MEG623: Finite Element Methods in Engineering Mechanics

Instructor: Sumit Basu

Email: sbasu@iitk.ac.in

Phone office: (0512 259) 7506
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Experiments versus simulations?

Qs. Sophisticated experiments can tell everything. Why do we need the FE method?

1: Experimental results are subject to interpretation. Interpretations are as good as the
competence of the experimenter.

2. Experiments, especially sophisticated ones, can be expensive
3. There are regimes of mechanical material behaviour that experiments cannot probe.

4. Generality of behaviour is often not apparent from experiments.

Experiments and simulations are like two legs of a human being. You need both to walk and it does not
matter which you use first!




A short history of FEA

1943: Richard Courant, a mathematician described a piecewise polynomial
solution for the torsion problem of a shaft of arbitrary cross section. Even holes.
The early ideas of FEA date back to a 1922 book

by Hurwitz and Courant.

His work was not noticed by engineers
and the procedure was impractical at the time due to the lack of digital computers.

1888-1972: b in Lublintz Germany
Student of Hilbert and Minkowski in Gottingen Germany
Ph.D in 1910 under Hilbert’s supervision.

1934: moved to New York University, founded the Courant Institute




In the 1950s: work in the aircraft industry introduced FE to practicing engineers.
A classic paper described FE work that was prompted by a need to analyze
delta wings, which are too short for beam theory to be reliable.

1960: The name "finite element" was coined by structural engineer Ray Clough
of the University of California

Professor emeritus of Structural Engineering at UC Berkley
Ph.D from MIT

Well known earthquake engineer

By 1963 the mathematical validity of FE was recognized and the
method was expanded from its structural beginnings to include heat transfer,
groundwater flow, magnetic fields, and other areas.

Large general-purpose FE software began to appear in the 1970s.
By the late 1980s the software was available on microcomputers,
complete with color graphics and pre- and post-processors.

By the mid 1990s roughly 40,000 papers and books about

FE and its applications had been published.



Books

-Concepts and applications of Finite element analysis: Cook, Malkus and
Plesha, John Wiley and Sons, 2003.

*T.R. Chandrupatla and A.D. Belegundu, Introduction to Finite Elements in
Engineering, Second Edition, Prentice-Hall, 1997.

0. C. Zienkiewicz and R. L. Taylor, The Finite element method, vols 1 and
2, Butterworth Heinemann, 2000

*Klaus-Jurgen Bathe, Finite Element Procedures (Part 1-2), Prentice Hall,
1995.

Daryl Logan, A First Course in Finite Element Method, Thomson, India
Edition



Solving an engineering problem

Mathematical model: an
equation of motion

= f(tw)

fort >0 and u=wug att =20

Use

(Z—?)i ~ [u(t::i ::(tz‘)]

= Ujp1] = Uu; + Atf(u;,t;) Euler's explicit scheme or first order Runge Kutta
scheme



A special case, a pendulum:
9‘+%9 —0

9(0) = 6p and (9(0) = Q.
Solution to this system is

Vo _.
0(t) = 70 sin A\t + 0 cos At
Write a MATLAB code to
where A = ,/g/I integrate the discretised
equations of motion with different
timesteps. Use I=1, g=10, initial

Alternately, velocity=0, position=45°
Compare with the exact solution.

6 = v
b o= —\%0
=
0ir1 = 0;+ Aty
Vi1 = ’Uz'—At)\QQZ'



At = L

dT /dx + (h/k)T = 0

d2T —
kAL 4 hP(Too —T) =0 ~T*=0 Teo

dx T = Tp —’

Using 1o = O arbitrarily

<d2T> N (Tz'—l — 2T; + Tz'—l—l)
da? ) . (Ax)?

1

~Ti_1+ [2+ (mAz)?]T; — Tjpq =

where m = /hP/kA



—To + DTy —T5
—11 + D15 — 13

ooooooooo

—InN_1+ DTN —Tn41
Additionally,
—Tx = O
Ax T k N
— TN—l—l = (1

30° C, Ty =300°C, D=2,

Solve the above tridiagonal system for T =

h/k = 2, diameter

d=0.02 mand L = 0.05 m. Use 4-10 nodes
and plot the temperature versus x for all cases.




At = L

Alternately, the FEM idea. dT/diE + (h/k‘)T — 0
At £ =0 Too
T =T, —*
%.. 1+ 1
¢ ¢ O ¢ ¢ O o o ¢ o
|
Azx
We can write
d h
L=—+— .
dT * k T“\\\\Ti—l—l
And approximate 7' in each element as: )
T¢(x)
THz) = N1(O)Ty + Na(O)T»
T?(z) = N2()T2+ Na(¢)T3 (O
Determine T; on the basis of a weak form: }_Z'

(i4+1)
> [ weaeyic = o



A Typical FE procedure

‘ L = 1000 mm ‘

t =10 mm

Plate with a hole.

200 GPa
0.3



Step 1: Idealise
Plate thickness constant, loading is in the x-y plane =» Problem simplifies to 2-D
*Step 2: Create Geometry
*Step 3: Select Proper Elements
*Step 4: Mesh
*Step 5: Assign Material Properties
*Step 6: Apply boundary conditions
*Step 7: Solve
*Step 8: Visualise Results and post-process

Step 9: Critically assess results




A simple example: another look at FEM F]_

A 2-d truss with elements that can F2 <
only withstand tension.

S
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= ké o
Here,
L= AF
lo
and



Alternately, we can use the principle of mini-
mum potential energy:

In=0
09
In case of a spring:
In=9 (11«52 _ F6> —0
00 06 \2

For a uniaxial bar

2
[ = 1AE (é) — F9o
2 L



2 degrees of freedom (dof) per node

Direction of stretch
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ndof : no. of dofs/node

nnod: no. of
nodes/element
((Fp1 ) kEk 0O —k O (uq ]
F
} Tyl L O 0 O O ) v |
F:CQ —k O k O U
\ FyQ y O O O O L ’U2 )
Local force vector (ndof X nnod,1) }Iaeement vector (ndof X nnod, 1)
T f=Kpu (1)

Local stiffness matrix in local coordinate
system (ndof X nnod, ndof X nnod)



uo = U7cosf + Ugsind
vo = —U7sinf 4 Ugcos?.
u> | cosf siné Uz l
vo [\ —sin® cosé Usg |
uq cosf sind 0 0 (
vi | _ | —sinf cosé 0 0 <
ur [ 0 0 cosf sind
VD 0 O —sinf cosf ) |
u=TU
Similarly
f=TF

(1)
(2)

a2
T

N

Us

X
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Transformation matrix
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Elem no Local dof Destination
1 1 1

2 2

3 9

4 10
2 1 3

2 4

3 9

4 10




After assembling elements 1 and 2

(K}, K, 0 0 0000 K]i3 K]}L
K3 K5>» 0 0 00O00O Kiq K34

0O 0 K, K2, 00 0 0 K%, K%,

0O O K3 K5, 0000 K3, K5,

O 0O 0O 0 0000O 0 0

O 0O O 0 00O00O 0 0

O 0O 0O 0 0000O 0 0

O 0O 0 0 0000O 0 0
K}, K3, K3, K3, 0 0 0 O K%3—|—K23 K%4—|—K§4
\ K31 Kgo K73 Kip 0 0 0 0 Kgz+Kzz Kip+ K




X+X X+X X X X X
X+X X+X X X X X
X X X+X+X | X+X+X X X X X
X X X+X+X | X+X+X X X X X
X X X+X X+X X X
X X X+X X+X X X
X+X X+X X+X X+X X+X+X | X+X+X | X X
X+X X+X X+X X+X X+X+X | X+X+X | X X
X X X X X X X+X+X | X+X+X
X X X X X X X+X+X | X+X+X

Stiffness matrix is symmetric, diagonally dominant, sparse and banded.




