
www.vidyarthiplus.com

www.vidyarthiplus.com

Processes and threads

Introduction to operating systems – review of computer organization – operating

system structures – system calls – system programs – system structure – virtual

machines. Processes: Process concept – Process scheduling – Operations on

processes – Cooperating processes – Inter-process communication –

Communication in client-server systems. Case study: IPC in Linux. Threads:

Multi-threading models – Threading issues. Case Study: Pthreads library

Introduction :

What is an Operating System?

 An operating system is a program that manages the computer hardware.

 It also provides a basis for application programs and acts as an intermediary

between a user of a computer and the computer hardware.

 The purpose of an operating system is to provide an environment in which a

user can execute programs.

Goals of an Operating System

 The primary goal of an operating system is thus to make the computer

system convenient to use.

 The secondary goal is to use the computer hardware in an efficient manner.

Components of a Computer System

 An operating system is an important part of almost every computer system.

 A computer system can be divided roughly into four components.

i. Hardware

ii. Operating system

iii. The application programs

iv. Users

www.vidyarthiplus.com

www.vidyarthiplus.com

 The hardware - the central processing unit (CPU), the memory, and the

Input/output (I/O) devices-provides the basic computing resources.

 The application programs- such as word processors, spreadsheets, compilers,

and web browsers- define the ways in which these resources are used to

solve the computing problems of the users.

 An operating system is similar to a government. The OS simply provides an

environment within which other programs can do useful work.

Abstract view of the components of a computer system.

 Operating system can be viewed as a resource allocator.

 The OS acts as the manager of the resources (such as CPU time, memory

space, file storage space, I/O devices) and allocates them to specific

programs and users as necessary for tasks.

 An operating system is a control program. It controls the execution of user

programs to prevent errors and improper use of computer.

Mainframe Systems

 Early computers were physically enormous machines run from a console.

 The common input devices were card readers and tape drives.

 The common output devices were line printers, tape drives, and card

punches.

 The user did not interact directly with the computer systems.

 Rather, the user prepared a job - which consisted of the program, the data,

and some control information about the nature of the job (control cards)-and

submitted it to the computer operator.

 The job was usually in the form of punch cards.

 The operating system in these early computers was fairly simple.

www.vidyarthiplus.com

www.vidyarthiplus.com

 Its major task was to transfer control automatically from one job to the next.

 The operating system was always resident in memory

Memory layout for a simple batch system.

 A batch operating system, thus normally reads a stream of separate jobs.

 When the job is complete its output is usually printed on a line printer.

 The definitive feature of batch system is the lack of interaction between the

user and the job while the job is executing.

 Spooling is also used for processing data at remote sites.

Multiprogrammed Systems

 A pool of jobs on disk allows the OS to select which job to run next, to

increase CPU utilization.

 Multiprogramming increases CPU utilization by organizing jobs such that

the CPU always has one to execute.

 The idea is as follows: The operating system keeps several jobs in memory

simultaneously. This set of jobs is a subset of the jobs kept in the job pool.

www.vidyarthiplus.com

www.vidyarthiplus.com

The operating system picks and begins to execute one of the jobs in the

memory.

Memory layout for a multiprogramming system.

Time-Sharing Systems

 Time sharing (or multitasking) is a logical extension of multiprogramming.

The CPU executes multiple jobs by switching among them, but the switches

occur so frequently that the users can interact with each program while it is

running.

 A time-shared operating system allows many users to share the computer

simultaneously. Since each action or command in a time-shared system

tends to be short, only a little CPU time is needed for each user. As the

system switches rapidly from one user to the next, each user is given the

impression that the entire computer system is dedicated to her use, even

though it is being shared among many users.

Desktop Systems

 As hardware costs have decreased, it has once again become feasible to have

a computer system dedicated to a single user. These types of computer

systems are usually referred to as personal computers(PCS). They are

www.vidyarthiplus.com

www.vidyarthiplus.com

microcomputers that are smaller and less expensive than mainframe

computers.

 Operating systems for these computers have benefited from the development

of operating systems for mainframes in several ways.

Multiprocessor Systems

 Multiprocessor systems (also known as parallel systems or tightly

coupled systems) have more than one processor in close communication,

sharing the computer bus, the clock, and sometimes memory and peripheral

devices.

 Multiprocessor systems have three main advantages.

o Increased throughput.

o Economy of scale.

o Increased reliablility.

