Booklet No. :

Electronics & Communication Engineering

Duration of Test : 2 Hours

Max. Marks : 120

Name of the Candidate :_____

Date of Examination :_____OMR Answer Sheet No. : _____

Signature of the Candidate

Signature of the Invigilator

INSTRUCTIONS

- 1. This Question Booklet consists of **120** multiple choice objective type questions to be answered in **120** minutes.
- 2. Every question in this booklet has 4 choices marked (A), (B), (C) and (D) for its answer.
- 3. Each question carries **one** mark. There are no negative marks for wrong answers.
- 4. This Booklet consists of **16** pages. Any discrepancy or any defect is found, the same may be informed to the Invigilator for replacement of Booklet.
- 5. Answer all the questions on the OMR Answer Sheet using **Blue/Black ball point pen only.**
- 6. Before answering the questions on the OMR Answer Sheet, please read the instructions printed on the OMR sheet carefully.
- 7. OMR Answer Sheet should be handed over to the Invigilator before leaving the Examination Hall.
- 8. Calculators, Pagers, Mobile Phones, etc., are not allowed into the Examination Hall.
- 9. No part of the Booklet should be detached under any circumstances.
- 10. The seal of the Booklet should be opened only after signal/bell is given.

ELECTRONICS & COMMUNICATION ENGINEERING (EC)

- 1. The sum of the eigen values of the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 0 & 2 & 1 \\ -4 & 4 & 3 \end{bmatrix}$ is equal to (A) 6 (B) 8 (C) 0 (D) 1
- 2. If the rank of the matrix $A = \begin{bmatrix} \mu & -1 & 0 \\ 0 & 2 & -1 \\ -4 & 4 & 3 \end{bmatrix}$ is 2 then $\mu =$ (A) 1 (B) 8 (C) 0 (D) 2/5

3. The function $f(x, y) = x^2 + y^2 + 6x + 12$ has minimum value at the point (A) (-3,0) (B) (3,0) (C) (0,1) (D) (1,1)

4. If $r = \frac{\partial^2 f}{\partial x^2}$, $s = \frac{\partial^2 f}{\partial x \partial y}$ and $t = \frac{\partial^2 f}{\partial y^2}$, then at the saddle point the function f(x, y) satisfy (A) $rt - s^2 = 0$ (B) $rt - s^2 > 0$ (C) $rt - s^2 < 0$ (D) $st - r^2 > 0$

5. If f(z) is analytic within and on a closed curve *C* and *a* is any point within C then the $f(z) = \frac{1}{k} \oint \frac{f(z)}{z-a} dz$, where *k* is equal to (A) $\frac{1}{\pi}$ (B) $\frac{1}{\sqrt{2\pi}}$ (C) $\frac{1}{\sqrt{2\pi}}i$ (D) $2\pi i$

6. A random variable X has probability density function $f(x) = kxe^{-\lambda x}, x \ge 0$ then k =(A) $\frac{1}{\lambda^2}$ (B) λ^2 (C) λ (D) $\frac{1}{\lambda}$

7. If the coefficient of correlation is 0.98, then the variables are

- (A) Negatively correlated (B) Weak positively correlated
- (C) Strong positively correlated (D) Uncorrelated
- 8. The order of the differential equation $\left(\frac{dy}{dx}\right)^2 + 5y^{\frac{1}{3}} = x$ is (A) 1 (B) 6 (C) 2 (D) 1/3 Set - A 2

- 9. An integrating factor of $xy' + y = x^3y^6$
 - (A) $x^2 y^6$ (B) $e^{1/x}$ (C) $\frac{1}{x}$ (D) x
- 10. Which one of the following is a series method ?(A) Picards Method(B) Euler method
 - (C) Milne Method (D) Runge Kutta Method
- 11. The impulse response of an LTI system is given by h[n] = 2δ[n 20]. Determine the output y[n] if the input is x[n] = n².
 (A) (n-20)² (B) 2δ[n²-20] (C) 2(n-20)² (D) 2δ[(n-20)²]
- 12. The input output relationship of a system is given by y[n] = cos [x(n)]. The system is
 (A) linear and invertible
 (B) linear and non-invertible
 (C) non-linear and invertible
 (D) non-linear and non-invertible
- 13. The Fourier series coefficients of a periodic signal x(t) with time period T are X_k . Find the signal y(t) whose Fourier series coefficients are given by $Y_k = 2X_k$ and time period is T/5.
 - (A) y(t) = 2x(5t)(B) y(t) = 2x(t/5)(C) y(t) = x(10t)(D) y(t) = 2x(2t/5)
- **14.** Choose the false statement.
 - (A) $n\delta(n) = 0$ (B) $u(n) = \sum_{k=-\infty}^{n} \delta(k)$ (C) $\delta(n) = \sum_{k=-\infty}^{n} u(k)$ (D) $n^2\delta(n-2) = 4\delta(n-2)$

15. The signals $x_1(t)$ and $x_2(t)$ are both band-limited to $(-\omega_1, +\omega_1)$ and $(-\omega_2, +\omega_2)$ respectively. The Nyquist sampling rate for the signal $x_1(t)x_2(t)$ will be

(A)	$2\omega_1$ if $\omega_1 > \omega_2$	(B)	$2\omega_2$ if $\omega_1 < \omega_2$
(C)	$2(\omega_1 + \omega_2)$	(D)	$\frac{\omega_1 + \omega_2}{2}$

16. The response of an LTI discrete-time system to a periodic input with period N is

- (A) not periodic. (B) periodic having a period N.
- (C) periodic having a period 2N. (D) periodic having a period N/2.

17. The step response of an LTI system whose impulse response h(n) = u(n) is

- (A) (n+1)u(n) (B) nu(n)
- (C) (n-1)u(n) (D) $n^2u(n)$
- 18. If the Fourier series coefficients of a signal are periodic, then the signal must be
 - (A) continuous-time, periodic.
- (B) discrete-time, periodic.
- (C) continuous-time, non-periodic.