Sparsity pattern
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Matlab function 1: Reading data from an input file

To be judged on generality and correctness

Read in nodal coordinates and element connectivities

Coordinates can be in 2d or 3d
Elements can have at most 20 nodes attached to them
Data will be written in comma separated form

User may want to read in either both coordinates and connectivity or either.

coord

1,3.25,4.32,8.91 nodenum, X,y,z
2,6.56,7.11,11.32

conn

1,1,1,3,52,65 elemnum,matnum,n1,n2,n3,....
2,2,6,9,8,4



function [X;icon,nelm,nnode,nperelem,neltype, nmat,ndof] = ass1_groupn (fname)

% read data from a file fname

Description of variables

X: global coordinates of the nodes, x, y, and z

icon: element connectivities

nelm: total number of elements

nnode: total number of nodes

nperelem: number of nodes per element for all elements
neltype: element type for all elements

nmat: material type for all elements

ndof: number of degrees of freedom/node for all elements

Submit by 13/1/2006



function [destination] = ass2_groupn (X,icon,nelm,nnode,nperelem,neltype,ndof)

% create a destination array for the mesh data read in

Description of variables

destination(1:nelem,:): contains destination in the global stiffness matrix of all local
degrees of freedom in an element

Submit by 18/1/2006

To be judged on correctness and speed



F = KU «——— Global displacement vector

N

Global force vector Global stiffness matrix

Notes:
Global stiffness matrix is singular i.e. it has zero eigenvalues

Hence it cannot be inverted!



Boundary conditions

Force specified: eg. dof 9 and 10 in our example

Displacement specified: eg. dof 1,2,and 6 in our example

Both forces and displacements cannot be specified at the same dof.
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Naive approach for imposing displacement boundary conditions

[ L Kip» K1z Kis Kis Kig K17 Kig Kig Kijo )

Kg1 Kgp Kgz Kgg Kgs Kgg Kgr Kgg Kgg Kgio
Kg1 Kogp Koz Kogg4 Kogs Kgg Kg7 Kogg Koo Ko 10
\ K101 K102 K103 Kioa Ki0s Kioe K107 Kios Kioo Kio.10 /

L=a very large number. Also replace the corresponding dofs in the rhs vector by
L Xspecified displacement value

Ki12Up + ... K110U10 _

Ui = Lé; — 7

01



The “proper” way of imposing displacement constraints

a1z + b1y +c1z = f1
a2x +boy +coz = fo
azr + b3y +c3z2 = f3

Suppose y = § (known).

aix +c1z = f1—010

a3zxr +c3z = f3—0b30
ai 0 x J1
O 1 O y = o p—90
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Suppose dof k is specified

Traspose negative of the specified value X kth column to the right

> —01 ¢

Replace k th row and columns in the stiffness matrix to zero

Replace K(k,k) by 1
Set F(k)=specified value

Repeat above steps for all specified dofs.

> —06 <




Assignment 3: form local stiffness matrix for a truss element e oriented at an arbitrary angle to the
global x-axis

function[stiff_loc_truss]=ass3_groupn(X,icon,e,spring_constant)

% programme to calculate stiffness matrix of a 2-noded truss element in the global X-Y system
Form stiffness in local coordinates

Find transformation matrix

Find stiff_loc_truss in global coordinates




Add to your data file reading programme: ass1_groupn.m

coor
1,2,0.0,0.0
2,2,1.0,0.0
3,2,1.0,1.0
4,2,0.0,1.0
5,2,0.0,2.0
6,2,1.0,2.0
7,2,2.0,1.0
conn
1,1,1,2,3,4
2,1,4,3,6,5
3,2,3,7
4,2,2,7

boun

1,1,0.0
1,2,0.0
2,2,0.0
4,1,0.0
5,1,0.0
force

5,2,1.0
6,2,1.0
7,2,3.0



Inputting specified dofs

Keyword: ‘bound’

Format: node no, dof no, value

Array: idisp(1:nnode,maxdof), specdisp(1:nnode,maxdof) _

Inputting specified forces

Keyword: ‘force’
Format: node no, dof no., value

Array: iforce(1:nnode,maxdof), specforce(1:nnode,maxdof)

Assignment 5: Modify ass1_groupn.m accordingly

function
[X,icon,nelm,nnode,nperelem,neltype,nmat,ndof,idisp,specdisp,iforce,specforce] =
ass1_groupn (fname)

% read data from a file fname




Assignment 6: Assemble stiffness matrix for element e

function[stiffness_dummy] = ass4_groupn(icon,destination,stiff_loc_truss,e)

% programme to assemble local stiffness matrix of element e onto the global stiffness

Add stiffness of e to the global stiffness

Assignment 7: the main programme
[X,icon,nelm,nnode,nperelem,neltype,nmat,ndof,idisp,specdisp,iforce,specforce] =
ass1_groupn (fname);
destination = ass2_groupn (X,icon,nelm,nnode,nperelem,neltype,ndof);
spring_constant=1;
for e=1:nelm
stiff_loc_truss=ass3_groupn(X,icon,e,spring_constant);
stiffness_dummy = ass4 _groupn(icon,destination,stiff_loc_truss,e);
stiffness_global=stiffness_global+stiffness_dummy;
end




Assignment 8:

function[modified_siffness_matrix, modified_rhs]=
ass6_groupn(icon,nelm,nnode,nperelem,ndof,idisp,specdisp,iforce,specforce,stiffmat)

% function to modify stiffness matrix and rhs vector according to specified forces and
% dofs
for i=1,no. of nodes

for j=1,number of dofs for node i

modify stiffness matrix and rhs vector to accommodate the specified values of the dofs and
forces.

end

end




Solving the equations
F=KU

U=K1F

K: requires huge storage, largest component of a FE code

Strategies:
Use sparsity: K_sparse=sparse(K);

Matlab command U=inv(K_sparse)*F;



Direct methods: Gauss elimination

18 -6 -6 O
-6 12 0 -6
-6 0 12 -6
O -6 -6 12
18 -6 -6 O
O 10 -2 -6
O —2 10 -6
O -6 -6 12
18 -6 -6 O
O 10 -2 -6
O O 96 72
O O —-r2 8.4
18 -6 -6 O
O 10 -2 -6
O O 96 —-7.2
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\

9

-~

S

Original problem




Back substitution:

S
|

45/3

Us = (444 7.2U,)/9.6 = 15.83

Us = (204 2Usz+ 6U,)/10 = 14.17
(60 4+ 6U, + 6U3)/18 = 13.33

S
|

Suggestion:

To clearly get a feel of how Gauss elimination works, try and write this function in
Matlab:

function[U] = gauss_elimination(K,F)
Where U=inv(K)*F;

Can you utilise the diagonality and sparsity of K to speed up the solution?




L U Decomposition

18 -6 -6 O
-6 12 0 -6
-6 0 12 -6
O -6 -6 12

We can generate a lower triangular matrix

A=

1 0 0 O
g | -3 1 0 O
— | -1/3 1/5 1 0

0 —-3/5 =-3/4 0
just like we generated the upper triangular one
18 -6 —6 0
O 10 -2 -6
O O 96 -—-7.2
O O 0 3

And can show that

L =

A=LU
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LUx = b

First solve
Ly=25>b

where

1 i—1

Yi = bi — > lijy;

21 j=1

T hen solve

Ux =y

so that by usual back-substitution

1 N
v = |yi— Y uwj
i j=i+1
Regular Gauss elimination (or LU decompo-
sition) takes ~ N3 operations, while solving

solving LUx = b takes ~ N2 operations



How does the solution procedure work?

