1. Introduction

libtcd provides a software API for reading and writing Tide Constituent Database (TCD) files.

The TCD file format and schema are used by XTide to retrieve constituent definitions (speeds, equilibrium arguments, and node factors), harmonic constants, subordinate station offsets and associated metadata for use in generating tide predictions.

The TCD file format and schema were originally designed by Jan Depner to improve the performance of XTide and to meet additional requirements of the U.S. Naval Oceanographic Office (NAVO). They are now maintained primarily by David Flater.

The design goals for TCD included:

· Available without installing heavy external packages.

· Efficient for indexing and loading of stations.

· Compact file format.

· Translatable without loss from legacy XTide .txt and .xml files.

· Exportable to legacy .txt and .xml formats.

· Modifiable by end user using tideEditor.

· Able to detect tampering (usually, misguided attempts to edit the database in a word processor).

The TCD file format and schema and libtcd are in the public domain. They are distributed in the hope that they will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

For additional background, see Jan Depner, "Format for the Oceanographic and Atmospheric Master Library (OAML) Tide Constituent Database," rev. 2003-06-06.

2. Compiling and installing libtcd

Unix or Cygwin

The normal route:

bash-3.1$./configure

bash-3.1$ make

bash-3.1$ su

bash-3.1# make install

libtcd is packaged with the popular and portable GNU automake, so all usual GNU tricks should work. Help on configuration options can be found in the INSTALL file or obtained by entering ./configure --help.

Android

libtcd can be cross-compiled for Android using the NDK. An example script that builds libtcd (among other things) for Android on x86 or x86_64 Linux is in the current XTide distribution as scripts/Android/build.sh.

DOS + DJGPP

[Validated on DJGPP 2.05 with Long File Name (LFN) support.]

Just make -f DOS\Makefile.dj2.

Windows + Visual Studio

1. [Validated on Visual Studio Community 2015 with Update 1 under Windows 10 64-bit.]

2. Do [Windows Logo Thingy Formerly Known as Start Menu] → All Apps → Visual Studio 2015 (folder) → VS2015 x64 Native Tools Command Prompt. To prevent inexplicable file system permissions problems, right click it and run as Administrator. (Ha ha... That was a little Windows in-joke. Now that we have UAC, the only way to prevent inexplicable file system permissions problems is to use a FAT32 file system.)

3. VS\build.bat.

N.B., If Cygwin is installed, it is possible to run the original configure script and GNU make to build with Visual Studio. Refer to VS\README.txt for details.

3. Tide record (version 2.2)

This section documents the tide record schema of the Tide Constituent Database as it stands in libtcd version 2.2.

Fields designated as "header" fields are retrieved at indexing time and stored in memory for quick access. The rest are retrieved only when individual tide stations are loaded.

Type 1 records are for reference stations; type 2 records are for subordinate stations. Some fields are only encoded for one record type while others are encoded for both.

intX means signed X-bit integer. uintX means unsigned X-bit integer. TCD files are encoded with a bit-packing function that allows odd-sized fields to be stored efficiently. int varying and uint varying indicate fields whose lengths in bits are dynamically configured for each TCD file.

Floating-point numbers are encoded in the TCD file using scaled integers. An integer with a scale of X represents the real number obtained by dividing the integer by X.

Please note: All character strings stored in a TCD file use the character set ISO-8859-1.

	Record type
	TIDE_RECORD field
	TIDE_RECORD data type
	File encoding
	Encodable range
	Semantics

	all
	header.record_number
	int32
	none
	N/A
	Records in TCD file are implicitly numbered [0, N-1].

	all
	header.record_size
	uint32
	uint16
	[0, 65535]
	Length of encoded record in bytes.

	all
	header.record_type
	uint8
	uint4
	[0, 15]
	See enum TIDE_RECORD_TYPE in Section 5. Type 1 is reference station. Type 2 is subordinate station. Others are as yet undefined.

	all
	header.latitude
	float64
	int25, scale 100000
	[-167.77216, 167.77215]
	Latitude in degrees north; use [-90.00000, 90.00000]. Lat,lng of 0,0 is interpreted as NULL.

	all
	header.longitude
	float64
	int26, scale 100000
	[-335.54432, 335.54431]
	Longitude in degrees east; use [-180.00000, 180.00000]. Lat,lng of 0,0 is interpreted as NULL.