Set - A

- (D) discrete-time, non-periodic.
- 3

19.	Let sequ X_k a	X_k represent ence $x(n)$ wit re	the discrete h period N.	e-time Fourier The DTFS coe	series (DTFS efficients of the	S) coeffic e signal (fients of the $(-1)^n x(n)$ in	e periodic n terms of
	(A)	X_k	(B) X_{-k}	(C)	$X_{k+\frac{N}{2}}$	(D) <i>X</i> _k	$-\frac{N}{2}$	
20.	The	Fourier transfo	orm of the e	xponential sigr	hal $e^{j\omega_0 t}$ is		2	
	(A)	a constant		(B)	a rectangula	r pulse		
	(C)	an impulse		(D)	a series of in	npulses		
21.	The	frequency resp	onse of a sy	ystem with $h(n)$	$\delta(n) = \delta(n) - \delta(n)$	(n - 1) is	given by	
	(A)	$\delta(\omega) - \delta(\omega)$	-1)	(B)	$1-e^{j\omega}$			
	(C)	$u(\omega) - u(\omega)$	- 1)	(D)	$1 - e^{-j\omega}$			
22.	The	ROC of a caus	al finite-du	ation discrete-	time signal is			
	(A)	the entire z-p	lane except	z = 0 (B)	the entire z_{-1}	plane exce	ept $z = \infty$	
	(C)	the entire z-p	olane	(D)	a ring in the	z-plane	-	
23.	Line	ar phase system	ms have a co	onstant				
	(A)	phase		(B)	group delay			
	(C)	magnitude		(D)	phase and m	agnitude		
24.	In ar	n N-point DFT	of a finite c	luration signal	x(n) of length	L, the va	alue of N sho	ould be
	(A)	$N \ge L$	(B) $N =$	0 (C)	N < L	(D) <i>N</i>	$= L^2$	
25.	The the u	algorithm used init circle is	d to comput	e any set of eq	ually spaced s	amples of	f Fourier tra	nsform on
	(A)	DFT algorith	m	(B)	FFT algorith	ım		
	(C)	Goertzel algo	orithm	(D)	Chirp transfe	orm algori	ithm	
26.	Tota	l number of co	mplex mult	iplications requ	uired in radix -	2 DIT-FF	T algorithm	is
	(A)	N log ₂ N		(B)	$\frac{N}{2} \log_2 N$			
	(C)	$N \log_2 \frac{N}{2}$		(D)	$\frac{N}{2} \log_2 \frac{N}{2}$			
27.	The finite	steady-state e e in a	rror of a fe	edback contro	l system with	an accele	eration input	t becomes
	(A)	type 0 system	1	(B)	type 1 system	m		
	(C)	type 2 system	1	(D)	type 3 system	m		
28.	Cons	sidering the ro	ot locus dia	gram for a syst	em with $G(s)$	$=\frac{1}{s(s+2)}$	K(s+5) 2)(s+4)(s ² +2	$\frac{1}{2s+2}$, the
	meet (A)	ting point of th -1.2	e asymptote (B) -0.8	es on the real at (C)	xis occurs at -1.05	(D) -	-0.75	
Sof [· ·	1		. /		FC
Set -	A			4				EU

