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Experiments versus simulations?

Qs. Sophisticated experiments can tell everything. Why do we need the FE method?

1: Experimental results are subject to interpretation. Interpretations are as good as the 
competence of the experimenter.

2. Experiments, especially sophisticated ones, can be expensive

3. There are regimes of mechanical material behaviour that experiments cannot probe.

4. Generality of behaviour is often not apparent from experiments.

Experiments and simulations are like two legs of a human being. You need both to walk and it does not 

matter which you use first!



1943: Richard Courant, a mathematician described a piecewise polynomial 
solution for the torsion problem of a shaft of arbitrary cross section. Even holes. 

The early ideas of FEA date back to a 1922 book 

by Hurwitz and Courant.

His work was not noticed by engineers 
and the procedure was impractical at the time due to the lack of digital computers. 

A short history of FEA

1888-1972: b in Lublintz Germany

Student of Hilbert and Minkowski in Gottingen Germany

Ph.D in 1910 under Hilbert’s supervision.

1934: moved to New York University, founded the Courant Institute



In the 1950s: work in the aircraft industry introduced FE to practicing engineers. 

A classic paper described FE work that was prompted by a need to analyze 

delta wings, which are too short for beam theory to be reliable.

1960: The name "finite element" was coined by structural engineer Ray Clough 

of the University of California 

By 1963 the mathematical validity of FE was recognized and the 

method was expanded from its structural beginnings to include heat transfer, 

groundwater flow, magnetic fields, and other areas. 

Large general-purpose FE software began to appear in the 1970s. 
By the late 1980s the software was available on microcomputers, 

complete with color graphics and pre- and post-processors. 

By the mid 1990s roughly 40,000 papers and books about 

FE and its applications had been published.

Professor emeritus of Structural Engineering at UC Berkley

Ph.D from MIT

Well known earthquake engineer



Books

•Concepts and applications of Finite element analysis: Cook, Malkus and 

Plesha, John Wiley and Sons, 2003.

•T.R. Chandrupatla and A.D. Belegundu, Introduction to Finite Elements in 

Engineering, Second Edition, Prentice-Hall, 1997. 

•O. C. Zienkiewicz and R. L. Taylor, The Finite element method, vols 1 and 

2, Butterworth Heinemann, 2000

•Klaus-Jurgen Bathe, Finite Element Procedures (Part 1-2), Prentice Hall, 

1995.

•Daryl Logan, A First Course in Finite Element Method, Thomson, India 

Edition



Solving an engineering problem

Mathematical model: an 
equation of motion

Euler’s explicit scheme or first order Runge Kutta 
scheme



Write a MATLAB code to 
integrate the discretised 
equations of motion with different 
timesteps. Use l=1, g=10, initial 

velocity=0, position=45o. 

Compare with the exact solution.



x





x

Alternately, the FEM idea.



A Typical FE procedure

Plate with a hole.

x

y



Step 1: Idealise

Plate thickness constant, loading is in the x-y plane � Problem simplifies to 2-D

•Step 2: Create Geometry

•Step 3: Select Proper Elements

•Step 4: Mesh

•Step 5: Assign Material Properties

•Step 6: Apply boundary conditions

•Step 7: Solve

•Step 8: Visualise Results and post-process

•Step 9: Critically assess results



A simple example: another look at FEM

A 2-d truss with elements that can 

only withstand tension.
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Local stiffness matrix in local coordinate 

system (ndof X nnod, ndof X nnod)

Local force vector (ndof X nnod,1)
Displacement vector (ndof X nnod, 1)

ndof : no. of dofs/node

nnod: no. of 

nodes/element



2

4

x

y

Transformation matrix



2

4

x1

2
x





3/1         4/2            7/3       8/4            

3/1

4/2

7/3

8/4

Eg: 2,2 � 4,4

3,1 � 7,3

2

4

x

y

1 2 3

45



104

93

42

312

104

93

22

111

DestinationLocal dofElem no

1 2 3

45

1 2

3

4

5

6

7



After assembling elements 1 and 2



X+X+XX+X+XXXXXXX

X+X+XX+X+XXXXXXX

XXX+X+XX+X+XX+XX+XX+XX+X

XXX+X+XX+X+XX+XX+XX+XX+X

XXX+XX+XXX

XXX+XX+XXX

XXXXX+X+XX+X+XXX

XXXXX+X+XX+X+XXX

XXXXX+XX+X

XXXXX+XX+X

Stiffness matrix is symmetric, diagonally dominant, sparse and banded.
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Matlab function 1: Reading data from an input file

