Arithmetic and ceometric Progression

Quantitative Aptituale \& Business Statistics

Sequence

- An arrangement of numbers in a definite order according to some rule is called a sequence.
- The various numbers occurring in a sequence are called its terms we denote the terms of a sequence by a_{1} $, a_{2}, a_{3} \ldots$..etc.
- The nth term a_{n} called general term
- A sequence has finite or infinite according to its finite or infinite terms.
- Example;1
- $1,3,5$. is an infinite sequence
- Whose nth term is given formula
- tn =2n-1

Series

- A Series is obtained by adding all the terms of a sequence.
- Example
- 1. $1+3+5+9 .,$, ,,\ldots, , is an infinite series
- $2.2+4+6+8+10+12$ is a finite series

Progressions

- If the terms of the sequence follow certain pattern ,then the sequence is called a progression.
- Example:2
- 1,1/2,1/3....is an infinite sequence where nth term is given by formula an $=1 / n$
- Example:3
- 2,4,6,8,10,12 is a finite sequence in which each term is obtained by adding 2 to the previous term

Arithmetic Progression(A.P)

- A sequence whose each term is obtained adding a fixed number to its term ,the term is called common difference of the A.P

The first in AP is ' a ' and common difference is 'd'

An arithmetic progression is a progression in which any term minus its previous terms is a constant.

$$
T(n+1)-T(n)=c o m m o n
$$ difference

Examples

- 2, 7, 12, 17, 22, 27, ... is an A.P. - 2, 4, 8, 12,...is NOT an A.P. $t(n)=a+(n-1) d$ General term

Arithmetic means

The intermediate terms between two terms of an arithmetic progression are called arithmetic means between the two terms.

Example

Progression	Between	Arithmetic means
$2,3,4,5,6, \ldots$	2,6	$3,4,5$
$2,5,8,11,14, \ldots$	2,11	5,8

- If a is first term and ' d ' is common difference of an A.P,then n th term of an AP is denoted by

$$
t_{n}=a+(n-1) d
$$

Sum of terms Arithmetic Series

For an arithmetic progression,

$$
S(n)=\frac{n}{2}[2 a+(n-1) d]
$$

If we use ℓ to represent the last term, $T(n)$

$$
S(n)=\frac{n}{2}(a+d)
$$

Properties AP

- 1.If a constant is added or subtracted from term of an AP ,then the resulting sequence is also in AP .with same common difference
- 2.If each term of an AP is multiplied or divided by nonzero constant k, then the resulting sequence is also in AP with common difference kd or d/k
- 3.If $a_{1}, a_{2} a_{3 n . . n d ~} b_{1}, b_{2}, b_{3 n}$ are two arithmetic progressions, then the sequence $\mathrm{a}_{1}+\mathrm{b}_{1}, \mathrm{a}_{2}+\mathrm{b}_{2}, \ldots \ldots$ is also in AP
- 4.In a finite A.P ,the sum of terms equidistant from the beginning and end is always same and is equal to the sum of first and last
- 5.Three numbers a,b,c are in A.P if $\mathbf{2 b}=\mathbf{a}+\mathbf{c}$

1.Sum of the first n natural numbers

- 2.Sum of the Squares of first n natural numbers

- 3.Sum of the Cubes of first n natural numbers

Problem ;1

- Find the value of k for the series
$3 k+4,3 k-7, k+12$ an arithmetic sequence

Solution

If a, b, c are in A.P then $2 b=a+c$
$2(3 k-7)=2 k+4=k=12$
6k-14=3k+16; K=10

Problem;2

- Find the arithmetic mean between 7 and 15
Here $a=7$ and $b=15$
The arithmetic mean between a and
b is
The requirea arithmetic mean $=$

$$
\frac{7+15}{2}=\frac{22}{2}=11
$$

Problem ;3

- Insert 4 arithmetic means between 4 and 29
- Solution:
- If d is the common difference ,then

- The arithmetic means are $4+5,4+2 * 5,4+3 * 5$ and $4+4 * 5$ - i.e 9,14,19 and 29

