University of Pune, Online Examination System, Question Bank

Course

Id	$\mathbf{1}$
Question	Even thoughan ac waveform can take any shape the ___ is the most preferable.
A	Square wave
B	Sine wave
C	Triangular wave
D	Rectified wave
Answer	
Marks	
Unit	

Id	$\mathbf{2}$
Question	The period of a wave is
A	The same as frequency
B	Time required to complete one cycle
C	Express in amperes
D	None of the above
Answer	B
Marks	1
Unit	4

Id	$\mathbf{3}$
Question	The form factor is the ratio of
A	Peak value to the rms value
B	RMS value to average value
C	Average value to rms value
D	None of the above
Answer	B
Marks	1
Unit	4

Id	$\mathbf{4}$
Question	The period of a sine wave is $1 / 50$ seconds. Its frequency is
A	20 Hz
B	30 Hz
C	40 Hz
D	50 Hz
Answer	D
Marks	1
Unit	4

Id	$\mathbf{5}$
Question	In a series resonance, following will occur when,
A	$\mathrm{V}=\mathrm{VR}$
B	$\mathrm{X}_{\mathrm{l}}=\mathrm{X}_{\mathrm{C}}$
C	$\mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\mathrm{C}}$
D	$\mathrm{Z}=\mathrm{R}$
Answer	B
Marks	1
Unit	4

Id	$\mathbf{6}$
Question	In a series resonant circuit, the impedance of the circuit is
A	Minimum
B	Maximum
C	Zero
D	None of the above
Answer	A
Marks	1
Unit	4

Id	7
Question	Power factor of the following circuit will be unity
A	Inductive
B	Capacitive
C	Resistive
D	Both A and B
Answer	C
Marks	1
Unit	4

Id	$\mathbf{8}$
Question	The maximum value of an ac quantity is called as its
A	Amplitude
B	Peak to peak value
C	RMS value
D	None of above
Answer	B
Marks	1
Unit	4

Id 9

Question	The capacitive reactance is defined as XC
A	$2 \pi \mathrm{fc}$
B	$1 / 2 \pi \mathrm{fc}$
C	Wc
D	$2 \pi \mathrm{fl}$
Answer	B
Marks	1
Unit	4

Id	$\mathbf{1 0}$
Question	If voltage across pure resistance is $\mathrm{V}=\mathrm{V}_{\mathrm{m}} \sin (\mathrm{wt}+\pi / 6)$ then current flowing through it will be $\mathrm{I}=$
A	$\mathrm{I}_{\mathrm{M}} \sin (\mathrm{wt})$
B	$\mathrm{I}_{\mathrm{M}} \sin (\mathrm{wt}+\pi / 6)$
C	$\mathrm{I}_{\mathrm{M}} \sin (\mathrm{wt}-\pi / 6)$
D	$\mathrm{I}_{\mathrm{M}} \sin (\mathrm{wt}+\pi / 2)$
Answer	B
Marks	1
Unit	4

Id	$\mathbf{1 1}$
Question	Average power is purely resistive ac circuit is equal to $\mathrm{P}=$
A	VIsin Φ
B	VIcos Φ
C	VI
D	$\mathrm{V}_{\mathrm{M}} \mathrm{I}_{\mathrm{M}}$
Answer	C
Marks	1
Unit	4

Id	$\mathbf{1 1}$
Question	The__can never store energy.
A	Resistor
B	Inductor
C	Capacitor
D	Energy source
Answer	D
Marks	1
Unit	4

Id	$\mathbf{1 2}$
Question	For a purely inductive ac circuit the____ leads____ by 90°

A	Current, voltage
B	Voltage, current
C	Power, current
D	Voltage, power
Answer	B
Marks	1
Unit	4

Id	$\mathbf{1 3}$
Question	The \quad is directly proportional to frequency.
A	Capacitive reactance
B	Hysteresis loss
C	Inductive reactance
D	Eddy current loss
Answer	C
Marks	1
Unit	4

Id	$\mathbf{1 4}$
Question	For RL series circuit the current ________ the applied voltage by____
A	Leads, 0 to 90°
B	Lags, 0 to 90°
C	Leads, 90°
D	Lags, 90°
Answer	B
Marks	1
Unit	4

Id	$\mathbf{1 5}$
Question	The impedance of RC series circuit is given by $\mathrm{Z}=$
A	$\mathrm{R}+\mathrm{j} \mathrm{X}_{\mathrm{C}}$
B	$\mathrm{R}-\mathrm{j} \mathrm{X}_{\mathrm{C}}$
C	$\mathrm{R} * \mathrm{j} \mathrm{X}_{\mathrm{C}}$
D	None of above
Answer	A
Marks	1
Unit	4

Id	$\mathbf{1 6}$
Question	The average power consumed by a pure capacitor is
A	VIsin Φ
B	VI

C	$\mathrm{VI} \cos \Phi$
D	0
Answer	D
Marks	1
Unit	4

Id	$\mathbf{1 7}$
Question	The RLC series circuit is _\quad if $\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}$.
A	Inductive
B	Capacitive
C	Resistive
D	None of above
Answer	C
Marks	1
Unit	4

Id	$\mathbf{1 8}$
Question	The expression for resonant frequency of series RLC circuit is
A	$\mathrm{Fr}=2 \pi \mathrm{LC}$
B	$\mathrm{Fr}=(1 / \mathrm{LC})$
C	$\mathrm{Fr}=(1 / 2 \pi \sqrt{ } \mathrm{LC})$
D	$\mathrm{Fr}=(1 / 2 \pi)$
Answer	C
Marks	1
Unit	4

Id	$\mathbf{1 9}$
Question	The Q -factor can be defined as $\mathrm{Q}=\quad$ at $\mathrm{f}=\mathrm{fr}$.
A	$\mathrm{X}_{\mathrm{L}}{ }^{*} \mathrm{R}$
B	$\mathrm{X}_{\mathrm{C}}{ }^{*} \mathrm{R}$
C	$\mathrm{X}_{\mathrm{L}} / \mathrm{R}$
D	$\mathrm{X}_{\mathrm{L}}+\mathrm{R}$
Answer	C
Marks	1
Unit	4

Id	$\mathbf{2 0}$
Question	If $\mathrm{R}=3 \Omega$ is in series with $\mathrm{X}_{\mathrm{L}}=4 \Omega$. Then the admittance of this circuit is $\mathrm{Y}=\quad$ ___ s .
A	5
B	25
C	0.2
D	0.04

Answer	D
Marks	1
Unit	4

Id	$\mathbf{2 1}$
Question	The parallel resonant circuit is called as the____ circuit.
A	Selector
B	Rejecter
C	Voltage amplifier
D	None of above
Answer	B
Marks	1
Unit	4

Id	$\mathbf{2 2}$
Question	The reactive power is also called as ___ power and it expressed in ___ .
A	True, VAR
B	Imaginary, VAR
C	Imaginary, VA
D	Real, VA
Answer	B
Marks	1
Unit	4

Id	$\mathbf{2 3}$
Question	All the home appliances operates on
A	AC
B	DC
C	AC or DC
D	None of the above
Answer	A
Marks	1
Unit	4