	all
	header.reference_station
	int32
	int18
	[-131072, 131071]
	Index, references record_number of reference station for type 2 records, or -1 for none.

	all
	header.tzfile
	int16
	uint10
	[0, 1023]
	Index, references table of time zone values like ":America/New_York" that control which time zone output should be rendered into. These time zone values are defined in the zoneinfo time zone database that is included with most flavors of Unix. Not to be confused with zone_offset, which actually affects the calibration of the results relative to real time. See comments for zone_offset below.

	all
	header.name
	char[90]
	0-terminated string
	Length constrained by TIDE_RECORD.
	Station name.

	all
	country
	int16
	uint9
	[0, 511]
	Index, references table of country names.

	all
	source
	char[90]
	0-terminated string
	Length constrained by TIDE_RECORD.
	Where you got the data, or "" for NULL.

	all
	restriction
	uint8
	uint4
	[0, 15]
	Index, references table of restrictions like "Public domain," "Non-commercial use only," "DoD/DoD contractors only."

	all
	comments
	char[10000]
	0-terminated string
	Length constrained by TIDE_RECORD.
	Human-readable text that is not provided to the user of a data set at the time of use but may be retrieved on demand. Use "" for NULL.

	all
	notes
	char[10000]
	0-terminated string
	Length constrained by TIDE_RECORD.
	Human-readable text that MAY be delivered to the user of a data set at the time of use. XTide will print the notes in modes where this is convenient but ignore them when it is not.

	all
	legalese
	uint8
	uint4
	[0, 15]
	Index, references table of human-readable legal notices that MUST be delivered to the user of a data set at the time of use. Use 0 for NULL.

	all
	station_id_context
	char[90]
	0-terminated string
	Length constrained by TIDE_RECORD.
	Name of the authority that has defined the Station ID, or "" for NULL.

	all
	station_id
	char[90]
	0-terminated string
	Length constrained by TIDE_RECORD.
	An identifier for a tide station, defined by the authority specified in station_id_context, or "" for NULL.

	all
	date_imported
	uint32
	uint27
	[0, 134217727]
	The date on which the data set was imported into the database, encoded Year * 10000 + Month [1, 12] * 100 + Day [1, 31], or 0 for NULL. N.B., this is not the date of creation of the TCD file, but the date on record in a tide data management package such as Harmbase.

	all
	xfields
	char[10000]
	0-terminated string
	Length constrained by TIDE_RECORD.
	Space for backward-compatible addition of expansion fields as text. Encoding:

xfields: xfield*

xfield: field-name ":" field-value "\n"

field-name: [^:\n]+

field-value: [^\n]* continuation*

continuation: "\n " field-value

When decoding field-values, the string "\n " is replaced by "\n" to unmangle multi-line values. (Yes, multi-line values remain multi-line, unlike RFC 822 headers.)

	all
	direction_units
	uint8
	uint varying
	[0, 255]
	Index, references table of units like "degrees true." This field is used to indicate the units of the direction fields.

	all
	min_direction
	int32
	uint9
	[0, 511]
	Direction of ebb current. Use [0, 359], or 361 for NULL.

	all
	max_direction
	int32
	uint9
	[0, 511]
	Direction of flood current. Use [0, 359], or 361 for NULL.

	all
	level_units
	uint8
	uint varying
	[0, 255]
	Index, references table of units like "feet," "meters," "knots," "knots^2." This field indicates the units of the datum and the amplitudes in type 1 records and the units of the level_add fields in type 2 records.*

	1
	datum_offset
	float32
	int28, scale 10000
	[-13421.7728, 13421.7727]
	The datum (Z0).

	1
	datum
	int16
	uint7
	[0, 127]
	Index, references table of datum kinds like "Mean Lower Low Water." For currents, set to 0 (value should be ignored).

	1
	zone_offset
	int32
	int13
	[-4096, 4095]
	The standard time to which epochs are adjusted, a.k.a. the meridian, in hours and minutes east of UTC, encoded Hours * 100 + Minutes. zone_offset affects the calibration of the predictions relative to real time. Not to be confused with tzfile, which only affects which time zone the results are rendered into. For example, adjusting zone_offset will change high tide from 5:00 EST to 4:00 EST, while adjusting tzfile will change it from 5:00 EST to 4:00 CST (actually the same "real time" in two different time zones). Technically, zone_offset could be done away with by specifying that all data should be calibrated with UTC; however, this would make it more difficult to identify data sets with source data by visual inspection (all of the epochs would be different).

