1. The number of free electrons per 10 mm drift speed of the electrons is 0.25 mm/s. The speed of the electrons is 0.25 mm/s.		e is 2×10^{21} . The average
A. 0.8 A B. 8 A	C. 80 A	D. 5 A
2. Which of the following cells is more like	ely to be damaged due to s	hort circuiting?
A. Daniel B. Dry	C. Acid	D. Fuel
3. A gas expands from 5 litre to 105 litre at	a constant pressure 100N	/m ² . The work done is
A. 1 Joule B. 4 Joule	C. 8 Joule	D. 10 Joule
4. The Helium nuclei can be formed from		- C. J. S. D.
A. Hydrogen nuclei by process of chain rea C. Hydrogen nuclei through nuclear fusion	•	through nuclear fission
5. In the atom bomb dropped by Americans used was	s in 1945 on Nagasaki, Jap	oan, the fissionable material
A. Helium 4 B. Plutonium 239	C. Uranium 235	D. Uranium 233
6. The engine of a truck moving a straight r by the truck in time <i>t</i> is proportional to	oad delivers constant pow	
A. t B. t^2	C. \sqrt{t}	D. <i>t</i> ^{3/2}
7. The velocity of electron in ground state of	of	\
hydrogen atom is A. 2×10^5 B. 2×10^6 C. 2×10^7 D. 2×10^7	108	
A. 2 x 10 B. 2 x 10 C. 2 x 10 B. 2 x m/s m/s m/s m/s	10	
8. The radius of the first orbit of the electro of the second orbit must be	n in a hydrogen atom is 5.	3×10^{-11} m; then the radius
	C. 21.2 x 10 ⁻¹¹ m	D. 42.4 x 10 ⁻¹¹ m
9. A person pushes a rock of 10 ¹⁰ Kg mass the work done is	by applying a force of only	y 10N for just 4 seconds.
A. 1000 Joule B. 0 J	C. nearly zero	D. positive
10. One can take pictures of objects which which are sensitive to	are completely invisible to	the eye using camera films
A. ultra-violet rays B. sodium light	C. visible light	D. infra-red rays
11. Light from a 100 watt filament bulb is p sodium vapour at a high temperature. If the we will observe		e e
A. D ₁ and D ₂ lines of sodium with good intensity	B. dark lines where been observed	D ₁ and D ₂ lines should have
C. continuous radiation from the bulb only	D. the entire emission	on spectrum of sodium

www.examrace.com

12. Under the action of a constant force, a				
	g a constant acceleration.			
The power is				
A. zero	B. positive			
C. negative	D. increasing uniformly with time	у		
13. If in a plane convex	k lens the radius of curva	ture of the convex surface	ce is 10 cm and the focal	
length of the lens is 30	cm, the refractive index	of the material of the ler	ns will be	
A. 1.5	B. 1.66	C. 1.33	D. 3	
14. A plane convex len length of lens is	s has radius of curvature	30 cm. If the refractive	index is 1.33, the focal	
A. 10 cm	B. 90 cm	C. 30 cm	D. 60 cm	
15 Δ beam of light is α	converging towards a poi	int Lona screen Δ nlane	narallel plate of glass	
	ion of the beam = t , refra			
beam. The convergence		μ) is intro	duced in the path of the	
_	B. $t(1 + 1/\mu)$ away	$C + (1 - 1/\mu)$ nearer	$D + (1 + 1/\mu)$ nearer	
A. $t(\mu - 1)$ away	D. $t(1 + 1/\mu)$ away	C. $t(1 - 1/\mu)$ incarci	$D.t(1+1/\mu)$ hearer	
16 In Young's double	silt experiment the sensi	ration between the silts is	s halved and the distance	
_	creen is doubled. The fri		s narved and the distance	
A. unchanged	B. halved	C. doubled	D. quadrupled	
71. unchangea	B. Harved	e. dodoled	D. quadrupica	
17 Wavelength of red	light is λ_r , violet rays is	λ and X -ray is λ then	the order of	
wavelengths is	iight is 70 ft, violet rays is	w water ray is w x their	Time order or	
_	B. $\lambda_v > \lambda_x > \lambda_r$	C. $\lambda_r > \lambda_x > \lambda_v$	D. $\lambda_r > \lambda_v > \lambda$	
	400	C. 76 r > 76 x > 76 y	\mathbf{D} . $\mathcal{H}_{\mathbf{f}} > \mathcal{H}_{\mathbf{V}} > \mathcal{H}_{\mathbf{V}}$	
18. The amount of work done by the labourer who carries <i>n</i> bricks, each of mass <i>m</i> , to the roof				
of a house whose heigh		•		
A. $n mgh$ B. mgh/n C. zero D. ghn/m				
19. In LCR circuit in the state of resonance, which of the following statements is correct ? (cos				
φ)=	- Y	\mathcal{E}	`	
A. 0	B. 0.5	C. 1	D. None of these	
(1	V		_ , , , , , , , , , , , , , , , , , , ,	
20. In LCR circuit, phase difference between voltage and current cannot be				
A. 80°	B. 90°	C. 145°	D. 0°	
	_,,,		_, ,	
21. If speed is plotted along x-axis and Kinetic energy against y-axis, then the graph obtained has				
a shape similar to that			D 1.1	
A. circle	B. ellipse	C. hyperbola	D. parabola	
22 A magazatia was 11	luina manallal (tio field measures in the	of words to tom: "t	
_	lying parallel to a magne	<u>=</u>		
through 60°. The torque needed to maintain the needle in this position will be				

