LECTURE NOTES OF

COURSE CONTENT

1) Numerical Analysis
2) Fourier Series
3) Fourier Transforms \& Z-transforms
4) Partial Differential Equations
5) Linear Algebra
6) Calculus of Variations

Text Book:

Higher Engineering Mathematics by
Dr. B.S.Grewal (36th Edition - 2002)
Khanna Publishers,New Delhi

Reference Book:

Advanced Engineering Mathematics by
E. Kreyszig (8th Edition - 2001)

John Wiley \& Sons, INC. New York

FOURIER SERIES

Dr.A.AEswara
Professor and Head Department of Mathematics P.E.S.College of Engineering

Mandya -571 401

DEFINITIONS :

A function $y=f(x)$ is said to be even, if $f(-x)=f(x)$. The graph of the even function is always symmetricalabogut the y-axis.

A function $\mathrm{y}=\mathrm{f}(\mathrm{x})$ is said to be odd, if $\mathrm{f}(-\mathrm{x})=-\mathrm{f}(\mathrm{x})$. The graph of the odd function is always symmetrical about the origin.

[^0]

Graph of $f(x)=|x|$

Note that the graph of $\mathrm{f}(\mathrm{x})=|x|$ is symmetrical about the y -axis and the graph of $\mathrm{f}(\mathrm{x})=\mathrm{x}$ is symmetrical about the origin.

1. If $f(x)$ is even and $g(x)$ is odd, then

$$
\begin{aligned}
& \mathrm{h}(\mathrm{x})=\mathrm{f}(\mathrm{x}) \times \mathrm{g}(\mathrm{x}) \text { is odd } \\
& \mathrm{h}(\mathrm{x})=\mathrm{f}(\mathrm{x}) \times \mathrm{f}(\mathrm{x}) \text { is even } \\
& \mathrm{h}(\mathrm{x})=\mathrm{g}(\mathrm{x}) \times \mathrm{g}(\mathrm{x}) \text { is even }
\end{aligned}
$$

For example,

1. $h(x)=x^{2} \cos x$ is even, since both x^{2} and cosx are even functions
2. $h(x)=x \sin x$ is even, since x and $\sin x$ are odd functions
3. $h(x)=x^{2} \sin x$ is shee x^{2} is even and $\sin x$ is odd.
4. If $f(x)$ is even tren

$$
\begin{aligned}
& \int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x \\
& \int_{-a}^{a} f(x) d x=0
\end{aligned}
$$

3. If f() is odd, then

$$
\int_{-a}^{a} \cos x d x=2 \int_{0}^{a} \cos x d x, \quad \text { as } \cos x \text { is even }
$$

and

$$
\int_{-a}^{a} \sin x d x=0, \text { as } \sin x \text { is odd }
$$

PERIODIC FUNCTIONS :-

A periodic function has a basic shape which is repeated over and over again. The fundamental range is the time (or sometimes distance) over which the basic shape is defined. The length of the fundamental range is called the period.

A general periodic function $\mathrm{f}(\mathrm{x})$ of period T satisfies the condition

$$
\mathrm{f}(\mathrm{x}+\mathrm{T})=\mathrm{f}(\mathrm{x})
$$

Here $f(x)$ is a real-valued function and T is a positive real number.
As a consequence, it follows that

$$
f(x)=f(x+T)=f(x+2 T)=f(x+3 T)=\ldots . .=f(x+4 T)
$$

Thus,

$$
\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{x}+\mathrm{nT}), \mathrm{n}=1,2,3, \ldots \ldots
$$

The function $f(x)=\sin x$ is periodic of period 2 since

$$
\operatorname{Sin}(x+2 n)=\sin x, \quad n=1,2,3
$$

The graph of the function is shown below :

Note that the graph of the function between 0 and 2 is the same as that between 2 and 4 and so in may be verified that a linear combination of periodic functions is also periodic.

FOURIER SERIES

A Fourier series of a periodic function consists of a sum of sine and cosine terms. Sines and cosines are the most fundamental periodic functions.

The Fourier series is named after the French Mathematician and Physicist Jacques Fourier (1768-1830). Fourier series has its application in problems pertaining to Heat conduction, acoustics, etc. The subject matter may be divided into the following sub topics.

FORMULA FOR FOURIER SERIES

Consider a real-valued function $\mathrm{f}(\mathrm{x})$ which obeys the following conditions called Øirichet's conditions :

1. $f(x)$ is defined in an interval $(a, a+2 l)$, and $f(x+2 l)=f(x)$ so that $f(x)$ is periodic function of period $2 l$.
2. $f(x)$ is continuous or has only a finite number of discontinuities in the interval $(a, a+2 l)$.
3. $f(x)$ has no or only a finite number of maxima or minimatio the interval $(a, a+2 l)$.

Also, let

Then, the infinite serie

$$
\begin{align*}
& a_{0}=\frac{1}{l} \int_{a}^{a+2 l} f(x) d x \tag{1}\\
& a_{n}=\frac{1}{l} \int_{a}^{a+2 l} f(x) \cos \left(\frac{n \pi}{l}\right) x d x, \quad n=1,2,3, \ldots \ldots \tag{2}\\
& b_{n}=\int_{a}^{a+2} f(x) \sin \left(\frac{n \pi}{l}\right) x d x, \quad n=1,2,3, \ldots \ldots \tag{3}
\end{align*}
$$

is called the Fourier series of $f(x)$ in the interval $(a, a+2 l)$. Also, the real numbers a_{0}, a_{1}, a_{2}, a, $a n d b_{1}, b_{2}, \ldots . b_{n}$ are called the Fourier coefficients of $f(x)$. The formulae (1), (2) and alled Euler's formulae.