 If functions can be distributed properly among several processors, then the

failure of one processor will not halt the system, only slow it down. If we

have ten processors and one fails, then each of the remaining nine processors

must pick up a share of the work of the failed processor. Thus, the entire

system runs only 10 percent slower, rather than failing altogether. This

ability to continue providing service proportional to the level of surviving

hardware is called graceful degradation. Systems designed for graceful

degradation are also called fault tolerant.

 Continued operation in the presence of failures requires a mechanism to

allow the failure to be detected, diagnosed, and, if possible, corrected.

 The most common multiple-processor systems now use symmetric

multiprocessing (SMP), in whch each processor runs an identical copy of

the operating system, and these copies communicate with one another as

needed.

 Some systems use asymmetric multiprocessing, in which each processor is

assigned a specific task. A master processor controls the system; the other

processors either look to the master for instruction or have predefined tasks.

This scheme defines a master-slave relationship. The master processor

schedules and allocates work to the slave processors.

www.vidyarthiplus.com

www.vidyarthiplus.com

Distributed Systems

 In contrast to the tightly coupled systems, the processors do not share

memory or a clock. Instead , each processor has its own local memory.

 The processors communicate with one another through various

communication lines, such as high speed buses or telephone lines. These

systems are usually referred to as loosely coupled systems, or distributed

systems.

Advantages of distributed systems

 Resource Sharing

 Computation speedup

 Reliability

 Communication

Real-Time Systems

 Systems that control scientific experiments, medical imaging systems,

industrial control systems, and certain display systems are real-time systems.

Some automobile-engine fuel-injection systems, home-appliance controllers,

and weapon systems are also real-time systems. A real-time system has well-

defined, fixed time constraints.

 Real-time systems come in two flavors: hard and soft.

 A hard real-time system guarantees that critical tasks be completed on time.

This goal requires that all delays in the system be bounded, from the

retrieval of stored data to the time that it takes the operating system to finish

any request made of it. Such time constraints dictate the facilities that are

available in hard real-time systems.

 A less restrictive type of real-time system is a soft real-time system, where a

critical real-time task gets priority over other tasks, and retains that priority

until it completes.

 Soft real-time systems, however, have more limited utility than hard real-

time systems. They are useful, in several areas, including multimedia, virtual

reality, and advanced scientific projects.

Operating System Components

There are eight major operating system components.They are :

 Process management

www.vidyarthiplus.com

www.vidyarthiplus.com

 Main-memory management

 File management

 I/O-system management

 Secondary-storage management

 Networking

 Protection system

 Command-interpreter system

(i) Process Management

 A process can be thought of as a program in execution. A batch job is a

process. A time shared user program is a process.

 A process needs certain resources-including CPU time, memory, files, and

I/O devices-to accomplish its task.

 A program by itself is not a process; a program is a passive entity, such as

the contents of a file stored on disk, whereas a process is an active entity,

with a program counter specifying the next instruction to execute.

 A process is the unit of work in a system.

 The operating system is responsible for the following activities in

connection with process management:

 Creating and deleting both user and system processes

 Suspending and resuming processes

 Providing mechanisms for process synchronization

 Providing mechanisms for process communication

 Providing mechanisms for deadlock handling

(ii) Main – Memory Management

 Main memory is a large array of words or bytes, ranging in size from

hundreds of thousands to billions. Each word or byte has its own address.

 Main memory is a repository of quickly accessible data shared by the CPU

and I/O devices.

 To improve both the utilization of the CPU and the speed of the computer's

response to its users, we must keep several programs in memory.

 The operating system is responsible for the following activities in

connection with memory management:

 Keeping track of which parts of memory are currently being used

and by whom.

www.vidyarthiplus.com

www.vidyarthiplus.com

 Deciding which processes are to be loaded into memory when

memory space becomes available.

 Allocating and deallocating memory space as needed.

(iii) File Management

 File management is one of the most visible components of an operating

system.

 The operating system is responsible for the following activities in

connection with file management:

 Creating and deleting files

 Creating and deleting directories

 Supporting primitives for manipulating files and directories

 Mapping files onto secondary storage

 Backing up files on stable (nonvolatile) storage media

(iv) I/O System management

 One of the purposes of an operating system is to hide the peculiarities of

specific hardware devices from the user. This is done using the I/O

subsystem.