A. $(\sqrt{3})$ w B. w www.examrace.com

D. 2w

23. A vertical straight conductor carries a current vertically upwards. A point p lies to the east of it at a small distance and another point O lies to west of it at the same distance. The magnetic field at p is

A. greater than at Q

B. same as at Q

C. less than at Q

D. greater or less at O depending upon the

strength of the current

24. In a parallel arrangement if $(R_1 > R_2)$, the power dissipated in resistance R_1 will be

A. less than R_2

B. same as R_2

C. more than R_2

D. none of these

25. For a fuse wire to be installed in the supply line in a house which one of the following is immaterial?

A. the specific resistance of the material of the fuse wire

B. the diameter of the fuse wire

C. the length of the fuse wire

D. none of these

26. If V is voltage applied, E_a is emf drop across the armature, the armature current of a d.c. motor I_a is given by

A. $(V + E_a)/R_a$

B. E_a/R_a

C. V- E_a/R_a

D. V/R_a

27. The current of 2.0 amperes passes through a cell of e.m.f. 1.5 volts having internal resistance of 0.15Ω . The potential difference measured in volts across both the terminals of the cell will be

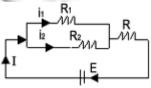
A. 1.35

B. 1.50

C. 1.00

D. 1.20

28. In this circuit, current ratio i₁/i₂ depends upon


A. R_1 , R_2 and R

B. R, R_1 , R₂ and E

C. R₁ and

D. E and R

 R_2

29. A cell of emf E is connected across a resistance r. The potential difference between the terminals of the cell is found to be V. The internal resistance of the cell must be