Id	$\mathbf{2 4}$
Question	In the equation $\mathrm{V}(\mathrm{t})=\mathrm{Vm} * \operatorname{Sin}(\mathrm{wt}), \mathrm{V}(\mathrm{t})$ indicates the
A	RMS
B	Peak
C	Instantaneous
D	Average
Answer	C
Marks	1

| Unit | 4 |
| :--- | :--- | | Id | $\mathbf{2 5}$ |
| :--- | :--- |
| Question | The instantaneous value of voltage at $\mathrm{t}=\mathrm{t} 1$ is given by, |
| A | $\mathrm{V}(\mathrm{t}=\mathrm{t} 1)$ |
| B | $\mathrm{V}(\mathrm{t} 1)$ |
| C | $\mathrm{V} / \mathrm{t} 1$ |
| D | None of these |
| Answer | A |
| Marks | 1 |
| Unit | 4 |

Id	$\mathbf{2 6}$
Question	1 Cycle $=$
A	π radian
B	2π radian
C	4π radian
D	180^{0}
Answer	B
Marks	1
Unit	4

Id	$\mathbf{2 7}$
Question	The frequency of the AC mains is
A	50 Hz
B	25 Hz
C	100 Hz
D	50 sec.
Answer	A
Marks	1
Unit	4

Id	$\mathbf{2 8}$
Question	The frequency of the AC quantity is measured in
A	units/sec
B	cycles-sec
C	cycles/sec
D	Sec/cycles
Answer	C
Marks	1
Unit	4

Id	$\mathbf{2 9}$
Question	The
A	RMS
B	Peak
C	Average
D	Instantaneous is also called Amplitude.
Answer	B
Marks	1
Unit	4

Id	$\mathbf{3 0}$
Question	The
A	Average
B	Peak
C	RMS
D	Instantaneous
Answer	B
Marks	1
Unit	4

Id	$\mathbf{3 1}$
Question	The average value of the sinusoidal voltage waveform is
A	0.637 Irms
B	0.707 Irms
C	0.637 Imax
D	0.707 Imax
Answer	C
Marks	1
Unit	4

Id	$\mathbf{3 2}$
Question	The AC voltmeter or ammeter measures the ___ value.
A	Average
B	RMS
C	Peak
D	Instantaneous
Answer	B
Marks	1
Unit	4

Id 33

Question	The average value of a symmetrical AC waveform is determined from the ___ of the waveform.
A	Full cycle
B	Half Cycle
C	Full or Half Cycle
D	None of these
Answer	B
Marks	1
Unit	4

Id	$\mathbf{3 4}$
Question	The value of the form factor for the sinusoidal waveform is
A	0.909
B	0.637
C	0.707
D	1.11
Answer	D
Marks	1
Unit	4

Id	$\mathbf{3 5}$
Question	The value of peak factor for a sinusoidal waveform is
A	1
B	0.707
C	1.414
D	0.637
Answer	C
Marks	1
Unit	4

Id	$\mathbf{3 6}$
Question	The correct expression for the form factor is $\mathrm{K}_{\mathrm{p}}=$
A	Imax/Iavg
B	Irms/Iavg
C	Imax/Iavg
D	$\mathrm{Ip-p/Irms}$
Answer	B
Marks	1
Unit	4

Id	$\mathbf{3 7}$
Question	The length of the phasor represents the ___ of the sinusoidal quantity.

A	Amplitude
B	Average value
C	RMS value
D	Instantaneous value
Answer	A
Marks	1
Unit	4

Id	$\mathbf{3 8}$
Question	Form factor is always
A	Greater than 1
B	Less than 1
C	Equal to 1
D	zero
Answer	A
Marks	1
Unit	4

Id	$\mathbf{3 9}$
Question	Complete the following formula, $1 \mathrm{rad}=\quad$ ___ degree.
A	$\pi / 180$
B	$180 / \pi$
C	$\pi / 360$
D	$360 / \pi$
Answer	A
Marks	1
Unit	4

Id	$\mathbf{4 0}$
Question	The phasor rotates in \quad Clockwise
A	direction.
B	Anti Clockwise
C	Random
D	None of these
Answer	B
Marks	1
Unit	4

Id	$\mathbf{4 1}$
Question	The projection of phasor on Y axis is ___ value.
A	Peak
B	Instantaneous

C	Average
D	RMS
Answer	B
Marks	1
Unit	4

Id	$\mathbf{4 2}$
Question	The phase angles can take any value between \quad A
$0,2 \pi$	
B	$0, \pi$
C	$0,180^{\circ}$
D	$\pi, 2 \pi$
Answer	A
Marks	1
Unit	4

Id	$\mathbf{4 3}$
Question	For the expression $\mathrm{V}(\mathrm{t})=100 \sin (100 \mathrm{wt}+\pi / 4)$, the phase difference is,
A	$\pi / 4$ lagging
B	$\pi / 4$ leading
C	100π leading
D	100π lagging
Answer	B
Marks	1
Unit	4

Id	$\mathbf{4 4}$
Question	A sinusoidal current has peak factor 1.4 and form factor 1.1. If average value of current is 20 A. then RMS value of current is _ A and peak value in _ A
A	$22,30.8$
B	$30.8,22$
C	$18.18,25.7$
D	18,25
Answer	A
Marks	1
Unit	4

Id	$\mathbf{4 5} \quad$ Quetween two phasors represents the phase difference between two quantities.
Que	The \quad bength difference
A	Speed difference
B	Angle Difference
C	

D	None of these
Answer	D
Marks	1
Unit	4

Id	$\mathbf{4 6}$
Question	The phasor represented in rectangular form as $\mathrm{i}=(20-\mathrm{j} 34.64) \mathrm{A}$ in its equivalent polar form as,
A	$40<-60^{\circ} \mathrm{A}$
B	$40<60^{\circ} \mathrm{A}$
C	$54.54<60^{\circ} \mathrm{A}$
D	None of these
Answer	A
Marks	1
Unit	4

Id	$\mathbf{4 7}$
Question	An alternating current is given by $\mathrm{I}=14.14 \sin (377 \mathrm{t})$. What is the RMS value?
A	14.14 A
B	10 A
C	377 A
D	9 A
Answer	B
Marks	1
Unit	4

Id	$\mathbf{4 8}$
Question	An alternating current is given by $\mathrm{I}=14.14 \sin (377 \mathrm{t})$, its time period is
A	20 msec
B	16.67 msec
C	2.65 msec
D	5.3 msec
Answer	B
Marks	1
Unit	4

Id	$\mathbf{4 9}$
Question	The AC voltage generator is called as
A	Alternators
B	Induction Generators
C	Alternating Generator
D	None of these

Answer	A
Marks	1
Unit	4

Id	$\mathbf{5 0}$
Question	The instant of time.
A	DC
B	AC
C	Instantaneous
D	RMS
Answer	C
Marks	1
Unit	4

Id	$\mathbf{5 1}$
Question	An AC quantity (Voltage, Current or Power) is defined as the one which changes its as well as with respect to time.
A	Value, direction B
Phase, polarity	
D	Value, phase
Answer	None of these
Marks	A
Unit	4

Id	$\mathbf{5 2}$
Question	The repetition consisting of one positive and one identical negative part is called as the of the waveform.
A	Time period
B	One cycle
C	Frequency
D	None of these
Answer	B
Marks	1
Unit	4

