Time : Three Hours
N.B. :- (i) Answer 3 questions from Section I and 3 questions from Section II.
(ii) Answers to the two Sections should be written in separate answer-books.
(iii) Neat diagrams must be drawn wherever necessary.
(iv) Figures to the right indicate full marks.
(v) Assume suitable data, if necessary.

SECTION I

1. (a) What is digital comparator ? Design two bit digital comparator and implement using logic gates.
(b) Design four bit binary to gray code converter and implement using logic gates.

Or
2. (a) Minimize the following equation using K-map and realize it using NAND gates only.

$$
\mathrm{Y}=\Sigma \mathrm{M}(0,1,2,3,5,7,8,9,11,14)
$$

(b) Design and implement the following function using $8: 1 \mathrm{MUX}$.

$$
\begin{equation*}
\mathrm{Y}=\Sigma \mathrm{M}(4,5,8,9,11,12,13,15) \tag{8}
\end{equation*}
$$

3. (a) Draw and explain SR flip-flop using NAND gates.
(b) Convert D to T flip-flop and vice versa.

Or
4. (a) Design and implement the following counter-states using JK flip-flop and avoid the lockout condition :
[8]

$$
0-2-4-6-7-0
$$

(b) Design MOD5 asynchronous counter, and also draw the waveforms and mention significance of glitch.
5. (a) Write short notes on :
(i) Library
(ii) Entity
(iii) Architecture with modelling style.
(b) Explain the difference between signal and variable used in VHDL.

Or

6. (a) Write a VHDL code for four bit ALU using case when statement. [8]
(b) Write a VHDL code for JK flip-flop with asynchronous reset. [8]

SECTION II

7. (a) Compare Mealy and Moore sequential machine with reference to block diagram, state diagram, hardware and speed. [8]
(b) Design and implement 1011 sequence detector using Mealy machine.
Or
8. (a) Design and implement digital hardware for the following Fig. (a) using D flip-flop and identify the sequence.

Fig. (a)
(b) Design and implement the ASM chart for a 3 bit binary counters having one enable line E such that $\mathrm{E}=1$ (Counting enabled), $\mathrm{E}=0$ (counting disabled).
9. (a) Write a short note on classification of logic families in detail. [8]
(b) State the following characteristics of digital IC's (TTL). [8]
(i) Speed of operation
(ii) Fan in fan out
(iii) Noise Margin
(iv) Voltage parameter
Or
10. (a) Draw and explain two input totem pole output TTL NAND gate.
(b) Draw CMOS circuit for NAND gate and NOR gate.
11. (a) Design a combinational logic circuit using PROM, the circuit accepts three bit binary number and generates its equivalent excess 3 code.
(b) Explain in detail the architecture of PLDs.

Or

12. (a) Implement the function using PLA.

$$
\begin{aligned}
& \mathrm{F}_{1}=\overline{\mathrm{A}} \mathrm{~B}+\mathrm{A} \overline{\mathrm{C}}+\overline{\mathrm{A}} \mathrm{~B} \overline{\mathrm{C}} \\
& \mathrm{~F}_{2}=\overline{\mathrm{A} \overline{\mathrm{C}}+\overline{\mathrm{B}} \mathrm{C}}
\end{aligned}
$$

(b) Design $16 \mathrm{~K} \times 8$ RAM using two $4 \mathrm{~K} \times 8$ RAM ICs. [8]