To be judged on generality and correctness

Read in nodal coordinates and element connectivities

Coordinates can be in 2d or 3d

Elements can have at most 20 nodes attached to them

Data will be written in comma separated form

User may want to read in either both coordinates and connectivity or either.

coord

1,3.25,4.32,8.91

2,6.56,7.11,11.32

…..

conn

1,1,1,3,52,65

2,2,6,9,8,4

….

nodenum, x,y,z

elemnum,matnum,n1,n2,n3,….



function [X,icon,nelm,nnode,nperelem,neltype, nmat,ndof] = ass1_groupn (fname)

% read data from a file fname

Description of variables

X: global coordinates of the nodes, x, y, and z

icon: element connectivities

nelm: total number of elements

nnode: total number of nodes

nperelem: number of nodes per element for all elements

neltype: element type for all elements

nmat: material type for all elements

ndof: number of degrees of freedom/node for all elements

Submit by 13/1/2006



function [destination] = ass2_groupn (X,icon,nelm,nnode,nperelem,neltype,ndof)

% create a destination array for the mesh data read in

Description of variables

destination(1:nelem,:): contains destination in the global stiffness matrix of all local         

degrees of freedom in an element

Submit by 18/1/2006

To be judged on correctness and speed



Global force vector Global stiffness matrix

Global displacement vector

Notes: 

Global stiffness matrix is singular i.e. it has zero eigenvalues

Hence it cannot be inverted!



Boundary conditions

Force specified: eg.  dof 9 and 10 in our example

Displacement specified: eg. dof 1,2,and 6 in our example

Both forces and displacements cannot be specified at the same dof.



Naïve approach for imposing displacement boundary conditions

L=a very large number. Also replace the corresponding dofs in the rhs vector by 

LXspecified displacement value



The “proper” way of imposing displacement constraints



Suppose dof k is specified 

Traspose negative of the specified value X kth column to the right

Replace k th row and columns in the stiffness matrix to zero

Replace K(k,k) by 1

Set F(k)=specified value 

Repeat above steps for all specified dofs.



Assignment 3: form local stiffness matrix for a truss element e oriented at an arbitrary angle to the 
global x-axis

function[stiff_loc_truss]=ass3_groupn(X,icon,e,spring_constant)

% programme to calculate stiffness matrix of a 2-noded truss element in the global X-Y system

Form stiffness in local coordinates

Find transformation matrix

Find stiff_loc_truss in global coordinates 

To be judged on correctness only



Add to your data file reading programme: ass1_groupn.m

coor

1,2,0.0,0.0 

2,2,1.0,0.0

3,2,1.0,1.0
4,2,0.0,1.0

5,2,0.0,2.0

6,2,1.0,2.0

7,2,2.0,1.0 

conn
1,1,1,2,3,4

2,1,4,3,6,5

3,2,3,7

4,2,2,7

boun

1,1,0.0

1,2,0.0

2,2,0.0

4,1,0.0

5,1,0.0

force

5,2,1.0

6,2,1.0

7,2,3.0



Inputting specified dofs

Keyword: ‘bound’

Format: node no, dof no, value

Array: idisp(1:nnode,maxdof), specdisp(1:nnode,maxdof)

Inputting specified forces

Keyword: ‘force’

Format: node no, dof no., value

Array: iforce(1:nnode,maxdof), specforce(1:nnode,maxdof)

Assignment 5: Modify ass1_groupn.m accordingly

function
[X,icon,nelm,nnode,nperelem,neltype,nmat,ndof,idisp,specdisp,iforce,specforce] = 

ass1_groupn (fname)

% read data from a file fname

To be judged on correctness 

only



Assignment 6: Assemble stiffness matrix for element e

function[stiffness_dummy] = ass4_groupn(icon,destination,stiff_loc_truss,e)

% programme to assemble local stiffness matrix of element e onto the global stiffness

Add stiffness of e to the global stiffness 

Assignment 7: the main programme

[X,icon,nelm,nnode,nperelem,neltype,nmat,ndof,idisp,specdisp,iforce,specforce] = 
ass1_groupn (fname);

destination = ass2_groupn (X,icon,nelm,nnode,nperelem,neltype,ndof);

spring_constant=1;

for e=1:nelm

stiff_loc_truss=ass3_groupn(X,icon,e,spring_constant);
stiffness_dummy = ass4_groupn(icon,destination,stiff_loc_truss,e);

stiffness_global=stiffness_global+stiffness_dummy;

end

To be judged on correctness and speed

To be judged on correctness only



Assignment 8:

function[modified_siffness_matrix, modified_rhs]= 

ass6_groupn(icon,nelm,nnode,nperelem,ndof,idisp,specdisp,iforce,specforce,stiffmat)

% function to modify stiffness matrix and rhs vector according to specified forces and

% dofs

for i=1,no. of nodes

for j=1,number of dofs for node i

modify stiffness matrix and rhs vector to accommodate the specified values of the dofs and 

forces.

end

end

Assignments 2-8: due on February 6, 2006. 