Problem ;4

- The Tenth term of an arithmetic progression is 25 and fifteenth term is 40 .Find the first term and common difference and the find the fifth term

Solution

- $t_{10}=25 t_{15}=40$,where , t_{n} denotes the nth term.
- By using arithmetic progression.
- $\mathbf{T}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$,where
$a=$ first term and
d= common difference
- It is given that
- 25=a+9d

1

- 40=a+4d
- From 1 and 2 ,we get
- 5d =15 ;d=3
- $a=-2$,hence tn $=-2+(n-1) .3$
- $\mathrm{t}_{5}=-2+4 * 3=10$

Problem ;5

- The Third term of arithmetic progression is 7 and its seventh term is $\mathbf{2}$ more than twice of its third term. Find the first term,common difference and the sum of first 20terms of the progression
- Let the A.P be a, a+d ;a+2d+..... a+(n-1)d ;a being first term and d the common difference.
According to the question $\mathrm{t}_{3}=7$ i.e $a+(3-1) d=a+2 d=7$

$$
t_{7}=2+3 t_{3}
$$

$a+6 d==2+3(7)=2+21=23$

- a+6d=23 2
- Solving 1 and 2 d = 4 and $a=-1$
- Also Sum of 20 terms
- $S_{20}=20 / 2\left\{20^{*}(-1)+(20-1) X 4\right\}$ $=10(-2+76)=10 * 74=740$

Problem ;6

- Find the increasing arithmetic progression ,the sum of first three terms is 27and sum of their squares is 275.
- Let the first three terms of the progression be a-d ,a and a +d

- By the description of the problem

- (a-d) +a+(a+d) =27

1

- and
$(a-d)^{2}+a^{2}+(a+d)^{2}=275$ \qquad
- From $1 \quad 3 \mathrm{a}=27$ and $\mathrm{a}=9$
- From $2 \quad 3 a^{2}+2 d^{2}=275$
- $2 d^{2}=275-3 * 81=275-248$
$\mathrm{d}= \pm 4$
- Using $a=9$ and $d=4$,we get required increasing arithmetic progression
- 9-4 ,9 and 9+4 i.e 5,9 and 13

Problem ;7

- Find the Sum of all numbers between 100and 1000which are divisible by 13.
- The numbers divisible by 13 for an arithmetic series .The series starts at 104 and ends at 988
- The term is $\mathbf{a + (n - 1) d}$ here $a=104$ d=13
- $988=104+(n-1) 3=n=69$
- Sum of these numbers is given by 37,674

Problem ;8

- The sum of first \mathbf{n} terms of an AP is

- The common difference is
- The sum of \mathbf{n} terms is

$$
3 n^{2}-2 n+1
$$

- Putting $\mathrm{n}=1$ then $\mathrm{S}_{1}=2$
- Putting $\mathrm{n}=2$ then $\mathrm{S}_{2}=9$
- Second term is therefore
- =9-2=7
- And common difference
- $=7-2=5$

Problem ;9

- Show that the sum of an AP, whose first term is ' a ' and the second tem is b and the last term is 'c', is equal to

$$
\frac{(a+c)(b+c-2 a)}{2(b-a)}
$$

Solution

-00 - 0

- Common difference $d=b-a$ - Last term C =a+(n-1)(b-a)

$$
\begin{aligned}
& \frac{c-a}{b-a}=n-1 \\
& n=1+\frac{c-a}{b-a} \\
& =\frac{b+c-2 a}{b-a} \\
& S_{n}=\frac{n}{2}(a+c)=\frac{(b+c-2 a)}{2(b-a)}(a+c)
\end{aligned}
$$

Geometric progression

A geometric progression is a progression in which the ratio of each term to the preceding term is a constant. $\mathrm{T}(\mathrm{n}+1): \mathrm{T}(\mathrm{n})=$ Common Ratio

Geometric mean

The intermediate terms

 between two terms of a geometric progression are called geometric means between the two terms.
Examples