(A) 3.6 (B) 1.8 (C) 3.2 (D) 2.4 30. The equation $2s^4 + s^3 + 3s^2 + 5s + 10 = 0$ has roots in the left half of s-plane. (A) onc (B) two (C) three (D) four 31. Given a unity feedback control system with $G(s) = \frac{\kappa}{s(s+4)}$, the value of K for a damping ratio of 0.5 is (A) 1 (B) 16 (C) 32 (D) 64 32. The input to a controller is (A) sensed signal (B) desired variable value (C) error signal (D) servo-signal 33. If the Nyquist plot of the loop transfer function $G(s)H(s)$ of a closed-loop system encloses the $(-1, j0)$ point in the $G(s)H(s)$ plane, the gain margin of the system is (A) zero (B) greater than zero (C) less than zero (D) infinity 34. The transfer function of a phase-lead controller is given by (A) $\frac{1+aTs}{1+Ts}$, $a > 1$, $T > 0$ (B) $\frac{1-aTs}{1+Ts}$, $a < 1$, $T > 0$ (C) $\frac{1-aTs}{1+Ts}$, $a > 1$, $T > 0$ (D) $\frac{1-aTs}{1+Ts}$, $a < 1$, $T > 0$ 35. A system with gain margin close to unity or a phase margin close to zero is (A) highly stable (B) oscillatory (C) relatively stable (D) unstable 36. Peak overshoot of step-input response of an underdamped second-order system is cxplicitly indicative of (A) setting time (B) rise time (C) natural frequency (D) damping ratio 37. If the system matrix of a linear time invariant continuous system is given by (A) $s^2 + 5s + 3 = 0$ (B) $s^2 - 3s - 5 = 0$ (C) $s^2 + 3s + 5 = 0$ (D) $s^2 + 2s + 2 = 0$	29.	If for a control system, the Laplace transform of error $e(t)$ is given as $\frac{8(s+3)}{s(s+10)}$ then the steady state value of the error works out as								n the	
 30. The equation 2s⁴ + s³ + 3s² + 5s + 10 = 0 has roots in the left half of s-plane. (A) one (B) two (C) three (D) four 31. Given a unity feedback control system with G(s) = K/(s(s+4)), the value of K for a damping ratio of 0.5 is (A) 1 (B) 16 (C) 32 (D) 64 32. The input to a controller is (A) sensed signal (B) desired variable value (C) error signal (D) serve-signal 33. If the Nyquist plot of the loop transfer function G(s)H(s) of a closed-loop system encloses the (-1, j0) point in the G(s)H(s) plane, the gain margin of the system is (A) zero (B) greater than zero (C) less than zero (D) infinity 34. The transfer function of a phase-lead controller is given by (A) 1 + a Ts / a > 1, T > 0 (B) 1 + a Ts / 1 + Ts / a < 1, T > 0 (C) 1 + a Ts / a > 1, T > 0 (D) 1 + a Ts / 1 + Ts / a < 1, T > 0 (C) 1 + a Ts / a > 1, T > 0 (D) 1 + a TS / a < 1, T > 0 35. A system with gain margin close to unity or a phase margin close to zero is (A) highly stable (B) oscillatory (C) relatively stable (D) unstable 36. Peak overshoot of step-input response of an underdamped second-order system is explicitly indicative of (A) settling time (B) rise time (C) natural frequency (D) damping ratio 37. If the system matrix of a linear time invariant continuous system is given by (A) s² + 5s + 3 = 0 (B) s² - 3s - 5 = 0 (C) s² + 3s + 5 = 0 (D) s² + 2s + 2 = 0 		(A)	3.6	(B)	1.8	(C)	3.2	(D)	2.4		
 (A) one (B) two (C) three (D) four 31. Given a unity feedback control system with G(s) = K/s(s+4), the value of K for a damping ratio of 0.5 is (A) 1 (B) 16 (C) 32 (D) 64 32. The input to a controller is (A) sensed signal (B) desired variable value (C) error signal (D) servo-signal 33. If the Nyquist plot of the loop transfer function G(s)H(s) of a closed-loop system encloses the (-1, j0) point in the G(s)H(s) plane, the gain margin of the system is (A) zero (B) greater than zero (C) less than zero (D) infinity 34. The transfer function of a phase-lead controller is given by (A) ^{1+a Ts}/_{1+Ts}, a > 1, T > 0 (B) ^{1+a Ts}/_{1+Ts}, a < 1, T > 0 (C) ^{1-a Ts}/_{1+Ts}, a > 1, T > 0 (D) ^{1-a Ts}/_{1+Ts}, a < 1, T > 0 35. A system with gain margin close to unity or a phase margin close to zero is (A) highly stable (B) oscillatory (C) relatively stable (D) unstable 36. Peak overshoot of step-input response of an underdamped second-order system is explicitly indicative of (A) settling time (B) rise time (C) natural frequency (D) damping ratio 37. If the system matrix of a linear time invariant continuous system is given by (A) s² + 5s + 3 = 0 (B) s² - 3s - 5 = 0 (C) s² + 3s + 5 = 0 (D) s² + 2s + 2 = 0 	30.	The s–pla	equation $2s^4$ ane.	+ s ³ ·	$+3s^2+5s+3$	10 =	0 has	ro	ots in the	left ha	lf of
 31. Given a unity feedback control system with G(s) = K/s(s+4), the value of K for a damping ratio of 0.5 is (A) 1 (B) 16 (C) 32 (D) 64 32. The input to a controller is (A) sensed signal (B) desired variable value (C) error signal (D) servo-signal 33. If the Nyquist plot of the loop transfer function G(s)H(s) of a closed-loop system encloses the (-1, j0) point in the G(s)H(s) plane, the gain margin of the system is (A) zero (B) greater than zero (C) less than zero (D) infinity 34. The transfer function of a phase-lead controller is given by (A) 1+4 Ts (A) 1+7s, a > 1, T > 0 (B) 1+a Ts (A > 1+Ts), a > 1, T > 0 (C) 1-a Ts (A > 1, T > 0 (C) 1-a Ts (A > 1, T > 0 (D) 1-a Ts (A < 1, T > 0 35. A system with gain margin close to unity or a phase margin close to zero is (A) highly stable (B) oscillatory (C) relatively stable (D) unstable 36. Peak overshoot of step-input response of an underdamped second-order system is explicitly indicative of (A) settling time (B) rise time (C) natural frequency (D) damping ratio 37. If the system matrix of a linear time invariant continuous system is given by (A) s² + 5s + 3 = 0 (B) s² - 3s - 5 = 0 (C) s² + 3s + 5 = 0 (D) s² + 2s + 2 = 0 		(A)	one	(B)	two	(C)	three	(D)	four		
 (A) 1 (B) 16 (C) 32 (D) 64 32. The input to a controller is (A) sensed signal (B) desired variable value (C) error signal (D) servo-signal 33. If the Nyquist plot of the loop transfer function G(s)H(s) of a closed-loop system encloses the (-1, j0) point in the G(s)H(s) plane, the gain margin of the system is (A) zero (B) greater than zero (C) less than zero (D) infinity 34. The transfer function of a phase-lead controller is given by (A) 1+aTs/(a > 1, T > 0 (B) 1+aTs/(a < 1, T > 0 (C) 1-aTs/(1+Ts), a > 1, T > 0 (C) 1-aTs/(1+Ts), a > 1, T > 0 (D) 1-aTs/(1+Ts), a < 1, T > 0 35. A system with gain margin close to unity or a phase margin close to zero is (A) highly stable (B) oscillatory (C) relatively stable (D) unstable 36. Peak overshoot of step-input response of an underdamped second-order system is explicitly indicative of (A) settling time (B) rise time (C) natural frequency (D) damping ratio 37. If the system matrix of a linear time invariant continuous system is given by (A) s² + 5s + 3 = 0 (B) s² - 3s - 5 = 0 (C) s² + 3s + 5 = 0 (D) s² + 2s + 2 = 0 	31.	Give ratio	n a unity feedb of 0.5 is	back c	control system	with ($G(s)=\frac{K}{s(s+4)},$	the v	alue of K f	or a dan	nping
 32. The input to a controller is (A) sensed signal (B) desired variable value (C) error signal 33. If the Nyquist plot of the loop transfer function G(s)H(s) of a closed-loop system encloses the (-1, j0) point in the G(s)H(s) plane, the gain margin of the system is (A) zero (B) greater than zero (C) less than zero (D) infinity 34. The transfer function of a phase-lead controller is given by (A) 1+a Ts / 1+Ts , a > 1, T > 0 (B) 1+a TS / 1+TS , a < 1, T > 0 (C) 1-a TS / 1+TS , a > 1, T > 0 (D) 1-a TS / 1+TS , a < 1, T > 0 (C) 1-a TS / 1+TS , a > 1, T > 0 (D) 1-a TS / 1+TS , a < 1, T > 0 35. A system with gain margin close to unity or a phase margin close to zero is (A) highly stable (B) oscillatory (C) relatively stable (D) unstable 36. Peak overshoot of step-input response of an underdamped second-order system is explicitly indicative of (A) settling time (B) rise time (C) natural frequency (D) damping ratio 37. If the system matrix of a linear time invariant continuous system is given by (A) s² + 5s + 3 = 0 (B) s² - 3s - 5 = 0 (C) s² + 3s + 5 = 0 (D) s² + 2s + 2 = 0 		(A)	1	(B)	16	(C)	32	(D)	64		
 (A) sensed signal (B) desired variable value (C) error signal (D) servo-signal 33. If the Nyquist plot of the loop transfer function G(s)H(s) of a closed-loop system encloses the (-1, j0) point in the G(s)H(s) plane, the gain margin of the system is (A) zero (B) greater than zero (C) less than zero (D) infinity 34. The transfer function of a phase-lead controller is given by (A) ^{1+a Ts}/_{1+Ts}, a > 1, T > 0 (B) ^{1+a Ts}/_{1+Ts}, a < 1, T > 0 (C) ^{1-a Ts}/_{1+Ts}, a > 1, T > 0 (D) ^{1-a Ts}/_{1+Ts}, a < 1, T > 0 (C) ^{1-a Ts}/_{1+Ts}, a > 1, T > 0 (D) ^{1-a Ts}/_{1+Ts}, a < 1, T > 0 (C) relatively stable (D) unstable 36. Peak overshoot of step-input response of an underdamped second-order system is explicitly indicative of (A) settling time (B) rise time (C) natural frequency (D) damping ratio 37. If the system matrix of a linear time invariant continuous system is given by A = [⁰/₁₋₃ - 5], its characteristic equation is given by (A) s² + 5s + 3 = 0 (B) s² - 3s - 5 = 0 (C) s² + 3s + 5 = 0 (D) s² + 2s + 2 = 0 	32.	The	input to a contr	oller i	S						