Id	$\mathbf{5 3}$
Question	Peak to peak values are most often used when measuring the magnitude on the
A	Voltmeter
B	Cathode ray oscilloscope
C	Digital multimeter

D	None of these
Answer	B
Marks	1
Unit	4

Id	$\mathbf{5 4}$
Question	is the rate of change of wt with respect to time.
A	One cycle
B	Angular velocity
C	Frequency
D	None of these
Answer	B
Marks	1
Unit	4

Id	$\mathbf{5 5}$
Question	Amount of light produced by a lamp or the amount of heat produced by an iron is proportional to the
A	Square of RMS value
B	RMS value
C	Square of average value
D	Average value
Answer	A
Marks	1
Unit	4

Id	$\mathbf{5 6}$
Question	Average value over a full cycle of a symmetrical AC waveform is
A	Twice
B	Zero
C	Arbitrary
D	None of these
Answer	B
Marks	1
Unit	4

Id	$\mathbf{5 7}$
Question	The two AC voltages are said to be zero.\quad _ if the phase difference between them is
A	In phase
B	Out of phase
C	Lagging

D	In Phase opposition
Answer	A
Marks	1
Unit	4

Id	$\mathbf{5 8}$
Question	Peak to peak value of the sinusoidal waveform is
A	2^{*} Vpeak
B	$2 *$ Vrms
C	$2 * \operatorname{Vavg}$
D	Vpeak/2
Answer	A
Marks	1
Unit	4

Id	$\mathbf{5 9}$
Question	An alternating voltage is represented by $\mathrm{V}=25 \sin (200 \pi \mathrm{t})$ then its form factor is
A	1.0
B	1.1098
C	2.0
D	None of these
Answer	B
Marks	1
Unit	4

Id	$\mathbf{6 0}$
Question	Mathematical expression of the voltage supplied for the domestic purpose of 230 V is
A	$326 \sin \left(313^{*} \mathrm{t}\right)$
B	$325.27 \sin \left(314^{*} \mathrm{t}\right)$
C	$300 \sin \left(300^{* t}\right)$
D	$230 \sin \left(314^{*} \mathrm{t}\right)$
Answer	B
Marks	1
Unit	4

Id	$\mathbf{6 1}$
Question	Mathematical expression of instantaneous current with maximum value of 20A and frequency of 50 Hz is, $\mathrm{i}=$ A
B	$10 \sin (50 \pi \mathrm{t})$
C	$10 \sin (100 \pi \mathrm{t})$

D	$20 \sin (50 \pi \mathrm{t})$
Answer	C
Marks	1
Unit	4

Id	$\mathbf{6 2}$
Question	For $\mathrm{i}=35.36^{*} \sin (100 \pi \mathrm{t})$, find the rms and average value of current.
A	$12 \mathrm{~A}, 14 \mathrm{~A}$
B	$14.14,12.6 \mathrm{~A}$
C	$12.6 \mathrm{~A}, 14.14 \mathrm{~A}$
D	None of these
Answer	B
Marks	1
Unit	4

Id	$\mathbf{6 3}$
Question	As $\mathrm{i}=35.36^{*} \sin (100 \pi \mathrm{t})$, find the value of the current at the time $\mathrm{t}=0.0025 \mathrm{sec}$.
A	20 A
B	25 A
C	30 A
D	None of these
Answer	B
Marks	1
Unit	4

Id	$\mathbf{6 4}$
Question	As $\mathrm{i}=35.36^{*} \sin (100 \pi \mathrm{t})$, find the value of time at which $\mathrm{i}=14.14 \mathrm{~A}$
A	1.3 msec
B	2 msec
C	1 msec
D	None of these
Answer	A
Marks	1
Unit	4

Id	$\mathbf{6 5}$
Question	The lamp load is an example of
A	Purely resistive
B	Purely inductive
C	Purely capacitive
D	None of these
Answer	A

Marks	1
Unit	4

Id	$\mathbf{6 6}$
Question	A 100Ω resistance is carrying a sinusoidal current given by $3 \cos (\mathrm{wt})$, then the RMS value of voltage across it is volts.
A	300
B	33.33
C	212.13
D	None of these
Answer	C
Marks	1
Unit	4

Id	67
Question	The average power consumed by
A	Pure resistance
B	Pure inductor
C	Impure Inductor
D	None of these
Answer	B
Marks	1
Unit	4

Id	$\mathbf{6 8}$
Question	The \quad power is equal to $\left(\mathrm{V}^{*}\right.$ I) volt-amp.
A	Apparent
B	Real
C	Reactive
D	None of these
Answer	A
Marks	1
Unit	4

Id	69
Question	The power factor is equal to $\cos \phi=$ \qquad where $\mathrm{p}=$ real power, $\mathrm{Q}=$ Reactive power, $\mathrm{S}=$ Apperent power
A	P/Q
B	P/S
C	Q/S
D	Q/P
Answer	B

Marks	1
Unit	4

Id	70
Question	Low power factor is the result of
A	Resistive
B	Inductive
C	Capacitive
D	None of these
Answer	B
Marks	1
Unit	4

Id	$\mathbf{7 1}$
Question	\quad power factor indicates that very small portion of power is being
	utilized.
A	Zero
B	Low
C	High
D	None.
Answer	B
Marks	1
Unit	4

Id	$\mathbf{7 2}$
Question	The phase angle between the voltage and current for a purely resistive load is
A	90^{0}
B	0^{0}
C	-90°
D	180°
Answer	B
Marks	1
Unit	4

Id	$\mathbf{7 3}$
Question	The capacitive reactance is defined as the opposition provided by the capacitor to
A	DC voltage
B	AC voltage
C	DC current
D	AC current.
Answer	D
Marks	1

Unit	4

Id	74
Question	If the voltage across a pure resistance is $\mathrm{V}=\mathrm{Vm}^{*} \sin (\mathrm{wt}+\pi / 6)$ then the current flowing through it will be $\mathrm{i}=$
A	$\mathrm{Im}^{*} \sin (\mathrm{wt})$
B	$\mathrm{Im}^{*} \sin (\mathrm{wt}+\pi / 6)$
C	$\mathrm{Im}^{*} \sin (\mathrm{wt}+\pi / 2)$
D	$\mathrm{Im} * \sin (\mathrm{wt}+\pi / 3)$
Answer	B
Marks	1
Unit	4

Id	$\mathbf{7 5}$
Question	If the instantaneous values of voltage and current are $\mathrm{v}=300 \sin (\mathrm{wt})$ and $\mathrm{i}=3 \sin (\mathrm{wt})$ then the average power consumed by the circuit is $\mathrm{P}=$ A
B	900 W
C	$900 \sin ^{2} \mathrm{wt}$
D	450
Answer	636.4 W
Marks	1
Unit	4

Id	$\mathbf{7 6}$
Question	For a purely inductive circuit if the source voltage is $\mathrm{V}=\mathrm{Vm} * \sin (\mathrm{wt})$ then the equation of the current is given by,
A	$\mathrm{Im} * \sin (\mathrm{wt})$
B	$\mathrm{Im}^{*} \sin (\mathrm{wt}+\pi / 2)$
C	$\mathrm{Im}^{*} \sin (\mathrm{wt}-\pi / 2)$
D	$\mathrm{Im} * \sin (\mathrm{wt}-\pi)$
Answer	C
Marks	1
Unit	4