	1
	expiration_date
	uint32
	uint27
	[0, 134217727]
	Use-until date for data set, encoded Year * 10000 + Month [1, 12] * 100 + Day [1, 31], or 0 for NULL.

	1
	months_on_station
	uint16
	uint10
	[0, 1023]
	Number of months in time series used to derive harmonic constants, or 0 for NULL.

	1
	last_date_on_station
	uint32
	uint27
	[0, 134217727]
	Last date in time series used to derive harmonic constants, encoded Year * 10000 + Month [1, 12] * 100 + Day [1, 31], or 0 for NULL.

	1
	confidence
	uint8
	uint4
	[0, 15]
	A meaningless indicator of data quality, generally initialized to 10. (Jan wants to keep this.)

	1
	amplitude
	float32[255]
	uint19, scale 10000 (each)
	[0.0000, 52.4287]
	Amplitudes of constituents. Constituents with amplitude less than AMPLITUDE_EPSILON are not encoded.

	1
	epoch
	float32[255]
	uint16, scale 100 (each)
	[0.00, 655.35]
	Epochs (phases) of constituents, in degrees. Use [0.00, 359.99]. Constituents with amplitude less than AMPLITUDE_EPSILON are not encoded.

	2
	min_time_add
	int32
	int13
	[-4096, 4095]
	The time adjustment for Low Tide or Max Ebb events, encoded Hours * 100 + Minutes. 0 and NULL are equivalent (no adjustment).** ***

	2
	min_level_add
	float32
	int17, scale 1000
	[-65.536, 65.535]
	Additive adjustment for Low Tide or Max Ebb events.*** 0 and NULL are equivalent (no adjustment).

	2
	min_level_multiply
	float32
	uint16, scale 1000
	[0.000, 65.535]
	Ratio for Low Tide or Max Ebb events, or 0 for NULL (equivalent to 1, no adjustment).***

	2
	max_time_add
	int32
	int13
	[-4096, 4095]
	The time adjustment for High Tide or Max Flood events, encoded Hours * 100 + Minutes. 0 and NULL are equivalent (no adjustment).** ***

	2
	max_level_add
	float32
	int17, scale 1000
	[-65.536, 65.535]
	Additive adjustment for High Tide or Max Flood events.*** 0 and NULL are equivalent (no adjustment).

	2
	max_level_multiply
	float32
	uint16, scale 1000
	[0.000, 65.535]
	Ratio for High Tide or Max Flood events, or 0 for NULL (equivalent to 1, no adjustment).***

	2
	flood_begins
	int32
	int13
	[-4096, 4095]
	The time adjustment for Slack Water or Min Flood before Max Flood, encoded Hours * 100 + Minutes, or 2560 for NULL.**

	2
	ebb_begins
	int32
	int13
	[-4096, 4095]
	The time adjustment for Slack Water or Min Ebb before Max Ebb, encoded Hours * 100 + Minutes, or 2560 for NULL.**

* In case of units = knots^2 (hydraulic currents), it should be understood that only the amplitudes of the constants are such as to give results in knots squared. The datum and any level_add corrections are in plain knots; i.e., the square root of the amplitude is taken before the datum and any corrections are added in.

** Time corrections DO NOT incorporate adjustments to Local Standard Time when the reference and sub station are in different time zones. Time corrections are specified as if all calculations and predictions were done in UTC. Time zone differences are handled by adjusting the tzfile field. This differs from current NOS practice, in which LST adjustments are incorporated. When this "time warp" is undone for NOS sub stations that use reference stations across the International Date Line, time corrections in excess of 24 hours can result.

