
Chapter 1

Introduction



Newton’s three laws:

 
First law (Law of inertia)[C]: It is always possible to find a 
coordinate system with respect to which isolated bodies move 
 uniformly. This coordinate system is called an inertial reference 
f r a m e .  

The usual statement “A body remains in its state of rest or in 
uniform linear motion as long as no external force acts on it to 
change” is not suitable.  In an accelerating frame, a force-free 
body will appear to accelerate.

Inertial reference frame: In which the law of inertial is valid. Any 
reference frames moving with a constant velocity wrt stationary 
frame is a inertial reference frame.

Examples:  free space, a freely falling elevator.

Second law (C): The change in the linear momentum of a body 
is proportional to the external force acting on the body and is in 
the direction of the force.

	 dp
dt

= F

For a point particle: p = mv = m ·r

For a rigid body: linear momentum of the CM.

	 d2r
dt2 = F

Third law (C): If a given body A exerts a force on another body B, 
then body B also exerts a force on body A with equal magnitude 
but opposite in direction. 

Not always valid. If the Sun moved by a distance, then the action 
and reaction with Earth will not take on the new values until the 
signal reaches the Earth.  This is because the Newtonian 
dynamics assumes instantaneous propagation of signal (action 
at a distance).

Main points: Second order differential equation.

Other assumptions: 
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Absolute space: Motion takes pace in the background of 
absolute space. The space is same for all observers.

Consequence: The length of a rod is the same for all observers.

Absolute Time: Evolution of physical system in “time”.  Time 
moves uniformly with equal rate for all observers.

Consequence: Time interval between two events is the  same 
for all observers.

Mass conservation

Infinite speed

Examples:

Oscillator: Equation

	 m ··x + 2γ ·x + ω2
0 x = F0 cos ωf t

(1) Linear frictionless oscillator with the initial condition is 

[x(0),v(0)]:  x(t) = x(0)cos ωt + v(0)
ω

sin ωt

(2) Solve ··x = x: x(t) = x(0)cosh t + v(0)sinh t

Exercises: 

(1) Solve for the position and velocity of a damped linear oscillator 
whose mass  m=1, the viscous coefficient is γ.  The initial 
condition is [x(0),v(0)].

(2) Do the same for a forced undamped oscillator with initial 
condition is [x(0),v(0)]. Solve for both cases: ω0 ≠ ωf and ω0 = ωf

(3)  A spherical ball of mass m falls under gravity in a viscous 
fluid. Find the position and velocity of the ball as a function of 
time. Assume that the mass starts at rest from a height h 
above the ground. Apply the above solution to a raindrop 
whose radius is 1 mm. Assume the dynamic viscosity of air to 
be 10−5 kg/(m s). 
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Work energy theorem:
The work done on a particle by a force F as it moves from point 
A  to point B:

	 WAB = ∫
B

A
F ⋅ dr

which can be rewritten as

[1]	 WAB = ∫
B

A
m

dv
dt

⋅ dr
dt

dt = [ 1
2 mv2]

B

A
= TB − TA

where TA, TB are the kinetic energy of the particle at the points A 
and B respectively.

The above statement is work energy theorem: The difference in 
the kinetic energy of a particle between two points is equal to the 
net work done on the particle by the external forces  during the 
transit.

Conservative force fields and Potentials:

 Conservative force fields: Fields for which ∮ F ⋅ dr = 0 for any 

closed path. For such fields, ∫
Q

P
F ⋅ dr is only function of the end 

points, but remain independent of paths.  Therefore, we choose 
P as the reference point and define potential energy U(r) as

	 U(r) = − ∫
r

P
F(r′�) ⋅ dr′�.

Therefore, 

[2]	 ∫
B

A
F ⋅ dr = ∫

B

P
F ⋅ dr − ∫

A

P
F ⋅ dr = − UB + UA

Eqs. [1,2] yield

	 TA + UA = TB + UB,

The sum of kinetic and potential energies is the total energy, and 
the above statement is the conservation of total energy of a 
mechanical systems that are conservative.
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Example: 

(1) Spring force F = − k x.  Therefore 

U(x) = − ∫
x

x0

(−k x)d x = 1
2 k x2 − 1

2 k x2
0

Hence, the potential energy is U(x) = k x2 /2 apart from a constant, 
and the total energy

	 E = 1
2 m ·x2 + 1

2 k x2

(2) For gravitational force F = − GMm /r2 r̂,

	 U(B) − U(A) = − ∫
B

A
F ⋅ dr = − ∫

B

A
Frdr = − GMm ( 1

rB
− 1

rA )
By choosing rA = ∞, we deduce

	 U(r) = − GMm
r

Exercises:
(1) A charged particle +Q is fixed at the origin. A test charged 

particle +q of mass m is fired  head-on towards the charged 
particle +Q with velocity v∞ from ∞.  Compute the shortest 
distance of approach between the particles. 