To be judged on correctness and speed



Solving the equations

K: requires huge storage, largest component of a FE code

Strategies:

Use sparsity: K_sparse=sparse(K);

Matlab command U=inv(K_sparse)*F;



1st elimination:

Row2- Row 1*(-6/18)

Row3-Row1*(-6/18)

2nd elimination

Row3-Row2*(-2/10)

Row4-Row2*(-6/10)

3rd elimination:

Row4-Row3*(-7.2/9.6)

Original problem

Direct methods: Gauss elimination



Suggestion:

To clearly get a feel of how Gauss elimination works, try and write this function in 

Matlab:

function[U] = gauss_elimination(K,F)

Where U=inv(K)*F;

Can you utilise the diagonality and sparsity of K to speed up the solution?



L U Decomposition





How does the solution procedure work?  



The FEM scheme of things

Read in data – mainly nodal 
coordinates, element connectivity, 
force and displacement boundary 
conditions and material properties

For each element

Form local stiffness matrix

Assemble into global stiffness matrix & rhs vector

End

Form local rhs vector

Form destination array

Incorporate boundary conditions into stiffness and rhs

Solve

Stop



Stiffness matrix from basics!
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Beams in 2-d



Transformation Matrix for a 2-d beam element



How do we solve a beam problem with 
distributed loads?

wL/4 wL/4

wL/2

wL/8
wL/4 wL/4 wL/4



Introduction to the theory of elasticity



Number of independent elastic constants = 21

Number of elastic constants when there exists one plane of symmetry = 13

Number of elastic constants when there exists three mutually perpendicular planes of 
symmetry = 9

Number of independent elastic constants for an Isotropic material = 2
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Strain displacement relationships
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Plane strain 





Plane stress



Axisymmetry



Axisymmetry

Geometry as well as loading should be axisymmetric!





Plane strain

Axisymmetric

CL



Axisymmetric geometry, Non-

axisymmetric loading



Digression: A little bit of variational calculus

a

b

u(x)



a

b

u(x)

u(x)

y(x)

η (x)

Perturbations that honour the end 
conditions of the essential 

boundary conditions are called 
admissible perturbations.



Euler equation



Euler equation for several independent variables



u(x,y)

v(x,y)

η(x,y)



This is zero on the boundary



Necessary condition for a function v(x,y) minimising or maximising the 
functional J



Example :

Laplace equation

Solving Laplace equation with given boundary conditions is equivalent to minimising
the variational statement



Weak anchoring



First variation 













Example: Strong form to weak form



Weak/Variational form 
corresponding to the deq







Generalised forms of the 1d case

Linear, differential operator



Example (from Zienkiewicz and Taylor)







Another example (from Reddy, p69)







Principle of minimum potential energy

We assume the existence of W

Potential of the loads

Internal energy

Finding a displacement field satisfying the boundary conditions is equivalent to 
minimising the above variational statement, I.e making its first variation go to zero.







Summary of variational principles





General schemes for minimising functionals of the form 





Bar of c/s A, modulus E loaded 
by a body force cx where c has 
units of force/area

An example of the application of the 
Rayleigh Ritz technique





This is the Rayleigh-Ritz technique where the problem is reduced to that of 

determining a few constant coefficients.



Weighted residual techniques







Weighted Residual techniques: an example





The general way for minimising the potential energy

A variation in the displacement



Virtual work equation 



A 1-d problem with exact solution

L

x



Piecewise linear approximation: the assumed 
displacement method

L

x

Strain displacement matrix

Shape function matrix



V

S

2-d domain, triangular elements

Linear triangle, 3 nodes/element, 2 

dofs/node



Shape functions



Strain-displacement matrix



Strains are constant within an element: Constant strain triangle (CST)



Quadratic traingle (Linear strain triangle)



Interpolation and shape functions

The intepolation functions are same as the shape functions we got for the 1-d example.