Id	$\mathbf{7 7}$
Question	The inductive reactance for DC is
A	Zero
B	Infinite
C	In between zero and infinite
D	None
Answer	A
Marks	1
Unit	4

Id	$\mathbf{7 8}$
Question	Impedance of a purely inductive circuit is expressed in polar form as, $\mathrm{Z}=\quad$
A	$\mathrm{X}_{1}<-90^{0}$
B	$\mathrm{X}_{1}<-0^{0}$
C	$\mathrm{X}_{1}<90^{0}$
D	$\mathrm{X}_{1}<180^{\circ}$
Answer	C
Marks	1
Unit	4

Id	79	
Question	The capacitive reactance $\mathrm{X}_{\mathrm{C}} \quad$ with	
A	Increases, decreases	
B	Decreases, Decreases	
C	Increases, increases	
D	Remains constant.	
Answer	A	
Marks	1	
Unit	4	

Id	$\mathbf{8 0}$
Question	The phase angle for an RL series circuit is given by,
A	$\sin ^{-1}\left(\mathrm{X}_{l} / \mathrm{R}\right)$
B	$\cos ^{-1}\left(\mathrm{X}_{\mathrm{I}} / \mathrm{R}\right)$
C	$\tan ^{-1}\left(\mathrm{X}_{\mathrm{l}} / \mathrm{R}\right)$
D	$\tan ^{-1}\left(\mathrm{R} / \mathrm{X}_{\mathrm{I}}\right)$
Answer	C
Marks	1
Unit	4

Id	81	
Question	The \qquad triangle is derived from	triangle by dividing each side by
A	Voltage, impedance, voltage	
B	Impedance, voltage, voltage	
C	Impedance, voltage, current	
D	Voltage, impedance, current	
Answer	C	
Marks	1	
Unit	4	

Id	$\mathbf{8 2}$
Question	The relation between the resistance R and the impedance Z is given by,
A	$\mathrm{Z}=\mathrm{R}^{*} \cos \phi$
B	$\mathrm{Z}=\mathrm{R}^{*} \sin \phi$
C	$\mathrm{R}=\mathrm{Z}^{*} \cos \phi$
D	$\mathrm{R}=\mathrm{Z}^{*} \sin \phi$
Answer	C
Marks	1
Unit	4

Id	$\mathbf{8 3}$
Question	The relation between the resistance X_{L} and the impedance Z is given by,
A	$\mathrm{X}_{\mathrm{L}}=\mathrm{Z} * \cos \phi$
B	$\mathrm{X}_{\mathrm{L}}=\mathrm{Z}^{*} \sin \phi$
C	$\mathrm{Z}=\mathrm{X}_{\mathrm{L}} * \cos \phi$
D	$\mathrm{Z}=\mathrm{X}_{\mathrm{L}} * \sin \phi$
Answer	B
Marks	1
Unit	4

Id	$\mathbf{8 4}$
Question	For an RL series circuit, the average power consumed by circuit is equal to average power consumed by A
R	
B	L
C	Source
D	R-L
Answer	A
Marks	1
Unit	4

Id	$\mathbf{8 5}$
Question	Power factor of a purely inductive circuit is
A	Zero
B	One
C	Infinite
D	$0<\mathrm{PF}<1$
Answer	A
Marks	1
Unit	4

Id	$\mathbf{8 6}$
Question	Reactive power
A	Increases
B	Decreases
C	Remains constant
D	First increases then decreases
Answer	A
Marks	1
Unit	4

Id	$\mathbf{8 7}$
Question	The electrical component used for power factor improvement is
A	Resistor
B	Inductor
C	Capacitor
D	R-L
Answer	C
Marks	1
Unit	4

Id	$\mathbf{8 8}$
Question	If $\mathrm{R}=10 \Omega$ and $\mathrm{Z}=20 \Omega$ then the value of L at $\mathrm{f}=50 \mathrm{~Hz}$ is
A	0.0318 H
B	0.318 H
C	0.00318 H
D	0.0055 H
Answer	D
Marks	1
Unit	4

Id	$\mathbf{8 9}$
Question	If R is increased from 5Ω to 20Ω then power factor of the resistive circuit will
A	Increases four times
B	Decreases four times
C	Increases marginally
D	Remains constant
Answer	A
Marks	1
Unit	4

Id	$\mathbf{9 0}$
Question	The impedance of the series RC circuit in polar form is given by $\mathrm{Z}=$
A	$\|\mathrm{X}\|<\Phi$
B	$\|\mathrm{Z}\|<-\phi$
C	$\|\mathrm{Z}\|<\phi$
D	None of these
Answer	B
Marks	1
Unit	4

Id	$\mathbf{9 1}$
Question	In RC series circuit the phase angle between voltage and current is
A	0°
B	90°
C	0° to 90°
D	90° to 180°
Answer	C
Marks	1
Unit	4

Id	$\mathbf{9 2}$
Question	For an RLC series circuit the supply voltage and current are in phase if
A	$\mathrm{X}_{\mathrm{L}}<\mathrm{X}_{\mathrm{C}}$
B	$\mathrm{X}_{\mathrm{L}}>\mathrm{X}_{\mathrm{C}}$
C	$\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}$
D	$\mathrm{X}_{\mathrm{L}} \neq \mathrm{X}_{\mathrm{C}}$
Answer	C
Marks	1
Unit	4

Id	$\mathbf{9 3}$
Question	The Q factor of RLC series circuit is also known as
A	Figure of efficiency
B	Figure of merit
C	Figure of excellence
D	Both A and B
Answer	B
Marks	1
Unit	4

\section*{| Id 94 |
| :--- | :--- |}

Question	The resonance in parallel LCR circuit is also known as
A	Series resonance
B	Anti resonance
C	Shunt resonance
D	Anti shunt resonance
Answer	B
Marks	1
Unit	4

Id	$\mathbf{9 5}$
Question	The Q factor is defined as the ratio of energy _____ per cycle to the energy ___ per cycle.
A	Saved, lost
B	Lost, stored
C	Stored, lost
D	Saved, stored
Answer	C
Marks	1
Unit	4

Id	$\mathbf{9 6}$
Question	For $0<\mathrm{f}<\mathrm{f}_{\mathrm{r}}$, the RLC series circuit is
A	Resistive, zero
B	Capacitive, between -90° to 0^{0}
C	Inductive, between 0° to 90°
D	None of these
Answer	B
Marks	1
Unit	4

Id	$\mathbf{9 7}$
Question	The voltage across L and C in series RLC circuit is
A	V / Q
B	Q / V
C	$\mathrm{Q}^{*} 1$
D	$\mathrm{Fr} * \mathrm{~V}$
Answer	B
Marks	1
Unit	4

Id	$\mathbf{9 8}$
Question	The increase in the value of Q increases ___ of the resonant circuit.

