S.E. (Electronics/E & TC) (First Semester) EXAMINATION, 2011 DIGITAL LOGIC DESIGN

(2008 PATTERN)

Time : Three Hours

Maximum Marks : 100

- **N.B.** :— (i) Answer **3** questions from Section I and **3** questions from Section II.
 - (*ii*) Answers to the two Sections should be written in separate answer-books.
 - (*iii*) Neat diagrams must be drawn wherever necessary.
 - (*iv*) Figures to the right indicate full marks.
 - (v) Assume suitable data, if necessary.

SECTION I

- 1. (a) What is digital comparator ? Design two bit digital comparator and implement using logic gates. [10]
 - (b) Design four bit binary to gray code converter and implement using logic gates.

Or

(a) Minimize the following equation using K-map and realize it using NAND gates only. [10]

 $Y = \Sigma M (0, 1, 2, 3, 5, 7, 8, 9, 11, 14)$

P.T.O.

	(<i>b</i>)	Design and implement the following function using 8 : 1 MUX.	
		$Y = \Sigma M$ (4, 5, 8, 9, 11, 12, 13, 15)	[8]
3.	<i>(a)</i>	Draw and explain SR flip-flop using NAND gates.	[8]
	(<i>b</i>)	Convert D to T flip-flop and vice versa.	[8]
		Or	
4.	<i>(a)</i>	Design and implement the following counter-states using	JK
		flip-flop and avoid the lockout condition :	[8]
		0 - 2 - 4 - 6 - 7 - 0.	
	(b)	Design MOD5 asynchronous counter, and also draw the wavefor	rms
		and mention significance of glitch.	[8]
5.	<i>(a)</i>	Write short notes on :	
		(i) Library	[2]
		(ii) Entity	[2]
		(iii) Architecture with modelling style.	[4]
	(<i>b</i>)	Explain the difference between signal and variable used	in
		VHDL.	[8]
Or			
6.	<i>(a)</i>	Write a VHDL code for four bit ALU using case when statement.	[8]

(b) Write a VHDL code for JK flip-flop with asynchronous reset. [8]

[4062]-154

SECTION II

- 7. (a) Compare Mealy and Moore sequential machine with reference to block diagram, state diagram, hardware and speed. [8]
 - (b) Design and implement 1011 sequence detector using Mealy machine. [10]

Or

8. (a) Design and implement digital hardware for the following
 Fig. (a) using D flip-flop and identify the sequence. [8]

Fig. (a)

- (b) Design and implement the ASM chart for a 3 bit binary counters having one enable line E such that E = 1 (Counting enabled), E = 0 (counting disabled). [10]
- **9.** (a) Write a short note on classification of logic families in detail. [8]
 - (b) State the following characteristics of digital IC's (TTL). [8]
 - (i) Speed of operation

[4062]-154

(*ii*) Fan in fan out

(iii) Noise Margin

(iv) Voltage parameter

Or

- 10. (a) Draw and explain two input totem pole output TTL NAND gate.[8]
 - (b) Draw CMOS circuit for NAND gate and NOR gate. [8]
- 11. (a) Design a combinational logic circuit using PROM, the circuit accepts three bit binary number and generates its equivalent excess 3 code.
 [8]
 - (b) Explain in detail the architecture of PLDs. [8]

12. (a) Implement the function using PLA.

$$F_1 = \overline{AB} + A\overline{C} + \overline{A} B\overline{C}$$

 $F_2 = \overline{A\overline{C} + \overline{B}C}$
[8]

(b) Design $16K \times 8$ RAM using two $4K \times 8$ RAM ICs. [8]