 33. If the Nyquist plot of the loop transfer function G(s)H(s) of a closed-loop system encloses the (-1, j0) point in the G(s)H(s) plane, the gain margin of the system is (A) zero (B) greater than zero (C) less than zero (D) infinity 34. The transfer function of a phase-lead controller is given by (A) 1+aTs/(1+Ts), a > 1, T > 0 (B) 1+aTs/(1+Ts), a < 1, T > 0 (C) 1-aTs/(1+Ts), a > 1, T > 0 (D) 1-aTs/(1+Ts), a < 1, T > 0 (C) 1-aTs/(1+Ts), a > 1, T > 0 (D) 1-aTs/(1+Ts), a < 1, T > 0 35. A system with gain margin close to unity or a phase margin close to zero is (A) highly stable (B) oscillatory (C) relatively stable (D) unstable 36. Peak overshoot of step-input response of an underdamped second-order system is explicitly indicative of (A) settling time (B) rise time (C) natural frequency (D) damping ratio 37. If the system matrix of a linear time invariant continuous system is given by (A) s² + 5s + 3 = 0 (B) s² - 3s - 5 = 0 (C) s² + 3s + 5 = 0 (D) s² + 2s + 2 = 0 		(A) (C)	error signal			(B)	servo-signal	ole val	ue		
14. The transfer function of a phase-lead controller is given by (A) zero (B) greater than zero (C) less than zero (D) infinity 34. The transfer function of a phase-lead controller is given by (A) $\frac{1+a Ts}{1+Ts}, a > 1, T > 0$ (B) $\frac{1+a Ts}{1+Ts}, a < 1, T > 0$ (C) $\frac{1-a Ts}{1+Ts}, a > 1, T > 0$ (D) $\frac{1-a Ts}{1+Ts}, a < 1, T > 0$ 35. A system with gain margin close to unity or a phase margin close to zero is (A) highly stable (B) oscillatory (C) relatively stable (D) unstable 36. Peak overshoot of step-input response of an underdamped second-order system is explicitly indicative of (A) settling time (B) rise time (C) natural frequency (D) damping ratio 37. If the system matrix of a linear time invariant continuous system is given by $A = \begin{bmatrix} 0 & 1 \\ -3 & -5 \end{bmatrix}$, its characteristic equation is given by (A) $s^2 + 5s + 3 = 0$ (B) $s^2 - 3s - 5 = 0$ (C) $s^2 + 3s + 5 = 0$ (D) $s^2 + 2s + 2 = 0$	33.	If the	e Nyquist plot $(1, i0)$ point	of the	loop transfer fi	unctio	n $G(s)H(s)$ of	a clos	ed-loop sys	stem enc	loses
 (C) less than zero (D) infinity 34. The transfer function of a phase-lead controller is given by (A) 1+a Ts/(1+Ts), a > 1, T > 0 (B) 1+a Ts/(1+Ts), a < 1, T > 0 (C) 1-a Ts/(1+Ts), a > 1, T > 0 (D) 1-a Ts/(1+Ts), a < 1, T > 0 35. A system with gain margin close to unity or a phase margin close to zero is (A) highly stable (B) oscillatory (C) relatively stable (D) unstable 36. Peak overshoot of step-input response of an underdamped second-order system is explicitly indicative of (A) settling time (B) rise time (C) natural frequency (D) damping ratio 37. If the system matrix of a linear time invariant continuous system is given by (A) s² + 5s + 3 = 0 (B) s² - 3s - 5 = 0 (C) s² + 3s + 5 = 0 (D) s² + 2s + 2 = 0 		(A)	zero	in the	$G(S)\Pi(S)$ plai	(B)	greater than z	ero	ystem is		
 34. The transfer function of a phase-lead controller is given by (A) 1+a Ts/(1+Ts), a > 1, T > 0 (B) 1+a Ts/(1+Ts), a < 1, T > 0 (C) 1-a Ts/(1+Ts), a > 1, T > 0 (D) 1-a Ts/(1+Ts), a < 1, T > 0 35. A system with gain margin close to unity or a phase margin close to zero is (A) highly stable (B) oscillatory (C) relatively stable (D) unstable 36. Peak overshoot of step-input response of an underdamped second-order system is explicitly indicative of (A) settling time (B) rise time (C) natural frequency (D) damping ratio 37. If the system matrix of a linear time invariant continuous system is given by (A) s² + 5s + 3 = 0 (B) s² - 3s - 5 = 0 (C) s² + 3s + 5 = 0 (D) s² + 2s + 2 = 0 		(C)	less than zero			(D)	infinity				
(A) $\frac{1+aTs}{1+Ts}$, $a > 1$, $T > 0$ (B) $\frac{1+aTs}{1+Ts}$, $a < 1$, $T > 0$ (C) $\frac{1-aTs}{1+Ts}$, $a > 1$, $T > 0$ (D) $\frac{1-aTs}{1+Ts}$, $a < 1$, $T > 0$ 35. A system with gain margin close to unity or a phase margin close to zero is (A) highly stable (B) oscillatory (C) relatively stable (D) unstable 36. Peak overshoot of step-input response of an underdamped second-order system is explicitly indicative of (A) settling time (B) rise time (C) natural frequency (D) damping ratio 37. If the system matrix of a linear time invariant continuous system is given by $A = \begin{bmatrix} 0 & 1\\ -3 & -5 \end{bmatrix}$, its characteristic equation is given by (A) $s^2 + 5s + 3 = 0$ (B) $s^2 - 3s - 5 = 0$ (C) $s^2 + 3s + 5 = 0$ (D) $s^2 + 2s + 2 = 0$	34.	The	transfer functio	n of a	phase-lead co	ntrolle	er is given by				
 (C) 1-a Ts/(1+Ts), a > 1, T > 0 (D) 1-a Ts/(1+Ts), a < 1, T > 0 35. A system with gain margin close to unity or a phase margin close to zero is (A) highly stable (B) oscillatory (C) relatively stable (D) unstable 36. Peak overshoot of step-input response of an underdamped second-order system is explicitly indicative of (A) settling time (B) rise time (C) natural frequency (D) damping ratio 37. If the system matrix of a linear time invariant continuous system is given by A = [0 1 [-3 -5]], its characteristic equation is given by (A) s² + 5s + 3 = 0 (B) s² - 3s - 5 = 0 (C) s² + 3s + 5 = 0 (D) s² + 2s + 2 = 0 		(A)	$\frac{1+aTs}{1+Ts}$, $a>1$, T >	• 0	(B)	$\frac{1+aTs}{1+Ts}$, $a < 1$, T >	0		
 35. A system with gain margin close to unity or a phase margin close to zero is (A) highly stable (B) oscillatory (C) relatively stable (D) unstable 36. Peak overshoot of step-input response of an underdamped second-order system is explicitly indicative of (A) settling time (B) rise time (C) natural frequency (D) damping ratio 37. If the system matrix of a linear time invariant continuous system is given by A = [0 1 -3 -5], its characteristic equation is given by (A) s² + 5s + 3 = 0 (B) s² - 3s - 5 = 0 (C) s² + 3s + 5 = 0 (D) s² + 2s + 2 = 0 		(C)	$\frac{1-aTs}{1+Ts}, a > 1,$	<i>T</i> >	0	(D)	$\frac{1-aTs}{1+Ts}, a < 1,$	<i>T</i> >	0		
(A) highly stable (B) oscillatory (C) relatively stable (D) unstable 36. Peak overshoot of step-input response of an underdamped second-order system is explicitly indicative of (A) settling time (B) rise time (C) natural frequency (D) damping ratio 37. If the system matrix of a linear time invariant continuous system is given by $A = \begin{bmatrix} 0 & 1 \\ -3 & -5 \end{bmatrix}$, its characteristic equation is given by (A) $s^2 + 5s + 3 = 0$ (B) $s^2 - 3s - 5 = 0$ (C) $s^2 + 3s + 5 = 0$ (D) $s^2 + 2s + 2 = 0$	35.	A sy	stem with gain	marg	in close to unit	y or a	phase margin c	close t	o zero is		
(c) Inflatively state(D) unstable36. Peak overshoot of step-input response of an underdamped second-order system is explicitly indicative of (A) settling time (C) natural frequency(B) rise time (D) damping ratio37. If the system matrix of a linear time invariant continuous system is given by $A = \begin{bmatrix} 0 & 1 \\ -3 & -5 \end{bmatrix}$, its characteristic equation is given by (A) $s^2 + 5s + 3 = 0$ (C) $s^2 + 3s + 5 = 0$ (B) $s^2 - 3s - 5 = 0$ (D) $s^2 + 2s + 2 = 0$		(\mathbf{A})	highly stable	مام		(B) (D)	oscillatory				
 36. Peak overshoot of step-input response of an underdamped second-order system is explicitly indicative of (A) settling time (B) rise time (C) natural frequency (D) damping ratio 37. If the system matrix of a linear time invariant continuous system is given by A = [0 1 - 3 - 5], its characteristic equation is given by (A) s² + 5s + 3 = 0 (B) s² - 3s - 5 = 0 (C) s² + 3s + 5 = 0 (D) s² + 2s + 2 = 0 		(C)	Telatively stat	ne		(D)	unstable				
(A) settling time (B) rise time (C) natural frequency (D) damping ratio 37. If the system matrix of a linear time invariant continuous system is given by $A = \begin{bmatrix} 0 & 1 \\ -3 & -5 \end{bmatrix}$, its characteristic equation is given by (A) $s^2 + 5s + 3 = 0$ (B) $s^2 - 3s - 5 = 0$ (C) $s^2 + 3s + 5 = 0$ (D) $s^2 + 2s + 2 = 0$	36.	Peak expli	overshoot of citly indicative	f step of	-input respon	se of	an underdam	ped :	second-orde	er syste	m is
(C) natural frequency (D) damping ratio 37. If the system matrix of a linear time invariant continuous system is given by $A = \begin{bmatrix} 0 & 1 \\ -3 & -5 \end{bmatrix}$, its characteristic equation is given by (A) $s^2 + 5s + 3 = 0$ (B) $s^2 - 3s - 5 = 0$ (C) $s^2 + 3s + 5 = 0$ (D) $s^2 + 2s + 2 = 0$		(\mathbf{A})	settling time			(B)	rise time				
37. If the system matrix of a linear time invariant continuous system is given by $A = \begin{bmatrix} 0 & 1 \\ -3 & -5 \end{bmatrix}$, its characteristic equation is given by (A) $s^2 + 5s + 3 = 0$ (B) $s^2 - 3s - 5 = 0$ (C) $s^2 + 3s + 5 = 0$ (D) $s^2 + 2s + 2 = 0$		(C)	natural freque	ency		(D)	damping ratio)			
$A = \begin{bmatrix} 0 & 1 \\ -3 & -5 \end{bmatrix}, \text{ its characteristic equation is given by}$ (A) $s^2 + 5s + 3 = 0$ (B) $s^2 - 3s - 5 = 0$ (C) $s^2 + 3s + 5 = 0$ (D) $s^2 + 2s + 2 = 0$	37.	If th	ne system ma	atrix	of a linear t	ime	invariant cont	inuou	s system	is giver	n by
(A) $s^{2} + 5s + 3 = 0$ (B) $s^{2} - 3s - 5 = 0$ (C) $s^{2} + 3s + 5 = 0$ (D) $s^{2} + 2s + 2 = 0$		A =	$\begin{bmatrix} 0 & 1 \\ -3 & -5 \end{bmatrix}$, its	chara	cteristic equati	on is g	given by				
(C) $s^2 + 3s + 5 = 0$ (D) $s^2 + 2s + 2 = 0$		(A)	$s^2 + 5s + 3 =$	= 0		(B)	$s^2 - 3s - 5 =$	= 0			
	-	(C)	$s^2 + 3s + 5 =$	= 0		(D)	$s^2 + 2s + 2$	= 0			
Set - A 5 EC	Set -	A				5					EC

