ

1
2

ei(y−u)τ
(

1− |τ|
2λ

)

dτ
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=

∞
∫

0

[B(u) − 1]e−εu
sin2 λ(y− u)
λ(y− u)2

du

Now consider the limit asε→ 0. The left hand side tends to 146

1
2

2λ
∫

−2λ

eiyτ
(

1− |τ|
2λ

)

g(1+ iτ)dτ

sinceg is analytic, or rather, sincegε(τ) → g(1+ iτ) uniformly. On the
right side, we have

∞
∫

0

e−εu
sin2 λ(y− u)
λ(y− u)2

du→
∞

∫

0

sin2 λ(y− u)
λ(y− u)2

du.

Hence

lim
ε→0

∞
∫

0

e−εuB(u)
sin2 λ(y− u)
λ(y− u)2

du=

∞
∫

0

sin2 λ(y− u)
λ(y− u)2

du+

2λ
∫

−2λ

eiyt
(

1− |t|
2λ

)

g(1+ it) dt

The integrand of the left hand side increases monotonically asε→ 0; it
is positive. Hence by the monotone-convergence theorem,

∞
∫

0

B(u)
sin2 λ(y− u)
λ(y− u)2

du=

∞
∫

0

sin2 λ(y− u)
λ(y− u)2

du

+

2λ
∫

−2λ

eiyt
(

1− |t|
2λ

)

g(1+ it) dt

Now let y → ∞; then the second term on the right-hand side tends to
zero by the Riemann-Lebesgue lemma, while the first term is

lim
y→∞

λy
∫

−∞

sin2 ν

v2
dv=

∞
∫

−∞

sin2 v

v2
dv= π
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Hence147

lim
y→∞

λy
∫

−∞

B
(

y− v
λ

) sin2 v

v2
dv= π for everyλ.

To prove that lim
u→∞

B(u) = 1. �

Second Part.

(i) limB(u) ≤ 1.

For a fixed ‘a’ such that 0< a < λy, we have

lim
y→∞

a
∫

−a

B
(

y− v
λ

) sin2 v

v2
dv≤ π

By definitionB(u) = A(u)e−u, whereA(u) ↑, so that

ey− d
λ B

(

y− a
λ

)

≤ ey− v
λ B

(

y− v
λ

)

or
B

(

y− v
λ

)

≥ e(v−a)/λB
(

y− a
λ

)

.

Hence

lim
y→∞

a
∫

−a

B
(

y− a
λ

)

e(v−a)/λ sin2 v

v2
dv≤ π

or

a
∫

−a

e
−2a
λ

sin2 v

v2
limB

(

y− a
λ

)

dv≤ π

or e−2a/λ

a
∫

−a

sin2 v

v2
lim
y→∞

B(y) · dv≤ π

Now leta→ ∞, λ→ ∞ in such a way that
a
λ
→ 0.148

Then
π lim

y→∞
B(y) ≤ π



12. The Prime Number Theorem 143

(ii) lim
u→∞

B(u) ≥ 1.

λy
∫

−∞

B
(

y− v
λ

) sin2 v

v2
dv=

−a
∫

−∞

+

a
∫

−a

+

λy
∫

a

(⊛)

We know that|B(u)| ≤ c, so that

λy
∫

−∞

≤ c





















−a
∫

−∞

sin2 v

v2
dv+

∞
∫

a

sin2 v

v2
dv





















+

a
∫

−a

We know that|B(u)| ≤ c, so that

λy
∫

−∞

≤ c





















−a
∫

−∞

sin2 v

v2
dv+

∞
∫

a

sin2 v

v2
dv





















+

a
∫

−a

As before we get

ey+a/λB
(

y+
a
λ

)

≥ ey−v/λB
(

y− v
λ

)

or
B

(

y− v
λ

)

