

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com

E lati atic

page 2 of 23 **Solution:** Here highest power of x in the given relation is 2 and this relation for the degree cannot have more than distinct roots. (i) The solutions of quadratic equation, $ax^2 + bx + c = 0$, $a \neq 0$ is given by $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ (ii) If a quadratic equation whose roots are $\alpha \in \beta$, is $(x - \alpha)(x - \beta) = 0$ i.e. $x^2 - (sum of roots) x + (product of roots) = 0$ $a x^{2} + b x + c = 0 \text{ is:}$ $a quadratic equation if <math>a \neq 0$ $a = 0, b \neq 0$ $b = 0, c \neq 0$ No Root $a \text{ contradiction if } a = b = 0, c \neq 0$ No Root a contradiction if a = b = c = 0 $b = 0, c \neq 0$ No Root a contradiction if a = b = c = 0 $b = 0, c \neq 0$ No Root a contradiction if a = b = c = 0 $b = 0, c \neq 0$ No Root a contradiction if a = b = c = 0 $b = 0, c \neq 0$ No Root a contradiction if a = b = c = 0 $b = 0, c \neq 0$ No Root a contradiction if a = b = c = 0 $b = 0, c \neq 0$ No Root a contradiction if a = b = c = 0 $b = 0, c \neq 0$ No Root a contradiction if a = b = c = 0 $b = 0, c \neq 0$ No Root a contradiction if a = b = c = 0 $b = 0, c \neq 0$ No Root a contradiction if a = b = c = 0 $b = 0, c \neq 0$ No Root a contradiction if a = b = c = 0 $b = 0, c \neq 0$ No Root $a \text{ contradiction is satisfied by three different values x= 0, x \in 0$ $c \text{ tradiction between form is a quadratic equation is satisfied by three different values x= 0, x \in 0$ a distinct roots. Relation Between Roots & Co-efficients:(i) The solutions of quadratic equation, $a x^{2} + b x + c = 0$, $(a \neq 0)$ is given by $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ The expression, $b^{2} - 4a c \equiv D$ is called discriminant of quadratic equation.
(ii) If α, β are the roots of quadratic equation, $a x^{2} + b x + c = 0, a \neq 0$. Then:
(iii) A quadratic equation whose roots are $\alpha \& \beta$, is $(x - \alpha) (x - \beta) = 0$ i.e. $x^{2} - (sum of roots) x + (product of roots) = 0$ $d \text{ Example # 3. The coefficient f x in the quadratic equation, the required equation is
<math display="block">a x^{2} - b x - (4a - b)x + (4a - 2b + c) = 0.$ $d \text{ Example # 3. The coefficient f x in the quadratic equation is
<math display="block">a(x - 2)^{2} + b(x - 2) + c = 0$ i.e. $ax^{2} - (4a - b)x + (4a - 2b + c) = 0.$ $d \text{ Example # 3. The coefficient f x in the quadratic equation is
<math display="block">a(x - 2)^{2} + b(x - 2) + c = 0$ i.e. $ax^{2} - (4a - b)x + (4a - 2b + c) = 0.$ $d \text{ Example be b. The different ex exteres the distor the distor the distor the distor$ Solution. Given equation is $(1 + m) x^2 - 2(1 + 3m)x + (1 + 8m) = 0$(i) Let D be the discriminant of equation (i).

Roots of equation (i) will be equal if D = 0or, $4(1 + 3m)^2 - 4(1 + m)(1 + 8m) = 0$ Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com or, $m^2 - 3m = 0$ or, m(m - 3) = 0 \therefore m = 0, 3. **Solved Example # 5:** Find all the integral values of a for which the quadratic equation (x - a) (x - 10) + 1 = 0 has integral roots. Solution.: Here the equation is $x^2 - (a + 10)x + 10a + 1 = 0$. Since integral roots will always be rational it means D page nag.com should be a perfect square. From (i) $D = a^2 - 20a + 96$. $D = (a - 10)^2 - 4$ $4 = (a - 10)^2 - D$ If D is a perfect square it means we want difference of two perfect square as 4 which is possible only when (a -559. $10)^2 = 4$ and D = 0. $\begin{array}{l} 10)^{2} = 4 \mbox{ and } D = 0, \\ (a - 10) = \pm 2 \qquad \Rightarrow \mbox{ a = 12, 8} \\ \hline \mbox{Solved Example # 6: If the roots of the equation <math>(x - a) (x - b) - k = 0$ be c and d, then prove that the roots of the equation (x - c) (x - d) + k = 0, are a and b. $\mbox{Solution.}$ By given condition (x - a) (x - b) - k = (x - c) (x - d) + k = 0, are a and b. $\mbox{Solution.}$ By given condition (x - a) (x - b) - k = (x - c) (x - d) + k = 0, are a and b. $\mbox{Solution.}$ By given condition (x - a) (x - b) - k = (x - c) (x - d) + k = 0 are a and b. $\mbox{Solution.}$ By given condition (x - a) (x - b) - k = (x - c) (x - d) + k = 0 are a and b. $\mbox{Solution.}$ By given condition (x - a) (x - b) - k = (x - c) (x - d) + k = 0 are a and b. $\mbox{Solution.}$ Both roots are real and distinct. (ii) Both roots are equal. (iii) Both roots are equal in magnitude but opposite in sign. (i) Both roots are equal in magnitude but opposite in sign. (ii) C(x - a) (x + b) = -ax^{2} + dx + c, ac \neq 0 then prove that $P(x) \cdot Q(x) = 0$ has atleast two real roots. (i) $(P(x) = ax^{2} + bx + c, and Q(x) = -ax^{2} + dx + c, ac \neq 0$ then prove that $P(x) \cdot Q(x) = 0$ has atleast two real roots. (ii) $(2, a) = \frac{1}{3}, -\frac{1}{4}$ (iii) (2, 3) (iv) $(-\infty, 2)$ (v) ϕ (2) $a = \frac{1}{3}, -\frac{1}{4}$ (3) (Common Roots:Consider two quadratic equations have both roots common, then the equation are identical and their are in proportion. i.e. $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$. $(a - 10) = \pm 2$ a = 12, 8 Solution (x - c) (x - d) + k = 0, are a and b. Solution (x - c) (x - d) + k = 0, are a and b. Solution . By given condition (x - a) (x - b) - k = (x - c) (x - d) or (x - c) (x - d) + k = (x - a) (x - b) Above shows that the roots of (x - c) (x - d) + k = 0 are a and b. Solution. By given condition (x - a) (x - b) - k = (x - c) (x - d) or (x - c) (x - d) + k = (x - a) (x - b) Above shows that the roots of (x - c) (x - d) + k = 0 are a and b. Solution. By given condition (i) Both roots are real and distinct. (ii) Both roots are equal. (iii) Both roots are real and distinct. (iii) Both roots are opposite in sign. (i) Both roots are equal in magnitude but opposite in sign. (ii) Both roots are equal in magnitude but opposite in sign. (iii) Both roots are equal in angoitude but opposite in sign. (iii) C (-∞, 2) (0, ∞) (iii) $\alpha \in \{2, 3\}$ (v) ϕ (2) $a = \frac{1}{3}, -\frac{1}{4}$ (3) Consider two quadratic equations, $a, x^2 + b, x + c, = 0$ & $a, x^2 + b, x + c_z = 0$. (i) If only one root is common, then the common root 'a' will be: $\alpha = \frac{c_1 a_2 - c_2 a_1}{a_1 b_2 - a_2 b_1} = \frac{b_1 (c_2 - b_2 c_1)}{a_1 b_2 - a_2 b_1}$ Hence the condition for one common root is: $a_1 \left[\frac{c_1 a_2 - c_2 a_1}{a_1 b_2 - a_2 b_1} \right]^2 + b_1 \left[\frac{c_1 a_2 - c_2 a_1}{a_1 b_2 - a_2 b_1} \right] + c_1 = 0$ $= (c_1 a_2 - c_2 a_1)^2 = (a_1 b_2 - a_2 b_1) + c_1 = 0$ $= (c_1 a_2 - c_2 a_1)^2 = (a_1 b_2 - a_2 b_1) + c_1 = 0$ $= (c_1 a_2 - c_2 a_1)^2 = (a_1 b_2 - a_2 b_1) + c_1 = 0$ $= (c_1 a_2 - c_2 a_1)^2 = (a_1 b_2 - a_2 b_1) + c_1 = 0$ $= (c_1 a_2 - c_2 a_1)^2 = (a_1 b_2 - a_2 b_1) + c_1 = 0$ $= (c_1 a_2 - c_2 a_1)^2 = (a_1 b_2 - a_2 b_1) + c_1 = 0$ $= (c_1 a_2 - c_2 a_1)^2 = (a_1 b_2 - a_2 b_1) + c_1 = 0$ $= (c_1 a_2 - c_2 a_1)^2 = (a_1 b_2 - a_2 b_1) + c_1 = 0$ $= (c_1 a_2 - c_2 a_1)^2 = (a_1 b_2 - a_2 b_1) + c_1 = 0$ $= (c_1 a_2 - c_2 a_1)^2 = (a_1 b_2 - a_2 b_1) + c_1 = 0$ $= (c_1 a_2 - c_2 a_1)^2 = (a_1 b_2 - a_2 b_1) + c_1 = 0$ $= (c_1 a_2 - c_2 a_1)^2 = (a_1 b_2 - a_2 b_1) + c_1 = 0$ $= (c_1 a_2 - c_2 a_1)^2 = (a_$ Bhopa.I Phone : (0755) 32 00 000, Let α be the common root. Then roots of equation (2) will be α and α . Let β be the other root of equation (1). Thus $\widehat{\underline{c}}$ K. Si Maths : Suhag R. Kariya (S. R. <u>a</u> 1 $=\frac{1}{2}$ a:b:c=1:2:9 = 9 USelf Practice Problems : 6. If the equation $x^2 + bx + ac = 0$ and $x^2 + cx + ab = 0$ have a common root then Ľ prove that the equation containing other roots will be given by $x^2 + ax + bc = 0$. ĹL_7. If the equations $ax^2 + bx + c = 0$ and $x^3 + 3x^2 + 3x + 2 = 0$ have two common roots then show that a = b = c. Ð If $ax^2 + 2bx + c = 0$ and $a_1x^2 + 2b_1x + c_1 = 0$ have a common root and $\frac{a}{c}$ 8. are in A.P. show that a_1 , b_1 , c_1 are in G.P.