*** See http://www.flaterco.com/xtide/mincurrents.html regarding usage for Min Flood and Min Ebb events.

4. Public database header (version 2.2)

This section describes the "public portion" of the database header structure, which is declared in tcd.h and made available to applications via the get_tide_db_header operation.

	char version[90];
	libtcd version string.

	uint32 major_rev;
	libtcd major revision number.

	uint32 minor_rev;
	libtcd minor revision number.

	char last_modified[90];
	Last modification of TCD file.

	uint32 number_of_records;
	Number of records in TCD file.

	int32 start_year;
	Year corresponding to 0 index in speed, equilibrium argument, and node factor arrays.

	uint32 number_of_years;
	Number of years in speed, equilibrium argument, and node factor arrays.

	uint32 constituents;
	Number of constituents.

	uint32 level_unit_types;
	Number of entries in table used by get_level_units.

	uint32 dir_unit_types;
	Number of entries in table used by get_dir_units.

	uint32 restriction_types;
	Number of entries in table used by get_restriction.

	uint32 datum_types;
	Number of entries in table used by get_datum.

	uint32 countries;
	Number of entries in table used by get_country.

	uint32 tzfiles;
	Number of entries in table used by get_tzfile.

	uint32 legaleses;
	Number of entries in table used by get_legalese.

	uint32 pedigree_types;
	For backward compatibility. Ignore.

The encodings of constituent speeds, equilibrium arguments, and node factors are as follows.

	Name
	Program data type
	File encoding
	Encodable range
	Semantics

	Speed
	float64
	uint varying (max 31), scale 10000000, with offset
	[0.0000000, 214.7483647]*
	Speed of constituent in degrees per hour.

	Equilibrium argument
	float32
	uint varying (max 31), scale 100, with offset
	[0.00, bignum]
	Equilibrium argument in degrees. Use [0.00, 359.99].

	Node factor
	float32
	uint varying (max 31), scale 10000, with offset
	[0.0000, bignum]
	Node factor.

The offsets are adjustments so that the minimum value in the data set is represented with a zero and the maximum by max−offset. For node factors, this can save bits. However, for speeds and equilibrium arguments they are a needless complication. Speeds in excess of the limit quoted above will overflow the integers before the offset is taken into account, and the minimum equilibrium argument is always zero anyway.

* The highest speed in the IHO list of constituents as of 2003-07-31 is 203.904625 degrees/hour for 6MS14.

5. libtcd 2.2.7 API

The API is provided in the C language and is made available by including the header file tcd.h.

	#define NV_BYTE int8_t

#define NV_INT16 int16_t

#define NV_INT32 int32_t

#define NV_INT64 int64_t

#define NV_U_BYTE uint8_t

#define NV_U_INT16 uint16_t

#define NV_U_INT32 uint32_t

#define NV_U_INT64 uint64_t

#define NV_BOOL unsigned char

#define NV_CHAR char

#define NV_U_CHAR unsigned char

#define NV_FLOAT32 float

#define NV_FLOAT64 double
	This section may appear slightly different from one platform to the next. The build process for libtcd generates #includes and data type definitions as needed to provide integer types of specific sizes.

	#define NVFalse 0

#define NVTrue 1

#define NV_U_INT32_MAX 4294967295

#define NV_INT32_MAX 2147483647

#define NV_U_INT16_MAX 65535

#define NV_INT16_MAX 32767
	Defined values.

	#define LIBTCD_VERSION "PFM Software - libtcd v2.2.7 - 2015-08-09"

#define LIBTCD_MAJOR_REV 2

#define LIBTCD_MINOR_REV 2
	These defines describe the version of libtcd to which the header file belongs.

	/* One-line character strings */

#define ONELINER_LENGTH 90

/* Verbose character strings */

#define MONOLOGUE_LENGTH 10000

#define MAX_CONSTITUENTS 255
	These defines describe the sizes of the fixed-size arrays in the tide record.

	typedef struct ... DB_HEADER_PUBLIC;

typedef struct ... TIDE_STATION_HEADER;

typedef struct ... TIDE_RECORD;
	The structure for the database header, and the header and main part of the tide record.

	enum TIDE_RECORD_TYPE {REFERENCE_STATION=1, SUBORDINATE_STATION=2};
	Syntactic sugar for values of header.record_type.

	#define NULLSLACKOFFSET 0xA00
	Magic constant used to indicate NULL in the flood_begins and ebb_begins fields of the tide record.

	#define AMPLITUDE_EPSILON 0.00005
	This is the level below which an amplitude rounds to zero.

	void dump_tide_record (const TIDE_RECORD *rec);
	Prints a low-level dump of the tide record to stderr.