A	Bandwidth
B	Impedance
C	Selectivity
D	None
Answer	C
Marks	1
Unit	4

Id	$\mathbf{9 9}$
Question	If the two impedances $\mathrm{Z}_{1}<\mathrm{Q}_{1}$ and $\mathrm{Z}_{2}<\mathrm{Q}_{2}$ are multiplied then the phase angle corresponding to their multiplication is
A	$\mathrm{Q}_{1}-\mathrm{Q}_{2}$
B	$\mathrm{Q}_{1}+\mathrm{Q}_{2}$
C	$\mathrm{Q}_{1} * \mathrm{Q}_{2}$
D	$\mathrm{Q}_{1} / \mathrm{Q}_{2}$
Answer	B
Marks	1
Unit	4

Id	$\mathbf{1 0 0}$
Question	If $\cos \phi=1$ this means that,
A	Input $=$ output
B	$\mathrm{P}_{\text {in }}=\mathrm{P}_{\text {out }}$
C	The circuit is purely resistive.
D	The angle between the voltage and current is 90°.
Answer	C
Marks	1
Unit	4

Id	$\mathbf{1 0 1}$
Question	A sine wave has a frequency of 50 Hz. Its angular frequency is___ radian/second.
A	100π
B	50π
C	25π
D	10π
Answer	A
Marks	1
Unit	4

Id	$\mathbf{1 0 2}$
Question	A heater is rated as $230 \mathrm{~V}, 10 \mathrm{~kW}, \mathrm{~A} . \mathrm{C}$. The value 230 V refers to
A	average voltage

B	Peak voltage
C	RMS voltage
D	None of these
Answer	C
Marks	1
Unit	4

Id	$\mathbf{1 0 3}$
Question	The peak value of a sine wave is 200 V . Its average value is
A	127.4 V
B	141.4 V
C	282.8 V
D	200 V
Answer	A
Marks	1
Unit	4

Id	$\mathbf{1 0 4}$
Question	Two waves of the same frequency have opposite phase when the phase angle between them is
A	360^{0}
B	180^{0}
C	90^{0}
D	0^{0}
Answer	B
Marks	1
Unit	4

Id	$\mathbf{1 0 5}$
Question	The power consumed in a circuit element will be least when the phase difference between the current and voltage is A 180^{0}.
B	90^{0}
C	60^{0}
D	0^{0}
Answer	B
Marks	1
Unit	4

Id	$\mathbf{1 0 6}$
Question	For a frequency of 200 Hz, the time period will be
A	0.05 sec

B	0.005 sec
C	0.5 sec
D	0.0005 sec
Answer	B
Marks	1
Unit	4

Id	$\mathbf{1 0 7}$
Question	In a series resonant circuit, the impedance of the circuit is
A	Minimum
B	Maximum
C	Zero
D	None of these
Answer	A
Marks	1
Unit	4

Id	$\mathbf{1 0 8}$
Question	Pure inductive circuit
A	consumes some power on average
B	does not take power at all from a line
C	takes power from the line during some part of the cycle and then returns back to it during other part of the cycle.
D	None of these
Answer	C
Marks	1
Unit	4

Id	$\mathbf{1 0 9}$
Question	Inductive reactance of a coil Varies directly with
A	Frequency
B	No. of Turns
C	Permeance
D	None of these
Answer	A
Marks	1
Unit	4

Id	$\mathbf{1 1 0}$
Question	All the rules and laws of D.C. circuit also apply to A.C. circuit containing
A	capacitance only
B	inductance only

C	resistance only
D	None of these
Answer	C
Marks	1
Unit	4

Id	$\mathbf{1 1 1}$
Question	In a highly capacitive circuit the
A	apparent power is equal to the actual power
B	reactive power is more than the apparent power
C	reactive power is more than the actual power
D	actual power is more than its reactive power
Answer	C
Marks	1
Unit	4

Id	$\mathbf{1 1 2}$
Question	The r.m.s. value of alternating current is given by steady (D.C.) current which when flowing through a given circuit for a given time produces
A	the more heat than produced by A.C. when flowing through the same circuit
B	the same heat as produced by A.C. when flowing through the same circuit
C	the less heat than produced by A.C. flowing through the same circuit
D	none of the above
Answer	B
Marks	1
Unit	4

Id	$\mathbf{1 1 3}$
Question	The power factor at resonance in R-L-C parallel circuit is
A	zero
B	0.8 Lagging
C	0.08 Leading
D	Unity
Answer	D
Marks	1
Unit	4

Id	$\mathbf{1 1 4}$
Question	In a pure resistive circuit
A	current lags behind the voltage by 90°
B	voltage lags behind the current by 90°
C	Voltage and current are in phase

D	None of these
Answer	C
Marks	1
Unit	4

Id	$\mathbf{1 1 5}$
Question	In any A.C. circuit always
A	apparent power is more than actual power
B	reactive power is more than apparent power
C	actual power is more than reactive power
D	reactive power is more than actual power
Answer	A
Marks	1
Unit	4

Id	$\mathbf{1 1 6}$
Question	Which of the following circuit component opposes the change in the circuit voltage ?
A	Inductor
B	Capacitor
C	Resistor
D	Conductance
Answer	C
Marks	1
Unit	4

Id	$\mathbf{1 1 7}$
Question	Power factor of electric bulb is
A	Zero
B	Lagging
C	Leading
D	Unity
Answer	D
Marks	1
Unit	4

Id	$\mathbf{1 1 8}$
Question	Power factor of electric bulb is
A	Zero
B	Lagging
C	Leading
D	Unity
Answer	D

Marks	1
Unit	4

Id	$\mathbf{1 1 9}$
Question	
	What is the peak-to-peak voltage of the waveform in the given circuit?
A	2 V
B	4 V
C	6 V
D	8 V
Answer	D
Marks	1
Unit	4

Id	$\mathbf{1 1 9}$
Question	In R-L-C series resonant circuit magnitude of resonance frequency can be changed by changing the value of
A	R
B	L only
C	C only
D	L or C
Answer	D
Marks	1
Unit	4

Id	$\mathbf{1 2 0}$
Question	If a sinusoidal wave has frequency of 50 Hz with 30 A r.m.s. current which of the following equation represents this wave ?
A	$42.42 \sin (314 \mathrm{t})$
B	$60 \sin (25 \mathrm{t})$
C	$30 \sin (50 \mathrm{t})$
D	$84.84 \sin (25 \mathrm{t})$
Answer	A
Marks	1
Unit	4

Id	$\mathbf{1 2 1}$
Question	If a sinusoidal wave has frequency of 50 Hz with 30 A r.m.s. current which of the following equation represents this wave ?
A	$42.42 \sin (314 \mathrm{t})$
B	$60 \sin (25 \mathrm{t})$

C	$30 \sin (50 \mathrm{t})$
D	$84.84 \sin (25 \mathrm{t})$
Answer	A
Marks	1
Unit	4

Id	$\mathbf{1 2 2}$
Question	The input of an A.C. circuit having power factor of 0.8 lagging is 40 kVA The power drawn by the circuit is
A	12 kW
B	22 kW
C	32 kW
D	64 kW
Answer	C
Marks	1
Unit	4

Id	$\mathbf{1 2 3}$
Question	In an AC. circuit, a low value of kVAR compared with kW indicates
A	low efficiency
B	high power factor
C	unity power factor
D	maximum load current
Answer	B
Marks	1
Unit	4

Id	$\mathbf{1 2 4}$
Question	The ratio of active power to apparent power is known as___ factor.
A	Demand
B	Load
C	Power
D	Form
Answer	C
Marks	1
Unit	4

Id	$\mathbf{1 2 5}$
Question	The apparent power drawn by an A.C. circuit is 10 kVA and active power is 8 kW. The reactive power in the A
4 KVAR	
B	6 KVAR