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com Factorisation of Quadratic Expressions: 5. * The condition that a quadratic expression f (x) = $ax^2 + bx + ca$ perfect square of a linear expression, is D = b^2 4 a c = 0* The condition that a quadratic expression $(x, y) = ax^2 + 2hxy + by^2 + 2gx + 2fy + c may be resolved into two linear$ factors is that; hag.com h а g $\Delta = abc + 2fgh - af^2 - bg^2 - ch^2 = 0 \text{ or}$ h b f = 0.**Solved Example # 9:** Determine a such that $x^2 - 11x + a$ and $x^2 - 14x + 2a$ may have a common factor. Let $x - \alpha$ be a common factor of $x^2 - 11x + a$ and $x^2 - 14x + 2a$. Solution. Then $x = \alpha$ will satisfy the equations $x^2 - 11x + a = 0$ and $x^2 - 14x + 2a = 0$. $\alpha^2 - 14\alpha + 2a = 0$ and $\alpha^2 - 11\alpha + a = 0$ Solving (i) and (ii) h or $(a + b + c)^2$ or $(a + b + c)^2$ which is possible of Self Practice Problems : Solving (i) and (ii) h Self Practice Problems : Solving (i) and (ii) h Self Practice Problems : Solving (i) and (ii) h Solving (i) f x - a be a factor or $(y + \frac{D}{4a}) =$ x the graph of Qua y = f (x) = a self or $(y + \frac{D}{4a}) =$ the graph b the x - co - of equation f (i) Absolute F is a > Hence max at x = $-\frac{b}{2a}$ (ii) Range in r (a) If -U (b) If -U (b) If -U (c) f (x) $\in [mi]$ Solving (i) and (ii) by cross multiplication method, we get a = 24. **10:** Show that the expression $x^2 + 2(a + b + c)x + 3(bc + ca + ab)$ will be a perfect square if a = b = c. Solution. Given quadratic expression will be a perfect square if the discriminant of its corresponding equation is zero. $4(a + b + c)^2 - 4.3 (bc + ca + ab) = 0$ (a + b + c)² - 3(bc + ca + ab) = 0 $((a - b)^{2} + (b - c)^{2} + (c - a)^{2}) = 0$ which is possible only when a = b = c. For what values of k the expression $(4 - k)x^2 + 2(k + 2)x + 8k + 1$ will be a perfect square ? If $x - \alpha$ be a factor common to $a_1x^2 + b_1x + c$ and $a_2x^2 + b_2x + c$ prove that $\alpha(a_1 - a_2) = b_2 - b_1$. If $3x^2 + 2\alpha xy + 2y^2 + 2ax - 4y + 1$ can be resolved into two linear factors, Prove that α is a root of the equation $x^2 + 4ax + 2a^2 + 6 = 0$. Ans. (1) 0, 3 Graph of Quadratic Expression: $y = f(x) = ax^{2} + bx + c$ =ax²+bx+c (0,c) (a>0) $\left(y + \frac{D}{4a}\right) = a \left(x + \frac{b}{2a}\right)^2$ D 4a vertex the graph between x, y is always a parabola. the co-ordinate of vertex are If a > 0 then the shape of the parabola is concave upwards & if a < 0 then the shape of the parabola is concave downwards. the parabola intersect the y-axis at point (0, c). the x-co-ordinate of point of intersection of parabola with x-axis are the real roots of the quadratic equation f (x) = 0. Hence the parabola may or may not intersect the x-axis at real points. **Range of Quadratic Expression f (x) =** $a x^2 + b x + c$. Absolute Range: f (x) ∈ | $f(x) \in \left(-\infty, -\frac{D}{4a}\right)$ a < 0 Hence maximum and minimum values of the expression f (x) is $-\frac{D}{4a}$ in respective cases and it occurs at $x = -\frac{b}{2a}$ (at vertex). Range in restricted domain: Given $x \in [x_1, x_2]$ If $-\frac{b}{2a} \notin [x_1, x_2]$ then, $f(x) \in [\min \{f(x_1), f(x_2)\}, \max \{f(x_1), f(x_2)\}]$ If $-\frac{b}{2a} \in [x_1, x_2]$ then, $\min\left\{f(x_1), f(x_2), -\frac{D}{4a}\right\}, \max\left\{f(x_1), f(x_2), -\frac{D}{4a}\right\}$ **\mathcal{L}Solved Example # 11** If c < 0 and ax² + bx + c = 0 does not have any real roots then prove that a - b + c < 0(ii) 9a + 3b + c < 0. (i) Solution. c < 0 and D < 0 $f(x) = ax^2 + bx + c < 0$ for all $x \in R$ 1) = a - b + c < 0 f(3) = 9a + 3b + c < 0and **Solved Example # 12** Find the maximum and minimum values of $f(x) = x^2 - 5x + 6$. Solution.