	NV_CHAR *get_country (NV_INT32 num);

NV_CHAR *get_tzfile (NV_INT32 num);

NV_CHAR *get_level_units (NV_INT32 num);

NV_CHAR *get_dir_units (NV_INT32 num);

NV_CHAR *get_restriction (NV_INT32 num);

NV_CHAR *get_datum (NV_INT32 num);

NV_CHAR *get_legalese (NV_INT32 num);
	For fields in the tide record that are indices into tables of character string values, these functions are used to retrieve the character string value corresponding to a particular index. The value "Unknown" is returned when no translation exists. The return value is a pointer into static memory.

	NV_CHAR *get_constituent (NV_INT32 num);
	Get the name of the constituent corresponding to index num [0,constituents-1]. The return value is a pointer into static memory.

	NV_CHAR *get_station (NV_INT32 num);
	Get the name of the station whose record_number is num [0,number_of_records-1]. The return value is a pointer into static memory.

	NV_FLOAT64 get_speed (NV_INT32 num);
	Returns the speed of the constituent indicated by num [0,constituents-1].

	NV_FLOAT32 get_equilibrium (NV_INT32 num, NV_INT32 year);

NV_FLOAT32 get_node_factor (NV_INT32 num, NV_INT32 year);
	Get the equilibrium argument and node factor for the constituent indicated by num [0,constituents-1], for the year start_year+year.

	NV_FLOAT32 *get_equilibriums (NV_INT32 num);

NV_FLOAT32 *get_node_factors (NV_INT32 num);
	Get all available equilibrium arguments and node factors for the constituent indicated by num [0,constituents-1]. The return value is a pointer into static memory which is an array of number_of_years floats, corresponding to the years start_year through start_year+number_of_years-1.

	NV_INT32 get_time (const NV_CHAR *string);

NV_CHAR *ret_time (NV_INT32 time);

NV_CHAR *ret_time_neat (NV_INT32 time);
	Convert between character strings of the form "[+-]HH:MM" and the encoding Hours * 100 + Minutes. ret_time pads the hours with a leading zero when less than 10; ret_time_neat omits the leading zero and omits the sign when the value is 0:00. Returned pointers point into static memory.

	NV_CHAR *ret_date (NV_U_INT32 date);
	Convert the encoding Year * 10000 + Month [1, 12] * 100 + Day [1, 31] to a character string of the form "YYYY-MM-DD", or "NULL" if the value is zero. The returned pointer points into static memory. (The compact form, without hyphens, is obtainable just by printing the integer.)

	NV_INT32 search_station (const NV_CHAR *string);
	When invoked multiple times with the same string, returns record numbers of all stations that have that string anywhere in the station name. This search is case insensitive. When no more records are found it returns -1.

	NV_INT32 find_station (const NV_CHAR *name);

NV_INT32 find_tzfile (const NV_CHAR *name);

NV_INT32 find_country (const NV_CHAR *name);

NV_INT32 find_level_units (const NV_CHAR *name);

NV_INT32 find_dir_units (const NV_CHAR *name);

NV_INT32 find_restriction (const NV_CHAR *name);

NV_INT32 find_datum (const NV_CHAR *name);

NV_INT32 find_constituent (const NV_CHAR *name);

NV_INT32 find_legalese (const NV_CHAR *name);
	Inverses of the corresponding get_ operations. Return -1 for not found.

	NV_INT32 add_restriction (const NV_CHAR *name, DB_HEADER_PUBLIC *db);

NV_INT32 add_tzfile (const NV_CHAR *name, DB_HEADER_PUBLIC *db);

NV_INT32 add_country (const NV_CHAR *name, DB_HEADER_PUBLIC *db);

NV_INT32 add_datum (const NV_CHAR *name, DB_HEADER_PUBLIC *db);

NV_INT32 add_legalese (const NV_CHAR *name, DB_HEADER_PUBLIC *db);
	Add the value of name to the corresponding lookup table and return the index of the new value. If db is not NULL, the database header struct pointed to will be updated to reflect the changes. The maximum length of name is restricted by the corresponding size definition in tide_db_default.h (restriction 30, tzfile 30, country 50, datum 70, legalese 70, including the terminating null).