A. 2(E - V)V/r

B. 2(E - V)r/E

C. (E - V) r/V

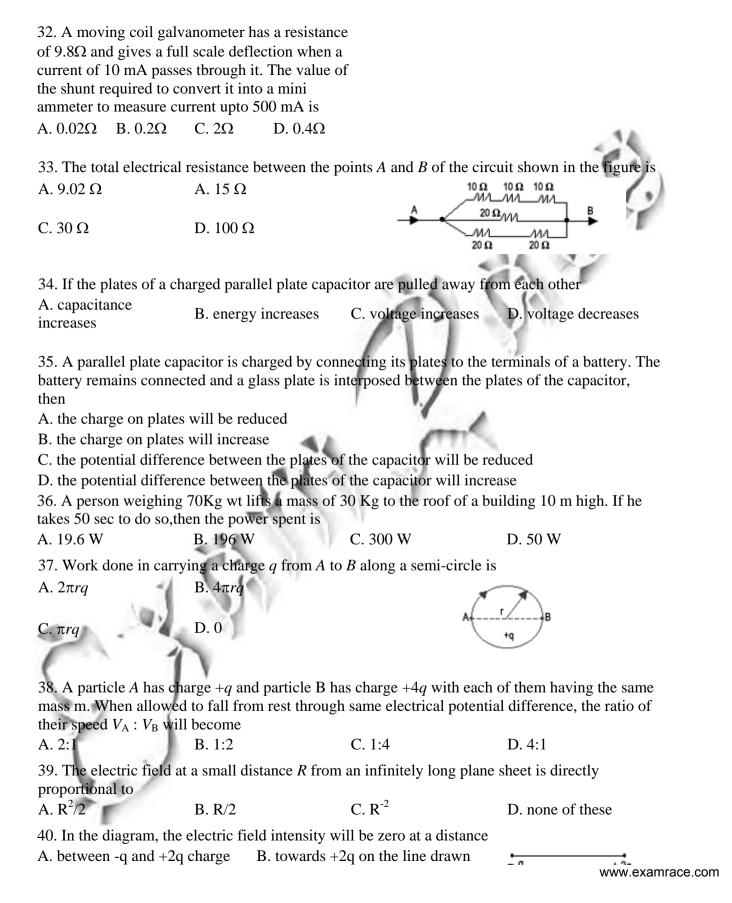
D. (E-V)/r

30. Copper and germanium are both cooled to 70 K from room temperature, then

germanium decreases

A. resistance of copper increases while that of B. resistance of copper decreases while that of germanium increases

C. resistance of both decreases


D. resistance of both increases

31. The potential difference between the points A and B of the electrical circuit given is

A. 1.5 V

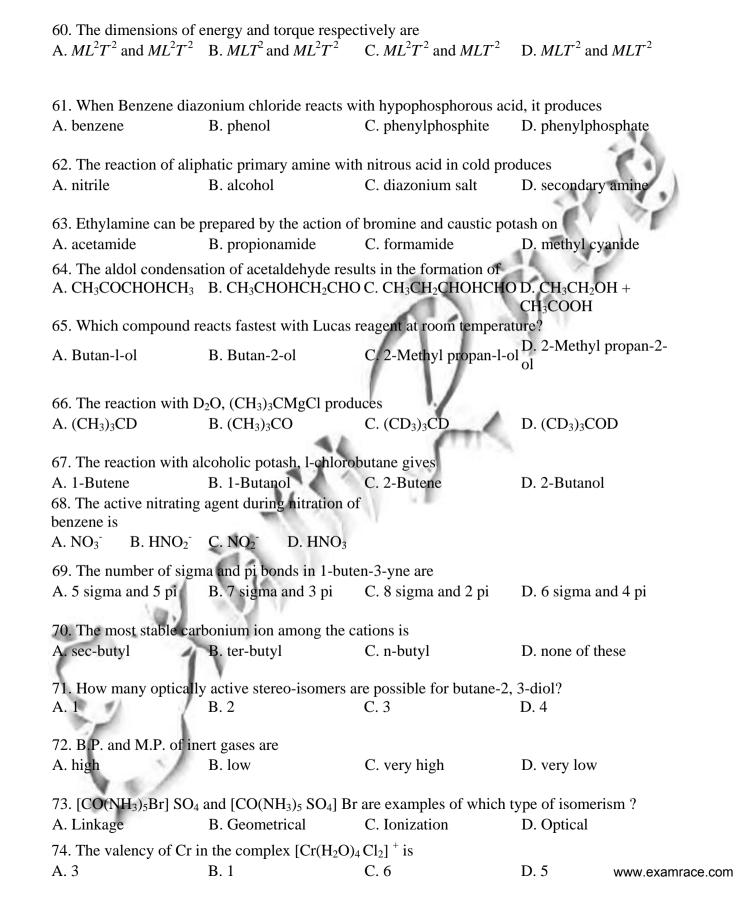
B. 1.0 V

 $\frac{25 \Omega}{4/4}$

C. away from the line towards +2q D. away from the line towards -q 41. Wein's displacement law is given by
A. $\lambda_m = B$. $T/\lambda_m = C$. $\lambda_m T = D$. $T = \lambda_m$ constant constant constant = constant
42. If two electrons are forced to come closer to each to each other, then the potential energy A. becomes zero B. increases C. decreases D. becomes infinite
43. The specific heat at constant pressure is greater than that of the same gas at constant volume because
A. at constant volume work is done in expanding the gas B. at constant pressure work is done in expanding the gas C. the molecular attraction increases more at constant pressure D. the molecular vibration increases more at constant pressure
44. The specific heats of CO_2 at constant pressure and constant volume are 0.833 J/kg.K and 0.641 J/kg.K respectively. If molecular weight of CO_2 is 44, what is the universal constant R ? A. 4.19 x 10^7 erg/cal B. 848.8 J/gm/K C. 8.448 J/mol/K D. 4.19 J/cal
45. The freezing point of the liquids decreases when pressure is increased, if the liquid A. expands while freezing B. contracts while freezing C. does not change in volume while freezing D. none 46. The equation of a transverse wave on a stretched string is given by $y = 0.05 \sin \pi \ (2t/0.002 - x/0.1)$ where x and y are expressed in metres and t in sec. The speed of the wave is A.100 B. 50 m/s C. 200 m/s D. 400 m/s
47. The ratio of velocity of the body to the velocity of sound is called A. Magic number B. Laplace number C. Natural number D. Mach number
48. Television signals on earth cannot be received at distances greater than 100 km from the transmission station. The reason behind this is that
A. the receiver antenna is unable to detect the signal at a distance greater than 100 km
B. the TV programme consists of both audio and video signals C. the TV signals are less powerful than radio signals
D. the surface of earth is curved like a sphere
49. A ball is thrown from a height of h m with an initial downward velocity v_0 . It hits the ground,

loses half of its Kinetic energy & bounces back to the same height. The value of v_0 is