1. Multiply first row of K by Kp1/K11

2. Subtract first row from the second

3. Similarly subtract (K21/K11)F1 from F>

4. Repeat procedures with K;1/Kq11. Uj is
eliminated!

5. Repeat above with the factor Ky, /Knn for
row n with men—+ 1, N

6. Backsubstitute



The FEM scheme of things




Stiffness matrix from basics!

d*w
1 o x FI——
¢C E g dx?
\_/ "
At ©z =
01 =60>=0,=0 At o —

p(z) =0
1 3,1, 5
60156 -+ 502513 + C3x 4 C4
d
—w =0= 03 =
dx
dw
— =0, w=0=
dx
—2C5,Cq = —=CorL?



dx2 El
dM
T =V
dx
L mtv_y (1)
de3
At =0
d3 F F
2= = (C1 = 1
dx3 ET El
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i i 12E1
Kii1=—= =




Intuitive but not easy

12/L°? —6/L —12/L? —6/L
P 4 6/L 2
L= 12/L2 6/L
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For each element

K

1/2 SEIT
L _ L3

|

12 6(L/2) —~12 6(L/2)
6L/2 4(L/2)2 —6(L/2) 2(L/2)?
—12  —6(L/2) 12 —6(L/2)
6(L/2) 2(L/2)? —6(L/2) 4(L/2)?
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The assembled global stiffness

[ 12 6(L/2) —12 6(L/2) 0 0 \
6L/2 4(L/2)2 —6(L/2) 2(L/2)2 0 0
., 8Bl 12 —6(L/2) 12412 —6(L/2) —6(L/2) —12 6(L/2)
CT L3 | 6(L/2) 2(L/2)% —6(L/2) 4 6(L/2) 4(L/2)%2+4(L/2)% —6(L/2) 2(L/2)2
0 0 —12 —6(L/2) 12 —6(L/2)
\ O 0 6(L/2) 2(L/2)2 —6(L/2) 4(L/2)? )

The global force vector

o o

o oo

The global displacement vector

( wl — O )\
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Finally we solve

S8EI

/(1 0
0 4(L/2)?
0 —6(L/2)
0 2(L/2)2
0 0

\ 0 0

0
—6(L/2)
12412

—6(L/2) +6(L/2) 4(L/2)*+4(L/2)?

0
6(L/2)

0
2(L/2)2
—6(L/2) —6(L/2)

0
2(L/2)2

6(L/2)
2(L/2)2

oOroOoOoOoOo

4(L/2)?

|
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Beams in 2-d

[ AB/L
0
0
—AE/L
0

\ 0

0
12E1/L3
6FEI/L?
0

—12EI/L3 —6EI/L?

—6EI/L?

The local stiffness for any element (say 2)

0
6EI/L?
AEI/L
0

—4EI/L

—AE/L
0
0
AE/L
0
0

0
—12E1/L3
—6EI/L?
0
12E1/L3
6EI/L?

6EI/L?
2EI/L
0
—6EI/L?

)

—2FI/L )



Transformation Matrix for a 2-d beam element

uq cos¢p sing O Uq
Uy =1 v1 =1 —sing cos¢ O Vi p=tU
01 0 0 1 ©
_(t O _
u—<o t)U—TU

Ko=T'K,T



How do we solve a beam problem with
distributed loads?

wL/2

wL/4 wl/4
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Introduction to the theory of elasticity

Small strain, linear elasticity.
Generalised Hooke's law

_ 0
0ij = Cijki€kl T 0
In case of static equilibrium, the stress tensor
satisfies

o

3 + b, = 0O From balance of Linear momentum
x.
J

o;; = o4 From balance of angular momentum

Using =z, vy, z, the independent components of
stress are O'gpgj,ayy,a-zz,awy,ayz,azx



Cijkl has the following symmetries:

Cijkt = Clikl
Ciikt = Cijik
Cijki = Chiij

Number of independent elastic constants = 21
Number of elastic constants when there exists one plane of symmetry = 13

Number of elastic constants when there exists three mutually perpendicular planes of
symmetry =9

Number of independent elastic constants for an Isotropic material = 2



Oxx ( Crrzx C:m:yy Crrzz
Oyy Cyyyy Cyyzz
) Ozz - Crzzz
Ozy
Oyz
[ Tzx ) k
o = Cle

For an isotropic elastic material

Ca:a::cy
nyﬂﬂy
sza:'y
Cmygcy

Cijkl = A0;j0p + (505, + 6419)
A=vE/(l+v)(1—-2v) and u= E/2(1 4+ v)

Ca:a:yz
nyyz
szyz
nyyz
Cyzyz

Crrza
nyzx
Crzzx
C:Uyzac
Cyzz:c

CZ%ZCC




Craze = nyyy = Chzzz = A+ 2u
Caca:yy — nyzz = Chrozax = A
Ca:yxy — Cyzyz = Cizzz = 1
Thus

[(A+2u A A 00 0)
A A+2u X 000
C— A A A+24 000
— 0 0 0O 14 00
0 0 0O 0 u O
\ 0 0 0 00 u|



Tensor transformation

0ij = Liglj1ok1
where [;; = cos(x;, ;)
Alternately,

o = LoL”!

For one plane of symmetry (x1 — o)

023 = —023
031 = —031
€23 = —€23
€31 = —€31

X1 !X1




011 = 011 =

011 = C1111€11+C11220€020+C1133€33+2C1110€12—2C1123€23—2C1131€31

But

011 = C1111€11+C1120€00+C71133€331+2C1112€121+2C1123€03+2C1131€31
Thus

Ci1203 = O

Ci1131 = O
Similarly

Coo03 = O

Cop31 = O

C3323 = O

C3331 = O



Thus for a laminated composite for example,

Note for pure shear,

Also, when all shear strains are zero

012 = Crgzyczx

Principal axes of stress and strain are not the
same.

( Oxx \ ( Crzra Ca:a:yy Crzzz Cxxa:y 0 0
Oyy Cyyyy Cyyzz Cyyzy O 0
< Ozz \ — Crzzz szxy 0 0
Oxy Cryzy 0 0
Oyz Cyzyz Cyzzaz
| Ozz | K Crzzx )




Strain displacement relationships

eij
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Plane strain
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Crzrxz€rx + Cxwyyeyy + chxxyeajy
Cyyzaexa + Cyyyyeyy + 2Cyyayeay

C:ch;c:cezcx ‘|‘ Ca:yyyeyy ‘|‘ QCazymnyy

E

T 1+0)(A - 2v)

1—v
%

0

v
1—v
0

0
(1—2v)/2

Cyy
2€xy



Plane stress

ozxz = Crzzx€zz + Cxazyyeyy + Crzzz€z2 + chzvacyeacy
oyy = Cyyazezz + Cyyyyeyy + Cyyzzezz + 20y ayeay
Oxy — Cazymazexa: + Ca:yyyeyy + Cazyzzezz + QC:I:y:EyG:By
Oxrx E 1 v O €Erx
O'yy — 1 _ 1/2 v 1 O Eyy



Axisymmetry
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Axisymmetry

Geometry as well as loading should be axisymmetric!

906
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. (1—-v)FE
(A +v)(1-2v)

%

e O OO

€00
€zz




Plane strain

Libbbbibiv byl

AxisymriHetric



Axisymmetric geometry, Non-
axisymmetric loading




Digression: A little bit of variational calculus

J[u] = /bF(w,u,u/)dw

a
Boundary conditions

u(a) = ug,u(b) = uq



Perturbations that honour the end
— u(x conditions of the essential
u(m) y(:r;) T en(az) (A) boundary conditions are called
uo admissible perturbations.
n(a) =n®) =0 = = a

J[y‘l‘ﬂ?]:/ F[x,y-l-en(w),y’-l-en]da;?

Let J[y + en] = ¢(e) —
Since ¢(¢) is minimum at e =0 .

¢/(O) =0 ——,—L{/—]—' -----------------------------------------------
¢'(e) =

a

+F(x,y + en,y' + en)n(x)

b d
/ [Fu(w, y+en,y +en’) — %Fu/(w, y~+en,y 4+ en) | n(z)dr



b d
0=¢(©0) = [ |Fue,u.9) = - Fyla,,9) | n(@)da

=

d

Fy(x,y,y') — —F,(x,y,y) = O | Euler equation
dx Y
as n(x) is arbitrary.
Examples: J[u] = [°(1 4 «/2)dz = min, u(a) =

O,u(b) =1
=

2u" =0
Again,
/2
Ifu] = /O (W2 — u?]dz, u(0) = 0,u(w/2) =1

IS minimised by the curve v = sin x.