C	8 KVAR
D	16 KVAR
Answer	B
Marks	1
Unit	4

Id	$\mathbf{1 2 6}$
Question	The purpose of a parallel circuit resonance is to magnify
A	Current
B	Voltage
C	Power
D	Frequency
Answer	A
Marks	1
Unit	4

Id	$\mathbf{1 2 7}$
Question	The purpose of a parallel circuit resonance is to magnify
A	Current
B	Voltage
C	Power
D	Frequency
Answer	A
Marks	1
Unit	4

Id	$\mathbf{1 2 8}$
Question	Capacitive susceptance is a measure of
A	reactive power in a circuit
B	the extent of neutralisation of reactive power in a circuit
C	a purely capacitive circuit's ability to pass current
D	a purely capacitive circuit's ability to resist the flow of current
Answer	A
Marks	1
Unit	4

Id	$\mathbf{1 2 9}$
Question	Which of the following statements pertains to resistors only ?
A	can dissipate considerable amount of power
B	can act as energy storage devices
C	connecting them in parallel increases the total value
D	oppose sudden changes in voltage

Answer	A
Marks	1
Unit	4

Id	$\mathbf{1 3 0}$
Question	Which of the following refers to a parallel circuit ?
A	The current through each element is same.
B	The voltage across element is in proportion to it's resistance value
C	The equivalent resistance is greater than any one of the resistors
D	The current through any one element is less than the source current
Answer	D
Marks	1
Unit	4

Id	$\mathbf{1 3 1}$
Question	The lamp load is an example of $\ldots \ldots \ldots \ldots \ldots . .$.
A	Purely resistive
B	Purely Inductiove
C	R-L sries
D	None
Answer	A
Marks	1
Unit	4

Id	$\mathbf{1 3 2}$
Question	If $\mathrm{R}=3$ ohm is in series with $\mathrm{X}_{\mathrm{L}}=4$ ohm. Then admittance of this circuit is $\mathrm{Y}=$
A	5 S
B	25 S
C	$5 \mathrm{~S} / \mathrm{m}$
D	0.2 S
Answer	C
Marks	1
Unit	4

Id	$\mathbf{1 3 3}$
Question	The exprssion for dynamic impedance of a parallel resonance circuit is
A	$Z_{D}=\mathrm{L} / \mathrm{RC}$
B	$\mathrm{Z}_{\mathrm{D}}=\mathrm{R} / \mathrm{LC}$
C	$\mathrm{Z}_{\mathrm{D}}=\mathrm{C} / \mathrm{RL}$
D	$\mathrm{Z}_{\mathrm{D}}=\mathrm{CRC}$
Answer	A
Marks	1
Unit	4

Id	$\mathbf{1 3 4}$
Question	The current of a parallel resonanct circuit is___ at $\mathrm{f}=\mathrm{fr}$
A	Maximum but not infinite
B	Infinite
C	Zero
D	Minimum but not zero
Answer	D
Marks	1
Unit	4

Id	$\mathbf{1 3 5}$
Question	The dynamic impedance represents the _
A	Minimum value of impedance
B	Maximum value of impedance
C	RMS value of impedance
D	Avg vakue of impedance
Answer	B
Marks	1
Unit	4

Id	$\mathbf{1 3 6}$
Question	The exepression for parallel combination of impedance Z 1 and Z 2 is
A	$\left(\mathrm{Z}_{1}+\mathrm{Z}_{2}\right) /\left(\mathrm{Z}_{1} * \mathrm{Z}_{2}\right)$
B	$\left(\mathrm{Z}_{1}+\mathrm{Z}_{2}\right) /\left(\mathrm{Z}_{1}-\mathrm{Z}_{2}\right)$
C	$\left(\mathrm{Z}_{1} * \mathrm{Z}_{2}\right) /\left(\mathrm{Z}_{1}+\mathrm{Z}_{2}\right)$
D	$\left(\mathrm{Z}_{1} * \mathrm{Z}_{2}\right) /\left(\mathrm{Z}_{1}-\mathrm{Z}_{2}\right)$
Answer	C
Marks	1
Unit	4

Id	$\mathbf{1 3 7}$
Question	A pure indutor is equivalent to a
A	Open circuit
B	Short circuit
C	An open switch
D	None of these
Answer	B
Marks	1
Unit	4

Id	$\mathbf{1 3 8}$
Question	The reactive power is also called ___ power and it is expressed in ___
A	True, VAR
B	Imaginary,VAR
C	Imaginary, VA
D	Real, VA
Answer	B
Marks	1
Unit	4

Id	$\mathbf{1 3 9}$
Question	P.F. is equal to \quad ___

A	S / P
B	Q / P
C	P / S
D	S / Q
Answer	C
Marks	1
Unit	4

Id	$\mathbf{1 4 0}$
Question	To improve the power factor we have to ____ the angle ϕ
A	Increases
B	Decreases

C	Keep constant
D	None
Answer	B
Marks	1
Unit	4

Id	$\mathbf{1 4 1}$
Question	The Q factor of a series RLC resonant circuit is defined as the _____ in the circuit at the resonant frequency
A	Voltage magnification
B	Current magnification
C	Power magnification

D	None
Answer	A
Marks	1
Unit	4

Id	$\mathbf{1 4 2}$
Question	of a series resonat circuit is defined as the difference between the frequencies at which the circuit power reduced to of the maximum power. A
B	Bandwidth, 50%
C	Q-factor, 50%
D	Selectivity, 25%
Answer	A

Marks	1
Unit	4

Id	$\mathbf{1 4 3}$
Question	The effective admittance of a parallel circuit is equal to the___ of the admittance of the individual branches
A	sum
B	Difference
C	product
D	ratio
Answer	A
Marks	1

Unit	4

Id	$\mathbf{1 4 4}$
Question	In inductive circuit when inductance increases, the circuit current decreases, but the circuit power factor ???
A	Increases
B	Decreases
C	Remains same
D	None
Answer	B
Marks	1
Unit	4

Id	$\mathbf{1 4 5}$
Question	The current and voltages are 90 degree out of phase then the power will be
A	Infinite
B	Maximum
C	Minmum
D	Zero
Answer	D
Marks	1
Unit	4

Id	$\mathbf{1 4 6}$
Question	If power factor is 1 it means that
A	Input $=$ output
B	Pin=Pout
C	The circuit is resisstive only
D	The angle between vtg and current is zero
Answer	D
Marks	1
Unit	4

Id	$\mathbf{1 4 7}$
Question	Power factor $=$
A	Kw/Kva
B	R/Z
C	Cosine of angle between current and voltage
D	All of them
Answer	D
Marks	1
Unit	4

Id	$\mathbf{1 4 8}$
Question	A sine wave has a frequency of 50 Hz . Its angular velocity is___rad/sec
A	100 pi
B	50 pi
C	25 pi
D	5 pi
Answer	A
Marks	1
Unit	4

Id	$\mathbf{1 4 9}$
Question	The reactane offered by a cpacitor to ac of frequency 50 Hz is 20 ohm the frequency is increased to 100 Hz, reactance become
A	2.5 ohm
B	5 ohm
C	10 ohm
D	20 ohm
Answer	C
Marks	1
Unit	4