1

2
3

Quadratic interpolation in 1-d





Bilinear rectangle (through interpolation formulas)

2a

2b

x

y

This is equivalent to assuming a displacement variation with <1 x y xy> terms



Assignment 9: Assemble stiffness matrix for CST element e

function[stiffness_dummy] = ass9_groupn(icon,destination,E,nu,e)

% programme to assemble local stiffness matrix of CST element e onto the global stiffness

E=1000;nu=0.3; % units N and m

Formulate stiffness matrix

Add stiffness of e to the global stiffness 

Assignment 10: Assemble stiffness matrix for LST element e

function[stiffness_dummy] = ass9_groupn(icon,destination,E,nu,e)

% programme to assemble local stiffness matrix of LST element e onto the global stiffness

E=1000;nu=0.3; % units N and m

Formulate stiffness matrix

Add stiffness of e to the global stiffness 

To be judged on correctness. This element routine will be plugged into your main 
programme and checked on a real problem.



Completeness, compatibility etc….

Requirements of a FE model

•Monotonic convergence

•Completeness � Element must represent rigid body modes + constant strain states

Element must rotate and translate 

as a rigid body.





orthonormality

Generalised eigenproblem



Rigid body modes for a plane stress quad

Flexural modes, 0.495, 0.495 Shear mode, 0.769

Stretch mode, 
0.769

Uniform 
extension mode 
1.43



Parasitic shear makes the Q4 element unusable in bending



Parasitic shear gets worse with (a/b) ratio. This condition is known as shear locking.

For completeness we require:

Rigid body modes to be represented (in 2-d two translations and one rotation)

Constant strain states must be represented (in 2-d two normal and one shear strain)

Interelement continuity of displacements must be satisfied.





More on convergence

Starting from a trial function and always adding more terms to it (equivalent to h � 0 in 
FEM) will always make the potential go towards a lower value.

Decrease in the total potential implies increase in the strain energy. Thus predicted 

stiffness is always higher than actual in FE analysis.



Spatially anisotropic elements depend on coordinate 
orientations.

Rate of convergence depends on the completeness 
of the polynomial used.

Pascal’s triangle



Isoparametric element formulation

First proposed by: B.M. Irons, Engineering applications of numerical integration in 

stiffness methods, AIAA Journal, v4, n11, 1966, 2035-2037.



The Q4 element revisited
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Calculation of gradients in 2-d

J

}
Jacobian matrix



Follows from the Q4 element done 

earlier. Put a=b=1.





Stiffness matrix needs to be integrated numerically.



Assignment 11: Add body force contribution to the force vector

Step 1: Modify data input, create bforce vector bforce(1:nelm)

conn

elemnum,matnum,n1,n2,n3,….,bodyforc(1),bodyforce(2)

Step 2: Modify main programme
[X,icon,nelm,nnode,nperelem,neltype,nmat,ndof,idisp,specdisp,iforce,specforce,bforce] = 
ass1_groupn (fname);
destination = ass2_groupn (X,icon,nelm,nnode,nperelem,neltype,ndof);

for e=1:nelm
stiff_loc=form local stiffness matrix;
stiffness_dummy = ass4_groupn(icon,destination,stiff_loc_truss,e);
stiffness_global=stiffness_global+stiffness_dummy;
form nodal bosy force vector N’*bodyforce(2) for e

assemble bodyforce
end



Numerical integration: Gauss quadrature-1d

r=1r=-1

Sampling points between -1 and 1

Weights

r=-1 r=1



The idea behind a quadrature scheme….
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weightsSampling pointsn

Gauss quadrature: sample points and weights



Important rule: n point Gauss quadrature integrates a polynomial of order 2n-1 exactly



GI in 2-d

For the Q4 element, 2X2 quadrature is required

1

r       s

r2 rs        s2

r3 r2s          rs2 s3

2X2



Assignment 12: Formulate the stiffness matrix for an iso-parametric 4 noded
quadrilateral element

E=1000; nu=0.3

norder=order of gauss quadrature

w(1:norder)=weights

samp(1:norder)=sampling points

locstiff[8,8]=0;

Loop over the number of gauss points lint= 1,ngauss(=norderXnorder)

get weight(lint), r(lint), s(lint) i.e the weights and sampling point coords

form shape function matrix at the sampling point lint

form shape function derivatives wrt r and s at r(lint), s(lint)

formation of the jacobian matrix at r(lint), s(lint)

form jacobian inverse Gamma

form det(jacob) at r(lint), s(lint) [Note 2-d jacobian is 2X2]

form B matrix in physical space using shape function derivatives and Gamma

locstiff=locstiff + weight(lint) B’*C*B*det(jacob)

end



Term paper topics

Group 1: Model the problem of a line load on a half space. Compare with the theoretical 
solution of stresses near the load point. Refine the mesh to see if you converge to the exact 
solution.