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com $a < 0 \Rightarrow x \in (\alpha, \beta)$ If D = 0, i.e. roots are equal, i.e. $\alpha = \beta$. (ii) Then $a > 0 \implies x \in (-\infty, \alpha) \cup (\alpha, \infty)$ $a < 0 \implies x \in \phi$ $\begin{array}{c} \text{(iii)} & \text{If } D \\ \text{Then} \\ \end{array}$ (iii) If D < 0, i.e. the equation $ax^2 + bx + c = 0$ has no real root. Then $a > 0 \implies x \in R$ $a < 0 \implies x \in \phi$ P(x) Q(x) R(x)..... Inequalities of the form $\overline{A(x) B(x) C(x)}$ <= > 0 can be quickly solved using the method of intervals, where A, B, C....., P, Q, R..... are linear functions of 'x'. $x^{2} + 6x - 7$ ≤ 2 Solve 15 $x^{2} + 1$ $x^2 + 6x - 6x + 9 \ge 0$ $-7 \le 2x^2 + 2$ $(x-3)^2 \ge 0$ $x \in R$ \Rightarrow $\frac{x^2 + x + 1}{|x+1|}$ Solution. Solved Example # 17 Solved Example # 17 Solved Example # 17 Solved Example # 17 Solution. Sol Solved Example # 16: Solve > 0. $\dot{\forall} x \in R$ X $x \in R - \{-1\}$ + x + 1 > 0 + x + 1 > 0 3 < 0 D ÷. $\forall x \in R$ – 1) ∪ (– 1, ∞) ø. 3x – < 3. $x^{2} + x + 1$ 3x – 1 < 3. x² 1 +x + 1in $x^2 + x$ + D = 1 - 4 = -3 < 0 $x + 1 > 0 \forall x \in R$ $|x^2 - 3x - 1| < 3(x^2 + x + 1)$ $\begin{array}{l} (x^2 - 3x - 1)^2 - \{3(x^2 + x + 1)\}^2 \\ (4x^2 + 2) \ (-2x^2 - 6x - 4) < 0 \\ (2x^2 + 1) \ (x + 2) \ (x + 1) > 0 \end{array}$ < 0 2) ∪ (− 1, ∞) X ∈ (00 Self Practice Problems : FREE Download Study Package from website: www.T 10 10 10 10 $|x^2 + x| - 5 < 0$ 7x + 12 < |x - 4|(ii) 2x Solve \leq $x^{2} - 9$ x+2 Solve the inequation $(x^{2} + 3x + 1) (x^{2} + 3x - 3) \ge 5$ $\alpha \mathbf{X}$ Find the value of parameter ' α ' for which the inequality < 3 is satisfied $\forall x \in R$ 5x + 4 Solve \leq $\overline{x^2}$ 4 (17)(ii) (2, 4)Ans. (18)(-2,3) (19)- 4] ∪ [–2, –1] ∪ [1, ∞) $(-\infty)$ 8 0, ∞ (20)(-1, 5)(21)Location Of Roots: Let $f(x) = ax^2 + bx$ c, where $a > 0 \& a^{i} b^{j} c \in R$. $(\mathbf{x}_0, \mathbf{f}(\mathbf{x}_0))$ $(x_0, f(x_0))$ (i) (ii) (iii) X₀ $(x_0, f(x_0))$ Conditions for both the roots of f(x) = 0 to be greater than a specified number'x₀' are $b^2 - 4ac \ge 0$; $f(x_0) > 0 & (-b/2a) > x_0$. Conditions for both the roots of f(x) = 0 to be smaller than a specified number 'x₀' are (i) (ii) $b^2 - 4ac \ge 0$; f (x₀) > 0 & (-b/2a) < x₀. Conditions for both roots of f (x) = 0 to lie on either side of the number 'x₀' (in other words the number 'x₀' lies between the roots of f (x) = 0), is f (x₀) < 0. (iii) $(X_1, f(X_1))$ $(X_1, f(X_1))$ $(x_2, f(x_2))$ (iv) (v) х X $(x_2, f(x_2))$

page 7 of 23

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com

Condition - II f(1) > 04a + 1 > 0 a > Condition - III $D \ge 0$ $4a^2 - 4(a + 3) (a - 2) \ge 0$ \Rightarrow a ≤ 6 $\frac{2(a-1)}{a-2} > 0$ Condition - IV - $\frac{1}{2}$ Condition - V - 2 Intersection gives: Condition - I f(-1) Condition - I f(-1) Condition - II f(1) Condition - III - 2 Condition - IV D = intersection gives we complete solution Condition - IV D = intersection gives Condition - IV D = Condition -**Condition -** IV $-\frac{b}{2a}$ <1 \Rightarrow $a \in (-\infty, 1) \cup (4, \infty)$ **Condition - V** $-2 < -\frac{b}{2a} \Rightarrow \frac{-2a}{2(a-2)} > -2$ $\frac{a-4}{a-2}$ > 0 Intersection gives $a \in (5, 6]$. when a - 2 < 0a < 2Ans. **Condition -** I f(-2) < 0a < 5 \Rightarrow **Condition - II** f(1) < 0, **Condition -** III -2 < - \Rightarrow $a \in (-\infty, 1) \cup (4, \infty)$ **Condition - IV** $D \ge 0$ \rightarrow a ≤ 6 $a \in \left(-\infty, -\frac{1}{4}\right)$ complete solution is $a \in \left(-\infty, -\frac{1}{4}\right) \cup (5, 6]$ Ans. Let $4x^2 - 4(\alpha - 2)x + \alpha - 2 = 0$ ($\alpha \in R$) be a quadratic equation find the value of α for which Both the roots are positive (b) Both the roots are negative (d) Both the roots are opposite in sign. Both the roots are greater than 1/2. Both the roots are smaller than 1/2. One root is small than 1/2 and the other root is greater than 1/2. (e) (-∞, 2] (f) (3, ∞) (c) $(-\infty, 2)$ Find the values of the parameter a for which the roots of the quadratic equation $x^{2} + 2(a - 1)x + a + 5 = 0$ are (ii) negative opposite in sign. Ans. (i) (-5, -1] (ii) $[4, \infty)$ (iii) $(-\infty, -5)$ Find the values of P for which both the roots of the equation $4x^2 - 20px + (25p^2 + 15p - 66) = 0$ are less than 2. Find the values of α for which 6 lies between the roots of the equation $x^2 + 2(\alpha - 3)x + 9 = 0$ Let $4x^2 - 4(\alpha - 2)x + \alpha - 2 = 0$ ($\alpha \in R$) be a quadratic equation find the value of α for which Exactly one root lies in $\left(0, \frac{1}{2}\right)$ Both roots lies in $\left(0, \frac{1}{2}\right)$. (ii) At least one root lies in $\left(0, \frac{1}{2}\right)$. (iv) One root is greater than 1/2 and other root is smaller than 0. (i) $(-\infty, 2) \cup (3, \infty)$ (iii) $(-\infty, 2) \cup (3, \infty)$ In what interval must the number 'a' vary so that both roots of the equation $x^2 - 2ax + a^2 - 1 = 0$ lies between -2 and 4. **Ans.** (-1, 3)Find the values of k, for which the quadratic expression $ax^2 + (a - 2)x - 2$ is negative for exactly two integral **Ans.** [1, 2) Theory Of Equations: If $\alpha_{1,1} \alpha_{2,1} \alpha_{3,1} \dots \alpha_{n}$ are the roots of the equation; $f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-1} x + a_n = 0$ where a_0, a_1, \dots, a_n are all real & $a_0 \neq 0$ then $\frac{a_1}{a_0}, \Sigma \alpha_1 \alpha_2 = + \frac{a_2}{a_0}, \Sigma \alpha_1 \alpha_2 \alpha_3 = - \frac{a_3}{a_0}, \dots, \alpha_1 \alpha_2 \alpha_3, \dots, \alpha_n = (-1)^n \frac{a_n}{a_0}$ If α is a root of the equation f(x) = 0, then the polynomial f(x) is exactly divisible by $(x - \alpha)$ or $(x - \alpha)$ is a factor of f(x) and conversely. Every equation of nth degree ($n \ge 1$) has exactly n roots & if the equation has more than n roots, it is an If the coefficients of the equation f(x) = 0 are all real and $\alpha + i\beta$ is its root, then $\alpha - i\beta$ is also a root. i.e. imaginary roots occur in conjugate pairs. An equation of odd degree will have odd number of real roots and an equation of even degree will have even numbers of real roots. If the coefficients in the equation are all rational & $\alpha + \sqrt{\beta}$ is one of its roots, then σ (v) If there be any two real numbers 'a' & 'b' such that f(a) & f(b) are of opposite signs, then (vi) f(x) = 0 must have odd number of real roots (also atleast one real root) between 'a' and 'b (vii) Every equation f(x) = 0 of degree odd has at least one real root of a sign opposite to that of its last term. (If coefficient of highest degree term is positive).

g.com

(

5.

6.