- **38.** A phase lag-lead network shifts the phase of a control signal in order that the phase of the output
 - (A) lags at low frequencies and leads at high frequencies relative to input
 - (B) leads at low frequencies and lags at high frequencies relative to input
 - (C) lags at all frequencies relative to input
 - (D) leads at all frequencies relative to input
- **39.** The Bode plot of the transfer function G(s) = s is
 - (A) constant magnitude and constant phase shift angle
 - (B) -20 dB/decade and constant phase shift angle
 - (C) 20 dB/decade and phase shift of $\pi/2$
 - (D) zero magnitude and phase shift

Set

40. The state-variable description of a linear autonomous system is $\overline{X} = A\overline{X}$, where X is a twodimensional state vector and A is a matrix given by $A = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$. The poles of the system are located at

(A) -2 and +2(B) -2j and +2j(C) -2 and -2(D) +2 and +2

- **41.** 24 voice channels (4 KHz bandwidth) are sampled at 8 times the Nyquist rate and multiplexed. Each voice channel is delta modulated. 1 bit is added per frame for transmitting control information. What is the data rate of transmission ?
 - (A) 1.600 Mbps (B) 1.544 Mbps
 - (C) 2.048 Mbps (D) 1.536 Mbps
- **42.** The characteristic of the channel resembles the filter shown in the figure 1. Find the time delay of the channel.

43. Let X be a continuous random variable with uniform PDF defined by $f_x(x) = \frac{1}{2\pi}$, for $0 < x < 2\pi$ and zero elsewhere. Find σ_x .