Euler equation for several independent variables

J[u] =//GF(x,y,u,ux,uy)da?dy

Prescribed properties:

u(w,y), uz(z,y), uy(z,y), uzz (T, y), uzy(x, y), uyy(x,y) continuous in G

u(x,y) prescribed on C

u(z,y) = v(z,y) + en(z,y)

n(z,y) =0o0n C
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o(e) = Jv+ en] =

do .
20 =0
i.e

Funinty= | [ 2 (8) i [ (2 ) e
// Ve Tz GLaY G oz \ouv, ) YY) Jg oz \ouv, ) T

it [ (2 et [ (35
e avx"”x G 9z \u,) N G oz \ov,) T

\

This is zero on the boundary




Finally,

8F_8(8F)_8 oF —0
Oov  Ox \Ovg Oy \ Ovy B

Necessary condition for a function v(x,y) minimising or maximising the
functional J




Example :

I} = [ (2 +uf)av

and u = f(x,y) on 9D.

Application of the Euler equation yields

Uzzr + Uyy = O

Laplace equation

the variational statement

Solving Laplace equation with given boundary conditions is equivalent to minimising




Weak anchoring

J[’U] — //GF(mayaU,U:vavy)dCde‘F/C’Y(U)ds
In this case, n(x,y) &= 0 on C. Therefore,

[t =5 (o) 5 () v

/ OF OF 0O~y
Thus,

8’033 T ny(‘?vy T ou
8F_8<8F>_8 OF — 0
Ov  Ox \Ovg oy 8vy B
oF oF

47—
8”033—'_ y@vy—l_@u

]ndSZO




First variation

Let
en = ou

be the variation of .
du represents and admissible perturbation of w.

For a functional F(x,u,u’), due to an admissi-
ble variation in v we have

AF = F(z,u+end +en) — F(z,u,u)
OF OF  (en)282?F n

o E”a_u+ n@u’+ 2 Ou?

(en)(en’) 8°F | (en')20°F

2 ouou’ T 2 Ou'?

Therefore, the first variation of F'is
8F

+ ... — F(z,u,u)



Note:
First variation

OF
OF = —9§ —5
ou Ut ou’ W

and, Total derivative

OF OF OF
dF = “—dz + ——du+ ——d
9z T B T 5 w

= x IS not varied during a perturbation from
u + du.



Variations follow the laws of differentiation:
O0(F1 £ F>) = 6F1 £6F>
6(F1F>) = O0F1F>+ F16F>
S(F)" = n(F)" 16F

and also, for G = G(z,y, 2, u, v, w, Uz, Uy, - . .)

where eg. 6,G is

5uG—g—G5u+ Gcsua;—l—a—Gcsu + ...

U Ouy Uy




Thus, if

I[u] = /abF(:U,u,u/)d:U,

we have

b /OF F

0l = / (8—511, —+ a—5u’) dx
a \Ou ou’

or

b

b
0l = / <8F — d 8F> dudx + 8—F5u
a \Ou dxou ou’

a

= Euler equation can be written as

0l =0



Natural and Essential boundary conditions

Consider

Ifu] = /b F(x,u,u)dxr — Qqu(a) — Qpu(b)

a
The necessary condition to attain a minimum

IS

/b [aF d <8F>} J +<8F ) b
_ N
a " ou dx \ou 8u’n

—Qan(a)—Qpn(b) =0

a




The above will be satisfied if

1. Euler equation is satisfied

2. n(a) =0, n(b) =0

3. n(a) =0 ,0F/0u/|, — Qp = 0O

4. n(b) =0 ,—AF /0|y — Qq = O

5. —0F/ou|q — Qq = 0, OF/0u/|, — Qp, =0



Example: Strong form to weak form

Let us consider a differential equation in one
variable (from Reddy, pp58)

—%[ (x)Z—Z] — f(z) forO<az<lL
with
d

Devise the weighted residual statement

o[ ) o

0 dx dx
sO that

o (o o)) = [ (o ) o =




Thus

L/ dwdu du du
/ (a—— — wf) dx — (wa—nx> — (wa—ng;> =

MNw,u] = /OL (ad—wd—u—wf) de —w(L)Qr =20

dx dx

_

—~—

Weak/Variational form
corresponding to the deq

If

and

L
[(w) = /O wfdz + w(L)Qy,



We have
Nw,u] = B(w,u) —l(w) =0

Replace w by the variation in w, i.e du, so that

B(éu,u) —1(6u) =0

Under certian restricted forms of B(w,v) we
can have

B(§u, ) = %5[3@, 0]

eg. in the case at hand

L déud 1 L dud
B(ou,u) = / a_u_u = —4 a—u—udaz
0 dx dx 2 JO dxdx

and

L
[(bu) =6 [/O wfdx + u(L)QL]



Summary of the variational statement: Min-
imise functional I[u] such that

0N =0 = B(du,u) — I1(du)
for

§°M = B(du,du) > 0, for du # O



Generalised forms of the 1d case

A=Lu+b=0

Linear, differential operator

Self adjointness implies that

/V ¢T£7dV = /V "/Tﬁ'gbd\/ + boundary terms

Self adjointness allows

1
M= /V liuTﬁu + uTb] dV + boundary terms



Example (from Zienkiewicz and Taylor)

Ve¢+cp+Q=0

c and (@) are functions of position only.

02 02
[, _ — e b s
52 + 992 + ¢, Q
The operator is self adjoint as
02¢p  9%¢
— 4+ —=3dV
/Vw {83}2 T 8y2}
82¢ O¢ O O
/VwaéBQ 8Vw(9ajnaj V Ox Ox
. 0 Oy 0P Oy
Similarl / TV = Y neds — [ £29% v
Y V¢8x2 6>V¢8:t:naj V Oz Ox

Thus,

/V WV2pdV = /V #V21pdV + boundary terms



Thus the variational principle corresponsding
to this equation becomes:

B 92 a%
n_/v{—¢[ +70+ ¢]+@¢}
or, applying Gauss law,

= G 3 (5 e e

dV +boundary terms




Alternately, once we know that a variational
principle exists:

/Vw[v2¢+cqs+@} dV =0

leads to
Oowdep = Owoo H 9¢ B
=
ow O ow 0
B(w,¢) = /V (a—za—i + a_Za_j —+ cwqﬁ) dxdx

[(w) = /V wQdzxdy + jgv wqds
=

L[ (3



Another example (from Reddy, p69)

Equations governing bending of a Timoshenko
beam
d dw
S (@ o) Here = a

d doy dw

—— | D—= S| — = 0
dac( da:)—l_ (dac_l_(bm)

S shear stiffness, D bending stiffness, w trans-

verse deflection, Cr foundation modulus, ¢, ro-
tation

d? d

d 42 ) L is self adjoint and linear



Instead of using the formula, it is better to
approach in the following manner (now that
we know that a variational principle exists)

fol o] v dfu = o
[l L (o) s sa]e =

0 dx dx
which yields
(B (2 40) e
(@[3 (G o)), +mO[s (G +er)] =0
b [P+ (g + o)) e
~) [P (o) [p%2] =0
x le=L dr lx=0



Boundary conditions:

w(0) = 6:(0) = 0,[5 (52 + x|

=

d
=y, [Dﬁ]
dx =1L

r=1L

v1(0) =v2(0) =0

Combining into a single expression

B((v1,v2), (w, ¢z)) — l(v1,v2) =

()5 (2 o)+ 204

L
~ /O v1gdzvi (L) Fo — va(L)YMg = 0

Thus

M(w, ¢z) = B((w, ¢z), (w,aﬁx)) — l(w, ¢z) =
/O <dw+¢x) _|_D<dq5x) +wa2]

dx
_ /O wqgdr + w(L)Fy — ¢ (L) My




Principle of minimum potential energy ow

O'a . : ——
“J 862']‘

We assume the existence of W

N= [ wWav — /bude /tuZdS
Internal energy

n_/de /budV t . udsS.