It can be proved that the sum of the series (4) is $f(x)$ if $f(x)$ is continuous at x. Thus we have

$$
\begin{equation*}
\mathrm{f}(\mathrm{x})=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi}{l}\right) x+b_{n} \sin \left(\frac{n \pi}{l}\right) x . \tag{5}
\end{equation*}
$$

Suppose $f(x)$ is discontinuous at x, then the sum of the series (4) would be

$$
\frac{1}{2} \boldsymbol{f}\left(x^{+}\right)+f\left(x^{-}\right)^{-}
$$

where $f\left(x^{+}\right)$and $f\left(x^{-}\right)$are the values of $f(x)$ immediately to the right and to the left of $f(x)$ respectively.

Particular Cases

Case (i)

Suppose $a=0$. Then $f(x)$ is defined over the interval ($0,2 l$). Formulae (1), (2), (3) reduce to

$$
\begin{align*}
& a_{0}=\frac{1}{l} \int_{0}^{2 l} f(x) d x \\
& a_{n}=\frac{1}{l} \int_{0}^{2 l} f(x) \cos \left(\frac{n \pi}{l}\right) x d x, \quad n=1,2, \ldots \ldots \infty \tag{6}\\
& b_{n}=\frac{1}{l} \int_{0}^{2 l} f(x) \sin \left(\frac{n \pi}{l}\right) x d x
\end{align*}
$$ If we set $l=$, then $\mathrm{f}(\mathrm{x})$ is defined over the interval (0,2). Formulae (6) reduce to

$$
\begin{align*}
& \mathrm{a}_{0}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) d x \\
& a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \cos n x d x \tag{7}\\
& b_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \sin \pi \infty d x \\
& \mathrm{n}=1,2, \ldots \ldots \infty
\end{align*}
$$

Also, in this case, (5) becomes

$$
\begin{equation*}
\mathrm{f}(\mathrm{x})=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+b_{n} \sin n x \tag{8}
\end{equation*}
$$

Case (ii)

Suppose $a=-l$. Then (8) is defined over the interval $(-l, l)$. Formulae (1), (2) (3) reduce to $a_{0}=\frac{1}{l} \int_{-l}^{l} f(x) d x$

$$
a_{n}=\frac{1}{l} \int_{-l}^{l} f(x) \cos \left(\frac{n \pi}{l}\right) x d x
$$

$$
b_{n}=\frac{1}{l} \int_{-l}^{l} f(x) \sin \left(\frac{n \pi}{l}\right) x d x, \quad \begin{array}{ll}
\mathrm{n}=1,2 \tag{9}\\
\ldots \ldots \infty
\end{array}
$$

Then the right-hand side of (5) is the Fourier expansion of $\mathrm{f}(\mathrm{x})$ over the interval $(-l, l)$.
If we set $l=$, then $\mathrm{f}(\mathrm{x})$ is defined over the interval (- ,). Formulae (9) reduce to

$$
\mathrm{a}_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x
$$

$$
\begin{array}{ll}
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x, & \mathrm{n}=1,2, \ldots \ldots \infty \tag{10}\\
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x \quad \mathrm{n}=1,2, \ldots \ldots \infty
\end{array}
$$

Putting $l=$ in (5), we get

$$
\mathrm{f}(\mathrm{x})=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+b_{n} \sin n x
$$

PARTIAL SUMS

The Fourier series gives the exact value of the function. It uses an infinite nymber of terms which is impossible to calculate. However, we can find the sum throufh the partial sum S_{N} defined as follows :

$$
S_{N}(x)=a_{0}+\sum_{n=1}^{n=N}\left[a_{n} \cos \left(\frac{n \pi}{l}\right) x+b_{n} \sin x\right] \text { where } \mathrm{N} \text { takes positive }
$$ integral values.

In particular, the partial sums for $\mathrm{N}=1,2$ are

$$
\begin{gathered}
S_{1}(x)=a_{0}+a_{1} \cos \left(\frac{\pi x}{l}\right)+b_{1} \sin \left(\frac{\pi x}{l}\right) \\
S_{2}(x)=a_{0}+a_{1} \cos \left(\frac{\pi x}{l}\right)+b_{1} \sin \left(\frac{\pi x}{l}\right)+a_{2} \cos \left(\frac{2 \pi x}{l}\right)+b_{2} \sin \left(\frac{2 \pi x}{l}\right)
\end{gathered}
$$

If we draw the graphs of partial sums and compare these with the graph of the original function $\mathrm{f}(\mathrm{x})$, it may be verified hat $\mathrm{S}_{\mathrm{N}}(\mathrm{x})$ approximates $\mathrm{f}(\mathrm{x})$ for some large N .

Some useful results :

1. The following rulegalled Bernoulli's generalized rule of integration by parts is useful in evaluating the F purier coefficients.

$$
\int u v d x=u v_{1}-u^{\prime} v_{2}+u^{\prime \prime} v_{3}+\ldots \ldots .
$$

Here $u^{\prime}, \%^{\prime \prime} . .$. are the successive derivatives of u and

$$
v_{1}=\int v d x, v_{2}=\int v_{1} d x, \ldots \ldots
$$

We jlustrate the rule, through the following examples:

$$
\begin{aligned}
& \int x^{2} \sin n x d x=x^{2}\left(\frac{-\cos n x}{n}\right)-2 x\left(\frac{-\sin n x}{n^{2}}\right)+2\left(\frac{\cos n x}{n^{3}}\right) \\
& \int x^{3} e^{2 x} d x=x^{3}\left(\frac{e^{2 x}}{2}\right)-3 x^{2}\left(\frac{e^{2 x}}{4}\right)+6 x\left(\frac{e^{2 x}}{8}\right)-6\left(\frac{e^{2 x}}{16}\right)
\end{aligned}
$$