- 2, 4, 8, 16, ... is a G.P. - 2, 4, 6, 8,...is NOT a G.P. $t(n)=a r^{n-1} \quad$ General term

Example

Progression

Between grometric means

4,8,16

$$
1,-3,9,-27,81, \ldots
$$

$$
1,-27
$$

$$
-3,9
$$

$$
4,16,64,256,1024, \ldots
$$

$$
\text { 4, } 1024
$$

$$
16,64,256
$$

Geometric Series

Sum of \mathbf{n} terms in Geometric Series

$$
\begin{aligned}
& S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \\
& S n=\frac{a\left(r^{n}-1\right)}{r-1} \quad r>1
\end{aligned}
$$

Sum of G.P. find Applications in Mortgage or Installments Payment Calculation

Formula for Compound Interest Growth

$$
\mathrm{A}=\mathrm{P}(1+\mathrm{r} \%)^{\mathrm{n}}
$$

Formula for Depreciation

$$
A=P\left(1-r^{\%} \%\right)^{n}
$$

Sum to infinity of a Geometric Series

$$
\begin{gathered}
\left.S(n)=\frac{a\left(1-R^{n}\right)}{1-R} \rightarrow \frac{a}{1-R} \text { (provided }-1<R<1\right) \\
\text { as } n \rightarrow \infty, R^{n} \rightarrow \mathrm{C}
\end{gathered}
$$

The sum to infinity $S(\infty)=\frac{a}{1-R}$

Problem;1

- Find the GP .whose $4^{\text {th }}$ term is 8 and $8^{\text {th }}$ term is $128 / 625$.
- Solution : if a is the first term and r is the common ratio of GP ,
- then $8=t_{n}=a r^{3}$ and $t_{8}=a r^{7}=128 / 625$
- $r= \pm 2 / 5$
- $r=2 / 5$ then $a=125$
- r=-2/5then a =-125
- Required GP is either 125,50 20 ,8 16/5
- or -125, 50 and -20, 8 ,-16/5

Problem;2

- Find the geometric mean between 3 and 27
- Solution: here $\mathbf{a}=3$ and $\mathrm{b}=27$
- The geometric mean between a and b is $=9$

Problem ;3

- Insert 3 geometric means between 1/9 and 9 .
- Solution : if n geometric means are to be inserted between \mathbf{a} and \mathbf{b},then the common ratio r is given by

- Here $r=1 / a$ and $b=9 n=3$

Problem;4

- Find three numbers in GP whose sum is $57 / 2$ and whose product is 729.
- Let the three numbers be a / r, a, ar
- Given a/r. a. ar=729
- $a^{3}=729=a=9$
- It is also given that $\mathrm{a} / \mathrm{r}+\mathrm{a}+$ $a r=57 / 2$
- $r=2 / 3$,3/2
- Therefore ,the required numbers are 27/2,9,6 or 6,9 27/2

Problem ;5

- Find the following missing numbers on using suitable formula give sum of the following
1+3 + 9 +* + 81+ 243+* + 2187

Solution

- Given
$1+3+9$ +* $^{*}+81+243+{ }^{*}+$
2187,We may write the sum
$\mathrm{S}=1+3+3^{2}+^{*}+3^{4}+3^{5}+*+3^{7}$
Number of terms $=8$ and the series
is in GP, with common ratio3
$t_{4}=1 * 3^{3}=27$
the seventh term $=1 * 3^{6}=726$
- Required missing numbers are 27 and 729
- And the Sum S=3280

Problem ;6

- If $1 / x+y ; 1 / 2 y ; 1 / y+z$ are in AP.Then prove that x.y.z are in GP
- Solution: Since 1/x+y; 1/2y;1/y+z are in AP.
- Solution

$$
\begin{aligned}
& \frac{2}{2 y}=\frac{1}{x+y}+\frac{1}{y+z} \\
& \frac{1}{y}=\frac{(y+z)+(x+z)}{(x+y)(y+z)} \\
& x z=y^{2} \\
& \frac{y}{x}=\frac{z}{y}
\end{aligned}
$$