Additionally, u = 4 on Iy, \ \

Potential of the loads

Thus, first variation of 'l vanishes, i.e.

o =20

Finding a displacement field satisfying the boundary conditions is equivalent to
minimising the above variational statement, |.e making its first variation go to zero.



For an elastic system,

Nn= /V {%Uijeij -~ Eiui} dVv — /I_t tiudS — ) Fu;
with
u; = u;,0u; =0 on [y
Moreover, assuming isotropy
035 = 2p€ij + Adjj€kk
Thus, [1=0 =

0€;: — bidu; v AV — t;ou;dS =0
/V {Uz] €15 i uz} - 10Uy



In linear elasticity, we deal with functionals of
the form
1

N = EB(w,u) — l(w)
eg.
B(w,u) = /V {Cijklwk,lui,j} dV

I (w /B- AV /f- S
( ) v Wy + - 1 Ws

B(u,v) is called a ‘bilinear form’ having the
general form

/V {p(@)u-w—+ q(x)Vu- - Vw}dV

We have already seen in cases with one inde-
pendent variable that bilinear forms obey

1
B(bu,u) = §5B(u, u)



Summary of variational principles

A variational statement is a functional I'l of the
form

M[w] =/VF(.cc,u, Yu)dV on V

with v = u on part of I = 9V.
Minimising a functional is equivalent to finding
u such that

sM =0,

which is same as solving the corresponding Eu-
ler equations.
We are particularly interested in functionals of
the form
1

Nu] = 2 B(u,u) — 1(u)
as the potential energy of an elastic body (as
well as many other problems in physics) has
this form.



It can be shown that this form is equivalent to
an equation of the type

Lu+b=0

where L is a linear, self adjoint operator.




General schemes for minimising functionals of the form [1 — %B(w, u) — l(w)

Rayleigh-Ritz scheme:

N
¢"(x) = Y cipi(x) + b0
1

j:

N

B(¢s, > cidj+ ¢o) = (i)

j=1
Linearity of B leads to
N

> B(¢i, ¢)c; = U(¢;) — B(i, ¢0)

=1
or

N
2 ij€j =
or

Ke=F



Alternately,

1 N N N
n=>°B ({ > b+ ¢o} : { cjpj + qﬁo}) —1( ) cjojt+¢o)
j=1 j=1 j=1
Minimising:
orll

=0 i€[l,N
9 i € [1,N]

Note that for a scalar function in one variable

B(u,v) = /ab {p(ac)uv + q(ac)d—Ud—v} dx

dx dx
and

b
[(w) = / wfdz 4+ w(a)Qa + w(b)g,

Leads to the same equations

N
> Kijej = F
j=1



An example of the application of the
Rayleigh Ritz technique

7///(/%
v
v
v

L1 _ /du\? L
N = / —F (—) Adx — / ucxdx | Bar of ¢/s A, modulus E loaded
0 2 \dzx 0 by a body force cx where ¢ has

Also, u = 0 at x = 0. units of force/area
Differential equation corresponding to the prob-
lem is

O'gj,x"_% = Q0 or AEU)Q;Q;‘I‘C% =0

Exact solution

. C
- BAE

U (3L%z — 23)



AsSsume,

u=a1m+a2x2—|—a3x3—|—...

First try: use just u = ajx

AEL L3
= a% — C—al
2 3

dM/day yields a1 = ¢L?/3AE. Thus

cL? cL?
U = T, 0= ——
3AF 3A




Second try: 2 term solution, i.e use 0l1/0a; =
0 and 0N /dap =0

1 L aq _CL2 4
AEL(L 4L2/3>{a2}_ﬁ{3L}

This gives
cL
(7Lz — 3z7)
12AE
Using u = a1z + asa? + a3:1:3 gives
cL? 0 C
a == , a = , qa _— —
DY Vo 3T T GAE

i.e the correct solution

This is the Rayleigh-Ritz technique where the problem is reduced to that of
determining a few constant coefficients.




Weighted residual techniques

Again (in a 1-d example) assume for a differ-
ential equation

LO—b=20
a solution of the form

o' = do+ 3 cj6;
J7J

j=1
such that the residual is

R=L¢"—b#0
Then the weighted residual is

/V YiR(x,c;)de =0

where v; are weight functions



In general, for a equation of the form
Lu—b=20
assume
N
uh = Z cju; + ug
J=1
we have

/V ;- R(x,c;)dV =0
As the operator L is linear,

Lu = ciLu; + Lug

and thus,
N
j=1
= Kec=F

K;j = /V Wb, - Lu;dV, F; = /V W - [b— LugldV

[/V V; - LudV|c= /V Y, - [b— LugldV



P, #= u; Petrov-Galerkin scheme
Y; = u; Galerkin scheme
P, = d(x — x;) Collocation scheme

¥, = Lu; Least square scheme



Weighted Residual techniques: an example

d?u

2 __
with «(0) = 0,4'(1) = 1.
Assume
u =37 cjoj + ¢o
so that

¢;(0) = 0,¢0(0) =0

¢o(1) = 1,4;(1) =0
Assume ¢g =a + bx = ¢g(x) = x
P1=a+bxr+cx = ¢1(x) = x2(2 — x)
> = a + cx? + dx3, = ¢o(z) = 22 (1 — 2/3x)



Thus

R(x) = (2—2x—|—w2)—|—02(—2—|—4x—az2—|—§aﬁ3) —p+a3

1. Petrov-Galerkin: Let ¢¥; = z,9» = z2
= f&aszaf; = 0, folacsza: =0 = ul =
1.302z — 0.173z2 — 0.0147x3

2. Galerkin: ¢; = ¢; = u" = 1.2892—0.1398z2—
0.0032523

3. Least Squares: ); = OR/0c¢; = u* = 1.26x—
0.08z2 — 0.00332523

4. Collocation: R(1/3) = 0,R(2/3) =0 =
u = 1.362 — 0.1322 — 0.0034223



The general way for minimising the potential energy

nzfﬁmw—/b4mv—/tu%n
V Vv S
Additionally, u = wu on [y

-~

Uj

u; + €n;

u; = u; + Ou; «— A variation in the displacement

~ 851%
J

oW = 0;;0€;;
=

5n=/ w&dV—/b&dV—/tddS:O
VUzg €ij v Uy gl Uy



/ (5eT0'dV=/ b-5udV—|—/ t.SudS
Vv V S

Virtual work equation




A 1-d problem with exact solution

X

L
W(L) = _p92

T =0
A Pg
d
€Cr — EO':C — E—u
dx

or = pgxr + C1

2
pPgx Chix
— + — 4+ C
b 2F E 2

Atz =0, u=0,=Cr=0
At x = —-L, 0, = 0= (1 = pgL

2
pgrs | pglxz
w@) = Sp T




Piecewise linear approximation: the assumed
displacement mgthod

A Uq

«—u(x) = a1 + arx
U2 up | _ (1 x4 al
L ur [\ 1 zo ao
U= Aa
Us

N
—v— Us  Shape function matrix /

W _ 0 1)4U = BU

dx /
Strain displacement matrix



2-d domain, triangular elements

Linear triangle, 3 nodes/element, 2
dofs/node

{ uz (,y) }
uy(z,y)

N
(@
(@R
o
= O
8 O
< O
N—
S Q
= W




uq ( 1l z1 y1 O O O \ (a1 )
V1 O 0 O 1 z1 w1 ao
) U | 1l zo yo O 0O O ) a3 >
Vo O 0O O 1 zo yo b1
U3 1l z3 y3 O 0O O bo
. U3 \0001x3y3)Kb3)
T hus,
1l «x 0
u(@,y) = (o 001 4
U = Aa
1l «x O O
u(@,y) = (o 001 4