2. The following integrals are also useful :

$$
\begin{aligned}
& \int e^{a x} \cos b x d x=\frac{e^{a x}}{a^{2}+b^{2}} \cos b x+b \sin b x_{-}^{-} \\
& \int e^{a x} \sin b x d x=\frac{e^{a x}}{a^{2}+b^{2}} \sin b x-b \cos b x_{-}^{-}
\end{aligned}
$$

3. If ' n ' is integer, then

$$
\sin \mathrm{n}=0, \quad \cos \mathrm{n}=(-1)^{\mathrm{n}}, \quad \sin 2 \mathrm{n}=0, \quad \cos 2 \mathrm{n}=1
$$

Examples

1. Obtain the Fourier expansion of

$$
\mathrm{f}(\mathrm{x})=\frac{1}{2}<-x_{-}^{-} \text {in }-<\mathrm{x}<
$$

We have,

$$
\begin{aligned}
& a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2}(\pi-x) d x \\
& =\frac{1}{2 \pi}\left[\pi x-\frac{x^{2}}{2}\right]_{-\pi}^{\pi}=\pi \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x=\frac{1}{\pi} \int^{\pi} \frac{1}{2}(\pi-x) \cos n x d x
\end{aligned}
$$

Here we use integration by parts, so that

$$
\begin{aligned}
& a_{n}=\frac{1}{2 \pi} \\
& \left.=\frac{\sin n x}{n}-(-1)\left(\frac{-\cos n x}{n^{2}}\right)\right]_{-\pi}^{\pi} \\
& =\frac{1}{2 \pi}\left[\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2}(\pi-x) \sin n x d x\right. \\
& =\frac{(-1)^{n}}{n}
\end{aligned}
$$

Using the values of a_{0}, a_{n} and b_{n} in the Fourier expansion

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x
$$

we get,

$$
f(x)=\frac{\pi}{2}+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \sin n x
$$

This is the required Fourier expansion of the given function.
2. Obtain the Fourier expansion of $f(x)=e^{-a x}$ in the interval (- ,). Deduce that

$$
\operatorname{cosech} \pi=\frac{2}{\pi} \sum_{n=2}^{\infty} \frac{(-1)^{n}}{n^{2}+1}
$$

Here,

$$
\begin{aligned}
& a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} e^{-a x} d x=\frac{1}{\pi}\left[\frac{e^{-a x}}{-a}\right]_{-\pi}^{\pi} \\
& =\frac{e^{a \pi}-e^{-a \pi}}{a \pi}=\frac{2 \sinh a \pi}{a \pi} \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} e^{-a x} \cos n x d x \\
& a_{n}=\frac{1}{\pi}\left[\frac{e^{-a x}}{a^{2}+n^{2}} \frac{\Im}{a} a \cos n x+n \sin n x\right]^{\pi} \\
& =\frac{2 a}{\pi}\left[\frac{(-1)^{n} \sinh a \pi}{a^{2}+n^{2}}\right] \\
& \mathrm{b}_{\mathrm{n}}=\frac{1}{\pi} \int_{-\pi}^{\pi} e^{-a x} \sin n x d x \\
& =\frac{1}{\pi}\left[\frac{e^{2}}{a^{2}+n^{2}} \frac{\{ }{2} a \sin n x-n \cos n x\right]_{-\pi}^{\pi} \\
& \Rightarrow \frac{2 \pi}{\pi}\left[\frac{-1)^{n} \sinh a \pi}{a^{2}+n^{2}}\right] \\
& =
\end{aligned}
$$

$$
1=\frac{2 \sinh \pi}{\pi} \sum_{n=2}^{\infty} \frac{(-1)^{n}}{n^{2}+1}
$$

Thus,

$$
\pi \operatorname{cosech} \pi=2 \sum_{n=2}^{\infty} \frac{(-1)^{n}}{n^{2}+1}
$$

This is the desired deduction.
3. Obtain the Fourier expansion of $f(x)=x^{2}$ over the interval (- ,). Deduce that

$$
\frac{\pi^{2}}{6}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots \ldots+\infty
$$

The function $f(x)$ is even. Hence

$$
\begin{aligned}
& \mathrm{a}_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=\frac{2}{\pi} \int_{0}^{\pi} f(x) d x \\
& =\frac{2}{\pi} \int_{0}^{\pi} x^{2} d x=\frac{2}{\pi}\left[\frac{x^{3}}{3}\right]_{0}^{\pi} \\
& a_{0}=\frac{2 \pi^{2}}{3}
\end{aligned}
$$

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x
$$

$$
=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x \text { since } \mathrm{f}(\mathrm{x}) \cos \mathrm{x} \mathrm{x} \text { is even }
$$

$$
=\frac{2}{\pi} \int_{0}^{\pi} x^{2} \cos n x d x
$$

Integrating by part

$$
\left[x^{2}\left(\frac{\sin n x}{n}\right)-2 x\left(\frac{-\cos n x}{n^{2}}\right)+2\left(\frac{-\sin n x}{n^{3}}\right)\right]_{0}^{\pi}
$$

$$
=\frac{4(-1)^{n}}{n^{2}}
$$

Also, $\quad b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x=0 \quad$ since $\mathrm{f}(\mathrm{x}) \sin n \mathrm{x}$ is odd.
Thus
$f(x)=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n} \cos n x}{n^{2}}$
$\pi^{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{1}{n^{2}}$
$\sum_{1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$
Hence,

$$
\frac{\pi^{2}}{6}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots .
$$

4. Obtain the Fourier expansion of

$$
f(x)=\left\{\begin{array}{l}
x, 0 \leq x \leq \pi \\
2 \pi-x, \pi \leq x \leq 2 \pi
\end{array}\right.
$$

Deduce that

$$
\frac{\pi^{2}}{8}=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots
$$

The graph of $\mathrm{f}(\mathrm{x})$ is shown below.
 line $f(x)=\left(2^{-}-x\right)$ and AC represents the line $x=$. Note that the graph is symmetrical about the line AC, which inturn is parallel to y-axis. Hence the function $f(x)$ is aneven function.