A. $\sqrt{2gh}$


B. \sqrt{gh}

C. $\sqrt{3gh}$

D. $\sqrt{2.5gh}$

www.examrace.com

length, when hung from increase in length due to	dulus $5 \times 10^6 \text{ N/m}^2$, 8m in ceiling of a room, the	1			
	the blades of a turbine at		height of the fall		
-	wer gained by the turbine		D (00)/III		
A. 10KW	B. 6KW	C. 100KW	D. 600KW		
52. If momentum of alp K.E. is that of	pha-particle, neutron, pro	ton, and electron are the	same, the minimum		
A. alpha-particle	B. neutron	C. proton	D. electron		
		20 1 6	1.1		
	while lifting a given load				
	the motor winds the cable	400	7 - 20		
A. 9 kW	B. 15 kW	C. 225 kW	D. 9000 H.P		
electronic charge and n electrons is	lectrons are accelerated that has to be respectively e	and <i>m</i> , the maximum vel	ocity attained by the		
A. $2eV/\sqrt{m}$	B. $\sqrt{(2eV)/m}$	C. 2m/eV	$D. v^2/8em$		
55. A particle is moving acceleration is	g on a circular track of ra	dius 20 cm with a consta	ant speed of 6 m/s. Its		
A. 0	B. 180 m/s^2	C. 1.2 m/s^2	D. 36 m/s^2		
56. A satellite of the earth is revolving in a circular orbit					
-	. If gravitational force suc	ddenly			
disappears, the satellite		1 1.			
4.4	A. continue to move with the speed <i>v</i> along the original orbit				
B. move with the velocity <i>v</i> tangentially to the original orbit					
C. fall downward with increasing velocity D. ultimately come to rest somewhere on the original orbit					
E di					
57. The kinetic energy K of a particle moving along a circle of radius R depends on the distance covered s as $K = as^2$. The force acting on the part1cle is					
A. $2as^2/R$	B. $2as(1 + s^2/R)^{1/2}$	C. $as(1 + s^2/R^2)^{1/2}$	D. None of these		
58. Einstein was award A. Photoelectric effect C. General theory of re	ed Nobel Prize for his wo	ork in B. Special theory of rela D. None of these	ativity		
59. One second is defin	ned to be equal to				
A. 1650763.73 periods C. 1650763.73 periods	of the Krypton clock	B. 652189.63 periods of D. 9192631770 periods	· -		

75. In Nessler's reagent A. Hg ⁺ B. Hg ²⁺	t, the ion is C. HgI_2^2 D. HgI_4^2		
	2O, copper is co-ordinate s B. four water molecule		D. one water molecule
77. Which of the follow A. HCl	ving is a weak acid? B. HBr	C. HP	D. HI
78. When SO ₂ is passed A. the solution turns bluc. SO ₂ is reduced	d through acidified K ₂ Cr ue	₂ O ₇ solution, B. the solution is decol- D. green Cr ₂ (SO ₄) ₃ is for	- W. C.
79. Which of the follow	ving has lowest boiling p	oint?	12
A. H ₂ O	$B. H_2S$	C. H ₂ Se	$D.H_2Te$
80. Nitric oxide is preparation. Fe 81. The laughing gas is A. nitrous B. nitric oxide oxide	ared by the action of dil. B. Cu C. nitrogen D. nitrogen trioxide pentaoxide	C. Zn	D. Sn
82. Ordinary glass is A. sodium silicate C. calcium and Sodium	n silicate	B. calcium silicate D. copper silicate	
83. The chemical name	of phosgene is		
A. Phosphene	B. Carbonyl chloride	C. Phosphorous oxychloride	D. Phosphorous trichloride
84. Which one of the fo	ollowing is strongest Lew	vis acid?	
A. BF ₃	B. BCl ₃	C. BBr ₃	D. BI ₃
85. Three centred bond A. NH ₃	is present in B. B ₂ H ₆	C. BCl ₃	D. AlCl ₃
86. Plaster of Paris is			
A. CaSO ₄ .H ₂ O	B. CaSO ₄ .2H ₂ O	C. CaSO ₄ .1/2 H ₂ O	D. CaSO ₄ .3/2 H ₂ O
87. Rocky impurities pr	resent in a mineral are		
called A. flux B. gangue	C. matte D. slag		
88. Free hydrogen is fo	_		
A. acids	B. water	C. marsh gas	D. water gas
89. When zeolite, which	h is hydrated sodium alu	minium silicate, is treate	ed with hard wateneywhexamrace.com