Shape functions



Oy 9

€Exrx /53 ox

€= Sy (= 8—;8 = g
¢ ou Uy %

e L 8yx + or oy

Strain-displacement matrix



The Virtual work equation reads

/56T0'dV — /b-éudV+/t-5udS
Vv V S

| ou'B'CBUW = | su'N"b+ /. 5ul N"tds
KU = fp+ fs
Where
K; = ” BTCcBav
fi = / NTbdv
f, = VeNTth

Strains are constant within an element: Constant strain triangle (CST)



Quadratic traingle (Linear strain triangle)

w(z,y) = a1+ asx + azy + agz® + aszy + agy?
v(z,y) = a7+ agz + agy + a10z” + a117y + a10y”
€Exx = a2+ 2a4T + a5y
€yy = ag+ai1i1x+ 2a12y

(a3 + ag) + (a5 + 2a109)x + (2a6 + a11)y

N
Q)
8
<

|



Interpolation and shape functions

For a field variable ¢

¢(z,y) = N,

= N; = 1 at dof ¢ and O elsewhere.
Definition: C™ continuity = derivatives upto
the mth are interelement continuous

qb—(xQ_x w—x1>{§;

P o —T1 T — Xq

Pq

CY interpolation

}

The intepolation functions are same as the shape functions we got for the 1-d example.




Quadratic interpolation in 1-d

N /T\

1 3

P

(z2 — z)(xz3 — )

M= (2~ 21)(ea a1

1 —x)(x3 —x
N2 = (zop —21) (23 — 22)
N (z1 —x)(z2 — )

T (21— r3) (T2 — 3)



General interpolation formula in 1-d

N, = (ml_x)(wQ_x>(mk—l_m)(xk+1_$)(Zli‘n—aj‘)
T @1 — o) @ —a) - (o1 — @) @pp s — 28) - (20— )



Bilinear rectangle (through interpolation formulas)

Ny = (a—a;);:—y)
[N = 3200
= - (a4 )b+
A/2'b N3 = 4ab
< > N _(a—a:)(b—|—y)
2a 4 4ab

T hus, directly

u = Nqiuq + Nouo + N3uz + Ngug

and

v = Nqv1 + Novo 4+ N3v3z + Ngvg

This is equivalent to assuming a displacement variation with <1 x y xy> terms




Assignment 9: Assemble stiffness matrix for CST element e

function[stiffness_dummy] = ass9_groupn(icon,destination,E,nu,e)

% programme to assemble local stiffness matrix of CST element e onto the global stiffness
E=1000;nu=0.3; % units N and m

Formulate stiffness matrix

Add stiffness of e to the global stiffness

Assignment 10: Assemble stiffness matrix for LST element e

function[stiffness_dummy] = ass9_groupn(icon,destination,E,nu,e)
% programme to assemble local stiffness matrix of LST element e onto the global stiffness
E=1000;nu=0.3; % units N and m

Formulate stiffness matrix

Add stiffness of e to the global stiffness

To be judged on correctness. This element routine will be plugged into your main
programme and checked on a real problem.



Completeness, compatibility etc....

Requirements of a FE model
*Monotonic convergence

«Completeness = Element must represent rigid body modes + constant strain states

g

Element must rotate and translate
as a rigid body.




K¢ = Ao

The solution consisits of eigen-pairs

(A, @1) .- (AN, &N)

Characteristic equation is
p(A\) = det(K — A1)

For distinct eigenvalues, ¢; and ¢, are orthog-
onal.

Ko, \i®;
K¢j = Ai#;

Thus,
¢ Ko = Nio; o,
O/ Kp; = \dl ¢,

As we have distinct eigenvalues (A\;—X;) o] ¢, =
0= ¢, =0



T . .
o; ¢j — 5z’j orthonormality

Thus,
K® = ®A Generalised eigenproblem
where,
A = diag(\;)
and
Q= [¢p1 o ... ON]
T herefore,

PTKd = A



Rigid body modes for a plane stress quad

Flexural modes, 0.495, 0.495

_7

Stretch mode,
0.769

Shear mode, 0.769

Uniform
extension mode
1.43



Strains in pure bending
0 0
Oy bY 0
2a
When a Q4 element is bent, the element strains
are

€Er —

Oc1y ey =0 gy = Oc1x
2q Y e 2a

Energy stored are
_ My o Meibe

> e 2
If Qel = Qb then Mel > Mb-

ex:—

Uy

Parasitic shear makes the Q4 element unusable in bending




Parasitic shear gets worse with (a/b) ratio. This condition is known as shear locking.

For completeness we require:
Rigid body modes to be represented (in 2-d two translations and one rotation)
Constant strain states must be represented (in 2-d two normal and one shear strain)

Interelement continuity of displacements must be satisfied.




For a Q4 element

a1 + agx + a3y + aqzy
= a5+ aex + ary + agwy

A

u

Elements are compatible. For completeness

ap 0 | ==
as #*= O
ag = —a3z3#*0

Constant strain states are represented.




More on convergence

1
M= 5UTKU _U'R
leading to
KU =R

Thus M= —JUTR while = JUTR

Also K is positive definite if there are no zero
eigenvalues

Sinceld >0

Starting from a trial function and always adding more terms to it (equivalentto h > 0in
FEM) will always make the potential go towards a lower value.

Decrease in the total potential implies increase in the strain energy. Thus predicted
stiffness is always higher than actual in FE analysis.




Spatially anisotropic elements depend on coordinate €T Y

orientations. 5 5
- Ty vy

23 22 Y - y2 y3

Rate of convergence depends on the completeness

of the polynomial used.

Pascal’s triangle

An element of size h with a complete displace-
ment expansion of order ¢ can represent dis-
placement variations of that order exactly.

For arbitraray displacements error ~ O(hct1)
Stress error ~ O(hct1-1)



|Isoparametric element formulation

Nodal field variable interpolated as:

¢ = N1¢p1 + Nogo + ...
while coordinates are interpolated as
r = Niz1+ Nozo + ...

If N; = N; = isoparametric
If degree(N;) < degree(N;) = subparametric
If degree(N;) > degree(N;) = superparametric

First proposed by: B.M. Irons, Engineering applications of numerical integration in
stiffness methods, AIAA Journal, v4, n11, 1966, 2035-2037.



The Q4 element revisited

_ )z > i Nz
e={o} = { &N

_<N10N20N3

0 Ny 0 N

= NX
Under iso-parametric mapping

u=NU

0 Ns

0 N O

0 Ny

)

T
Y1
T2
Y2
T3
Y3
T4
Ya




Physical element

Parent element



Calculation of gradients in 2-d

() 0()ox  0() 0oy

or ~ owor | ayor
20 _ 200r | 900y
0s Ox Os oy Os
Thus

4 Q A @ @ 4 Q )
or or Or ox

< >y — < >
rel oz Oy o

L Os Js Os . Oy )

)

J Jacobian matrix

> i Nirxi 225 Ni vy
J =
> i NG sy > Ni sy



( a ) ( 8 )
Ox 1 or
X s = J < ’
9 0
. Oy . Os J

J =detJ = Jy1Joo — Jo1J12

r=J1
Now,
1
Ny = Z(l—r)(l—s)
1

Ny = L4 -5)

Follows from the Q4 element done
earlier. Put a=b=1.

N5 = Z(+n1+5)

Ne = ;A-nA+5)



ez = g = M11usr+T1ous =110 Nirui)+T 1200 N, su;)
; ;

Thus

/ M11N1,+T12N1 5

0

0

(01 N1+ T20N1 6

11 N2, + T 12N 5

0

0

(21 N2+ [2o0Np 5

\ (01N1,+T20N1s T11N1,+T12N1 s T21No,+T20N2s TT11Np, +T120Np g




T 1 1 T
KLZ/ B CBtd:r;dyZ/l/lB CBtJdrds

Stiffness matrix needs to be integrated numerically.