≤ B
(

y+
a
λ

)

e
a+v
λ ≤ B

(

y+
a
λ

)

e2a/λ

Therefore

a
∫

−a

B
(

y− v
λ

) sin2 v

v2
dv≤

a
∫

−a

B
(

y+
a
λ

)

e2a/λ sin2 v

v2
dv

≤ e2a/λB
(

y+
a
λ

)

a
∫

−a

sin2 v

v2
dv

Hence taking the limin (⊛) we get, since 149

lim
y→∞

λy
∫

−∞

= lim
y→∞
= π
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and
lim(c+ ψ(y)) ≤ c+ limψ(y),

that

π ≤ c





















−a
∫

−∞

+

∞
∫

a





















sin2 v

v2
dv+ lim

a
∫

−a

≤ {· · · } + limB
(

y+
a
λ

)

e2a/λ

a
∫

−a

sin2 v

v2
dv

≤ {· · · } + e2a/λ

a
∫

−a

limB(y)
sin2 v

v2
dv

Let a→ ∞, λ→ ∞ in such a way that
a
λ
→ 0.

Then
π ≤ πlimB(y)

Thus
lim
u→∞

B(u) = lim
u→∞

A(u)e−u
= 1.

Proof of the Prime Number Theorem.150

We have seen [p.143] that

−ζ′(s)
sζ(s)

=

∞
∫

1

ψ(x)
xs+1

dx, σ > 1

=

∞
∫

0

e−stψ(et)dt, σ > 1.

Sinceζ(s) is analytic forσ ≥ 1 except fors = 1, where it has a
simple pole with residue 1, and has no zeros forσ ≥ 1, andψ(et) ≥ 0
and non-decreasing, we can appeal to the Wiener-Ikehara theorem with

f (s) = − ζ
′(s)

sζ(s)
, and obtain

ψ(et) ∼ et ast → ∞
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or ψ(x) ∼ x.

13 Prime Number Theorem and the zeros ofζ(s)

We have seen that the Prime Number Theorem follows from the Wiener-151

Ikehara Theorem if we assume thatζ(1+it) , 0. On the other hand, if we
assume the Prime Number Theorem, it is easy to deduce thatζ(1+ it) ,
0. If

ψ(x) =
∑

pm≤x

log p =
∑

n≤x

∧(n),

then, forσ > 1, we have
∞

∫

1

ψ(x) − x

xs+1
dx= − ζ

′(s)
sζ(s)

− 1
1− s

≡ φ(s), say.

Now φ(s) is regular forσ > 0 except (possibly) for simple poles at the
zeros ofζ(s). Now, if ψ(x) = x+ O(x), [which is a consequence of the
p.n. theorem], then, givenε > 0,

|ψ(x) − x| < εx, for x ≥ x0(ε) > 1.

Hence, forσ > 1,

|φ(s)| <
x0

∫

1

|ψ(x) − x|
x2

dx+

∞
∫

x0

ε

xσ
dx< K +

ε

σ − 1

whereK = K(x0) = K(ε). Thus

|(σ − 1)φ(σ + it)| < K(σ − 1)+ ε < 2ε,

for 1 < σ < σ0(ε,K) = σ0(ε). Hence, for any fixedt,

(σ − 1)φ(σ + it)→ 0 asσ→ 1+ 0.

This shows that 1+ it cannot be a zero ofζ(s), for in that case

(σ − 1)φ(σ + it)

would tend to a limit different from zero, namely the residue ofφ(s) at
the simple pole 1+ it.
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14 Prime Number Theorem and the magnitude of
pn

It is easy to see that the p.n. theorem is equivalent to the result:pn ∼152

n logn. For if
τ(x) log x

x
→ 1 (1)

then
logπ(x) + log logx− log x→ 0,

hence
logπ(x)

log x
→ 1 (2)

Now (1) and (2) give
π(x) · logπ(x)

x
→ 1

Takingx = pn, we getpn ∼ n logn, sinceπ(pn) = n.
Conversely, ifn is defined by :pn ≤ x < pn+1, then pn ∼ n logn

implies
pn+1 ∼ (n+ 1) log(n+ 1) ∼ n logn,

asx→ ∞. Hence

x ∼ n logn

or x ∼ y logy, y = π(x) = n.

Hence

log x ∼ logy, as above, so that

y ∼ x/ log x
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