 The I/O subsystem consists of

 A memory-management component that includes buffering,

caching, and spooling

 A general device-driver interface

 Drivers for specific hardware devices

(v) Secondary storage management

 Because main memory is too small to accommodate all data and programs,

and because the data that it holds are lost when power is lost,the computer

system must provide secondary storage to back up main memory.

 The operating system is responsible for the following activities in

connection with disk management:

 Free-space management

 Storage allocation

 Disk scheduling

www.vidyarthiplus.com

www.vidyarthiplus.com

(vi) Networking

 A distributed system is a collection of processors that do not share

memory, peripheral devices, or a clock.

 Instead, each processor has its own local memory and clock, and the

processors communicate with one another through various communication

lines, such as high-speed buses or networks.

 The processors in the system are connected through a communication

network, which can be configured in a number of different ways.

(vii) Protection System

 Various processes must be protected from one another's activities. For that

purpose, mechanisms ensure that the files, memory segments, CPU, and

other resources can be operated on by only those processes that have gained

proper authorization from the operating system.

 Protection is any mechanism for controlling the access of programs,

processes, or users to the resources defined by a computer system.

 Protection can improve reliability by detecting latent errors at the interfaces

between component subsystems.

(viii) Command-Interpreter System

 One of the most important systems programs for an operating system is the

command interpreter.

 It is the interface between the user and the operating system.

 Some operating systems include the command interpreter in the kernel.

Other operating systems, such as MS-DOS and UNIX, treat the command

interpreter as a special program that is running when a job is initiated, or

when a user first logs on (on time-sharing systems).

 Many commands are given to the operating system by control statements.

 When a new job is started in a batch system, or when a user logs on to a

time-shared system, a program that reads and interprets control statements is

executed automatically.

 This program is sometimes called the control-card interpreter or the

command-line interpreter, and is often known as the shell.

www.vidyarthiplus.com

www.vidyarthiplus.com

Operating-System Services

The OS provides certain services to programs and to the users of those programs.

1. Program execution: The system must be able to load a program into

memory and to run that program. The program must be able to end its

execution, either normally or abnormally (indicating error).

2. I/O operations: A running program may require I/O. This I/O may involve

a file or an I/O device.

3. File-system manipulation: The program needs to read, write, create, delete

files.

4. Communications : In many circumstances, one process needs to exchange

information with another process. Such communication can occur in two

major ways. The first takes place between processes that are executing

on the same computer; the second takes place between processes that are

executing on different computer systems that are tied together by a computer

network.

5. Error detection: The operating system constantly needs to be aware of

possible errors. Errors may occur in the CPU and memory hardware (such as

a memory error or a power failure), in I/O devices (such as a parity error on

tape, a connection failure on a network, or lack of paper in the printer), and

in the user program (such as an arithmetic overflow, an attempt to access an

illegal memory location, or a too-great use of CPU time). For each type of

error, the operating system should take the appropriate action to ensure

correct and consistent computing.

6. Resource allocation: Different types of resources are managed by the Os.

When there are multiple users or multiple jobs running at the same time,

resources must be allocated to each of them.

7. Accounting: We want to keep track of which users use how many and

which kinds of computer resources. This record keeping may be used for

accounting or simply for accumulating usage statistics.

8. Protection: The owners of information stored in a multiuser computer

system may want to control use of that information. Security of the system is

also important.

www.vidyarthiplus.com

www.vidyarthiplus.com

Passing parameters to OS

Three general approaches are used to pass parameters to OS.

1. Pass parameters in registers.

2. In cases, where there may be more parameters than registers, the parameters

are generally stored in a block or table in memory, and address of block is

passed as parameter in register.

3. Parameters can also be placed, or pushed, onto the stack by the program, and

popped o f the stack by the operating system.

Passing of parameters as a table.

System Calls

 System calls provide the interface between a process and the operating

system.

 These calls are generally available as assembly-language instructions.

 System calls can be grouped roughly into five major categories:

1. Process control

2. file management

3. device management

4. information maintenance

www.vidyarthiplus.com

www.vidyarthiplus.com

5. communications.

1. Process Control

 end,abort

 load, execute

 Create process and terminate process

 get process attributes and set process attributes.

 wait for time, wait event, signal event

 Allocate and free memory.

File Management

 Create file, delete file

 Open , close

 Read, write, reposition

 Get file attributes, set file attributes.

Device Management

 Request device, release device.