Se /_\
Only N3 and N4 are non-zero and the edge TTTTT
maps to t = 1. E

,f_/ N3 O Ng O tx
t7 Js.\ 0 Nz 0 Ny ty

. N3 O Ng O tidr — tpdy
- Se O N3 0 MNg tndx — tidy

Now, on s =1,
ox

dr = —dr = Jy1dr,dy = Jy1odr
or




. N3 O Ng O tx

:/1 N3 O Ng O ttJ11 — thd1o b
1 O N3z 0 NMNg tnJ11 — ttJ1o

Assignment 11: Add body force contribution to the force vector

Step 1: Modify data input, create bforce vector bforce(1:nelm)
conn
elemnum,matnum,ni,n2,n3,....,bodyforc(1),bodyforce(2)

Step 2: Modify main programme
[X,icon,nelm,nnode,nperelem,neltype,nmat,ndof,idisp,specdisp,iforce,specforce,bforce] =
ass1_groupn (fname);
destination = ass2_groupn (X,icon,nelm,nnode,nperelem,neltype,ndof);
for e=1:nelm
stiff loc=form local stiffness matrix;
stiffness_dummy = ass4 groupn(icon,destination,stiff_loc truss,e);
stiffness_global=stiffness_global+stiffness_dummy;
form nodal bosy force vector N*bodyforce(2) for e
assemble bodyforce
end




Numerical integration: Gauss quadrature-1d

I = /:12 f(x)dz

Substitute x = 0.5(1—7)x140.5(147r)x>.

= /_11 o(r)dr

Simplest approx (one point) =
I = ¢(0) %2

Exact for a straight line

In general —

N gauss

1
I=/_1¢dr2 Z: qub(rz)

Sampllng points between -1 and 1
Weights



The idea behind a quadrature scheme....

A polynomial passing through n points ¢(r;)
Y(r) =lip(r1) + log(ra) + ...
where ZJ(TZ) = 529 Since at r;, gb(?“z) = w(Ti),
d(r) = (r) + P(r)(Bo + B1r + Bor? +...)

where

P(r)=(r—ry)(r—1r2)...

T herefore

1 1 1 .
/_1qb(r)dr = quj/_lzjdr + Zﬁjf_lrﬂp(r)dr
Now for k=0,1,2,3,...(n — 1)

1 k
/ 1P(fr)r dr=20



Thus forn =2
1
/1(r—7‘1)(r—r2)dr
1
/1(r—r1)(r—r2)rdr = 0

Solving we get 1 = —1/v/3 and r» = 1/4/3
Also,

0

W, = / Lidr 3 =1,2,.

For n = 2,
L r—r
Wy = / Zdr =1
17“1—7“2
1 r—7p
Wy = / “dr =1
17“2—7“1



Gauss quadrature: sample points and weights

Sampling points weights
0 2
0.57735, 1
-0.57735 1
0.77459, 0.5555
-0.77459 0.5555
0 0.8888
0.86114 0.34785
-0.86114 0.34785
0.33998 0.65214
-0.33998 0.65214




Example:

2
¢ = ag+ ay1r + aor —|—a3r3

Exact integral

1 ' d 2 2
—/1gb r = G,O—I—gaz

One point quadrature gives
I = 2ag
Two point quadrature gives (with p = 1/4/3)

I = 1.O(a0—a1p—|—a2p2—a3p3)—|—1.O(ao—|—a1p—|—a2p2—|—a3p3) — exact value

Important rule: n point Gauss quadrature integrates a polynomial of order 2n-1 exactly




Gl in 2-d
We have
T 1 1 T
KL:/ B C’BtdazdyZ/l/lB CBtJdrds

Now in 2-d rectangular domains

1 1
I = /_lf_lgb(r, s)drds ~ %:ZWinqb(m?“j)
J r=—1//3

For the Q4 element, 2X2 quadrature is required

r=1/V3

s=1//3

5= —1/\/§




Assignment 12: Formulate the stiffness matrix for an iso-parametric 4 noded
quadrilateral element

E=1000; nu=0.3

norder=order of gauss quadrature

w(1:norder)=weights

samp(1:norder)=sampling points

locstiff[8,8]=0;

Loop over the number of gauss points lint= 1,ngauss(=norderXnorder)
get weight(lint), r(lint), s(lint) i.e the weights and sampling point coords
form shape function matrix at the sampling point lint
form shape function derivatives wrt r and s at r(lint), s(lint)
formation of the jacobian matrix at r(lint), s(lint)
form jacobian inverse Gamma
form det(jacob) at r(lint), s(lint) [Note 2-d jacobian is 2X2]
form B matrix in physical space using shape function derivatives and Gamma
locstiff=locstiff + weight(lint) B**C*B*det(jacob)

end




Term paper topics

Group 1: Model the problem of a line load on a half space. Compare with the theoretical
solution of stresses near the load point. Refine the mesh to see if you converge to the exact
solution.

Group 2: Model a hard elliptical inclusion in a softer matrix. The matrix is infinitely large
compared to the inclusion and is subjected to uniaxial stresses applied at infinity. Find out
the theoretical solution to this problem and check how the strains inside the inclusion vary
with its ellipticity. Change the Poisson’s ratio of the matrix and the inclusion and see how the
stress fields in the matrix and inclusion change.

Group 3: Model a sharp crack in a infinite body. Find out the theoretical solution to this
problem. The stresses at the crack tip should be infinite. Compare with the theoretical
solution and see whether with mesh refinement you can get close to the theoretical solution.

Group 4: Model the problem of a series of periodically placed holes in a thin film. This
problem has already been discussed. Discuss further with Dr Ghatak.

Group 5: Model the bending of a functionally graded beam where the gradation is
exponential in the depth direction. Compare with the solution for a homogeneous beam to
see the differences due to the property variation.

Group 6: Model an internally pressurised hollow cylinder in plane strain. Start with a thick
cylinder and using theoretical results show how, as you move towards a thin cylinder the
solution changes.



Group 7: Analyse using you own code a deep beam using a structured mesh composed of
linear strain and constant strain triangles. Check all stresses with theoretical estimates.
Check convergence with mesh refinement.

Group 8: Verify the Euler buckling load of a slender beam using Finite Elements. Your
solutions may break down at the point of buckling. How good are your estimates compared
to the theoretical solutions?

Group 9: Analyse using your own code a internally pressurised plane strain thick cylinder
and check the results with theoretical estimates.

Group 10: Model a infinite wedge with tractions on one of the boundaries. Verify the stress
solutions near the tip of the wedge with theoretical estimates. What happens in the case of
a right angled wedge subject to shear tractions on one edge?

Group 11: A beam is rotating at a fixed angular velocity about its geometric center. Find the
stress distribution in the beam and compare with theoretical results.

Group 12: Solve the stresses for a 90 degree curved beam of inner radius a and outer
radius b subjected to a normal sinusoidal loading Asin(A 1). Find solutions to the problem as
A varies from 0 to 2. Comment on the solution at A=1;

Group 13: Solve the problem of a heavy beam on a elastic foundation. Compare your
results with theoretical solutions for different beam aspect ratios. Investigate when the
theoretical solution breaks down.

Group 14: An infinite plate subjected to a remote tensile load contains an elliptical hole.
Using a FEM simulation determine the stress concentration at the tip of the ellipse as a
function of the ellipticity of the hole. Compare with theoretical results.



Step by step guide to formulating a problem in FEA

Eg. Heat conduction in a 2-d domain

Q1. What are the governing equations and boundary conditions for the problem?
EVT(2,y,t) + Q(z,y,t) — cpT' =0

Assumptions: Steady state =T =0
Boundary conditions on the surfaces:

T S]. — Te
T T T
on s, Ox 0y S,

qs 1S either specified or convective b.c

ds — h(TO — TS)



Q2. What is the variable to be solved for?