Remember that a quadratic equation cannot have three different roots & if it has, it becomes an identity.

that they are

A quadratic equation whose roots are $\alpha \& \beta$ is $(x-\alpha)(x-\beta) = 0$ i.e. $x^2 - (\alpha + \beta)x + \alpha\beta = 0$ i.e. $x^2 - (\text{sum of roots})x + \text{product of roots} = 0$.

Consider the quadratic expression, $y = ax^2 + bx + c$, $a \neq 0$ & a, b, $c \in R$ then ; (i) The graph between x, y is always a parabola. If a > 0 then the shape of the parabola is concave upwards & if a < 0 then the shape of the parabola is concave downwards.

(iii) 7. FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com (i) Then Then $a > 0 \Rightarrow x \in (-\infty, x_1) \cup (x_2, \infty)$ $a < 0 \Rightarrow x \in (-\infty, x_1) \cup (x_1, \infty)$ $a < 0 \Rightarrow x \in (-\infty, x_1) \cup (x_1, \infty)$ $a < 0 \Rightarrow x \in \phi$ (iii) Inequalities of the form $\frac{P(x)}{Q(x)}$ 0 can be quickly solved using the method of intervals. MAXIMUM & MINIMUM VALUE of $y = ax^2 + bx + c$ occurs at x = -(b/2a) according as; $a < 0 \Rightarrow x = \phi$ (iii) Inequalities of the form $\frac{P(x)}{Q(x)}$ 0 can be quickly solved using the method of intervals. MAXIMUM & MINIMUM VALUE of $y = ax^2 + bx + c$ occurs at x = -(b/2a) according as; $a < 0 \text{ or } a > 0. y \in \left[\frac{4ac - b^2}{4a}, \infty\right]$ if a > 0 & $y \in \left(-\infty, \frac{4ac - b^2}{4a}\right]$ if a < 0. COMMON ROOTS OF 2 QUADRATIC EQUATIONS [ONLY ONE COMMON ROOT]: Let a be the common root of $ax^2 + bx + c = 0$. By Cramer's Rule $\frac{\alpha^2}{bc' - b'c} = \frac{\alpha}{a'c - ac'} = \frac{1}{ab' - a'b}$ Therefore, $\alpha = \frac{ca' - c'a}{ab' - ab} = \frac{bc' - b'c}{a'c - ac'}$. So the condition for a common root is $(ca' - c'a)^2 = (ab' - a'b)(bc' - b'c)$. The condition that a quadratic function $f(x, y) = ax^2 + 2hxy + by^2 + 2gx + 2fy + c$ may be resolved into two linear factors is that ; $abc + 2fgh - al^2 - bg^2 - ch^2 = 0$ or $\begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix}$ HEDORY OF EQUATIONS : If $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n$ are the roots of the equation; $f(x) = a_0x^n + a_1x^{n-1} + a_3x^{n-2} + \dots + a_{n-1}x + a_n = 0$ where a_0, a_1, \dots, a_n are -all real & $a_0 \neq 0$ then, of $\alpha = \frac{a_1}{a_0}$, $\sum \alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n$ are the roots of the equation; $f(x) = a_0x^n + a_1x^{n-1} + a_3x^{n-2} + \dots + a_{n-1}x + a_n = 0$ where a_0, a_1, \dots, a_n are -all real & $a_0 \neq 0$ then, of $\alpha = \frac{a_1}{a_0}$, $\sum \alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n$ are the polynomial f(x) is exactly divisible by $(x - \alpha)$ or $(x - \alpha)$ is a factor of f(x); (i) Every equation of the equation f(x) = 0, then the polynomial f(x) is exactly divisible by $(x - \alpha)$ or $(x - \alpha)$ is a factor of f(x); (ii) Every equation of the equation f(x) = 0 are all real and $\alpha + i\beta$ is its root, then $\alpha = i\beta$ is also a root, i.e. imaginary roots occur in conjugate pairs. (iv) **(v)** (vi) (i) (ii) (iii) 0. (iv) Q.4

> $\left(1-q+\frac{p^2}{2}\right)x^2 + p(1+q)x + q(q-1) + \frac{p^2}{2} = 0$ If the roots of the equation

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com $\forall x \in \mathbb{R}, y > 0 \text{ only if } a > 0 \& b^2 - 4ac < 0 \text{ (figure 3)}.$

page 10 of 23

- $\forall x \in \mathbb{R}, y < 0 \text{ only if } a < 0 \& b^2 4ac < 0 \text{ (figure 6)}.$
- Carefully go through the 6 different shapes of the parabola given below. SOLUTION OF QUADRATIC INEQUALITIES: $ax^{2} + bx + c > 0 (a \neq 0).$ If D > 0, then the equation $ax^2 + bx + c = 0$ has two different roots $x_1 < x_2$.
 - $a > 0 \implies x \in (-\infty, x_1) \cup (x_2, \infty)$ $a < 0 \implies x \in (x_1, x_2)$ If D = 0, then roots are equal, i.e. $\dot{x}_1 = x_2$

AXIMUM & MINIMUM VALUE of
$$y = ax^2 + bx + c$$
 occurs at $x = -(b/2a)$ according as
(0 or $a > 0$. $y \in \left[\frac{4ac - b^2}{4a}, \infty\right]$ if $a > 0$ & $y \in \left(-\infty, \frac{4ac - b^2}{4a}\right]$ if $a < 0$.

$$a\alpha^2 + b\alpha + c = 0$$
; $a'\alpha^2 + b'\alpha + c' = 0$. By Cramer's Rule $\frac{\alpha^2}{bc' - b'c} = \frac{\alpha}{a'c - ac'} = \frac{1}{ab' - a'b'}$

Therefore,
$$\alpha = \frac{ca'-c'a}{ab'-a'b} = \frac{bc'-b'c}{a'c-ac'}$$
.

$$abc + 2 fgh - af^2 - bg^2 - ch^2 = 0$$
 OR $\begin{vmatrix} a & h & g \\ h & b & f \end{vmatrix} = 0$

$$f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-1} x + a_n = 0 \text{ where } a_0, a_1, \dots a_n \text{ are all real & } a_0 \neq 0 \text{ then}$$

$$\sum \alpha_1 = -\frac{a_1}{a}, \sum \alpha_1 \alpha_2 = +\frac{a_2}{a}, \sum \alpha_1 \alpha_2 \alpha_3 = -\frac{a_3}{a}, \dots, \alpha_1 \alpha_2 \alpha_3 \dots \alpha_n = (-1)^n \frac{a_n}{a}$$

(i) If
$$\alpha$$
 is a root of the equation $f(x) = 0$, then the polynomial $f(x)$ is exactly divisible by $(x - \alpha)$ or $(x - \alpha)$ is a factor of $f(x)$ and conversely.

- occur in conjugate pairs.
- occur in conjugate pairs. If the coefficients in the equation are all rational & $\alpha + \sqrt{\beta}$ is one of its roots, then $\alpha \sqrt{\beta}$ is also a root where $\alpha, \beta \in Q \& \beta$ is not a perfect square. If there be any two real numbers 'a' & 'b' such that f(a) & f(b) are of opposite signs, then f(x) = 0 must have atleast one real root between 'a' and 'b'. Every equation f(x) = 0 of degree odd has atleast one real root of a sign opposite to that of its last term. UN OF ROOTS \cdot If $f(x) = ax^2 + bx + c$, where $a \ge 0$ & a b $c \in \mathbb{R}$

- LOCATION OF ROOTS : Let $f(x) = ax^2 + bx + c$, where a > 0 & $a, b, c \in \mathbb{R}$.
 - Conditions for both the roots of f(x) = 0 to be greater than a specified number 'd' are $b^2 - 4ac \ge 0$; f(d) > 0 & (-b/2a) > d.
 - Conditions for both roots of f(x) = 0 to lie on either side of the number 'd' (in other words the number 'd' lies \overline{O} between the roots of f(x) = 0 is f(d) < 0.
 - Conditions for exactly one root of f(x) = 0 to lie in the interval (d,e) i.e. d < x < e are $b^2 4ac > 0$ & f(d). $f(e) < \sqrt{ac}$
 - the numbers p & q are Conditions that both roots of f(x) = 0 to be confined between