Id	$\mathbf{1 5 0}$
Question	If the two waves of the same frequency have opposite phase when the phase angle between them is
A	360 degree
B	180 degree
C	90 degree
D	0 degree
Answer	B
Marks	1
Unit	4

Id	$\mathbf{1 5 1}$
Question	The heater is rated as $230 \mathrm{~V}, 10 \mathrm{KW}$ ac the value 230 refers to,
A	Average value
B	Rms value
C	Peak value
D	none
Answer	B
Marks	1
Unit	4

Id	$\mathbf{1 5 2}$
Question	The phase difference between voltage and current wave through a circuit element is given as 30 degree the essential condition is that
A	Both waves must have same frequency
B	Both waves must have same frequency
C	Both of them
D	none
Answer	A
Marks	1
Unit	4

Id	$\mathbf{1 5 3}$
Question	Poor power factor
A	Reduces load handling capacity of electrical system
B	Results in more power losses in the electrical system
C	Overloads aternator transformer and distribution lines
D	All of them
Answer	D
Marks	1
Unit	4

Id	$\mathbf{1 5 4}$
Question	In ac circuit always
A	Apparent power is more than actual power
B	Reactive power is more than apparent power
C	Actual power is more than reactive power
D	Reactive power is more than actual power
Answer	A
Marks	1
Unit	4

Id	$\mathbf{1 5 5}$
Question	In RLC series resonant circuit mgnitude of resonace frequency can be changed by changing the value of
A	R only
B	L only
C	C only
D	L or C
Answer	D
Marks	1
Unit	4

Id	$\mathbf{1 5 6}$
Question	If a sinusoidal wave has frequency of 50 Hz with 30 rms current which of the following equation represents this wave A
B	$42.42 \sin 314 \mathrm{t}$
C	$60 \sin 25 \mathrm{t}$
D	$30 \sin 50 \mathrm{t}$
Answer	$84.84 \sin 25 \mathrm{t}$
Marks	A
Unit	4

Id	$\mathbf{1 5 7}$
Question	The input of an ac circuit having power factor of 0.8 lagging is 40Kva, the power drawn by the circuit is
A	12 kW
B	22 kW
C	32 kW
D	64 kW
Answer	C
Marks	1
Unit	4

Id	$\mathbf{1 5 8}$
Question	The phaors for which of the following pair are 180 degree out of phase for $\mathrm{V}_{\mathrm{L}}, \mathrm{Vc}$ and V_{R}
A	Vc_{C} and V_{R}
B	V_{L} and V_{R}
C	$\mathrm{V}_{\mathrm{L}, \mathrm{Vc}}$
D	none
Answer	C
Marks	1
Unit	4

Id	$\mathbf{1 5 9}$
Question	The power factor of dc circuit is always
A	Lagging
B	Leading
C	Unity
D	zero
Answer	C
Marks	1
Unit	4

Id	$\mathbf{1 6 0}$
Question	Ohm is the unit of
A	Inductive reactance
B	Impedance
C	Resistance
D	All of them
Answer	D
Marks	1
Unit	4

Id	$\mathbf{1 6 1}$
Question	A current is said to be direct when it changes its
A	Direction
B	Magnitude
C	Both magnitude and direction
D	None of these
Answer	D
Marks	1
Unit	4

Id	$\mathbf{1 6 2}$
Question	A current is said to be alternating when it changes its
A	Direction
B	Magnitude
C	Both magnitude and direction
D	None of these
Answer	C
Marks	1
Unit	4

Id	$\mathbf{1 6 3}$
Question	A series circuit consists of $\mathrm{R}=20 \Omega, \mathrm{~L}=20 \mathrm{mH}$, and ac supply 60 V with $\mathrm{f}=100 \mathrm{~Hz}$.

	The current in R is
A	2.54 A
B	1.27 A
C	5.08 A
D	10.16 A
Answer	A
Marks	1
Unit	4

Id	$\mathbf{1 6 4}$
Question	A 100 mH inductor is connected across a supply fo 50 V AC. For which of the following frequency the circuit will have least rms current?
A	100 kHz

B	10 kHz
C	1 kHz
D	0.1 kHz
Answer	A
Marks	1
Unit	4

Id	$\mathbf{1 6 5}$
Question	Most practical alternators generate electricity from
A	a coil rotating within a magnetic field
B	a magnetic field rotating around fixed windings
C	a permanent magnet rotating within a varying electromagnetic field
D	none of the above
Answer	B

Marks	1
Unit	4

Id	$\mathbf{1 6 6}$
Question	A series circuit consists of $\mathrm{R}=20 \Omega, \mathrm{~L}=20 \mathrm{mH}$, and ac supply 60 V with $\mathrm{f}=100 \mathrm{~Hz}$. The current in R isA half-cycle average voltage of 12 V is equal to what rms voltage?
A	13.33 V
B	8.48 V
C	18.84 V
D	7.64 V
Answer	A
Marks	1
Unit	4

Id	$\mathbf{1 6 7}$
Question	A series circuit consists of $\mathrm{R}=20 \Omega, \mathrm{~L}=20 \mathrm{mH}$, and ac supply 60 V with $\mathrm{f}=100 \mathrm{~Hz}$. The current in R isA half-cycle average voltage of 12 V is equal to what rms voltage?The effective value of a sine wave is equal to
A	0.707 of peak voltage
B	0.636 of peak voltage
C	$\sin 45^{\circ}$ of peak voltage
D	both 0.707 of peak voltage and $\sin 45^{\circ}$ of peak voltage
Answer	D
Marks	1
Unit	4

Id	$\mathbf{1 6 8}$
Question	Calculate the angular frequency w of a signal that has a cyclic frequency f of 20 Hz.
A	$3.18 \mathrm{rad} / \mathrm{sec}$
B	$31.8 \mathrm{rad} / \mathrm{sec}$
C	$126 \mathrm{rad} / \mathrm{sec}$
D	$168 \mathrm{rad} / \mathrm{sec}$
Answer	C
Marks	1
Unit	4

Id	$\mathbf{1 6 9}$
Question	Which one of the following statements is correct in relation to alternating waveforms?
A	In a capacitor, the current leads the voltage.
B	In an inductor, the current leads the voltage.
C	In a capacitor, the voltage leads the current.
D	In an inductor the voltage lags the current.
Answer	A
Marks	1
Unit	4

Id	$\mathbf{1 7 0}$
Question	Calculate the reactance of an inductor of 15 mH at a frequency of 50 Hz.
A	0.9 ohms
B	2.7 ohms
C	5.7 ohms
D	6.3 ohms
Answer	C
Marks	1
Unit	4

Id	$\mathbf{1 7 1}$
Question	
	The diagram below shows a phasor representation of the voltage V across a combination of a resistor and an inductor. Calculate the magnitude and phase of the voltage V.
A	The magnitude is 168 V and the phase angle is 54 deg
B	The magnitude is 186 V and the phase angle is 54 deg
C	The magnitude is 168 V and the phase angle is 36 deg
D	The magnitude is 186 V and the phase angle is 36 deg
Answer	C

Marks	1
Unit	4

Id	$\mathbf{1 7 2}$
Question	The form factor of a $220 \mathrm{~V}, 50 \mathrm{~Hz}$ A.C. wave form is
A	1.11
B	1.5
C	1.6
D	2.1
Answer	A
Marks	1
Unit	4