 Read, write, reposition

 Get device attribtues, set device attributes

 Logically attach or detach devices

Information maintenance

 Get time or date, set time or date

 Get system data, set system data

 Get process, file, or device attributes

 Set process, file or device attributes

Communications

 Create, delete communication connection

 Send, receive messages

 Transfer status information

 Attach or detach remote devices

Two types of communication models

(a) Message passing model

 (b) Shared memory model

www.vidyarthiplus.com

www.vidyarthiplus.com

System Programs

 System programs provide a convenient environment for program

development and execution.

 They can be divided into several categories:

1. File management: These programs create, delete, copy, rename, print,

dump, list, and generally manipulate files and directories.

2. Status information: The status such as date, time, amount of available

memory or diskspace, number of users or similar status information.

3. File modification: Several text editors may be available to create and

modify the content of files stored on disk or tape.

4. Programming-language support: Compilers, assemblers, and interpreters

for common programming languages are often provided to the user with the

operating system.

5. Program loading and execution: The system may provide absolute loaders,

relocatable loaders, linkage editors, and overlay loaders.

6. Communications: These programs provide the mechanism for creating

virtual connections among processes, users, and different computer systems.

(email, FTP, Remote log in)

7. Application programs: Programs that are useful to solve common

problems, or to perform common operations.

Eg. Web browsers, database systems.

Operating System Structures

1. Simple Structure

2. Layered Approach

3. Microkernel

Simple Structure

Many commercial systems do not have a well-defined structure. Frequently, such

operating systems started as small, simple, and limited systems, and then grew

beyond their original scope.

Example 1: MS-DOS.

www.vidyarthiplus.com

www.vidyarthiplus.com

It provides the most functionality in the least space.In MS-DOS, the

interfaces and levels of functionality are not well separated.

For instance, application programs are able to access the basic I/O routines to write

directly to the display and disk drives.

(-) Such freedom leaves MS-DOS vulnerable to malicious programs causing entire

system crashes when user program fail.

(-) MS-DOS was also limited by the hardware

Example 2: UNIX

UNIX is another system that was initially limited by hardware functionality.

 It consists of two separable parts:

1. Systems programs – use kernel supported system calls to provide useful functions

such as compilation and file manipulation.

2. The kernel

o Consists of everything below the system-call interface and above the physical

hardware

www.vidyarthiplus.com

www.vidyarthiplus.com

o Provides the file system, CPU scheduling, memory management, and other

operating-system functions; a large number of functions for one level.

Layered Approach

 Given proper hardware support, OS may be broken into smaller, more

appropriate pieces.

 The modularization of a system can be done in many ways.

 One method is the layered approach, in which the operating system is broken

up into a number of layers (or levels), each built on top of lower layers.

 The bottom layer (layer 0) is the hardware; the highest (layer N) is the user

interface.

 The main advantage of the layered approach is modularity.

 The modularity makes the debugging & verification easy.

www.vidyarthiplus.com

www.vidyarthiplus.com

Microkernel

 Remove the non-essential components from the kernel into the user space.

 Moves as much from the kernel into “user” space.

 Communication takes place between user modules using message passing.

 Benefits:

 Easier to extend a microkernel

 Easier to port the operating system to new architectures

 More reliable (less code is running in kernel mode)

 More secure

Virtual Machines

www.vidyarthiplus.com

www.vidyarthiplus.com

 A major difficulty with the virtual-machine approach involves disk systems.

Suppose that the physical machine has three disk drives but wants to support

seven virtual machines. Clearly, it cannot allocate a disk drive to each virtual

machine. Remember that the virtual-machine software itself will need

substantial disk space to provide virtual memory. The solution is to provide I

virtual disks, which are identical in all respects except size.

 Users thus are given their own virtual machines. They can then run any of

the operating systems or software packages that are available on the

underlying machine.

Implementation

 The virtual-machine concept is useful, it is difficult to implement. Much

work is required to provide an exact duplicate of the underlying machine.

machine has two modes: user mode and monitor mode.

 The virtual-machine software can run in monitor mode, since it is the

operating system.

 The virtual machine itself can execute in only user mode. a virtual user

mode and a virtual monitor mode, both of which run in a physical user

mode.

 Those actions that cause a transfer from user mode to monitor mode on a

real machine (such as a system call or an attempt to execute a privileged

instruction) must also cause a transfer from virtual user mode to virtual

monitor mode on a virtual machine.