- (iv) Conditions that both roots of f(x) = 0 to be confined between the numbers p & q are $\bigcup_{\substack{p < q}, b^2 4ac \ge 0; f(p) > 0; f(q) > 0 \& p < (-b/2a) < q.}$ **LOGARITHMICINEQUALITIES** (i) For a > 1 the inequality $0 < x < y \& \log_a x < \log_a y$ are equivalent. (ii) For 0 < a < 1 the inequality $0 < x < y \& \log_a x > \log_a y$ are equivalent. (iii) If a > 1 then $\log_a x$ (iv) If <math>a > 1 then $\log_a x a^p$ (v) If 0 < a < 1 then $\log_a x$ (v) If <math>0 < a < 1 then $\log_a x > p \Rightarrow 0 < x < a^p$ (v) If 0 < a < 1 then $\log_a x > p \Rightarrow 0 < x < a^p$ (v) If 0 < a < 1 then $\log_a x > p \Rightarrow 0 < x < a^p$ (v) If 0 < a < 1 then $\log_a x > p \Rightarrow 0 < x < a^p$ (v) If a > 1 then $\log_a x > p \Rightarrow 0 < x < a^p$ (v) If a > 1 then $\log_a x > p \Rightarrow 0 < x < a^p$ (v) If a < 1 then $\log_a x > p \Rightarrow 0 < x < a^p$ (v) If a < 1 then $\log_a x > p \Rightarrow 0 < x < a^p$ (v) If a < 1 then $\log_a x a^p$ (v) If a < 1 then $\log_a x$ (v) If <math>a < 1 the roots of the equation [1/(x + p)] + [1/(x + q)] = 1/r are equal in magnitude but opposite in sign, show that p + q = 2r & dx are the roots of the equation $(a/\beta) + (\beta/\alpha) = 4/5$. Find the value of $\bigcup_{i > 0} \bigcup (i > 0)$ by the relation $(\alpha/\beta) + (\beta/\alpha) = 4/5$. Find the value of $\bigcup_{i > 0} \bigcup (i > 0)$ by the relation $(\alpha/\beta) + (\beta/\alpha) = 4/5$. Find the value of $\bigcup_{i > 0} \bigcup (i > 0)$ by the relation $(\alpha/\beta) + (\beta/\alpha) = 4/5$. Find the value of $\bigcup_{i > 0} \bigcup (i > 0)$ by the quadratic equations, $x^2 + bx + c = 0$ and $bx^2 + cx + 1 = 0$ have a common root then prove that either b + c + 1 = 0 or $b^2 + c^2 \bigvee$ $(\dot{K}_1/K_2) + (K_2/K_1).$
- $(\mathbf{K}_1/\mathbf{K}_2)^+(\mathbf{K}_2/\mathbf{K}_1)$. If the quadratic equations, $\mathbf{x}^2 + \mathbf{b}\mathbf{x} + \mathbf{c} = 0$ and $\mathbf{b}\mathbf{x}^2 + \mathbf{c}\mathbf{x} + 1 = 0$ have a common root then prove that either $\mathbf{b} + \mathbf{c} + 1 = 0$ or $\mathbf{b}^2 + \mathbf{c}^2$ $\mathbf{b}\mathbf{x}^2 + 1 = \mathbf{b}\mathbf{c} + \mathbf{b} + \mathbf{c}$.

Q.5 are equal then show that

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com $p^2 = 4q$.

If one root of the equation $ax^2 + bx + c = 0$ be the square of the other, prove that $b^3 + a^2c + ac^2 = 3abc.$

Q.6

(e)

9.6 If $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 0$ is the square of the other, prove that $\frac{1}{2} + \frac{1}{2} + \frac{1}$ page 11 of 23 $ax^{2} + 2(a+1)x + 9a + 4$ App Number 9009 260 559. If α , β are the roots of $ax^2 + bx + c = 0$ & $\alpha', -\beta$ are the roots of $a'x^2 + b'x + c' = 0$, show that α, α' are the roots of $(\alpha - \gamma)(\beta - \gamma)(\alpha + \delta)(\beta + \delta) = q^2 - p^2$. Show that if p, q, r & s are real numbers & pr = 2(q+s), then at least one of the equations $x^2 + px + q = 0$, $x^2 + rx + s = 0$ If a & b are positive numbers, prove that the equation $\frac{1}{x} + \frac{1}{x-a} + \frac{1}{x+b} = 0$ has two real roots, one between a/3 & 2a/3 and the other between -2b/3 & -b/3. If the roots of $x^2 - ax + b = 0$ are real & differ by a quantity which is less than c (c > 0), prove that b lies between $(1/4)(a^2-c^2)$ & $(1/4)a^2$. At what values of 'a' do all the zeroes of the function, $f(x) = (a-2)x^2 + 2ax + a + 3$ lie on the interval (-2, 1)? If one root of the quadratic equation $ax^2 + bx + c = 0$ is equal to the nth power of the other, then show that $(ac^n)^{1/(n+1)} + (a^nc)^{1/(n+1)} + b = 0$. If p, q, r and s are distinct and different from 2, show that if the points with co-ordinates $\left(\frac{p^4}{p-2}, \frac{p^3-5}{p-2}\right), \left(\frac{q^4}{q-2}, \frac{q^3-5}{q-2}\right), \left(\frac{r^4}{r-2}, \frac{r^3-5}{r-2}\right)$ and $\left(\frac{s^4}{s-2}, \frac{s^3-5}{s-2}\right)$ are collinear then pars = 5 (p + q + r + s) + 2 (pqr + qrs + rsp + spq). The quadratic equation $x^2 + px + q = 0$ where p and q are integers has rational roots. Prove that the roots are all integral. If the quadratic equations $x^2 + bx + c = 0$ & $x^2 + cx + ab = 0$ have a common root, prove that the equation containing their other root is $x^2 + ax + bc = 0$. If α , β are the roots of $x^2 + px + q = 0$ & $x^{2n} + p^n x^n + q^n = 0$ where n is an even integer, show that α/β , β/α are the roots of $\sum_{i=0}^{n} \sum_{j=0}^{n} \frac{1}{2} \sum_{i=0}^{n} \frac{1}{2} \sum_{j=0}^{n} \frac{1}{2} \sum_{i=0}^{n} \frac{1}{2} \sum_{i=$ If α , β are the roots of the equation $x^2 - 2x + 3 = 0$ obtain the equation whose roots are $\dot{\alpha}^3 - 3\alpha^2 + 5\alpha - 2$, $\beta^3 - \beta^2 + \beta + 5$. Feko Classes, Maths : Suhag R. Kariya (S. R. Find the product of the real roots of the equation, $x^{2}+18x+30=2\sqrt{x^{2}+18x+45}$ EXERCISE-2 Q.1 Solve the following where $x \in R$. $(x-1)|x^2-4x+3|+2x^2+3x-5=0$ $\begin{array}{c} 3 \mid x^2 - 4x + 2 \mid = 5x - 4 \\ (d) \quad 2^{\mid x+2 \mid} - \mid 2^{x+1} - 1 \mid = 2^{x+1} + 1 \end{array}$ (a) (b) $|x^3+1| + x^2 - x - 2 = 0$ (c)

For $a \le 0$, determine all real roots of the equation $x^2 - 2a|x-a| - 3a^2 = 0$.

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com Let a, b, c, d be distinct real numbers and a and b are the roots of quadratic equation $x^2 - 2cx - 5d = 0$. If c and d are the roots of the quadratic equation $x^2 - 2ax - 5b = 0$ then find the numerical value of a + b + c + 3Q.2 Let $f(x) = ax^2 + bx + c = 0$ has an irrational root r. If $u = \frac{p}{q}$ be any rational number, where a, b, c, p and q are integer. Prove that Q.3 $\leq |f(u)|.$ $\overline{q^2}$ Q.14

Q.15 Find the set of values of 'y' for which the inequality, $2 \log_{0.5} y^2 - 3 + 2x \log_{0.5} y^2 - x^2 > 0$ is valid for atleast one real value of 'x'. EXERCISE-4

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

 $\begin{aligned} \int_{1}^{2} (x_{1},y_{1},y_{2},y_{1},y_{2},z_{1},z_{2},z_{$

Let a, b, c be real. If $ax^2 + bx + c = 0$ has two real roots $\alpha \& \beta$, where $\alpha < -1 \& \beta > 1$ then show that 1 + c/a + |b/a| < 0. If α , β are the roots of the equation, $x^2 - 2x - a^2 + 1 = 0$ and γ , δ are the roots of the equation, $x^2 - 2(a + 1)x + a(a - 1) = 0$ such that $\alpha, \beta \in (\gamma, \delta)$ then find the values of 'a'. Two roots of a biquadratic $x^4 - 18x^3 + kx^2 + 200x - 1984 = 0$ have their product equal to (-32). Find the value of k.