(2) Four immovable charges of magnitude +Q are placed at the 
vertices of a square. A test charge +q is moving in the field of 

these charges.  (a) Find the position(s) of equilibrium point(s). 
(b)  Compute the potential near the equilibrium point. (c) What 
is the nature of the equilibrium point? Describe the motion of 
the test particle near this point. (d) Does your analysis depend 
on the sign of the test charge? 

(3) What is the potential of an electric dipole? Compute the 
electric field induced by it.  Sketch the potential.

(4) Philip Morse modelled the potential energy of a diatomic 
molecule using a potential energy function:  
U(r) = De{1 − exp[−a(r − re)]}2  where r is the distance between 
the atoms of the dipolar molecule re is the equilibrium bon 
distance and De is the depth of the potential well. (a) Sketch 
the potential. (b) Find the minima of the potential. (c) Expand 
the potential near its minimum and compute the frequency of 
oscillation. 
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1. Linear Momentum

Centre of mass: 

	 RCM = ∑ mara

∑ ma

a: Particle label

CM reference frames: Frame in which RCM = 0.

Linear momentum of a system:

	 P = ∑ mava = ∑ ma(VCM + v′ �a) = M VCM = PCM

Equation of motion:

	 ·P = M
d VCM

dt
= ∑

a
ma

·va = ∑ fa

fa is the net force on the a-th particle.

	 fa = fa,ext + fa,int = fa,ext + ∑
b

fa,b

where fa,b is the force on the a-th particle due to the b-th particle.

	 MaCM = ∑
a

fa = ∑
a

fa,ext + ∑
a

∑
b

fa,b

From Newton’s third law:

	 fa,b + fb,a = 0

Therefore, 

	 d P
dt

= ∑
a

fa,ext = Fext.

If Fext = 0, then the total linear momentum of the system P is a 
constant. This is the statement of the conservation of linear 
momentum.

Example: Two masses (m) connected by a spring. Example Ch 
13
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2. Angular Momentum of a Single Particle

.
.

O

m

r

V

y

x

P

We define the angular momentum of the particle about a 
reference point O, where OP = r, as 

	 	 L = r × p,

where p = m ·r is the linear momentum of the particle measured in 
the reference frame. The above formulas is valid in any reference 
frame, inertial or noninertial. Now.

	 d L
dt

= r × dp
dt

+ dr
dt

× p = r × dp
dt

= r × F = N

where N is the torque on the particle about the reference point O.

If the torque, N, on the particle is zero, then the angular 
momentum L of the particle  is a  constant.

This law is called  conservation of angular momentum.

3. Angular Momentum of a System of 
Particles

The Angular momentum of a system of particles is a sum of 
angular momentum of individual particles.  The angular 
momentum of such system about a reference point  is 

	 L = ∑
a

ra × pa, 	 	 	 	 	 	

where ra denotes the position vector of the ath particle from the 
reference point, and pa  its linear momentum. Using the CM 
coordinates, r = RCM + r′�a and v = VCM + v′�a:

	 L = ∑
a

ra × pa

	 = ∑
a

ma(RCM + r′�a) × (VCM + v′�a)

	 = RCM × PCM + ∑ r′�a × p′�a		 	  

 Therefore,

	 L = RCM × PCM + LCM = Lorbit + LCM, 	  

where
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	 	 LCM = ∑ r′�a × p′�a	 	 	 	 	 	  

is the angular momentum of the body about the CM,

4. Equation of Motion Using  Angular 
Momentum

We assume that xy coordinate system of the figure is an inertial 
reference frame, and the reference point O belongs to it.  The 
angular momentum of the body about O is

	 LO = ∑
a

mara × pa.	 	 	 	 	

We also compute angular momentum LP about another point P 
shown in the following figure:

	 LP = ∑
a

mar′�a × p′�a = ∑
a

ma(ra − RP) × ( ·ra − ·RP),    		 	

	 	 	 	 	 	 	 	

y

xO

P

RP

ra
r'a

                          

The time derivative of LP is

	 d LP

dt
= ∑

a
ma(ra − RP) × (··ra − ··RP).	 	    