- Thus x, y and z are in GP

Problem;7

- Find the Sum of the Series

> 3+33+333+.........+ to n terms

Solution:

S n=3+33+333+......... + to n terms
=3(1+11+111+........+ to \mathbf{n} terms)
=3/9(9+99+999+.......+to n terms)

$$
\begin{aligned}
& \left.=\frac{1}{3}\{9+99+999+\ldots . . . n \text { terms })\right\} \\
& =\frac{1}{3}\left[(10-1)+\left(10^{2}-1\right)+\left(10^{3}-1\right)+\ldots \text { ton... }\right] \\
& =\frac{1}{3}\left[\left(10+10^{2}+10^{3} \ldots . . .+10^{n}\right)-n\right] \\
& =\frac{1}{3}\left[\frac{10\left(10^{n}-1\right)}{10-1}-n\right] \\
& =\frac{10}{27}\left[10^{n}-1\right]-\frac{n}{3}
\end{aligned}
$$

Problem ;8

- Find the Sum of the Series
0.8+0.88+0.888......... + to n terms

Let Sn be the Sum of the first n natural numbers
Solution
Sn=0.8+0.88+0.888......... + to n terms
=8(0.1+0.11+0.111+...+to \mathbf{n} terms)
=8/9(0.9+0.99+0.999+... + to n terms)

$$
\begin{aligned}
& \left.=\frac{8}{9}\{.9+.99+.999+\ldots n \text { terms })\right\} \\
& =\frac{8}{9}\left[\left(1-\frac{1}{10}\right)+\left(1-\frac{1}{10^{2}}\right)+\left(1-\frac{1}{10^{3}}\right)+\ldots \text { ton... }\right] \\
& =\frac{8}{9}\left[n-\left(\frac{1}{10}+\frac{1}{10^{2}}+\frac{1}{10^{3}}+\ldots . . .\right)\right] \\
& =\frac{8}{9}\left(n-\frac{1}{10} \times \frac{10}{9}\left(\frac{10^{n}-1}{10^{n}}\right)\right) \\
& =\frac{8}{9}\left(n-\frac{1}{9 \times 10^{n}}\left(10^{n}-1\right)\right)
\end{aligned}
$$

Example:9

- By Expressing as an infinite geometric series find the value of
0.2175
- Solution
- 0.2175=0.21757575.........
- $=0.21+0.0075+0.000075$ +0.00000075+.......

$$
\begin{aligned}
& =0.21+\frac{75}{10^{4}}+\frac{75}{10^{6}}+\frac{75}{10^{8}}+\ldots \ldots \ldots \\
& =0.21+\frac{75}{10^{4}}\left(1+\frac{1}{10^{2}}+\frac{1}{10^{4}}+\frac{1}{10^{8}}+\ldots \ldots .\right) \\
& =0.21+\frac{75}{10^{4}}\left(\frac{1}{1-\frac{1}{10^{2}}}\right) \\
& =0.21+\frac{75}{10^{4}} \times \frac{100}{99} \\
& =\frac{359}{1650}
\end{aligned}
$$