sodium ions are exchan A. H ⁺	ged with B. K ⁺	C. SO_4^{2-}	D. Mg ²⁺	
90. On passing 0.3 faraday of electricity through aluminium chloride, the amount of aluminium metal deposited on cathode is $(Al = 27)$				
A. 0.27 g	B. 0.3 g	C. 2.7 g	D. 0.9 g	
91. The migration of co	olloidal particles under in B. Brownian movemen	nfluence of an electric fie at C. Cataphoresis	eld is known as D. Dialysis	
92. In a colloidal state, A. 1 to 10 A°	particle size ranges from B. 20 to 50 A°	C. 10 to 1000 A°	D. 1 to 280 A°	
93. The half-life of a fin A. 1.05 ⁻¹ 94. Heat of neutralisation strong base is always A. 13.7 B. 9.6 Kcal/mol Kcal/mol	B. 0.15 ⁻¹ on of a strong acid and C. 6 D. 11.4	5. The value of rate cons C. 0.015 ⁻¹	tant of the reaction is D. 0.0015 ⁻¹	
95. In exothermic react	ions, $B. H_R > H_P$	$C. H_R < H_P$	D. None of the above	
96. Which is a buffer so A. CH ₃ COOH + CH ₃ COONa 97. The pH of 0.01 M s	B. CH ₃ COOH + CH ₃ COONH ₄	C. CH ₃ COOH + NH ₄ C	l D. NaOH + NaCl	
A. 1.0	B. 2.0	C. 10.0	D. 11.0	
98. In which of the follo	owing case does the reac	ction go fastest to comple	etion?	
A. $k = 10^2$	B. $k = 10^{-2}$	C. $k = 10$	D. $k = 1$	
99. What quantity of lir	mestone (CaCO ₃) on hea	ating will give 28 kg of C	CaO?	
A. 1000 kg	B. 56 kg	C. 44 kg	D. 50 kg	
100. The managers of	owygan in NaOILia			
100. The percentage of A. 40 101. If we take 44 g of what will be the mole fi	B. 16 CO_2 and 14 g of N_2 ,	C. 18	D. 10	
mixture?				
A. 1/5 B. 1/3	C. 1/2 D. 1/4			
		ng 5.3 g/250 ml of soluti		
A. 0.2 M	B. 2 M	C. 20 M	D. 0.02 M	
103. A gas is initially a be applied is	t 1 atm pressure. To con	npress it to 1/2th of its in	itial volume, pressure to	

www.examrace.com

A. 1 atm	B. 4 atm	C. 2 atm	D. 1/4 atm
104. The value of <i>R</i> in A. 0.0831	calorie/degree/mole is B. 8.31	C. 8.31×10^7	D. 1.987
105. Which of the follo	owing possesses zero resi	stance at 0 K?	
A. Conductors	B. Semi-conductors	C. Super-conductors	D. Insulators
106. CsCl has lattice of	f the type		1000
A. ccp	B. fcc	C. bcc	D. hcp
107. In the reaction bet	ween sodium and chloring	ne to form sodium chlori	de,
A. sodium atom is	B. sodium ion is	C. chlorine atom is	D. chloride ion is
reduced 108. Octahedral molecu	reduced	reduced	reduced
hybridisation.	mai shape exists in	1	100
${\text{A. sp}^3\text{d}}$ B. sp ³ d ²	C. sp^3d^3 D. sp^2d^2	011	
109. NH ₃ and BF ₃ form	an adduct readily becau	se they form	1
A. a co-ordinate bond	~	C. an ionic bond	D. a hydrogen bond
110. Diagonal relations	ship exists between	1	
A. Li and Mg	B. Na and Mg	C. K and Mg	D. Al and Mg
111. Which element ha	s the highest electro-neg	ativity?	
A. F	B. He	C. Ne	D. Na
112. Loss of a -particle	is equivalent to	M	
A. loss of two neutrons		B. loss of two protons of	only
C. loss of two neutrons	and loss of two protons	D. none of the above	
	s in + 1 oxidation state ar	re formed by	
A. B	B. Al	C. Ga	D. Th
114. Sodium hexameta	phosphate is used as		
A. a cleansing agent	B. an insecticide	C. a water softner	D. an iron exchange resin
115. The strongest acid	is		
A. B.	C. D.		
$ClO_3(OH)$ $ClO_2(OH)$	$SO(OH)_2$ $SO_2(OH)_2$		
	the following pairs of ic	ons cannot be separated b	by H ₂ S in dilute
hydrochloric acid? A. Bi ³⁺ , Sn ⁴⁺	B. Al ³⁺ , Hg ²⁺	C. Zn ²⁺ , Cu ²⁺	D. Ni ²⁺ , Cu ²⁺
A. Di , Sii	D. Al , Hg	C. ZII , Cu	D. M., Cu

C. 2, 2-dimethylpropane

D. 2, 3-dimethylbutane

118. The product of reaction of alcoholic silver nitrite with ethy1 bromide is

A. ethane

B. ethene

C. nitroethane

D. ethyl a1coho1

119. Formy1 chloride has not been so prepared. Which one of the following can function as formyl chloride in formulation?