Using ma
··ra = fa  is the net force acting on the ath particle, we 

obtain

	 d LP

dt
= ∑

a
(ra − RP) × (fa − ma

··RP).	 	    

The term ∑
a

(ra − RP) × (−ma
··RP) can interpreted as the torque on 

the rigid body due to the pseudo force −ma
··RP. The force  fa  is a 

sum of external and internal forces, i.e.,

	 fa = fa,ext + ∑
b

fa,b	 	 	 	 	 	   

where  fa,ext is the external force on the ath particle, while fa,b is the 

internal force on the ath particle due to the bth particle as shown 
in Fig. 15.4.  Therefore,

d LP

dt
= ∑

a
(ra − RP) × (fa,ext − ma

··RP) + 1
2 ∑

a
∑

b
(r′�a × fa,b + r′�b × fb,a)	
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where r′�a = ra − RP. According to Newton's third law, fa,b = − fb,a. 
Therefore,

[3.1]   
d LP

dt
= ∑

a
(ra − RP) × (fa,ext − ma

··RP) + 1
2 ∑

a
∑

b
(r′�a − r′�b) × fa,b

	 	 	 	 	 	 	 	 	 	

                      

Figure 15.4  Internal forces between particles a and b.

Now we apply the strong form of Newton's third law, according to 
which the action and reaction forces are not only equal and 
opposite, but they are also along the line joining the two particles. 
Under this condition, the total internal torque (the second term of 
Eq. [3.1] vanishes.  Therefore,

	 	 d LP

dt
= ∑

a
(ra − RP) × fa,ext − M(RCM − RP) × ··RP.	 or	

	 	   
d LP

dt
= Next − M(RCM − RP) × ··RP,	 	 	  

where Next is the external torque acting on the rigid body about 
the point P, and the second term of the above equation is the 
torque about the point P induced by the pseudo force  −M ··RCM. 
Note that the second term vanishes for one of the following 
cases:

(1) RP = RCM, i.e., CM is the reference point P. This result is due 
to the fact that the torque induced by a pseudo force wrt the CM 
is zero.

(2) ··RP = 0, or the reference point P is not accelerating.  Naturally, 
the pseudo force is zero for this case.

(3) (RCM − RP) | | ··RP, a case rarely used in solving problems on 
rigid bodies.

Hence, using the CM or any non-accelerating point as a 
reference, we obtain

	 d L
dt

= Next . 	 	 	 	 	 	 	 (15.3.10)

 Next = 0, then L is a constant. That is, 
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If the net torque on a system of particles is zero, then the total 
angular momentum of the system is conserved.

Rigid body

Solving For Motion Of A Rigid Body

The equation of motion for the centre of mass of the rigid body in 
an inertial frame is 

	 d PCM
dt

= Fext	 	 	 	 	 	 (1)

where PCM is the linear momentum of the CM, and  Fext is the 
external force acting on the rigid body. 

The equation of motion for the angles of the rigid body is 

	 d L
dt

= Next,		 	 	 	 	 	 (2)

where L is the angular momentum of the rigid body about a 
reference point, and  Next is the external torque acting on the rigid 
body about the same reference point.

 It is important to note that computation of L and Next requires a 
reference point.  The reference point can be either the centre of 
mass or a non-accelerating  point of the rigid body.

Rotation About a Single Axis

Example 1:	 A cylinder rolls down an incline  without slipping. 
Describe the motion of the cylinder.

Solution:	 A cylinder is rolling down the inclined plane without 
slipping. The forces acting on the rigid body are gravity and 
friction. The frictional force opposes the tendency to slip, hence 
the frictional force is along −x̂. 

For rolling without slipping, it is convenient to use the clockwise 
rotation as positive.  We denote the velocity of the CM by v, and 
the angular velocity of the cylinder along  −ẑ by Ω.  Note that Ω is 
the same for all the points on the cylinder.  Let a be the 
acceleration of the cylinder, and α its angular acceleration. We 
take the CM of the cylinder to be the reference point. We can do 
so even though the CM is accelerating because the pseudo force 
passes through the CM, and it causes no additional torque. 
Therefore, the equation of motion of the cylinder is

	 ma = mg sin θ − f, 	 	 	 	 	 	 (1)

	 Iα = f R.	 	 	 	 	 	 	 	 (2)
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The constraint that the cylinder rolls down without slipping yields

	 v = ωR	 	 	 	 	 	 	 	 (3)

By taking a time derivative of Eq. (3) we obtain

	 a = αR	 	 	 	 	 	 	 	 (4)

z

Now we have three equations (1,2,4), and three unknowns a , α, 
and f. Solving these equations yields

	 a = g sin θ
1 + k

		 	 	 	 	 	 (5)

and  

	 f = Ia
R2 = mg sin θ

k
1 + k

.	 	 	 	 (6)

where k = I /(mR2). For the cylinder I = MR2 /2, hence k = 1/2 and 
a = (2g/3)sin θ. 