(A)
$$\frac{\pi}{3}$$
 (B) $\frac{\pi}{6}$ (C) $\frac{\pi}{\sqrt{3}}$ (D) $\frac{\pi}{\sqrt{6}}$
- A 6

- **44.** The stationary process has
 - (A) ensemble average equal to time average
 - (B) all the statistical properties dependent on time
 - (C) all the statistical properties independent of time
 - (D) zero mean and zero variance
- 45. In a modulator, it is found that the amplitude spectrum of the signal at the output of the modulator consists of a component f_c , the carrier frequency and one component each at $f_c + f_m$ and $f_c f_m$ where f_m is the modulating signal frequency. The modulator used is
 - (A) SSB (B) PAM (C) PCM (D) AM
- 46. A signal $X(t) = 4\cos 2\pi f_c t + 2\cos 4\pi f_c t + m(t)\cos 2\pi f_c t$ is applied to the system shown in Figure 2. What will be Y(t)?

		Figure 2				
(A)	$4m(t) \cos 4\pi f_c t$	(B)	$4\cos 4\pi f_c t$			
(C)	4 + m(t)	(D)	4 m(t)			

47. The power of an FM modulated signal with modulation index β and carrier $c(t) = A \cos 2\pi f_c t$ is

(A) $\frac{A^2}{2}$ (B) $\frac{A^2}{2}\left(1+\frac{\beta^2}{2}\right)$

(C) $\frac{A^2}{2}\left(1+\frac{\beta}{2}\right)$ (D) $A^2\left(1+\frac{\beta^2}{2}\right)$

- 48. If a Gaussian process X(t) is applied to the stable linear filter, then the random process developed at the output of the filter will be
 - (A) Uniform (B) Exponential
 - (C) Gaussian (D) Rayleigh
- **49.** Binary data is transmitted using PSK signaling scheme with $S_1(t) = ACos\omega_c t$, $S_2(t) = -ACos\omega_c t$, $0 \le t \le T_b$ where bit duration T_b is equal to 0.2 ns. The carrier frequency is $f_c = 5f_b$. The carrier amplitude at the receiver input is 1V and the power spectral density of the AWGN at the input is 10^{-11} W/Hz. The probability of error for the optimum filter will be

(A)
$$erfc(5.5)$$
 (B) 0.5 $erfc(5)$ (C) 0.5 $erfc(\sqrt{5})$ (D) $erfc(\sqrt{5.5})$
Set - A 7 EC

50. Which of the following is incorrect ?

(A)

- (A) H(y/x) = H(x, y) H(x) (B) I(x, y) = H(x) H(y/x)
- (C) H(x, y) = H(x/y) + H(y) (D) I(x, y) = H(y) H(y/x)

51. The SSB-SC is used for the following application :

- Radio Broadcasting (B) Point to point communication
- (C) Telegraphy and Telephony (D) TV transmitter

52. What does a logic 1 Delta Modulation (DM) bit indicate ?

- (A) The message signal's amplitude is decreasing.
- (B) The feedback signal's amplitude is greater than the message signal's amplitude.
- (C) The feedback signal's amplitude is constant.
- (D) The feedback signal's amplitude is less than the message signal's amplitude.

53. The asymptotic value of $\frac{E_b}{N_0}$ required to achieve the data rate equal to the channel capacity when the channel bandwidth tends to infinity is equal to (A) -1.6 dB (B) -3 dB (C) 0 dB (D) infinite

- 54. The golden rule for encoding messages with unequal probabilities is to
 - (A) Encode a message with high probability by a longer code word.
 - (B) Encode all messages with equal length code.
 - (C) Encode a message with high probability by a shorter code word.
 - (D) Encode a message by arbitrary choosing variable length codes.
- 55. The output Signal to Noise Ratio, $(SNR)_o$ of matched filter depends only on
 - (A) ratio of input noise to output noise.
 - (B) ratio of output noise to power spectral density of white noise at input.
 - (C) ratio of signal energy to power spectral density of white noise at input.
 - (D) correlation of input signal to output signal.
- 56. In _____ multiple access is achieved by allocating different time slots for the different users.
 (A) TDMA _____ (B) CDMA _____ (C) EDMA _____ (D) ECMA

(A) TDMA (B) CDMA (C) FDMA (D) FGMA

- 57. Cellular CDMA system uses what modulation method ?(A) GFSK (B) ASK (C) QAM (D) BPSK
- **58.** The only one signal waveform that produces zero inter symbol interference (ISI) is (A) $\sin(2B_0t)$ (B) $\cos(2B_0t)$ (C) $\sin(2B_0t)$ (D) $\sin(B_0t)$
- **59.** The length of antenna depends on
 - (A) wavelength of radiation
- (B) current distribution
- angle of radiation (D) area of cross-section
- Set A

(C)

8

- **60.** For a broad side linear array which of the following is not correct ?
 - (A) The maximum radiation occurs perpendicular to the line of the array at $\phi = 90^{\circ}$.
 - (B) The progressive phase shift (α) between elements is zero.
 - (C) Width of principal lobe is less than that of an end fire array.
 - (D) The maximum radiation occurs along the line of array at $\phi = 0^{\circ}$.
- 61. The phase velocity of waves propagating in a hollow metal waveguide is
 - (A) greater than the velocity of light in free space
 - (B) less than the velocity of light in free space
 - (C) equal to the velocity of light in free space
 - (D) equal to the group velocity
- 62. If the diameter of a $\lambda/2$ dipole antenna is increased from $\lambda/100$ to $\lambda/50$ then its
 - (A) bandwidth increases (B) bandwidth decreases
 - (C) gain increases (D) gain decreases
- **63.** The directive gain cannot be stated as
 - (A) the ratio of the radiation intensity in that direction to the average radiated power
 - (B) the function of angles
 - (C) the directivity of an antenna when directive gain is maximum
 - (D) independent of angles
- **64.** An electromagnetic wave has electric field component along *Y*-direction and magnetic field component along *X*-direction. The electromagnetic wave is propagating along
 - (A) Z-direction (B) X-direction
 - (C) Y-direction (D) XY-direction
- 65. The lower cut-off frequency of a rectangular wave guide with inside dimensions $(3 \times 4.5 \text{ cm})$ operating at 10 GHz is

(A) 10 GHz (B) 9 GHz (C) $\frac{10}{9}$ GHz (D) $\frac{10}{3}$ GHz

66. During night which layer does not exist?
(A) D layer
(B) F₁ layer
(C) F₂ layer
(D) E layer

67. The dominant mode of rectangular waveguide is (A) TE_{11} (B) TM_{11} (C) TE_{01} (D) TE_{10}

- (A) whose curl is equal to the magnetic flux density
- (B) whose curl is equal to the electric field intensity
- (C) whose divergence is equal to the electric potential
- (D) which is equal to the vector product $E \times H$