A. HCHO + HC1

B. HCOOCH₃ + HCl

C. CO + HC1

D. $HCONH_2 + HCl$

120. Amongst the following, the most basic compound is

A. Benzylarnine

B. Aniline

C. Acetanilide

D. p-Nitroaniline

121. If the roots of x^2 - bx + c = 0 are

consecutive integers, then b^2 - 4c is equal to

A. 4

B. 3

C. 2

D. 1

122. Condition that the two lines represented by the equation $ax^2 + 2hxy + by^2 = 0$ to the perpendicular is

A. a = -b

B. ab = 1

C. a = b

D. ab = -1

123. If $A \subset B$, then $A \cap B$ is equal to

A. B^c

B. A^c

C. B

D. A

124. In order that the function $f(x) = (x + 1)^{\cot x}$ is continuous at x = 0, f(0) must be defined as

A. f(0) = 0

B. f(0) = e

C. f(0) = 1/e

D. none of the above

125. The eccentricity of the ellipse $16x^2 + 7y^2 = 112$ is

A. 4/3

B. 7/16

C. $3/\sqrt{7}$

D. 3/4

126. If z_1 , z_2 , z_3 are three complex numbers in A.P., then they lie on

A. a circle

B. an ellipse

C. a straight line

D. a parabola

127. If $[(a^2 + 1)^2]/(2a - i) = x + iy$, then $x^2 + y^2$ is

equal to

A. $[(a^2 + B. [(a + 1)^4]/(4a^2 + 1)^2]/(4a^2 + 1)^4$

C. $[(a^2 - 1)^2]/(4a^2 - 1)^2$

D. none of the above

128. The vertices of a triangle are (0, 0), (3, 0) and (0, 4). Its orthocentre is at

A. (3/2, 2)

B. (0, 0)

C. (1, 4/3)

D. none of the above

129. The eccentricity of the conic $9x^2 - 16y^2 = 144$ is

A. 5/4

B. 4/3

C. 4/5

D. √7

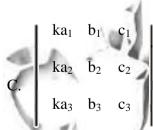
130. The vertices of a triangle are (0, 3), (-3, 0) and (3, 0). The co-ordinates of its orthocentre are www.examrace.com

A. (0, 2)	B. (0, -3)	C. (0, 3)	D. (0, -2)
131. If t is the paramete	r for one end of a focal c	hord of the parabola $y^2 =$	= 4ax, then its length is
A. a [t - (1/t)]	B. a $[t + (1/t)]$	C. a $[t - (1/t)]^2$	D. a $[t + (1/t)]^2$
132. The value of $\cos^2 \theta$	$\theta + \sec^2 \theta$ is always		4.6
A. equal to 1		B. less than 1	1
C. greater than or equal	to 2	D. greater than 1, but le	ss than 2
133. The number of poi	nts of intersection of 2y		40 100
$= 1$ and $y = \sin x$, $-2\pi \le$	•		CA AL
A. 2 B. 3	C. 4 D. 1		100
	$\sin \theta_3 = 3$, then $\cos \theta_1 +$	$\cos \theta_2 + \cos \theta_3 =$ C. 2	D.3
A. 0	B. 1	C.2	D.3
135. The number of sol	utions in $0 \le x \le \pi/2$ of the	ne equation cos 3x tan 5x	$x = \sin 7x$ is
A. 5	B. 7	C. 6	D. none of the above
		/ \ /	
136. One end of a diame	eter of the circle $x^2 + y^2$	-4x - 2y - 4 = 0 is $(5, -6)$, the other end is
A. (4, -9)	B. (-9, -4)	C. (4, 9)	D. (9, -4)
137. The set of values or real and negative consist		pots of the equation x^2 -	(m+1)x + m + 4 = 0 are
A. $-3 \ge m$ or $m \ge 5$		C. $-4 < m \le -3$	D. $-3 < m < -1$
	D. 5 (III.)		2. 3 (M = 1
138. Let $P_n(x) = 1 + 2x$ number of real roots of	$+3x^{2} + \dots + (n+1)x^{n}$ P(x) = 0 is	be a polynomial such that	at n is even. Then the
A. 1	B. n	C. 0	D. none of the above
139. The next term of the	ne sequence 1, 3, 6, 10,		
is			
A. 16 B. 13	C. 15 D. 14		
140. If H is the harmon	ic mean between P and Q	than H/D + H/O is	
A. $(P + Q)/PQ$	B. $PQ/(P+Q)$	C. 2	D. none of the above
	2.1 (/(1 / ())	C. 2	2. Hone of the doore
-	ed of two brothers and six le so that the two brother	=	
A. 4320	B. 3600	C. 720	D. 1440
100	2.2000		
142. The binomial coef	ficient of the 4th term in	the expansion of $(x - q)^5$	is
A. 15	B. 20	C. 10	D. 5