Id	$\mathbf{1 7 3}$
Question	The power factor of the ac circuit lies between
A	0 to 1
B	-1 to 0
C	-1 to 1
D	None of these
Answer	A
Marks	1
Unit	4

Id	$\mathbf{1 7 4}$
Question	The form factor of dc supply voltage is always
A	Zero
B	0.5
C	Unity
D	infinite
Answer	A
Marks	1
Unit	4

Id	$\mathbf{1 7 5}$
Question	The effects due to electric current are
A	Heating effect
B	Magnetic effect
C	Both Magnetic and Heating
D	None of these
Answer	C
Marks	1
Unit	4

Id	$\mathbf{1 7 5}$
Question	When a.c. flows through a resistance, then
A	current leads voltage
B	current lags voltage
C	Both current and voltage are in phase
D	Both current and voltage are in phase opposition.
Answer	C
Marks	1
Unit	4

Id	$\mathbf{1 7 6}$
Question	In a.c. circuits, the a.c. meters measure
A	RMS value
B	Peak value
C	Average value
D	None of these
Answer	A
Marks	1
Unit	4

Id	$\mathbf{1 7 7}$
Question	A capacitor
A	offers easy path to a.c. but blocks d.c.
B	offers easy path to d.c. but blocks a.c.
C	offers easy path to both a.c. and d.c.
D	None of these
Answer	A
Marks	1
Unit	4

Id	$\mathbf{1 7 8}$
Question	The unit of inductive susceptance is
A	Henry
B	Siemens
C	Milli-henry
D	Ohms
Answer	B
Marks	1
Unit	4

Id	$\mathbf{1 7 9}$
Question	Wattless current is possible, only in
A	resistive circuit
B	Non resistive circuit
C	LR curcuit
D	LCR circuit
Answer	B
Marks	1
Unit	4

Id	$\mathbf{1 8 0}$
Question	Power factor for a pure inductor is
A	Zero
B	Unity
C	0.8 leading
D	0.8 Lagging
Answer	A
Marks	1
Unit	4

Id	$\mathbf{1 8 1}$
Question	Which statement about the inductance is incorrect?
A	The inductance of a coil can be increased by adding few more turns to the coil
B	The inductive reactance varies directly as the frequency of the applied voltage
C	Inductive reactance varies inversly as the frequency of the applied voltage
D	An inductance does not oppose direct currents
Answer	C
Marks	1
Unit	4

Id	$\mathbf{1 8 2}$
Question	The inductance of a coil can be increased by
A	increasing core length
B	decreasing the number of turns
C	decreasing the diameter of the core
D	decreasing the diameter of the former
Answer	D
Marks	1
Unit	4

Id	$\mathbf{1 8 3}$
Question	Which of the following waves has the highest value of peak factor ?
A	Square wave
B	Sine wave
C	Half wave rectified sine wave
D	Triangular wave
Answer	C
Marks	1
Unit	4

Id	$\mathbf{1 8 4}$
Question	The frequency of domestic power supply in India is
A	200 Hz
B	100 Hz
C	60 Hz
D	50 Hz
Answer	D
Marks	1
Unit	4

Id	$\mathbf{1 8 5}$
Question	The r.m.s. value of pure cosine function is
A	0.5 of peak value
B	0.707 of peak value
C	same as peak value
D	zero
Answer	B
Marks	1
Unit	4

Id	$\mathbf{1 8 6}$
Question	Ohm is unit of all of the following except
A	inductive reactance
B	capacitive reactance
C	resistance
D	capacitance
Answer	D
Marks	1
Unit	4

Id	$\mathbf{1 8 7}$
Question	The phasors for which of the following pair are 180° out of phase for V_{L}, V_{C} and V_{R}
A	V_{c} and V_{R}
B	V_{L} and V_{R}
C	V_{c} and V_{L}
D	none of the above
Answer	C
Marks	1
Unit	4

Id	$\mathbf{1 8 8}$
Question	The frequency of an alternating current is
A	the speed with which the alternator runs
B	the number of cycles generated in one minute
C	the number of waves passing through a point in one second
D	the number of electrons passing through a point in one second
Answer	C
Marks	1
Unit	4

Id	$\mathbf{1 8 9}$
Question	A pure capacitor connected across an A.C. voltage consumed 50 W. This is due to
A	the capacitive reactance in ohms
B	the current flowing in capacitor
C	the size of the capacitor being quite big
D	the statement is incorrect
Answer	D
Marks	1
Unit	4

190
Question
The power factor of a D.C. circuit is always

A	less than unity
B	unity
C	greater than unity
D	zero
Answer	A
Marks	1
Unit	4

Id	191

Question The product of apparent power and cosine of the phase angle between circuit

	voltage and current is
A	true power
B	reactive power
C	volt-ampere
D	instantaneous power
Answer	A
Marks	1
Unit	4

Id	$\mathbf{1 9 2}$
Question	The equation of 50 Hz current sine wave having r.m.s. value of 60 A is
A	$60 \sin 25 \mathrm{t}$
B	$60 \sin 50 \mathrm{t}$
C	$84.84 \sin 314 \mathrm{t}$
D	$42.42 \sin 314 \mathrm{t}$

Answer	C
Marks	1
Unit	4

Id	193
Question	In a pure inductive circuit if the supply frequency is reduced to $1 / 2$, the current will
A	be reduced by half
B	be doubled
C	be four times as high
D	be reduced to one fourth
Answer	B
Marks	1

Unit	4

Id	$\mathbf{1 9 4}$
Question	When an alternating current passes through an ohmic resistance the electrical power converted into heat is
A	apparent power
B	true power
C	reactive power
D	none of the above
Answer	B
Marks	1
Unit	4

Id	$\mathbf{1 9 5}$
Question	In a pure capacitive circuit if the supply frequency is reduced to $1 / 2$, the current will
A	be reduced by half
B	be doubled
C	be four times as high
D	be reduced to one fourth
Answer	A
Marks	1
Unit	4

Id	$\mathbf{1 9 6}$
Question	Which of the following statements pertains to resistors only ?
A	can act as energy storage devices
B	can dissipate considerable amount of power
C	oppose sudden changes in voltage
D	connecting them in parallel increases the total value
Answer	B
Marks	1
Unit	4

Id	$\mathbf{1 9 7}$
Question	Capacitive susceptance is a measure of
A	reactive power in a circuit
B	the extent of neutralisation of reactive power in a circuit
C	a purely capacitive circuit's ability to pass current
D	a purely capacitive circuit's ability to resist the flow of current
Answer	C
Marks	1
Unit	4

Id	$\mathbf{1 9 8}$
Question	At _frequencies the parallel R-L circuit behaves as purely resistive.
A	low
B	very low
C	high
D	very high
Answer	D
Marks	1
Unit	4

Id	$\mathbf{1 9 9}$
Question	In a sine wave the slope is constant
A	between 0° and 90°
B	between 90° and 180°
C	between 180° and 270
D	no where
Answer	D
Marks	1
Unit	4

Id	$\mathbf{2 0 0}$
Question	The power is measured in terms of decibels in case of
A	electronic equipment
B	transformers
C	current transformers
D	auto transformers
Answer	A
Marks	1
Unit	4