Set - A

^{68.} Vector potential is a vector

- 69. A uniform plane wave in air is incident normally on an infinitely thick slab. If the refractive index of the glass slab is 1.5, then the percentage of the incident power that is reflected from the air-glass interface is $(A) = 00^{6}$
 - (A) 0% (B) 4% (C) 20% (D) 10%
- **70.** In an impedance Smith chart, a clockwise movement along a constant resistance circle gives rise to
 - (A) a decrease in the value of reactance
 - (B) an increase in the value of reactance
 - (C) no change in the reactance value
 - (D) no change in the impedance value
- 71. The value of " Z_{22} " for the circuit shown below :

(A) 4/9 Ohms

(C) 4/11 Ohms

(C) $v_1 = v_2$ and $r_1 = r_2$

(B) 11/4 Ohms(D) 9/4 Ohms

72. Two voltage sources, connected in parallel as shown in the below figure, must satisfy the conditions

(B) $v_1=v_2$ and $r_1\neq r_2$ (D) $r_1\neq 0$ or $r_2\neq 0$ if $v_1\neq v_2$

73. A composite voltage V = $10 \sin 100t + 10 \cos 100t$ is applied across a series combination of a capacitor of 1µf and resistance of 20 KΩ. The average power dissipation in the resistance is

10

(A) 5mW (B) 3.5mW (C) 2.5mW (D) 1.25mW

74. The driving point impedance function $Z(s) = \frac{s^2 + 2s + 2}{s^2 + s + 1}$ can be realized (A) R-C Network (B) R-L Network (C) L-C Network (D) R-L-C Network

Set - A

75. A 100Ω , 1W resistor and 800Ω , 2W resistor are connected in series. The maximum DC voltage that can be applied continuously to the series circuit without exceeding the power limit of any of the resistors is

(A) 90 V (B) 50 V (C) 45 V (D) 40 V

76. The Thevenin's equivalent circuit to the left of AB in figure shown has R_{eq} is given by

77. Under steady state condition

- (A) Inductor acts as short and Capacitor acts as open
- (B) Inductor acts as open and Capacitor acts as open
- (C) Inductor acts as open and Capacitor acts as short
- (D) Inductor acts as short and Capacitor acts as short

78. In the series RLC circuit, the power factor of the circuit at $f = f_L$ (Lower Frequency) and

 $f = f_0$ (resonance frequency)

(A)	0.707(lag), unity	(B)	unity, 0
(C)	0.707(lead), unity	(D)	0, unity

79. Two coils are connected in series with inductance values of 16mH and 8mH.The value of mutual inductance is

- (A) 12mH (B) 8mH (C) 2mH (D) 4mH
- **80.** In parallel RLC circuit, if L=8H and C=2F then the value of critical resistance is (A) 0.5 Ohms (B) 1 Ohm (C) 2 Ohms (D) 3 Ohms
- **81.** The transient free condition in RL and RC circuits with AC excitation will not depend on (A) Source frequency
 - (B) Initial phase of the excitation
 - (C) Maximum values of the excitation(*Voltage and Current*)
 - (D) Circuit constants(R,L, C)
- 82. A Unit impulse voltage is applied to one port network, which has two linear components. If the current through the network is 0 for t<0 and decays exponentially for t>0 then the network consists of
 - (A) Resistor and Inductor in series (B) Resistor and Inductor in parallel
 - (C) Resistor and Capacitor in parallel (D) Resistor and Capacitor in series

Set - A

83.	A grachos	aph of network en tree, would	t has 4 be	nodes and 7 b	ranche	es. The number	r of lin	ks(l), with respec	t to the
	(A)	2	(B)	3	(C)	4	(D)	5	
84.	A network consists of a large number of ideal linear resistors (R) in series with constant ideal sources. Power consumed by R is P1 when only the first source is active P2 when only the second source is active. If both sources are active simultaneously power consumed by R is								
	(A)	P1 ± P2	•		(B)	$\sqrt{P1} \pm \sqrt{P2}$			
	(C)	$(\sqrt{P1} \pm \sqrt{P2})$	$)^{2}$		(D)	$(P1 \pm P2)^2$			
85.	Choo (A)	ose the logic ga TTL	te fan (B)	nily which is ha MOS	aving (C)	minimum prop DTL	agatio (D)	n delay ECL	
86.	An 8 AA0	8085 microproc 0 H. The addre	cessor ess of t	based system the last byte in	uses a this R	a 4K × 8 bit R AM is	AM w	vith a starting add	lress of
	(A)	0FFF H	(B)	1000 H	(C)	B9FF H	(D)	BA00 H	
87.	How of 15	many memory $5K \times 8$?	y IC's	of capacity 21	K × 4	are required to	o cons	truct a memory c	apacity
	(A)	14	(B)	15	(C)	16	(D)	18	
88.	The	present output	0 of	an edge trigge	ered H	K flip-flop is lo	gic 1	If $k=1$ then Q .	
001	(A)	cannot be det	\mathcal{L}_n of ermine	ed	(B)	will be logic	.0'	\mathcal{L}_{n+1}	
	(C)	will be logic '	1'		(D)	will be race a	round		
89.	A 12 value	bit (3-digit) D of V_{out} for an	AC the input	nat uses the BC of 0110 1001 (D inp 0101 i	ut code has a f s	ull sca	lle output of 9.99	V. The
	(A)	4.11 V	(B)	6.95 V	(C)	7.38 V	(D)	7.88 V	
90.	The	starting address LXI SP, 00FF LXI H, 0701 MVI M, 20 H MVI A, 20 H SUB M	s of be 7 H H [low program i	s 0100) H			
	The	content of accu	mulat	or when the pr	ogram	counter reach	es 010	B H is	
	(A)	20 H	(B)	02 H	(C)	00 H	(D)	FF H	
91.	A 1 1 (A) (C)	micro-second p A Mono-stabl A Bi-stable m	oulse c le mul nulti-v	an be converte ti-vibrator ibrator	ed into (B) (D)	a 1 milli-secor An Astable m A JK flip-flop	nd puls nulti-v o	se by using ibrator	
Set -	A				12				EC