Here,

$$
\text { since } f(x) \cos n x \text { is even. }
$$

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x
$$

$$
=\frac{2}{\pi} \int_{0}^{\pi} x \cos n x d x
$$

$$
\begin{aligned}
& \frac{2}{\pi}\left[x\left(\frac{\sin n x}{n}\right)-1\left(\frac{-\cos n x}{n^{2}}\right)\right]_{0}^{\pi} \\
& \left.=\frac{2}{n^{2} \pi}[-1)^{n}-1\right]
\end{aligned}
$$

Also,

$$
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x=0, \text { since } \mathrm{f}(\mathrm{x}) \sin n \mathrm{x} \text { is odd }
$$

Thus the Fourier series of $f(x)$ is

$$
\left.f(x)=\frac{\pi}{2}+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \mathbf{- 1}\right)^{n}-1 \text { gos } n x
$$

For $\mathrm{x}=$, we get
or

$$
\begin{aligned}
& \left.f(\pi)=\frac{\pi}{2}+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n^{2}}-1\right)^{n}-1 \cos n \pi \\
& \pi=\frac{\pi}{2}+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{-2 \cos (2 n-1) \pi}{(2 n-1)^{2}}
\end{aligned}
$$

Thus,

$$
\frac{\pi^{2}}{8}=\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}
$$

or

$$
\frac{\pi^{2}}{8}=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots
$$

This is the series as required.
5. Obtain the Fourier expansion of

Deduce that

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}
\frac{\pi}{4,-\pi<x<0} \\
x, 0<x<\pi
\end{array}\right. \\
& \frac{\pi}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots
\end{aligned}
$$

Here,

$$
\begin{aligned}
& a_{0}=\frac{1}{\pi}\left[\int_{-\pi}^{0}-\pi d x+\int_{0}^{\pi} x d x\right]=-\frac{\pi}{2} \\
& a_{n}=\frac{1}{\pi}\left[\int_{-\pi}^{0}-\pi \cos n x d x+\int_{0}^{\pi} x \cos n x d x\right] \\
& \left.=\frac{1}{n^{2} \pi}[-1)^{n}-1\right]
\end{aligned}
$$

$$
\begin{aligned}
& b_{n}=\frac{1}{\pi}\left[\int_{-\pi}^{0}-\pi \sin n x d x+\int_{0}^{\pi} x \sin n x d x\right] \\
& =\frac{1}{n}\left[-2(-1)^{n}\right]
\end{aligned}
$$

Fourier series is

$$
\mathrm{f}(\mathrm{x})=\frac{-\pi}{4}-\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{n^{2}}[-1)^{n}-1 \operatorname{dos} n x+\sum_{n=1}^{\infty} \frac{-2(-1)^{n}}{n} \sin n x
$$

Note that the point $x=0$ is a point of discontinuity of $f(x)$. Here $f\left(x^{+}\right)=0, f\left(x^{-}\right)=-\quad$ at $x=0$.
Hence

$$
\frac{1}{2}\left[f\left(x^{+}\right)+f\left(x^{-}\right)\right]=\frac{1}{2}(-\pi) \frac{-\pi}{2}
$$

The Fourier expansion of $\mathrm{f}(\mathrm{x})$ at $\mathrm{x}=0$ becomes

$$
\begin{aligned}
& \frac{-\pi}{2}=\frac{-\pi}{4}-\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{n^{2}}\left[(-1)^{n}-1\right] \\
& \operatorname{or} \frac{\pi^{2}}{4}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}\left[(-1)^{n}-1\right]
\end{aligned}
$$

Simplifying we get,

$$
\frac{\pi^{2}}{8}=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots
$$

6. Obtain the Fourier series of $f(x)=1-x^{2}$ over the interval $(-1,1)$.

The given function is even, as $\mathrm{f}(-\mathrm{x})=\mathrm{f}(\mathrm{x})$. Aso period of $\mathrm{f}(\mathrm{x})$ is $1-(-1)=2$
Here

$$
\mathrm{a}_{0}=\frac{1}{1} \int_{-1}^{1} f(x) d x=\int_{0}^{1} f(x) d x
$$

$$
\left.=2 \int^{1}(1) x^{2}\right) d x=2\left[x-\frac{x^{3}}{3}\right]_{0}^{1}
$$

$$
\begin{aligned}
& a_{n}=\frac{1}{1} \int_{-1}^{1} f(x) \cos (n \pi x) d x \\
& =2 \int_{0}^{1} f(x) \cos (n \pi x) d x \\
& =2 \int_{0}^{1}\left(1-x^{2}\right) \cos (n \pi x) d x
\end{aligned}
$$

as $f(x) \cos (n x)$ is even

Integrating by parts, we get

$$
a_{n}=2\left[\left(-x^{2}\left(\frac{(\sin n \pi x}{n \pi}\right)-(-2 x)\left(\frac{-\cos n \pi x}{(n \pi)^{2}}\right)+(-2)\left(\frac{-\sin n \pi x}{(n \pi)^{3}}\right)\right]_{0}^{1}\right.
$$

$$
\begin{aligned}
& =\frac{4(-1)^{n+1}}{n^{2} \pi^{2}} \\
& b_{n}=\frac{1}{1} \int_{-1}^{1} f(x) \sin (n \pi x) d x \quad=0, \text { since } \mathrm{f}(\mathrm{x}) \sin (\mathrm{n} \mathrm{x}) \text { is odd. }
\end{aligned}
$$