	 XCM = 1
2 at2,	 	 	 	 	 	 (7)

	 ϕ = 1
2 αt2,	 	 	 	 	 	 	 (8)

A block slides with an acceleration a = g sin θ. 

Note that f ≤ μN, where μ is the coefficient of friction, and N is the 
normal force. If the frictional force cannot support rolling,  then 
the ball will slip and roll, and we cannot apply the condition 
a = αR.

For rolling without slipping, the frictional force does not do any 

work (∫ f . dr = 0) because the contact point does not slip (dr = 0). 

Since the frictional force does not dissipate any energy, we can 
also solve the above problem by applying conservation of total 
energy: 

	 mgx sin θ = 1
2 mV 2

CM + 1
2 IΩ2, 	 	 	 (9)
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with VCM = ΩR. The LHS is the loss in potential energy, and the 
RHS is the gain in KE. The time derivative of the above equation 
yields the same acceleration as Eq. (5).

In the reference frame xyz, acceleration of any point on the 
cylinder is aP = a − αr = αR − αr, where r is the distance of the 
point P from the axis of the cylinder.  Clearly the bottom-most 
point (the contact point) of the cylinder has aP = 0.  As a 
consequence, we can choose the bottom-most point of the 
cylinder as the reference point since it is a non-accelerating point 
of the rigid body.  The equation for motion for the cylinder about 
the contact point is

	 	 I′�α = (mg sin θ)R		 	 	 	 	 (10)

with  I′� = I + MR2.  Hence

	 	 α = g sin θ
R(1 + k) ,	 	 	 	 	 	 (11)

	 	 a = g sin θ
1 + k

,	 	 	 	 	 	 	 (12)

which is consistent with Eq. (5).

We remark that the non-accelerating point of the cylinder at 
different times are different.

When the ball slips, f = μg cos θ.  Hence

	 a = g(sin θ − μ cos θ)

	 α = k(g/R)cos θ.

	

Example 2:	 The cylinder of Example 16.1 is pushed up the 
incline in such a way that the cylinder rolls up the incline without 
slipping. Describe the motion of the cylinder.

Solution:	 When the cylinder is rolled up, the frictional force is still 
upward in order to oppose the tendency of the cylinder to slip 
down the incline. Hence the equations of motion are exactly the 
same as Eq. (1-4) of the above example,  As a result, the cylinder 
has the same acceleration as Eq. (5); the cylinder slows down 
while ascending the incline. Note that  the motion for this case is 
the time reversed motion of Exercise 16.1. It is interesting to note 
that the time-reversal symmetry is respected in this problem even 
in the presence of frictional force. This is because the rolling 
frictional force does not dissipate energy, hence it does not break 
the time-reversal symmetry.

Exercises
(1)  A hoop of mass M and radius R is lying horizontally on a 
smooth surface. A bug of mass m moves slowly on the hoop. 
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Compute the trajectories of the bug and the centre of mass of the 
hoop. 

(2) Two particles rotate around each other in a circular orbit under 
the influence of gravitational pull of each other. The time period of 
orbit is T. At a given time, the particles are stopped suddenly, and 
then let go towards each other. After what interval of time, will the 
particles meet each other? 

(3)The spring mass–system shown in Fig. (a) is pulled with force F. 
Compute the position of both the blocks as a function of time. 

(4) A spring–mass system shown in Fig. (b) is resting on a 
horizontal surface. What force should be applied to the upper 
plate so that the lower one gets lifted after the pressure is 
removed. 

(5)  Two masses m1 and m2 are hanging on the two sides of a 
pulley that has moment of inertia I. Assume the string to be 
massless and inextensible. (a) Compute the acceleration of the 
masses. (b) Compute the tension of the string.

(6) A charged ball of mass m, radius R and charge q is resting on 
a horizontal slab. We apply an electric field E on the ball. The 
direction of the electric field is parallel to the slab. Describe the 
motion of the ball. 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