143. For $x \ne 0$, the term independent of x in the expansion of $(x - x^{-1})$ is equal to

A.
$$^{2n}C_n$$

B.
$$[(-1)^n]$$
 $[^{2n}C_n]$


B.
$$[(-1)^n]$$
 $[^{2n}C_n]$ C. $[(-1)^n]$ $[^{2n}C_{n+1}]$ D. $^{2n}C_{n+1}$

D.
$$^{2n}C_{n+1}$$

$$\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$$
 is equal to

$$a_1$$

$$\begin{array}{ccc} ka_1 & kb_1 \\ ka_2 & kb_2 \\ ka_3 & kb_3 \end{array}$$

145. One root of the equation
$$\begin{vmatrix}
3x - 3 & 3 \\
8 & & \\
3x - 3 & \\
3 & 8 & \\
& 3x - 3 \\
3 & 8 & \\
& 3x - 3 \\
3 & 8 & \\
& 60 \text{ is which of the following?}
\end{vmatrix}$$

A. 2/3 B. 8/3 C. 16/3 D. 1/3

A.
$$|A| = 2 |B|$$

$$B. |A| = |B|$$

$$C. |A| = - |B|$$

C. |A| = -|B| D. none of the above

147. Equation of the sphere with centre (1, -1, 1) and radius equal to that of sphere $2x^2 + 2y^2 +$ 2 z^2 - 2x + 4y - 6z = 1 is A. x^2 + y^2 + z^2 - 2x + 2y - 2z + 1 = 0 C. x^2 + y^2 + z^2 - 2x + 2y - 2z - 1 = 0 D. none of the above

A.
$$x^2 + y^2 + z^2 - 2x + 2y - 2z + 1 = 0$$

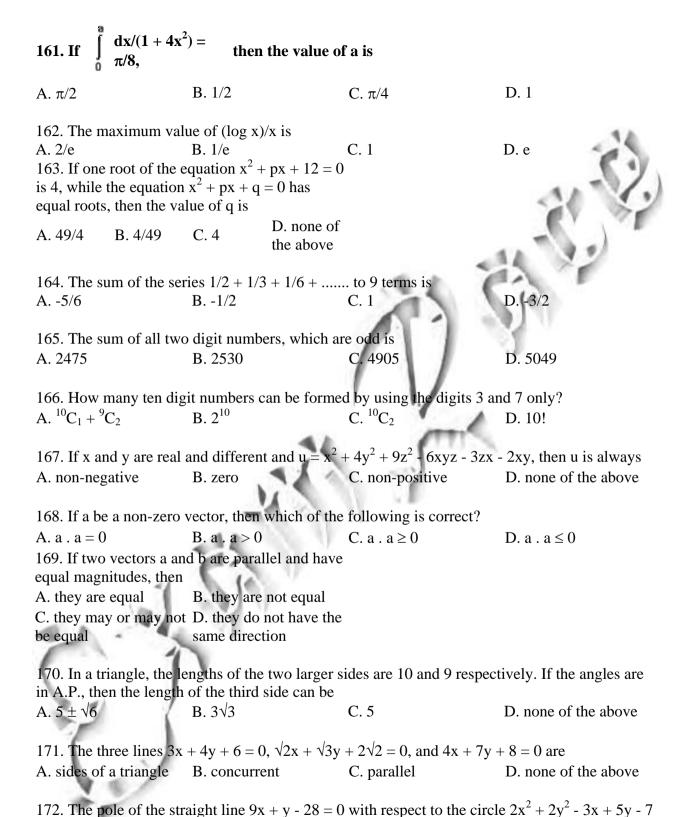
B.
$$x^2 + y^2 + z^2 + 2x - 2y + 2z + 1 = 0$$