 When a system call, is made by a program running on a virtual machine, in

virtual user mode, it will cause a transfer to the virtual-machine monitor in

the real machine.

 When the virtual-machine monitor gains control, it can change the register

contents and program counter for the virtual machine to simulate the effect

of the system call.

 It can then restart the virtual machine, noting that it is now in virtual monitor

mode.

 If the virtual machine then tries, to read from its virtual card reader, it will

execute a privileged I/O instruction.

 When the real I/O might have taken 100 milliseconds, the virtual I/O might

take less time (because it is spooled) or more time (because it is interpreted).

www.vidyarthiplus.com

www.vidyarthiplus.com

 In addition, the CPU is being multi programmed among many virtual

machines, further slowing down the virtual machines in unpredictable ways.

Virtual machine has several advantages:

 In Virtual machine environment there is complete protection of the various

system resources.

 Each virtual machine is completely isolated from all other virtual machines,

so we have no security problems as the various system resources are

completely protected.

 No direct sharing of resources.

 Sharing in two ways

i. Share a minidisk (files can be shared)

ii. Define a network of virtual machines, each of which can send

information over the virtual communication network.

 Virtual machine is a perfect vehicle for OS research and development.

 The OS runs on and controls the entire machine. Thus it is necessary to test

all changes to the operating system carefully. This period is System

Development time since it makes the system unavailable to users, which is

eliminated by virtual machine system. System programs are given their own

virtual machine and system development is done on the virtual machine,

instead of a physical machine.

 Virtual machine solves system compatibility problems.

Java

 Example of continued utility of virtual machine involves the java language.

Java is implemented by a compiler that generates byte code output.

 These byte codes are the instructions that run on the Java Virtual Machine

(JVM)

 For java programs to run on a platform, that platform must have a JVM

running on it.

 JVM implements stack based instructions set that includes the expected

arithmetic, logical, data movement and flow control instructions.

 Java compilers can simply emit these byte code instructions and the JVM

must implement the necessary functionality on each program .

Process Concept

 A process can be thought of as a program in execution.

 A process is the unit of the unit of work in a modern time-sharing system.

www.vidyarthiplus.com

www.vidyarthiplus.com

 A process generally includesthe process stack, which contains temporary

data (such as method parameters,return addresses, and local variables), and a

data section, which contains global variables.

Difference between program and process

 A program is a passive entity, such as the contents of a file stored on disk,

whereas a process is an active entity, with a program counter specifying the

next instruction to execute and a set of associated resources.

Process States:

 As a process executes, it changes state.

 The state of a process is defined in part by the current activity of that

process.

 Each process may be in one of the following states:

 New: The process is being created.

 Running: Instructions are being executed.

 Waiting: The process is waiting for some event to occur (such

as an I/O completion or reception of a signal).

 Ready: The process is waiting to be assigned to a processor.

 Terminated: The process has finished execution.

Process Control Block

 Each process is represented in the operating system by a process control

block (PCB)-also called a task control block.

www.vidyarthiplus.com

www.vidyarthiplus.com

 A PCB defines a process to the operating system.

 It contains the entire information about a process.

 Some of the information a PCB contans are:

 Process state: The state may be new, ready, running, waiting,

halted, and SO on.

 Program counter: The counter indicates the address of the

next instruction to be executed for this process.

 CPU registers: The registers vary in number and type,

depending on the computer architecture.

 CPU-scheduling information: This information includes a

process priority, pointers to scheduling queues, and any other

scheduling parameters.

 Memory-management information: This information may

include such information as the value of the base and limit

registers, the page tables, or the segment tables, depending on

the memory system used by the operating system.

 Accounting information: This information includes the

amount of CPU and real time used, time limits, account

numbers, job or process numbers, and so on.

 Status information: The information includes the list of I/O

devices allocated to this process, a list of open files, and so on.

Process Scheduling

www.vidyarthiplus.com

www.vidyarthiplus.com

 The objective of multiprogramming is to have some process running at all

times, so as to maximize CPU utilization.

Scheduling Queues

There are 3 types of scheduling queues .They are :

1. Job Queue

2. Ready Queue

3. Device Queue

 As processes enter the system, they are put into a job queue.

 The processes that are residing in main memory and are ready and waiting to

execute are kept on a list called the ready queue.

 The list of processes waiting for an I/O device is kept in a device queue for

that particular device.