The Fourier series of $f(x)$ is

$$
\mathrm{f}(\mathrm{x})=\frac{2}{3}+\frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} \cos (n \pi x)
$$

7. Obtain the Fourier expansion of

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}
1+\frac{4 x}{3} \operatorname{in}-\frac{3}{2}<x \leq 0 \\
1-\frac{4 x}{3} \operatorname{in} 0 \leq x<\frac{3}{2}
\end{array}\right.
$$

Deduce that

$$
\frac{\pi^{2}}{8}=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots
$$

The period of $f(x)$ is $\frac{3}{2}-\left(\frac{-3}{2}\right)=3$
Also $f(-x)=f(x)$. Hence $f(x)$ iseren

$$
\begin{aligned}
& a_{0}=\frac{1}{3 / 2} \int_{0}^{3 / 2} f(x) d x=\frac{2}{3 / 2} \int_{0}^{3 / 2} f(x) d x \\
& a_{n}=\frac{1}{3 / 2} \int_{-3 / 2}^{3 / 2} f(x) \cos \left(\frac{n \pi x}{3 / 2}\right) d x \\
& =\frac{2}{3 / 2} \int_{0}^{3 / 2} f(x) \cos \left(\frac{2 n \pi x}{3}\right) d x \\
& =\frac{4}{3}\left(1-\frac{4 x}{3}\right)\left(\frac{\sin \left(\frac{2 n \pi x}{3}\right)}{\left(\frac{2 n \pi}{3}\right)}\right)-\left(\frac{-4}{3}\right)\left(\frac{\cos \left(\frac{2 n \pi x}{3}\right)}{\left(\frac{2 n \pi)^{2}}{3}\right)^{2}}\right)_{0}^{3 / 2} \\
& =\frac{4}{n^{2} \pi^{2}} \mathbf{I}-(-1)^{n}-
\end{aligned}
$$

Also,

$$
b_{n}=\frac{1}{3} \int_{-3 / 2}^{3 / 2} f(x) \sin \left(\frac{n \pi x}{3 / 2}\right) d x=0
$$

Thus

$$
\mathrm{f}(\mathrm{x})=\frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}}\left[-(-1)^{n} \cos \left(\frac{2 n \pi x}{3}\right)\right.
$$

putting $x=0$, we get
or

$$
\begin{aligned}
& \mathrm{f}(0)=\frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}}\left[-(-1)^{n^{-}}\right. \\
& 1=\frac{8}{\pi^{2}}\left[1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots . .\right]
\end{aligned}
$$

Thus,

$$
\frac{\pi^{2}}{8}=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots
$$

NOTE

Here verify the validity of Fourier expansion through partia sums by considering an example. We recall that the Fourier expansion of $f(x)=x$ over $(-, \quad)$ is

$$
f(x)=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n} \cos \pi x}{n}
$$

Let us define

$$
S_{N}(x)=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{n=N} \frac{(-1)^{n} \cos n x}{n^{2}}
$$

The partial sums corresponding $O=1,2, \ldots . .6$
$S_{1}(x)=\frac{\pi^{2}}{3}-4 \cos x$
are $S_{2}(x)=\frac{\pi^{2}}{3}-4 \cos c+\cos 2 x$
\ldots
$S_{6}(x)=\frac{\pi^{2}}{3}-4 \cos x+\cos 2 x-\frac{4}{9} \cos 3 x+\frac{1}{4} \cos 4 x-\frac{4}{25} \cos 5 x+\frac{1}{9} \cos 5 x$
The graphs of $S_{1}, S_{2}, \ldots S_{6}$ against the graph of $f(x)=x^{2}$ are plotted individually and shown below :

On comparison, we find that the graph of $f(x)=x$ cancides with that of $S_{6}(x)$. This verifies the validity of Fourier expansion for the function considered.

Exercise

Check for the validity of Fourier expansion through partial sums along with relevant graphs for other examples also.

HALF-RANGE FOURIER SERHES

The Fourier expansion of the periodic function $\mathrm{f}(\mathrm{x})$ of period $2 l$ may contain both sine and cosine terms. Many a time it is required to obtain the Fourier expansion of $f(x)$ in the interval $(0, l)$ which is regarded as half interval. The definition can be extended to the other half in such a manner thatthefunction becomes even or odd. This will result in cosine series or sine series only.

Sine series

Suppose $f(x)=(x)$ is given in the interval $(0, l)$. Then we define $f(x)=-(-x)$ in $(-l, 0)$. Hence $f(x)$ becomes an odd function in $(-l, l)$. The Fourier series then is

$$
\begin{align*}
& f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{l}\right) \tag{11}\\
& b_{n}=\frac{2}{l} \int_{0}^{l} f(x) \sin \left(\frac{n \pi x}{l}\right) d x
\end{align*}
$$

where
The series (11) is called half-range sine series over ($0, l$).
Putting $\mathrm{l}=$ in (11), we obtain the half-range sine series of $\mathrm{f}(\mathrm{x})$ over (0 ,) given by

$$
\begin{aligned}
& f(x)=\sum_{n=1}^{\infty} b_{n} \sin n x \\
& b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x
\end{aligned}
$$

Cosine series :

Let us define

$$
f(x)=\left\{\begin{array}{l}
\phi(x) \\
\phi(-x)
\end{array}\right.
$$

in $(0, l)$ \qquad given
in $(-l, 0) \quad \ldots$.in order to make the functioneven.