92.	Wha prop (A) (C)	t is the maxim bagation delay f 100 MHz 10.4 MHz	um fre rom C	equency with v LK to Q of eac	vhich ch flip (B) (D)	a 4-bit binary 1 -flop is 24 ns? 96 MHz 6.9 MHz	ripple	counter can	work, if the		
93.	The (A)	Boolean function <i>w</i>	on <i>f(w</i> (B)	$(x, x, y, z) = \sum m(5)$	(C)	<i>1,13,15)</i> is inde y	pende (D)	ent of variab z and x	les		
94.	The cloc	initial sequence k pulse	e of 4-	bit Johnson co	ounter	is 1110, what v	vill be	e the sequen	ce after third		
	(A)	1000	(B)	0001	(C)	1110	(D)	0011			
95.	5. The logic function $(A+B)(A'+B')$ can be implemented by giving the input two input							the inputs A	A and B to a		
	(A) (C)	NOR gate EX-NOR gat	e		(B) (D)	NAND gate EX-OR gate					
0.6	(0)							<u> </u>			
96.	The esse	function <i>f</i> (<i>A</i> , <i>B</i> , ntial prime imp	<i>C,D</i>)	$= \sum m(0, 1, 4, 6, 6)$ s are	7,8,10	(14, 15), the nu	mber	of prime im	plicants and		
	(A)	6, 1	(B)	6, 2	(C)	7, 1	(D)	7, 2			
97.	A 4. outp	6 V is given a ut produced res	s inpuspectiv	it to the count vely	er typ	e ADC and SA	AR ty	pe ADC the	n the digital		
	(A)	0100, 0100			(B)	0101, 0101					
	(C)	0100, 0101			(D)	0101, 0100					
98.	The	current gain of	a BJT	drops at high	freque	encies because	of				
	(A)	Junction capa	citanc	es	(B)	Bypass capacitances					
	(C)	Coupling capa	acitan	ces	(D)	Parasitic capa	citanc	ces	28		
99.	Whie requ	ch of the follow ired accuracy?	wing f	abrication is su	uitable	e for maintainin	ng the	PN junctio	n area to the		
	(A)	Grown junction	on typ	e	(B)	Alloying					
	(C)	Diffusion			(D)	Ion-implantat	ion				
100.	Moo	ore's law relates	s to								
	(A)	Speed of open	ration	of bipolar devi	ces						
	(B)	(B) Speed of operation of MOS devices									
	(C)	(C) Power rating of MOS devices									
	(D)	Level of integ	gration	of MOS devic	ces						
101.	The	value of transp	ort fac	ctor in a BJT is	effect	ed by					
	(A)	Doping of em	itter		(B)	Width of colle	ector				
	(C)	Doping of bas	se		(D)	Life time of n	ninori	ty carriers			
r											

Set - A

- 102. Two 10 V identical zener diodes are connected back to back, the maximum voltage drop across the diodes when they are conducting is
 (A) 20 V
 (B) 10 V
 (C) 10.6 V
 (D) 9.4 V
- 103. A PN junction exhibits a transition capacitive effect of several ______ farads in reverse bias, but may have many ______ farads of diffusion capacitance in the forward biased state.
 (A) micro, pico (B) pico, micro (C) milli, milli (D) milli, micro

104. An amplifier has R_i = 2 KΩ and R₀ = 40 KΩ and A_V = 90. The amplifier is modified to provide 10% negative voltage feedback in series with input. The values of R_{if} and R_{of} respectively are(in ohms)
(A) 2K and 40K
(B) 20K and 4K

(C) 16K and 5K (D) 0.2K and 400K

105. Class-A power amplifier delivers 10W to a load with input signal power of 200mW. The power gain is

(A) 200 (B) 10 (C) 50 (D) 20

- **106.** Transistor has $h_{fe} = 50$, its $h_{fc} =$ (A) -50 (B) 50 (C) -51 (D) 51
- **107.** A cascade amplifier has higher cut off frequency
 - (A) Equal to that of single stage amplifier
 - (B) Less than that of single stage amplifier
 - (C) More than that of single stage amplifier
 - (D) Becomes double

108. An ideal current controlled voltage source has

- (A) R_i is infinity, R_0 is zero (B) R_i is zero, R_0 is infinity
- (C) R_i is zero, R_0 is zero (D) R_i is infinity, R_0 is zero
- **109.** The current density of electrons through any conductor carrying current is given by

(A)
$$j_0 = \frac{ne^2\tau}{m}E$$
 (B) $j_0 = \frac{ne\tau}{m}E$ (C) $j_0 = \frac{ne^2\tau}{mE}$ (D) $j_0 = \frac{n^2e\tau}{m}E$

110. In BJT, Sensitivity of β (common emitter current gain) with respect to α (common base current gain) is

(A) $\frac{1}{1+\beta}$ (B) $1+\beta$ (C) $\frac{1}{1+\alpha}$ (D) 1

- 111. A differential amplifier has a differential gain of 20000 and CMRR = 80dB. Common mode gain is
 (A) 2
 (B) 1
 (C) 0.5
 (D) 0
- Set A 14 EC

112. Which of the following h-parameters relations is incorrect?

(A) $h_{ic} = h_{ie}$ (B) $h_{rc} = 1 - h_{re}$ (C) $h_{fc} = 1 + h_{fe}$ (D) $h_{oc} = h_{oe}$

114. If 10 V is the peak voltage across the secondary of the transformer in a half wave rectifier with capacitive filter, peak inverse voltage of the diode will be
(A) 20 V
(B) 14.14 V
(C) 10 V
(D)7.8 V

115. The condition of sustained oscillation in BJT phase shift oscillator is given by $R_{c} = 1$ D is a line with the second state of the second

(where
$$K = \frac{c}{R}$$
 and R_c is collector resistance)
(A) $h_{fe} > 23 + \frac{29}{K} + 4K$ (B) $h_{fe} > 29 + \frac{23}{K} + 4K$
(C) $h_{fe} > 23 + \frac{4}{K} + 29K$ (D) $h_{fe} > 29 + \frac{4}{K} + 23K$

116. A CE amplifier has $R_L = 1000 \Omega$ and $R_e = 100 \Omega$ and $h_{fe} = 99, h_{ie} = 1000 \Omega$; the input resistance R_i is given approximately by (A) 100Ω (B) $10 \text{ K}\Omega$ (C) 1000Ω (D) $11 \text{ K}\Omega$

117. When an electron moves through a potential difference of 10 V, the energy acquired by it will be

- (A) 10 joules (B) $16 \times 10^{-19} \text{ eV}$ (C) $1.6 \times 10^{-19} \text{ eV}$ (D) 10 eV
- 118. Which of the following represents the Cascade configuration?

(A) CE - CE (B) CE - CB (C) CC - CC (D) CE - CC

119. Condition for the minimum conductivity for the semiconductor

(A)
$$\mathbf{n} = \eta_i \sqrt{\frac{\mu_n}{\mu_p}}$$
 (B) $\mathbf{n} = \eta_i \sqrt{\frac{\mu_p}{\mu_n}}$ (C) $\mathbf{n} = \eta_i \frac{\mu_n}{\mu_p}$ (D) $\mathbf{n} = \eta_i \frac{\mu_p}{\mu_n}$

120. The scaling factor of an MOS device is α using constant voltage scaling model, the gate area of the device will be scaled by (A) $1/\alpha$ (B) $1/\alpha^2$ (C) $1/\alpha^3$ (D) $1/\alpha^4$

Set - A

SPACE FOR ROUGH WORK

Set - A