 A new process is initially put in the ready queue. It waits in the ready queue

until it is selected for execution (or dispatched).

 Once the process is assigned tothe CPU and is executing, one of several

events could occur:

 The process could issue an I/O request, and then be placed in an I/O

queue.

 The process could create a new subprocess and wait for its

termination.

www.vidyarthiplus.com

www.vidyarthiplus.com

 The process could be removed forcibly from the CPU, as a result of

aninterrupt, and be put back in the ready Queue.

 A common representation of process scheduling is a queueing diagram.

Schedulers

 A process migrates between the various scheduling queues throughout its

lifetime.

 The operating system must select, for scheduling purposes, processes from

these queues in some fashion.

 The selection process is carried out by the appropriate scheduler.

There are three different types of schedulers.They are:

1. Long-term Scheduler or Job Scheduler

2. Short-term Scheduler or CPU Scheduler

3. Medium term Scheduler

 The long-term scheduler, or job scheduler, selects processes from this

pool and loads them into memory for execution. It is invoked very

infrequently.It controls the degree of multiprogramming.

www.vidyarthiplus.com

www.vidyarthiplus.com

 The short-term scheduler, or CPU scheduler, selects from among the

processes that are ready to execute, and allocates the CPU to one of them. It

is invoked very frequently.

 Processes can be described as either I/O bound or CPU bound.

 An I\O-bound process spends more of its time doing I/O than it spends

doing computations.

 A CPU-bound process, on the other hand, generates I/O requests

infrequently,using more of its time doing computation than an I/O-bound

process uses.

 The system with the best performance will have a combination of CPU-

bound and I/O-bound processes.

Medium term Scheduler

 Some operating systems, such as time-sharing systems, may introduce an

additional, intermediate level of scheduling.

 The key idea is medium-term scheduler, removes processes from memory

and thus reduces the degree of multiprogramming.

 At some later time, the process can be reintroduced into memory and its

execution can be continued where it left off. This scheme is called swapping.

www.vidyarthiplus.com

www.vidyarthiplus.com

Context Switch

 Switching the CPU to another process requires saving the state of the old

process and loading the saved state for the new process.

 This task is known as a context switch.

 Context-switch time is pure overhead, because the system does no useful

work while switching.

 Its speed varies from machine to machine, depending on the memory speed,

the number of registers that must be copied, and the existence of special

instructions.

Operations on Processes

1. Process Creation

 A process may create several new processes, during the course of execution.

 The creating process is called a parent process, whereas the new processes

are called the children of that process.

www.vidyarthiplus.com

www.vidyarthiplus.com

 When a process creates a new process, two possibilities exist in terms of

execution:

1. The parent continues to execute concurrently with its children.

2. The parent waits until some or all of its children have terminated.

 There are also two possibilities in terms of the address space of the new

process:

1. The child process is a duplicate of the parent process.

2. The child process has a program loaded into it.

 In UNIX, each process is identified by its process identifier, which is a

unique integer. A new process is created by the fork system call.

2. Process Termination

 A process terminates when it finishes executing its final statement and asks

the operating system to delete it by using the exit system call.

 At that point, the process may return data (output) to its parent process (via

the wait system call).

 A process can cause the termination of another process via an appropriate

system call.

 A parent may terminate the execution of one of its children for a variety of

reasons, such as these:

1. The child has exceeded its usage of some of the resources that it has

been allocated.

2. The task assigned to the child is no longer required.

3. The parent is exiting, and the operating system does not allow a child

to continue if its parent terminates. On such systems, if a process

terminates (either normally or abnormally), then all its children must

also be terminated. This phenomenon, referred to as cascading

termination, is normally initiated by the operating system.

Cooperating Processes

 The concurrent processes executing in the operating system may be either

independent processes or cooperating processes.

 A process is independent if it cannot affect or be affected by the other

processes executing in the system.

 A process is cooperating if it can affect or be affected by the other processes

executing in the system.

 Benefits of Cooperating Processes

www.vidyarthiplus.com

www.vidyarthiplus.com

1. Information sharing

2. Computation speedup

3. Modularity

4. Convenience

 Example

Producer – Consumer Problem

 A producer process produces information that is consumed by a consumer

process.

 For example, a print program produces characters that are consumed by the

printer driver. A compiler may produce assembly code, which is consumed

by an assembler.