- 1.How many two digit numbers are divisible by 7
- A)14
- B)15
- C)13
- D)12
- 1.How many two digit numbers are divisible by 7
- A)14
- B)15
- C)13
- D)12
- 2.The two arithmetic means between -6 and 14
- A)2/3,1/3
- B)2/3,22/3
- C)-2/3,-21/3
- D) none of these
- 2 .The two arithmetic means between -6 and 14
- A)2/3,1/3
- B)2/3,22/3
- C) $-2 / 3,-21 / 3$
- D) none of these
- 3.The sum of the series $9,5,1$....to 100 terms
- A)-18900
- B)18900
- C)19900
- D) none of these
- 3.The sum of the series 9,5,1to 100 terms
- A)-18900
- B)18900
- C)19900
- D) none of these
- 4.The sum of first 64 natural numbers is
- A)2015
- B)2080
- C)1974
- D) none of these
- 4.The sum of first 64 natural numbers is
- A)2015
- B)2080
- C)1974
- D) none of these
- 5.The sum of first 13 terms of an AP is 21 and the sum of first 21 terms is 13 .The sum of first 34 terms is
- A) 34
- B)-34
- C)68
- D)-17
- 5.The sum of first 13 terms of an AP is 21 and the sum of first 21 terms is 13 .The sum of first 34 terms is
- A) 34
- B)-34
- C)68
- D)-17
- 6.The sum of the first two terms of a GP is $5 / 3$ and the sum of infinity of the series is 3 .The common ratio is
- A) $1 / 3$
- B)2/3
- C)-1/3
- D) none of these
- 6.The sum of the first two terms of a GP is $5 / 3$ and the sum of infinity of the series is 3 .The common ratio is
- A) $1 / 3$
- B)2/3
- C)-1/3
- D) none of these
- 7.The sum of the infinite series
- 1+2/3+4/9+.........is
- A) $1 / 3$
- B)3
-C)2/3
- D) none of these
- 7.The sum of the infinite series
- 1+2/3+4/9+.........is
- A) $1 / 3$
- B)3
-C)2/3
- D) none of these
- 8. Sum of the series
- $1+3+9+27+\ldots$. is 364 .The number of terms is
- A)5
- B)6
- C)11
- D) none of these
- 8.Sum of the series
- 1+3+9+27+.....is 364.The number of terms is
- A)5
- B)6
- C)11
- D) none of these
- 9.The ($m+n$) th and (m-n) th terms are p and q respectively. The m th term of GP is
- A) pq
- B)Square root of (pq)
- C)p.q3/2
- D) none of these
- 9.The ($m+n$) th and (m-n) th terms are p and q respectively. The m th term of GP is
- A) pq
- B)Square root of (pq)
- C)p.q3/2
- D) none of these
- 10.The nth terms of two series
$3+10+17+\ldots .$. and $63+65+67+\ldots .$. are equal .Then the value of n is
- A) 9
- B)13
- C)19
- D)21
- 10.The nth terms of two series
$3+10+17+\ldots .$. and $63+65+67+\ldots .$. are equal .Then the value of n is
- A) 9
- B)13
- C)19
- D)21
- 11.The Sum of three integers in A.P is 15 and their product is 80 , The integers are
- A)2,8,5
- B)8,2,5
- C)2,5,8
- D) none of these
- 11.The Sum of three integers in A.P is 15 and their product is 80 , The integers are
- A)2,8,5
- B)8,2,5
- C)2,5,8
- D) none of these
- 12.The Sum of all odd numbers between 100 and 200 is
- A)6200
- B)6500
- C)7500
- D)3750
- 12.The Sum of all odd numbers between 100 and 200 is
- A)6200
- B)6500
- C)7500
- D)3750
- 13.Which term of the AP 64,60,56,52....is Zero
- A)16
- B)17
- C)15
- D)14
- 13.Which term of the AP 64,60,56,52....is Zero
- A)16
- B)17
- C)15
- D)14
- 14.The product of 3 numbers in GP is 729 and the sum of squares is 819 .The numbers are
- A)9,3,27
- B)27,3,9
- C)3,9,27
- D) none of these
- 14.The product of 3 numbers in GP is 729 and the sum of squares is 819 .The numbers are
- A)9,3,27
- B)27,3,9
- C)3,9,27
- D) none of these
- 15.If the first term of a GP exceeds the second term by 2 and the sum of infinity is 50 then the series is
- A)10,8,32/5,....
- B)10,8,5/2,.....
- C)10,10/3,10/9......
- D) none of these
- 15.If the first term of a GP exceeds the second term by 2 and the sum of infinity is 50 then the series is
- A)10,8,32/5,....
- B)10,8,5/2,.....
- C)10,10/3,10/9......
- D) none of these

THE END

Arithmetic and Geometric Progression