Then the Fourier series of $f(x)$ is given by

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{l}\right)
$$

where,

$$
\begin{aligned}
& a_{0}=\frac{2}{l} \int_{0}^{l} f(x) d x \\
& a_{n}=\frac{2}{l} \int_{0}^{l} f(x) \cos \left(\frac{n \pi x}{l}\right) d x
\end{aligned}
$$

The series (12) is called half-range cosine series over ($0, l$)
Putting $1=$ in (12), we get

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a \cos n x
$$

where

Examples:

Expand $f(x)=x(-x)$ as half-range sine series over the interval $(0$,$) .$
We have,

$$
\begin{aligned}
& b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x \\
& =\frac{2}{\pi} \int_{0}^{\pi}\left(\pi x-x^{2}\right) \sin n x d x
\end{aligned}
$$

$$
\begin{aligned}
& b_{n}=\frac{2}{\pi}\left[\left(x-x^{2}\left(\frac{-\cos n x}{n}\right)-\left(\frac{2 x}{n}\left(\frac{-\sin n x}{n^{2}}\right)+(-2)\left(\frac{\cos n x}{n^{3}}\right)\right]_{0}^{\pi}\right.\right. \\
& =\frac{4}{n^{3} \pi}\left[-(-1)^{n}\right]
\end{aligned}
$$

The sine series of $f(x)$ is

$$
f(x)=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{n^{3}} \mathbf{I}-(-1)^{n} \underline{\sin n x}
$$

2. Obtain the cosine series of

$$
f(x)=\left\{\begin{array}{l}
x, 0<x<\frac{\pi}{2} \\
\pi-x, \frac{\pi}{2}<x<\pi
\end{array} \quad \operatorname{over}(0, \pi)\right.
$$

Here
$a_{0}=\frac{2}{\pi}\left[\int_{0}^{\pi / 2} x d x+\int_{\pi / 2}^{\pi}(\pi-x) d x\right]=\frac{\pi}{2}$
$a_{n}=\frac{2}{\pi}\left[\int_{0}^{\pi / 2} x \cos n x d x+\int_{\pi / 2}^{\pi}(\pi-x) \cos n x d x\right]$
Performing integration by parts and simplifyeng, we get

$$
\begin{aligned}
& a_{n}=-\frac{2}{n^{2} \pi}\left[1+(-1) \cdot \mathbf{2 c o s}\left(\frac{n \pi}{2}\right)\right] \\
& =-\frac{8}{n^{2} \pi} n=\mathbf{8}, \mathbf{0} 0, \ldots .
\end{aligned}
$$

Thus, the Fourier cosineseries is

$$
f(x)-\frac{2}{\pi}\left[\frac{\cos 2 x}{1^{2}}+\frac{\cos 6 x}{3^{2}}+\frac{\cos 10 x}{5^{2}}+\ldots \ldots \infty\right]
$$

3. Obtain the half-range cosine series of $f(x)=c-x$ in $0<x<c$

Here

$$
\begin{aligned}
& a_{0}=\frac{2}{c} \int_{0}^{c}(c-x) d x=c \\
& a_{n}=\frac{2}{c} \int_{0}^{c}(c-x) \cos \left(\frac{n \pi x}{c}\right) d x
\end{aligned}
$$

Integrating by parts and simplifying we get,

$$
a_{n}=\frac{2 c}{n^{2} \pi^{2}}\left[-(-1)^{n}\right.
$$

The cosine series is given by

$$
\mathrm{f}(\mathrm{x})=\frac{c}{2}+\frac{2 c}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}}\left[-(-1)^{n} \cos \left(\frac{n \pi x}{c}\right)\right.
$$

Exercises:

Obtain the Fourier series of the following functions over the specified intervals:

1. $\mathrm{f}(\mathrm{x})=x+\frac{x^{2}}{4} \quad$ over $(-, \quad)$
2. $f(x)=2 x+3 x^{2}$ over $(-, \quad)$
3. $\mathrm{f}(\mathrm{x})=\left(\frac{\pi-x}{2}\right)^{2}$ over (0,2 $)$
4. $\mathrm{f}(\mathrm{x})=\mathrm{x} \quad$ over $(-, \quad)$; Deduce that $\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-$
5. $\mathrm{f}(\mathrm{x})=|x| \quad$ over $(-, \quad) ; \quad$ Deduce that $\frac{\pi^{2}}{8}=\frac{1}{1^{2}}+\frac{1}{3}+\ldots \ldots$
6. $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}\pi+x,-\pi \leq x<0 \\ \pi-x, 0 \leq x<\pi\end{array} \quad\right.$ over $(-, \quad)$

Deduce that

$$
\frac{\pi^{2}}{8}=\frac{1}{1^{2}}+\frac{1}{3^{2}}+.
$$

7. $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}-1,-\pi<x<0 \\ 0, x=0 \\ 1,0<x<\pi\end{array}\right.$ Deduce that $\frac{\pi}{4}-\frac{1}{3}+\frac{1}{5}-$

8. $\mathrm{f}(\mathrm{x})=\mathrm{x} \sin \mathrm{x}$ over $0 \quad \mathrm{x} \quad 2$; Deduce that

9. $\mathrm{f}(\mathrm{x})=\mathrm{x}(2-\mathrm{x}) \quad$ over $(0,3)$
10. $f(x)=x^{2}$ over $(-1,1)$
11. $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}\pi x, 0 \leq x \leq 1 \\ \pi(2-x), 1 \leq x \leq 2\end{array}\right.$