	NV_INT32 find_or_add_restriction (const NV_CHAR *name, DB_HEADER_PUBLIC *db);

NV_INT32 find_or_add_tzfile (const NV_CHAR *name, DB_HEADER_PUBLIC *db);

NV_INT32 find_or_add_country (const NV_CHAR *name, DB_HEADER_PUBLIC *db);

NV_INT32 find_or_add_datum (const NV_CHAR *name, DB_HEADER_PUBLIC *db);

NV_INT32 find_or_add_legalese (const NV_CHAR *name, DB_HEADER_PUBLIC *db);
	Add the value of name to the corresponding lookup table if and only if it is not already present. Return the index of the value. If db is not NULL, the database header struct pointed to will be updated to reflect the changes. The maximum length of name is restricted by the corresponding size definition in tide_db_default.h (restriction 30, tzfile 30, country 50, datum 70, legalese 70, including the terminating null).

	void set_speed (NV_INT32 num, NV_FLOAT64 value);
	Set the speed for the constituent corresponding to index num [0,constituents-1].

	void set_equilibrium (NV_INT32 num, NV_INT32 year, NV_FLOAT32 value);

void set_node_factor (NV_INT32 num, NV_INT32 year, NV_FLOAT32 value);
	Set the equilibrium argument and node factor for the constituent corresponding to index num [0,constituents-1], for the year start_year+year.

	NV_BOOL open_tide_db (const NV_CHAR *file);
	Opens the specified TCD file. If a different database is already open, it will be closed. libtcd maintains considerable internal state and can only handle one open database at a time. Returns false if the open failed.

	void close_tide_db ();
	Closes the open database.

	NV_BOOL create_tide_db (const NV_CHAR *file, NV_U_INT32 constituents,

 NV_CHAR const * const constituent[], const NV_FLOAT64 *speed,

 NV_INT32 start_year, NV_U_INT32 num_years,

 NV_FLOAT32 const * const equilibrium[],

 NV_FLOAT32 const * const node_factor[]);
	Creates a TCD file with the supplied constituents and no tide stations. Returns false if creation failed. The database is left in an open state.

	DB_HEADER_PUBLIC get_tide_db_header ();
	Returns a copy of the database header for the open database.

	NV_BOOL get_partial_tide_record (NV_INT32 num, TIDE_STATION_HEADER *rec);
	Gets "header" portion of tide record for the station whose record_number is num [0,number_of_records-1] and writes it into rec. Returns false if num is out of range. num is preserved in the static variable current_index.

	NV_INT32 get_next_partial_tide_record (TIDE_STATION_HEADER *rec);
	Invokes get_partial_tide_record for current_index+1. Returns the record number or -1 for failure.

	NV_INT32 get_nearest_partial_tide_record (NV_FLOAT64 lat, NV_FLOAT64 lon,

 TIDE_STATION_HEADER *rec);
	Invokes get_partial_tide_record for a station that appears closest to the specified lat and lon in the Cylindrical Equidistant projection. Returns the record number or -1 for failure.

	NV_INT32 read_tide_record (NV_INT32 num, TIDE_RECORD *rec);
	Gets tide record for the station whose record_number is num [0,number_of_records-1] and writes it into rec. num is preserved in the static variable current_record. Returns num, or -1 if num is out of range.

	NV_INT32 read_next_tide_record (TIDE_RECORD *rec);
	Invokes read_tide_record for current_record+1. Returns the record number or -1 for failure.

	NV_BOOL add_tide_record (TIDE_RECORD *rec, DB_HEADER_PUBLIC *db);

#ifdef COMPAT114

/* Omission of db parameter was a bug. */

NV_BOOL update_tide_record (NV_INT32 num, TIDE_RECORD *rec);

#else

NV_BOOL update_tide_record (NV_INT32 num, TIDE_RECORD *rec, DB_HEADER_PUBLIC *db);

#endif

NV_BOOL delete_tide_record (NV_INT32 num, DB_HEADER_PUBLIC *db);
	Add a new record, update an existing record, or delete an existing record. If the deleted record is a reference station, all dependent subordinate stations will also be deleted. Add and update return false if the new record is invalid; delete and update return false if the specified num is invalid or there is insufficient memory available. If db is not NULL, the database header struct pointed to will be updated to reflect the changes.

	NV_BOOL infer_constituents (TIDE_RECORD *rec);
	Computes inferred constituents when M2, S2, K1, and O1 are given and fills in the remaining unfilled constituents. The inferred constituents are developed or decided based on Article 230 of "Manual of Harmonic Analysis and Prediction of Tides," Paul Schureman, C&GS Special Publication No. 98, October 1971. Returns false if M2, S2, K1, or O1 is missing.