T(x,y) = a scalar quantity > 1 dof per node.

Q8. Does a variational statement exist?
Check for self-adjointness - if self adjoint write variational principle

In this case self adjointness exists and hence

1 aT\2  [(oT\?
I‘I=/—k (—) oL dV—/T ds
V2 ox +<8y> So sds

is the variational principle. Thus the correct T(x,y) makes the
above a minimum and also satisfies all the boundary conditions.

If variational principle does not exist, use a weighted residual method (we will learn
about it later)



Q.4 Variational principle exists. Now what?

Use Virtual work principle

o =20

or Rayleigh-Ritz method of ‘assumed displace-
ments’

In this case, if we take the virtual work route

56T 96T
5I‘I:/kT 7.2 Vav_ [ §Tae.dS = 0
1% {’x(‘?aﬁ T ’yay} So ds

If we use the Rayleigh Ritz principle, we should start the discretisation right away. Will
deal with that route later..



Q5. What element to choose?
Tricky. Eigenvalue analysis may help. Experience may too.

Let us choose a 4 noded iso-p quad in this case....Thus
T'(r,s) = N1(r,s)T1+No(r, s)Tr+N3(r, s)T3+Na(r, s)Ty
Also,

x = Njixq1+ Noxo+ ...
y = Niy1+ Noyo+ ...

Following procedures learnt earlier

T = N6
Toaw | _
(71 = 5o
0T,z | _
(-1 = pu



Now get the local stiffness matrix:

5T 5T
T LI T ya— =601 BT Bo
ox oy
Also,
6Tqs = 60T NThNO — 66 N hTy
Thus

K; = k/VBTBdV



What if we used the Rayleigh Ritz technique?

Suppose we use a 3-noded triangle. Then with

a triangle
T(z,y) = ag + a1z + any
Thus
oT
= a
ox 1
oT
~ = a
Oy 2
Ne




0 = Aa

T(z,y) =(1 = y)A~'6

faT\
Oz 010\ ,_1
[ (31 0)a
L Oy )

Thus first term in 1

0 0 Ty
kl AT 10 (8 (1) ?)A‘ldv T5

So,
orll
oT;

=0



Define geometry
Mesh geometry
Loop over elements
Form local stiffness
Form surface force vector if required
Assemble stiffness
Assemble forces
end
Apply essential boundary conditions
Solve

Post process results



Method of weighted residuals

pde
Lu—f=0
Approximate solution
Lu—f=R
The best approximation is the one that gives

/wiRzO i=1,...n
v

;

weights



Example: beam bending

Governing equation

Boundary conditions at the ends

FEM approximation

w1
. 0.1
w(x) = N ¢ » = NU
w2
\ 022 /
312 223 2z2 g3
Moo= 1=ty M=r-m+s
312 223 2 23
N = 273 MT T T




Galerkin weighted residual scheme:

L

L ( L dN;
’  dN; L d2N

dN; L L d2N

LT
KL=/O BTEIBdz
where
B :N, Tx

Thus after assembly

KU =R



Example 2: Heat transfer in 2-d

In V

0 0
ox oy
OoOn S
nekzl, w + nykyl y —q =0
Discretisation

1
T=(N1y No ..) Tpb ; = NGO

For Galerkin scheme consider

o ON;, .
/ Ny (kaT 2)dV = — / oo T 2dV -+ / NikoT 2nadS
vV O0x VvV Ox S




Also,

19, ~ ON; _ .
N (kT dV=—/ i T o dV /N-kT ds
/V zay(y,y) v oy yi,y ‘|‘S ifyd, yNy

Thus we end up with

K 0=Ffp

and both K and f; have the usual forms.



Some special elements: singular elements

Include if node | is defined

=5 I—6 =7 =8
Ni=| z(1+r)(1+s) | —5N5| ... | =5
No=| (1 —r)(14+s) | —5Ns | —5Ng | ...
N3=| z(1-7)(1-3) ... | —5Ng|—5N7| ...
Ny=| z(14+7)(1 —s) ... | —3N7 | —5Ng
Ns = | 5(1-r*)(1+s)
Ne=| 5(1—s7)(1~r)
N7 =] 3(1 =s)(A +7)
Ng=| 5(1—s2)(1+r)
No = | 5(1 —r*)(1 — s°)




On s = 1 shape functions for nodes 1,2,5 are

_ 1 laoy= L
M= G000 =
Ny = 57‘(1—7“)

F
|
|

<
N



L S ®
® ®

X
o—o o ——»

Thus, for the quarter point element

r = —%T(l—T)$1+%(1—7‘)£B2—|—(1—7‘2)$5 = %r(l—r)L—I—(l—rQ)g

Solving for r
x
r=-—-1+4+2,/—
L
Vanishes at x=0 - Jacobian is

L
= 5(1 + r) = VaL singular at x=0

Thus
ox

or



Along the edge 1-2-5

- AR -afEus

Crraf) (@D o (7)o

Along this edge u ~ y/x and so e; ~ 1//x

Singularity exists all over the element.
Eg. Show that singularity exists along x axis. 1.4.8

What happens if 1,4,8 are given different node

numbers? v
5

A

op



Infinite Finite elements
In the 1-d case, xt — oo asr — 1. Thus map—l
ping functions

xr = Mixq1 + Moxo + M3x3

=
M. — 2r
L= 1—7r
1
My = 217
1—17r

ow




Also,
¢ = N1¢1 + Nooo + N3¢3

where
Ny o= sr(r—1)
= —r(r —
1 2
Ny =1 — 72
1
N3 = Er(l—l—r)
So,
dd d 1
dx dx dr J
Again,
dM d M.
J = 1a71—|— o



In the 1-d bar chosen, 1 = 0, x> = a. Thus

1+r
Tr = a
l1—7r
=
Tr—a
T =
x4+ a
lim Nqi = O
r— 00
lim No = O
r— 00
lim N3 = 1
r— 00

Thus, as  —

» — @3



Errors in FE analysis

Round off errors in ill-conditioned

systems k1 ko
S /\/ .
kq —k1 up | | P
—k1 k1+ka Jlu2f | O

. P

(k1 + ko) — k1
Suppose k1 = 1.000000 and k>, = 5.555555 x
10~% = Denominator ~ 5 x 10~° if the com-
puter stores upto 7 digits.

4

u

Condition number C = Amaz/Amin
High condition number = Ill-conditioning



Discretisation error

For the 1-d case:

e(2) = u(@)—u""(z) = ()~ [u (1 - ""”) + Uit (“3 ”)]

hj
At the nodes: e(z) =0

Displacement error:
For x; < z <wx;41

e(x;) = e(z) + (z; — 2)e'(2) + %(a:i — 2)2€e"(2)
max(e) occurs when e'(x) = 0. Thus
o(2) =~ (2 — )2(2)
And in general as |z — x;| < h;/2

1
e(x) < gh,LQ (max|u”|)



e(x) . ' [ \ Xi+1

From Cook, Malkaus

4#2{ T ~ andPlesha (2002)

{cy .



Strain error:

e(x) —e(z) =€(x) = /: v (s)ds
Thus
|e’(x)| < h; (max|u”(a:)|>

In a linear element, displacement error is proportional to the square of element size while
strain error is linearly proportional to element size.

Displacements are more accurate near the nodes, strains are accurate inside elements.



If a complete polynomial of order p is used to
interpolate,

Error in field quantity: O(hPT1)

Error in the rth derivative: O(rPT1-7)

Error in energy density: O(r2(pt1-m))

where derivatives of the order m appear in the
definition of energy density.

Eg. For a problem meshed with 3 noded triangles, p=1
Thus error in energy O(h?)
Change to 6 noded triangle: p=2 and energy error O(h#)

Reduce element size by half: error reduced by a factor of 4.