Obtain the half-range sine series of the following functions over the specified intervals :
13. $\mathrm{f}(\mathrm{x})=\cos \mathrm{x} \quad$ over $(0$,
14. $f(x)=\sin ^{3} x$ over $(0$,
15. $\mathrm{f}(\mathrm{x})=l \mathrm{x}-\mathrm{x}^{2}$ over $(0, l)$

Obtain the half-range cosine series of the following functions over the specified intervals:
16. $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$ over (0 ,)
17. $f(x)=x \sin x \quad$ over $(0$,
18. $f(x)=(x-1)^{2} \quad$ over $(0,1)$
19. $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}k x, 0 \leq x \leq \frac{l}{2} \\ k(l-x), \frac{l}{2} \leq x \leq l\end{array}\right.$

HARMONIC ANALYSIS

The Fourier series of a known function $\mathrm{f}(\mathrm{x})$ in a given interval may be found by finding the Fourier coefficients. The method described cannot be embled when $f(x)$ is not known explicitly, but defined through the values of the function ansome equidistant points. In such a case, the integrals in Euler's formulae cannot be evaluatee. Harmonic analysis is the process of finding the Fourier coefficients numerically.

To derive the relevant formulae for Fouriercafficients in Harmonic analysis, we employ the following result :

The mean value of a continuous metion $f(x)$ over the interval (a, b) denoted by $[f(x)]$ is defined as $\boldsymbol{f}(x)=\frac{1}{6-a} \int_{a} f(x) d x$.

The Fourier coefficients defined through Euler's formulae, (1), (2), (3) may be redefined as $a_{0}=2\left[\frac{1}{2 l} \int_{a}^{a+2 l} f(x d x]=2[f(x)]\right.$
$a_{n}=2\left[\frac{1}{\mathbb{N}_{a}^{2}} f(x) \cos \left(\frac{n \pi x}{l}\right) d x\right]=2\left[f(x) \cos \left(\frac{n \pi x}{l}\right)\right]$
$\Rightarrow 2\left[\frac{1}{2 l} \int_{a}^{a+2 l} f(x) \sin \left(\frac{n \pi x}{l}\right) d x\right]=2\left[f(x) \sin \left(\frac{n \pi x}{l}\right)\right]$
Using these in (5), we obtain the Fourier series of $f(x)$. The term $a_{1} \cos x+b_{1} \sin x$ is called the first harmonic or fundamental harmonic, the term $\mathrm{a}_{2} \cos 2 \mathrm{x}+\mathrm{b}_{2} \sin 2 \mathrm{x}$ is called the second harmonic and so on. The amplitude of the first harmonic is $\sqrt{a_{1}^{2}+b_{1}^{2}}$ and that of second harmonic is $\sqrt{a_{2}^{2}+b_{2}^{2}}$ and so on.

Examples

1. Find the first two harmonics of the Fourier series of $f(x)$ given the following table :

x	0	$\pi / 3$	$2 \pi / 3$		$4 \pi / 3$	$5 \pi / 3$	2
$\mathrm{f}(\mathrm{x})$	1.0	1.4	1.9	1.7	1.5	1.2	1.0

Note that the values of $y=f(x)$ are spread over the interval $0 \quad x \quad 2 \quad$ and $f(0)=f(2)=1.0$. Hence the function is periodic and so we omit the last value $f(2)=0$. We prepare the following table to compute the first two harmonics.

Putting, $\mathrm{n}=1,2$, we get

$$
\begin{aligned}
& a_{1}=2[y \cos x]=\frac{2 \sum y \cos x}{6}=\frac{2(1.1)}{6}==-0.367 \\
& a_{2}=2[y \cos 2 x]=\frac{2 \sum y \cos 2 x}{6}=\frac{2(-0.3)}{6}=-0.1
\end{aligned}
$$

$$
\begin{aligned}
& b_{1}=[y \sin x]=\frac{2 \sum y \sin x}{6}=1.0392 \\
& b_{2}=[y \sin 2 x]=\frac{2 \sum y \sin 2 x}{6}=-0.0577
\end{aligned}
$$

The first two harmonics are $a_{1} \cos x+b_{1} \sin x$ and $a_{2} \cos 2 x+b_{2} \sin 2 x$. That is $(-0.367 \cos x+$ $1.0392 \sin x)$ and $(-0.1 \cos 2 x-0.0577 \sin 2 x)$
2. Express y as a Fourier series upto the third harmonic given the following values :

x	0	1	2	3	4
y	4	8	15	7	6

The values of y at $x=0,1,2,3,4,5$ are given and hence the interval of x should be $0<x<6$. The length of the interval $=6-0=6$, so that $2 l=6$ or $l=3$.
The Fourier series upto the third harmonic is

$$
y=\frac{a_{0}}{2}+\left(a_{1} \cos \frac{\pi x}{l}+b_{1} \sin \frac{\pi x}{l}\right)+\left(a_{2} \cos \frac{2 \pi x}{l}+b_{2} \sin \frac{2 \pi x}{l}\right)+\left(a_{3} \cos \frac{3 \pi x}{l}+b_{3} \sin \frac{3 \pi x}{l}\right)
$$

or

$$
y=\frac{a_{0}}{2}+\left(a_{1} \cos \frac{\pi x}{3}+b_{1} \sin \frac{\pi x}{3}\right)+\left(a_{2} \cos \frac{2 \pi x}{3}+b_{2} \sin \frac{2 \pi x}{3}\right)+\left(a_{3} \cos \frac{3 \pi x}{3}+b_{3} \sin \frac{3 \pi x}{3}\right)
$$