5

page 12

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com $\sin x \cos 3x$ do not lie from $\frac{1}{2}$ & 3 for any real x.[JEE '97, 5] oage 13 of 23 Q.1 Prove that the values of the function $\frac{\sin x \cos x}{\sin 3x \cos x}$ do not lie from $\frac{1}{3}$ & Q.2 The sum of all the real roots of the equation $|x - 2|^2 + |x - 2| - 2 = 0$ Q.3 Let S be a square of unit area. Consider any quadrilateral which has one v of the sides of the quadrilateral, prove that: $2 \le a^3 + b^3 + c^2 + d^2 \le 4$. In a college of 300 students, every student reads 5 new 60 students. The number of news papers is: (A) atleast 30 (B) atmost 20 (C) exactly 25 If α , β are the roots of the equation $x^2 - bx + c = 0$, then find the equation $(a^2 + \beta^2)(a^2 + \beta^2) \approx a^2 \beta^2 - a^2 \beta^3$. (B) Effect at i; β , $\alpha, \beta \in R, be a root of the equation <math>x^3 + qx + r = 0$; $q, r \in R$. For one root is 2α . (B) In a triangle PQR, $\angle R = \frac{\pi}{2}$. If $\tan\left(\frac{D}{2}\right) \& \tan\left(\frac{Q}{2}\right)$ are the roots of the ax² + bx + c = 0 (a \net 0) then: (A) a + b = c (B) b + c = a (C) a + c = b(i) If the roots of the equation $x^2 - 2ax + a^3 + a - 3 = 0$ are real & less than it (A) a < 2 are the roots of the equation, (x - a)(x - b) is $(x - a)(x - \beta) = c$. (A) a < 0 are the roots of the equation, (x - a)(x - b) is $(x - a)(x - \beta) = c$. (B) (2 - a) = c (B) b - c = a (C) a + c = 0, where c (B) $2 \le a \le 3$ (C) (2 - a) < (2 - a)Q.1 Prove that the values of the function sin 3x cos x The sum of all the real roots of the equation $|x-2|^2 + |x-2| - 2 = 0$ is _____ Q.2 [JEE'97, 2] Let S be a square of unit area. Consider any quadrilateral which has one vertex on each side of S. If a, b, c & d denote the lengths The scalar of the quantimizer in prove that: $2 \le i^{2} | p + c^{2} \le d \le 4$. (A) alread 30 students, the number of new papers is: (A) alread 30 (C) scalady 23 (D) none of the above 00 students. The number of new papers is: (A) alread 30 (C) scalady 23 (D) none of the above (B) at most 20 (C) scalady 23 (D) none of the above (A) alread 30 (C) scalady 23 (D) none of the above (B) at most 20 (C) scalady 23 (D) none of the above (B) at most 20 (C) scalady 23 (D) none of the above (C) a pre-therosts 3.0, are 0.8, b < 0.2, p. z = 2.2, statisfying the following equation. (BEE 99, 3 + 6) (C) z = 2.2, z = 2.2, statisfying the following equation. (B) z = 2.2 (D) b = c = 0 (D) b = c(D) b = c (D) b = c(D) b = c (D) b = c (D) b = c (D) b = c(D) b = c (D) b = c (D In a college of 300 students, every student reads 5 news papers & every news paper is read by 559. If roots of the equation $x^2 - 10cx - 11d = 0$ are a, b and those of $x^2 - 10ax - 11b = 0$ are c, d, then find the value of a + b + c(b)+ d. (a, b, c and d are distinct numbers) [JEE 2006, 6]

EXERCISE-5

Part : (A) Only one correct option

	Set Coldion of These Packages & Learnby			ი			
Part : (A) Only one correct option তি							
1.	The roots of the quadratic equation $(a + b - 2c) x^2 - (2a - b - c) x + (a - 2b + c) = 0$ are						
	(A) $a + b + c$ and $a - b + c$ (B)	$\frac{1}{2}$ and a – 2b + c		page 14 of 23			
liay.	(C) $a - 2b + c$ and $\frac{1}{a + b - c}$ (D)	none of these		260 559.			
D 22.	The roots of the equation 2^{x+2} . $3^{\frac{3x}{x-1}} = 9$ are given by						
Idlini	(A) $1 - \log_2 3$, 2 (B) $\log_2 (2/3)$, 1 (C)	-2, 2	(D) -2, $1 - \frac{\log 3}{\log 2}$	nber 90			
≥ <u>3</u> . ≥	The roots of the equation 2^{x+2} . $3^{\frac{2x}{x-1}} = 9$ are given by (A) $1 - \log_2 3, 2$ (B) $\log_2 (2/3), 1$ (C) $-2, 2$ (D) $-2, 1 - \frac{\log 3}{\log 2}$ Two real numbers $\alpha \& \beta$ are such that $\alpha + \beta = 3 \& \alpha - \beta = 4$, then $\alpha \& \beta$ are the roots of the quadratic equation: (A) $4x^2 - 12x - 7 = 0$ (B) $4x^2 - 12x + 7 = 0$ (C) $4x^2 - 12x + 25 = 0$ (D) none of these Let a, b and c be real numbers such that $4a + 2b + c = 0$ and $ab > 0$. Then the equation $ax^2 + bx + c = 0$ has (A) real roots (B) imaginary roots (C) exactly one root (D) none of these						
	(A) $4x^2 - 12x - 7 = 0$ (B) $4x^2 - 12x + 7 = 0$ (C) Let a, b and c be real numbers such that	$4x^{2} - 12x + 25 = 0$ 4a + 2b + c = 0	(D) none of these) and ab > 0. Then the equation	/hatsApp			
5. 25.	(A) real roots (B) imaginary roots (C) If $e^{\cos x} - e^{-\cos x} = 4$, then the value of $\cos x$ is	exactly one root	(D) none of these	381 , V			
	(A) $\log (2 + \sqrt{5})$ (B) $-\log (2 + \sqrt{5})$ (C)	$\log \left(-2 + \sqrt{5}\right)$	(D) none of these	98930 58881			
<u>/</u> 6.	The number of the integer solutions of $x^2 + 9 < (x - x)^2$		(=)	893			
	(A) 1 (B) 2 (C) If $(x + 1)^2$ is greater than $5x - 1$ & less than $7x - 3$ t			6 0			
<u>)</u>	(A) 1 (B) 2 (C)	-		ó			
Ď	The set of real 'x' satisfying, $ x - 1 - 1 \le 1$ is:			00 (
.º. ≷				200			
	(A) $[0, 2]$ (B) $[-1, 3]$ (C) Let $f(x) = x^2 + 4x + 1$. Then (A) $f(x) > 0$ for all x (B) $f(x) > 1$ when $x \ge 0$ (C)		(D) $[1, 3]$ 4 (D) f(x) = f(-x) for all x	ne : (0755) 32 00 000,			
D 10. 10.	If x is real and $k = \frac{x^2 - x + 1}{x^2 + x + 1}$ then:	29		hone : ((
	(A) $\frac{1}{3} \le k \le 3$ (B) $k \ge 5$ (C)	$k \leq 0$	(D) none	Bhopa.I F			
ם בי בי בי	If x is real and $k = \frac{x^2 - x + 1}{x^2 + x + 1}$ then: (A) $\frac{1}{3} \le k \le 3$ (B) $k \ge 5$ (C) $k \le 0$ (D) none If x is real, then $\frac{x^2 - x + c}{x^2 + x + 2c}$ can take all real values if : (A) $c \in [0, 6]$ (B) $c \in [-6, 0]$ (C) $c \in (-\infty, -6) \cup (0, \infty)$ (D) $c \in (-6, 0)$ The solution set of the inequality $\frac{x^4 - 3x^3 + 2x^2}{x^2 - x - 30} \ge 0$ is: (A) $(-\infty, -5) \cup (1, 2) \cup (6, \infty) \cup \{0\}$ (B) $(-\infty, -5) \cup [1, 2] \cup (6, \infty) \cup \{0\}$ (C) $(-\infty, -5] \cup [1, 2] \cup [6, \infty) \cup \{0\}$ (D) none of these If x - y and y - 2x are two factors of the expression $x^3 - 3x^2y + \lambda xy^2 + \mu y^3$, then (A) $\lambda = 11, \mu = -3$ (B) $\lambda = 3, \mu = -11$ (C) $\lambda = \frac{11}{4}, \mu = -\frac{3}{4}$ (D) none of these If α, β are the roots of the equation, $x^2 - 2mx + m^2 - 1 = 0$ then the range of values of m for which $x^2, \beta \in (-2, 4)$ is:						
	(A) $c \in [0, 6]$ (B) $c \in [-6, 0]$ (C)	$c \in (-\infty, -6) \cup (0, \infty)$	∞) (D) c \in (- 6, 0)	S. R.			
L ≥12. □	The solution set of the inequality $\frac{x^4 - 3x^3 + 2x^2}{x^2 - x - 30} \ge 0$ is:						
	(A) $(-\infty, -5) \cup (1, 2) \cup (6, \infty) \cup \{0\}$ (B)	$(-\infty, -5) \cup [1, 2] \cup$	$(6,\infty)\cup\{0\}$	ъ.			
D 13	(C) $(-\infty, -5] \cup [1, 2] \cup [6, \infty) \cup \{0\}$ (D)	none of these $x^3 = 3x^2y + \lambda xy^2 + y$	uv^3 then	ag			
\underline{O}	11 x - y and $y - 2x$ are two factors of the expression	11 x ² - 3x y + 7, xy + 1	μy [*] , men	Suh			
	(A) $\lambda = 11, \mu = -3$ (B) $\lambda = 3, \mu = -11$ (C)	$\lambda = \frac{11}{4}, \ \mu = -\frac{3}{4}$	(D) none of these	ihs :			
	If α , β are the roots of the equation, $x^2 - 2 \text{ m x}$ α , $\beta \in (-2, 4)$ is:	$x + m^2 - 1 = 0$ then	n the range of values of m for which	, Mat			
	(A) $(-1, 3)$ (B) $(1, 3)$ (C)	(∞, – 1) ∪ ((3, ∞)	(D) none	ses			
⊔ ⊔ ∠15.	If the inequality $(m - 2)x^2 + 8x + m + 4 > 0$ is satisf	fied for all $x \in R$ then	n the least integral m is:	las			
L	(A) 4 (B) 5 (C)		(D) none	O O			
16.	For all $x \in R$, if $mx^2 - 9mx + 5m + 1 > 0$, then m lie (A) - (4/61, 0) (B) [0, 4/61) (C)		(D) (- 61/4, 0]	Teko Classes,			
17.	Let $a > 0$, $b > 0$ & $c > 0$. Then both the roots of the	· · /		-			
	(A) are real & negative (B) have negative real parts (C) are rational numbers (D) none						
18.	The value of 'a' for which the sum of the squares of successful People Replace the words like; "wish", "try	-					

	Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com						
	(A) 0	(B) 1	(C) 2	(D) 3	5 of 23		
ڪ ^{19.}	ZX						
J.CO	(A) [-1, 1]	(B) [0, 1]		(D) [-9/4,1]	. page		
020.	(A) $(-\infty 1)$	(B) $(-\infty, -2)$	(C) $(-\infty - 2) \cup (0)$	here $p \in R$ then p must lie in the inte . 1/4) (D) (-2, 1)	21		
^၂ ၃21.	lf a. b. p. g a	re non-zero real nu	umbers, the two equ	ations. 2 $a^2 x^2 - 2 ab x + b^2$	= 0 and 00		
ŝBy	$p^{2}x^{2} + 2 pq x + q^{2} = 0 have:$ (A) no common root (B) one common root if $2 a^{2} + b^{2} = p^{2} + q^{2}$						
aths	(C) two common roots if $3 pq = 2 ab$ (D) two common roots if $3 qb = 2 ap$						
www.TekoClasses.com & www.MathsBySuhag.com	If α,β & γ are the	roots of the equation,	$x^{3} - x - 1 = 0$ then, $\frac{1 + \alpha}{1 - \alpha}$	$+\frac{1+\beta}{1-\beta}+\frac{1+\gamma}{1-\gamma}$ has the value equal	to: United to:		
\sum_{23}	(A) zero The equations x ³	(B) - 1 + 5x ² + px + q = 0 and x	(C) - 7 $x^3 + 7x^2 + px + r = 0$ have	(D) 1 two roots in common. If the third ro	ot of each w		
∞ ∞	p ² x ² + 2 pq x + q ² = 0 have: (A) no common root (B) one common root if 2 a ² + b ² = p ² + q ² (C) two common roots if 3 pq = 2 ab (D) two common roots if 3 qb = 2 ap If α , β & γ are the roots of the equation, $x^3 - x - 1 = 0$ then, $\frac{1+\alpha}{1-\alpha} + \frac{1+\beta}{1-\beta} + \frac{1+\gamma}{1-\gamma}$ has the value equal to: (A) zero (B) -1 (C) -7 (D) 1 The equations x ³ + 5x ² + px + q = 0 and x ³ + 7x ² + px + r = 0 have two roots in common. If the third root of each equation is represented by x ₁ and x ₂ respectively, then the ordered pair (x ₁ , x ₂) is: (A) (-5, -7) (B) (1, -1) (C) (-1, 1) (D) (5, 7) If α , β are roots of the equation ax ² + bx + c = 0 then the equation whose roots are $2\alpha + 3\beta$ and $3\alpha + 2\beta$ is						
E _{24.}	(A) ($-5, -7$) If α , β are roots of	(B) $(1, -1)$ the equation $ax^2 + bx$	(C) $(-1, 1)$ + c = 0 then the equatio	(D) (5, 7) n whose roots are 2α + 3β and 3α +	≥ ≥2βis		
S. S	(A) ab x ² – (a + b)		(B) ac x ² – (a + c (D) none of these	$bx + (a + c)^2 = 0$	· 2β is 2β is		
မ ဟိ25.	If coefficients of th			oots of the equation are non-real cor	mplex and တိ		
Clas	a + c < b, then (A) 4a + c > 2b	(B) 4a + c < 2b	(C) 4a + c = 2b	(D) none of these	686 0		
026. ▲	The set of possible	e values of λ for which x	$(\lambda^2 - (\lambda^2 - 5\lambda + 5)) + (2\lambda^2 - 5\lambda) + (2\lambda$	(D) none of these - $3\lambda - 4$) = 0 has roots, whose sum ar	nd product		
Чe	<i>,</i> ,				00 00		
\sim	$(A)\left(-1,\frac{5}{2}\right)$	(B) (1, 4)	$(C)\left[1,\frac{5}{2}\right]$	$(D)\left(1,\frac{5}{2}\right)$	32		
	Let conditions C_1 and C_2 be defined as follows : C_1 : $b^2 - 4ac \ge 0$, C_2 : $a_1 - b_1$, c_2 are of same sign. The roots of $ax^2 \frac{G_2}{C_2}$ + $bx + c = 0$ are real and positive, if						
site	(A) both C_1 and C_2	are satisfied	(B) only C_2 is sati	sfied	ne : (
0 OPart	+ bx + c = 0 are real and positive, if (A) both C, and C, are satisfied (C) only C, is satisfied (D) none of these Part : (B) May have more than one options correct (A) α^2 , β^2 are the roots of $x^2 - (2b - a^2) x + a^2 = 0$ (B) $\frac{1}{\alpha} \cdot \frac{1}{\beta}$ are the roots of $bx^2 + ax + 1 = 0$ (C) $\frac{\alpha}{\beta} \cdot \frac{\beta}{\alpha}$ are the roots of $bx^2 - (2b - a^2) x + b^2 = 0$ (B) $-\alpha$, $-\beta$ are the roots of $bx^2 + ax + 1 = 0$ (C) $\frac{\alpha}{\beta} \cdot \frac{\beta}{\alpha}$ are the roots of $bx^2 + (2b - a^2) x + b = 0$ (D) $-\alpha$, $-\beta$ are the roots of $bx^2 + ax - b = 0$ (C) $\frac{\alpha}{\beta} \cdot \frac{\beta}{\alpha}$ are the roots of $bx^2 + (2b - a^2) x + b = 0$ (D) $-\alpha$, $-\beta$ are the roots of $bx^2 + ax - b = 0$ (C) $\frac{\alpha}{\beta} \cdot \frac{\beta}{\alpha}$ are the roots of $bx^2 + (2b - a^2) x + b = 0$ (D) $-\alpha$, $-\beta$ are the roots of $bx^2 + ax - b = 0$ (C) $\frac{\alpha}{\beta} \cdot \frac{\beta}{\alpha}$ are the roots of $bx^2 + (2b - a^2) x + b = 0$ (D) $-\alpha$, $-\beta$ are the roots of $bx^2 + ax - b = 0$ (C) $\frac{\alpha}{\beta} \cdot \frac{\beta}{\alpha}$ are the roots of $bx^2 + (2b - a^2) x + b = 0$ (D) $-\alpha$, $-\beta$ are the roots of $bx^2 + ax - b = 0$ (B) $x^2 + x + 1$ is a factor of $ax^3 + bx^2 + cx + d = 0$, then the real root of above equation is (a, b, c, d $\in \mathbb{R}$) (A) $-d/a$ (B) d/a (C) $(b - a)/a$ (D) $(a - b)/a$ (A) 10 (B) -10 (C) 20.5 (D) -20.5 (A) 10 (B) -10 (C) 20.5 (D) -20.5 (A) $24/25$ (B) $-12/25$ (C) $-24/25$ (D) $20/25$ (A) $x^2 + a (b + c) x - a^2bc = 0$ (D) $a (b + c) x^2 + (b + c) x - abc = 0$ (A) $x^2 + a (b + c) x - a^2bc = 0$ (D) $a (b + c) x^2 + (b + c) x - abc = 0$ (C) $a (b + c) x^2 - (b + c) x + abc = 0$ (D) $a (b + c) x^2 + (b + c) x - abc = 0$ (A) $(x - 1) x^2 - 4x + 3 + 2x^2 + 3x - 5 = 0$ (b) $(x + 3) x + 2 + 2x + 3 + 1 = 0$ (a) $(x - 1) x^2 - 4x + 3 + 2x^2 + 3x - 5 = 0$ (b) $(x + 3) x + 2 + 2x + 3 + 1 = 0$ (b) $(x + 3) x + 2 + 2x + 3 + 1 = 0$ (c) $(x + 3) x + (x + 4) 2x + 5 = 0$ (c) $(x + 3) x + 2 + 2$						
≤28. ⊊	lf a, b are non-zei	o real numbers, and α ,	, β the roots of x ² + ax +	b = 0, then	pa.l		
fror	(A) α^2 , β^2 are	the roots of $x^2 - (2b - a)$	a^{2}) x + a^{2} = 0 (B) $\frac{1}{c}$	$\frac{1}{\alpha}, \frac{1}{\beta}$ are the roots of bx ² + ax + 1 =), Bhc		
age	$(\alpha) \qquad \frac{\alpha}{\beta} \qquad \beta$	the meeter of h_{12}^2 . (Ob	- ²)	0 = 1	ć. Sir		
SCK	(C) $\beta' \alpha$ are	the roots of $bx^2 + (2b - bx^2)$	$-a^{2}(x + b) = 0(D)$ -	α , $-\beta$ are the roots of $x^2 + ax - b =$	A		
С <u>29.</u>	$x^2 + x + 1$ is a fact (a, b, c, d $\in R$)	or of $ax^3 + bx^2 + cx + cx$	d = 0, then the real root	of above equation is	'a (S		
nd)	(A) - d/a	(B) d/a $(x^2 + 2x + 3) + (x^2 + 3x + 3)$	(C) $(b-a)/a$ (C) $(b^2 + 20x + 1)/a$	(D) (a – b)/a 39) – 4500, then x is equal to:	۲ariy		
۲. آلا	(A) 10	(B) – 10	(C) 20.5	(D) – 20.5	g R. –		
031. 0	$\cos \alpha$ is a root of t (A) 24/25	he equation $25x^2 + 5x^2$ (B) - 12/25	− 12 = 0, − 1 < x < 0, the (C) − 24/25	In the value of sin 2α is: (D) 20/25	uhaç		
32.	If the quadratic eq	uations, $x^2 + abx + c = 0$) and $x^2 + acx + b = 0$ have	e a common root then the equation of	ontaining ഉ		
Ó	(A) $x^2 + a(b + c)x$	$x - a^2bc = 0$	(B) $x^2 - a(b + c)$		Math		
Ш.	(C) a (b + c) x^2 – (b + c)x + abc = 0	(D) a (b + c) x ² + (<u>EXERCISE-6</u>	(b + c)x - abc = 0	ses, I		
出1. 出2.	Solve the equatio Solve the followin	n, x (x + 1) (x + 2) (x + g where $x \in R$.	3) = 120.		Class		
	(a) $(x-1) x^{2}$ (c) $ (x+3) $.	$-4x+3 +2x^{2}+3x-5$ (x+1)+ 2x+5 =0	b = 0 (b) $(x + 3) x(d) 2^{ x+2 } - x$	+2 + 2x+3 +1=0 $2^{x+1}-1 =2^{x+1}+1$	Teko Classes, Maths		
3.	If 'x' is real, show	v that, $\frac{(x-1)(x+1)(x)}{7x^2+1}$	$+ 4) (x + 6) + 25 8x + 4 \ge 0.$				

Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com

Find the value of x which satisfy inequality $\frac{x-2}{x+2}$ > $\frac{2x-3}{4x-1}$ 4.

Find the range of the expression $f(x) = \sin^2 x - \sin x + 1 \quad \forall x \in \mathbb{R}$.

Find the range of the quadratic expression $f(x) = x^2 - 2x + 3 \forall x \in [0, 2]$.

page 16 of 23 Prove that the function $y = (x^2 + x + 1)/(x^2 + 1)$ cannot have values greater than 3/2 and values smaller than 1/2 for $\forall x \in R$.

If x be real, show that
$$\frac{x^2 - 2x + 9}{x^2 + 2x + 9}$$
 lies in $\left[\frac{1}{2}, 2\right]$.

If x be real, show that $\frac{x^2 - 2x + 9}{x^2 + 2x + 9}$ lies in $\left[\frac{1}{2}, 2\right]$. For what values of k the expression $3x^2 + 2xy + y^2 + 4x + y + k$ can be resolved into two linear factors. Show that one of the roots of the equation, $ax^2 + bx + c = 0$ may be reciprocal of one of the roots of $ax^2 + bx + c = 0$ may be reciprocal of $ax^2 + bx + c = 0$ may be reciprocal of $ax^2 + bx + c = 0$ may be reciprocal of $ax^2 + bx + c = 0$. $a_1 x^2 + b_1 x + c_1 = 0$ if $(a a_1 - c c_1)^2 = (b c_1 - a b_1) (b_1 c - a_1 b)$.

Let α + i β ; α , $\beta \in R$, be a root of the equation x^3 + qx + r = 0; q, r \in R. Find a real cubic equation, independent of α and β , whose one root is 2α .

$$\begin{aligned} x_{1}^{x} + u_{1}^{x} + u_{2}^{x} + u_{3}^{x} = 0 \text{ if } (a_{1}^{x} - C_{1})^{2} = (b_{1}^{x} - a_{1})^{2} (b_{1}^{x} - a$$

page 17 of 23