C.
$$x^2 + y^2 + z^2 - 2x + 2y - 2z - 1 = 0$$

148. Equation of the line passing through the point (1, 1, 1) and parallel to the plane 2x + 3y +

$$3z + 5 = 0$$
 is

A.
$$(x-1)/1 = (y-1)/2 = B$$
. $(x-1)/-1 = (y-1)/1$
 $(z-1)/1 = (z-1)/-1$
C. $(x-1)/3 = (y-1)/2 = D$. $(x-1)/2 = (y-1)/3 = (y-1$


$$(z-1)/1 = (z-1)/-$$

C.
$$(x-1)/3 = (y-1)/2 = D$$
. $(x-1)/2 = (y-1)/3 = (x-1)/1$

$$(z - 1)/1$$

$$(z - 1)/1$$

	ants such that a and c are nd y, then the correlation			
A. (a/c)r	B. r	C r	D. (c/a)r	
150. From a deck of 52	cards, the probability of	drawing a court card is		
A. 3/13	B. 1/4	C. 4/13	D. 1/13	
151. A binomial probab trial, is	oility distribution is symm	metrical if p, the probabil	lity of success in a single	
A. > 1/2	B. < 1/2	C. $< q$, where $q = 1 - p$	D. = 1/2	
152. The binomial distr	ribution whose mean is 10	0 and S.D. is $2\sqrt{2}$ is		
A. $(4/5 + 1/5)^{50}$	B. $(4/5 + 1/5)^{1/50}$	C. $(4/5 + 5/1)^{50}$	D. none of the above	
153. tan (cot ⁻¹ x) is equa	al to	20 6	10	
A. π/4 - x	B. $\cot (\tan^{-1}x)$	C. tan x	D. none of the above	
154. If $f(x)$ is an odd peperiod 2, then $f(4)$ equa		///	·.)	
A 4 B. 4	C. 2 D. 0	1 1/		
155. The function $f(x) =$	$= [(x^3 + x^2 - 16x + 20)]/(x^3 + x^2 - 16x + 20)]$	x - 2) is not defined for x	x = 2. In order to make	
	f, $f(2)$ should be defined a			
A. 0	B. 1	C. 2	D. 3	
156. Let f and g be differentiable functions satisfying $g'(a) = 2$, $g(a) = b$, and $fog = 1$ (identity				
function). Then f'(b) is		11		
A. 0	B. 2/3	C. 1/2	D. none of the above	
157. A cone of maximum the cone to the diameter	om volume is inscribed in rof the sphere is	a given sphere. Then th	e ratio of the height of	
A. 3/4	B. 1/3	C. 1/4	D. 2/3	
158. The function is de	creasing in the interval			
A. $-\infty < x < -10/3$	B. $0 < x < \infty$	C. $-3 < x < 3$	D. $-10/3 < x < 0$	
159. Suppose that f''(x continuous for all x an				
f(0) = f'(1). If	0			
then the value of $f(1)$ i				
A. 3 B. 2	C. 9/2 D. none of the above			
160. Integrating factor	of differential equation co	$\cos x \left(\frac{dy}{dx} \right) + y \sin x = 1$	1 is	
A. sin x	B. sec x	C. tan x	D. cos x	

C. (3, -1)

= 0 isA. (3, 1)

B. (1, 3)

D. (-3, 1)

173. If the sets A and B then	are defined	as $A = \{ (x,$	y): $y = e^x$, $x \in R$ }, $B =$	$\{ (x, y) : y = x, x \in R \}$
$A. A \cup B = A$	B. A \cap B =	ф	$C. A \subseteq B$	$D. B \subseteq A$
	/[f(x) + f(2a }dx is equal			-10
A. a B. 2a	C. 3a	D. none of the above		12
175. The slope of the ne	ormal at the p	point (at², 2a	at) of the parabola $y^2 = 4$	ax is
A. 1/t	B. t		C t	D1/t
176. If z is any complex A. 2	x number suc B. 6	h that $ z+2 $	$4 \mid \le 3$, then the greatest C. 0	value of z + 1 is D 6
177. The equation cos	$x + \sin x = 21$	has		9.10
A. only one solution			B. two solutions	4.0
C. no solution			D. infinite number of so	olutions
178. The most general will be	value of θ , where θ	hich satisfie	s both the equations tan	$\theta = -1$ and $\cos \theta = 1/\sqrt{2}$
A. $n\pi + (7\pi/4)$	B. $n\pi + (-1)$	$^{n}(7\pi/4)$	C. $2n\pi + (7\pi/4)$	D. none of the above
179. A spherical ball of	` ′			
ground subtends an ang the ground. Then the di	tle of 60° at a stance of the	point A of	1	
from the centre of the b	all 18	D C		
A. 3r B. 2r	C. 4r	D. none of the above		
100 In a triangle ADC	2 20	1-2 2 4	2-1(A D):-	4.5
A. c	$B. c^2$	U COS ZA +	2ab cos (A - B) is equal C. 2c	D. none of the above