Put $\theta=\frac{\pi x}{3}$, then

$$
\begin{equation*}
y=\frac{a_{0}}{2}+\mathbb{屯}_{1} \cos \theta+b_{1} \sin \theta>\mathbb{C}_{2} \cos 2 \theta+b_{2} \sin 2 \theta>\mathbb{屯}_{3} \cos 3 \theta+b_{3} \sin 3 \theta_{-}^{-} \tag{1}
\end{equation*}
$$

We prepare the following table using the given values :

$$
\begin{aligned}
& a_{0}=2[f(x)]=2[y]=\frac{2 \sum y}{6}=\frac{1}{3}(42)=14 \\
& a_{1}=2[y \cos \theta]=\frac{2}{6}(-8.5)=-2.833 \\
& b_{1}=2[y \sin \theta]=\frac{2}{6}(12.99)=4.33 \\
& a_{2}=2[y \cos 2 \theta]=\frac{2}{6}(-4.5)=-1.5 \\
& b_{2}=2[y \sin 2 \theta]=\frac{2}{6}(-2.598)=-0.866 \\
& a_{3}=2[y \cos 3 \theta]=\frac{2}{6}(8)=2.667 \\
& b_{3}=2[y \sin 3 \theta]=0
\end{aligned}
$$

Using these in (1), we get

$$
y=7-2,833 \cos \left(\frac{\pi x}{3}\right)+(4.33) \sin \left(\frac{\pi x}{3}\right)-1.5 \cos \left(\frac{2 \pi x}{3}\right)-0.866 \sin \left(\frac{2 \pi x}{3}\right)+2.667 \cos \pi x
$$

This is the required Fourier series upto the third harmonic
3. The following table gives the variations of a pertodic current A over a period T :

Show that there is a constant part of 0.75 amp . in the current A and obtain the amplitude of the first harmonic.

Note that the value of A at $\mathrm{t}=0$ and $\mathrm{t}=\mathrm{T}$ are the same. Hence $\mathrm{A}(\mathrm{t})$ is a periodic function of period T Celus denote $\theta=\left(\frac{2 \pi}{T}\right) t$. We have

$$
\begin{align*}
& a_{0}=2[A] \\
& a_{1}=2\left[A \cos \left(\frac{2 \pi}{T}\right) t\right]=2[A \cos \theta] \tag{1}\\
& b_{1}=2\left[A \sin \left(\frac{2 \pi}{T}\right) t\right]=2[A \sin \theta]
\end{align*}
$$

We prepare the following table:

The Fourier expansion apto the first harmonic is

$$
\begin{aligned}
& =\frac{a_{0}}{2}+a_{1} \cos \left(\frac{2 \pi t}{T}\right)+b_{1} \sin \left(\frac{2 \pi t}{T}\right) \\
& =0.75+0.3733 \cos \left(\frac{2 \pi t}{T}\right)+1.0046 \sin \left(\frac{2 \pi t}{T}\right)
\end{aligned}
$$

The expression shows that A has a constant part 0.75 in it. Also the amplitude of the first hamouic is $\sqrt{a_{1}^{2}+b_{1}^{2}}=1.0717$.

ASSIGNMENT :

1. The displacement y of a part of a mechanism is tabulated with corresponding angular movement x^{0} of the crank. Express y as a Fourier series upto the third harmonic.

$\mathbf{x}^{\mathbf{0}}$	$\mathbf{0}$	$\mathbf{3 0}$	$\mathbf{6 0}$	$\mathbf{9 0}$	$\mathbf{1 2 0}$	$\mathbf{1 5 0}$	$\mathbf{1 8 0}$	$\mathbf{2 1 0}$	$\mathbf{2 4 0}$	$\mathbf{2 7 0}$	$\mathbf{3 0 0}$	$\mathbf{3 3 0}$
\mathbf{y}	1.80	1.10	0.30	0.16	1.50	1.30	2.16	1.25	1.30	1.52	1.76	2.00

2. Obtain the Fourier series of y upto the second harmonic using the following table

$\mathbf{x}^{\mathbf{0}}$	$\mathbf{4 5}$	$\mathbf{9 0}$	$\mathbf{1 3 5}$	$\mathbf{1 8 0}$	$\mathbf{2 2 5}$	$\mathbf{2 7 0}$	$\mathbf{3 1 5}$	$\mathbf{3 6 0}$
\mathbf{y}	4.0	3.8	2.4	2.0	-1.5	0	2.8	3.4

3. Obtain the constant term and the coefficients of the first sine and cosine terms in the Fourier expansion of y as given in the following table :

\mathbf{x}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
\mathbf{y}	9	18	24	28	26	20

4. Find the Fourier series of y upto the second harmonic from the following table :

5. Obtain the first three coefficients in the Fourier cosine series for y, where y is given in the following table :

\mathbf{y}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
\mathbf{y}	4	8	15	7	6	2

6. The turning moment T is given for a series of values of the crank angle ${ }^{0}=75^{0}$.

$\mathbf{0}$	$\mathbf{0}$	$\mathbf{3 0}$	$\mathbf{6 0}$	$\mathbf{9 0}$	$\mathbf{1 2 0}$	$\mathbf{1 5 0}$	$\mathbf{1 8 0}$
\mathbf{T}	0	5224	8097	7850	5499	2626	0

Obtain the first four terms in a series of sines to represent T and calculate T at $=75^{0}$.

[^0]: For example, the function $\mathrm{f}(\mathrm{x})=|x|$ in $[-1,1]$ is even as $\mathrm{f}(-\mathrm{x})=|-x|=|x|=\mathrm{f}(\mathrm{x})$ and the fanction $f(x)=x$ in $[-1,1]$ is odd as $f(-x)=-x=-f(x)$. The graphs of these functions are shown below :