Group 2: Model a hard elliptical inclusion in a softer matrix. The matrix is infinitely large 

compared to the inclusion and is subjected to uniaxial stresses applied at infinity. Find out 
the theoretical solution to this problem and check how the strains inside the inclusion vary 
with its ellipticity. Change the Poisson’s ratio of the matrix and the inclusion and see how the 
stress fields in the matrix and inclusion change.

Group 3: Model a sharp crack in a infinite body. Find out the theoretical solution to this 

problem. The stresses at the crack tip should be infinite. Compare with the theoretical 
solution and see whether with mesh refinement you can get close to the theoretical solution.

Group 4: Model the problem of a series of periodically placed holes in a thin film. This 
problem has already been discussed. Discuss further with Dr Ghatak.

Group 5: Model the bending of a functionally graded beam where the gradation is 
exponential in the depth direction. Compare with the solution for a homogeneous beam to 
see the differences due to the property variation.

Group 6: Model an internally pressurised hollow cylinder in plane strain. Start with a thick 

cylinder and using theoretical results show how, as you move towards a thin cylinder the 
solution changes.



Group 7: Analyse using you own code a deep beam using a structured mesh composed of 
linear strain and constant strain triangles. Check all stresses with theoretical estimates. 
Check convergence with mesh refinement.

Group 8: Verify the Euler buckling load of a slender beam using Finite Elements. Your 
solutions may break down at the point of buckling. How good are your estimates compared 
to the theoretical solutions?

Group 9: Analyse using your own code a internally pressurised plane strain thick cylinder 

and check the results with theoretical estimates.

Group 10: Model a infinite wedge with tractions on one of the boundaries. Verify the stress 
solutions near the tip of the wedge with theoretical estimates. What happens in the case of 
a right angled wedge subject to shear tractions on one edge?

Group 11: A beam is rotating at a fixed angular velocity about its geometric center. Find the 
stress distribution in the beam and compare with theoretical results.

Group 12: Solve the stresses for a 90 degree curved beam of inner radius a and outer 

radius b subjected to a normal sinusoidal loading Asin(λ η). Find solutions to the problem as 
λ varies from 0 to 2. Comment on the solution at λ=1;

Group 13: Solve the problem of a heavy beam on a elastic foundation. Compare your 
results with theoretical solutions for different beam aspect ratios. Investigate when the 
theoretical solution breaks down.

Group 14: An infinite plate subjected to a remote tensile load contains an elliptical hole. 
Using a FEM simulation determine the stress concentration at the tip of the ellipse as a 
function of the ellipticity of the hole. Compare with theoretical results.



Step by step guide to formulating a problem in FEA

Eg. Heat conduction in a 2-d domain

Q1. What are the governing equations and boundary conditions for the problem?



Q2. What is the variable to be solved for?

T(x,y) � a scalar quantity � 1 dof per node.

Q3. Does a variational statement exist?

Check for self-adjointness � if self adjoint write variational principle

In this case self adjointness exists and hence

is the variational principle. Thus the correct T(x,y) makes the 
above a minimum and also satisfies all the boundary conditions.

If variational principle does not exist, use a weighted residual method (we will learn 
about it later)



Q.4 Variational principle exists. Now what?

If we use the Rayleigh Ritz principle, we should start the discretisation right away. Will 
deal with that route later..



Q5. What element to choose? 

Tricky. Eigenvalue analysis may help. Experience may too.

Let us choose a 4 noded iso-p quad in this case….Thus





What if we used the Rayleigh Ritz technique?





Define geometry

Mesh geometry

Loop over elements

Form local stiffness

Form surface force vector if required

Assemble stiffness

Assemble forces

end

Apply essential boundary conditions

Solve

Post process results



Method of weighted residuals

weights



Example: beam bending





Example 2: Heat transfer in 2-d





Some special elements: singular elements
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Include if node I is defined
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Vanishes at x=0 � Jacobian is 
singular at x=0
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3

5
7

1,4,8 6
Singularity exists all over the element.

Eg. Show that singularity exists along x axis.

What happens if 1,4,8 are given different node 
numbers?



Infinite Finite elements
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1 2 3
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Errors in FE analysis

Round off errors in ill-conditioned 
systems

P



Discretisation error



From Cook, Malkaus
and Plesha (2002)



In a linear element, displacement error is proportional to the square of element size while 

strain error is linearly proportional to element size.

Displacements are more accurate near the nodes, strains are accurate inside elements.



Eg. For a problem meshed with 3 noded triangles, p=1

Thus error in energy O(h2)

Change to 6 noded triangle: p=2 and energy error O(h4)

Reduce element size by half: error reduced by a factor of 4.