 To allow producer and consumer processes to run concurrently, we must

have available a buffer of items that can be filled by the producer and

emptied by the consumer.

o unbounded-buffer: places no practical limit on the size of the buffer.

o bounded-buffer : assumes that there is a fixed buffer size.

Shared data

#define BUFFER_SIZE 10

typedef struct {

 . . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

The shared buffer is implemented as a circular array with two logical pointers: in

and out. The variable in points to the next free position in the buffer; out points to

the first full position in the buffer. The buffer is empty when in == out ; the buffer

is full when ((in + 1) % BUFFERSIZE) == out.

Producer Process

while (1)

{

 while (((in + 1) % BUFFER_SIZE) == out);

 /* do nothing */

www.vidyarthiplus.com

www.vidyarthiplus.com

 buffer[in] = nextProduced;

 in = (in + 1) % BUFFER_SIZE;

}

Consumer process

while (1)

{

 while (in == out);

 /* do nothing */

 nextConsumed = buffer[out];

 out = (out + 1) % BUFFER_SIZE;

}

Interprocess Communication

 Operating systems provide the means for cooperating processes to

communicate with each other via an interprocess communication (PC)

facility.

 IPC provides a mechanism to allow processes to communicate and to

synchronize their actions.IPC is best provided by a message passing system.

Basic Structure:

 If processes P and Q want to communicate, they must send messages to and

receive messages from each other; a communication link must exist between

them.

 Physical implementation of the link is done through a hardware bus ,

network etc,

 There are several methods for logically implementing a link and the

operations:

1. Direct or indirect communication

2. Symmetric or asymmetric communication

3. Automatic or explicit buffering

4. Send by copy or send by reference

www.vidyarthiplus.com

www.vidyarthiplus.com

5. Fixed-sized or variable-sized messages

 Naming

 Processes that want to communicate must have a way to refer to each other.

They can use either direct or indirect communication.

1. Direct Communication

 Each process that wants to communicate must explicitly name the

recipient or sender of the communication.

 A communication link in this scheme has the following properties:

i. A link is established automatically between every pair of

processes that want to communicate. The processes need to

know only each other's identity to communicate.

ii. A link is associated with exactly two processes.

iii. Exactly one link exists between each pair of processes.

 There are two ways of addressing namely

 Symmetry in addressing

 Asymmetry in addressing

 In symmetry in addressing, the send and receive primitives are

defined as:

send(P, message) Send a message to process P

receive(Q, message) Receive a message from Q

 In asymmetry in addressing , the send & receive primitives are

defined as:

send (p, message) send a message to process p

receive(id, message) receive message from any process, id is

set to the name of the process with which communication has

taken place

2. Indirect Communication

 With indirect communication, the messages are sent to and received from

mailboxes, or ports.

 The send and receive primitives are defined as follows:

send (A, message) Send a message to mailbox A.

receive (A, message) Receive a message from mailbox A.

www.vidyarthiplus.com

www.vidyarthiplus.com

 A communication link has the following properties:

i. A link is established between a pair of processes only if both

members of the pair have a shared mailbox.

ii. A link may be associated with more than two processes.

iii. A number of different links may exist between each pair of

communicating processes, with each link corresponding to one

mailbox

3. Buffering

 A link has some capacity that determines the number of message that can

reside in it temporarily. This property can be viewed as a queue of messages

attached to the link.

 There are three ways that such a queue can be implemented.

 Zero capacity : Queue length of maximum is 0. No message is waiting in a

queue. The sender must wait until the recipient receives the message.

(message system with no buffering)

 Bounded capacity: The queue has finite length n. Thus at most n messages

can reside in it.

 Unbounded capacity: The queue has potentially infinite length. Thus any

number of messages can wait in it. The sender is never delayed

4. Synchronization

 Message passing may be either blocking or non-blocking.

1. Blocking Send - The sender blocks itself till the message sent by it is

received by the receiver.

2. Non-blocking Send - The sender does not block itself after sending

the message but continues with its normal operation.

3. Blocking Receive - The receiver blocks itself until it receives the

message.

4. Non-blocking Receive – The receiver does not block itself.

Communication in client – server systems:

There are two levels of communication

 Low – level form of communication – eg. Socket

 High – level form of communcation – eg.RPC , RMI

www.vidyarthiplus.com

www.vidyarthiplus.com

1. Sockets

 A socket is defined as an endpoint for communication.

 A socket is made up of an IP address concatenated with a port number.

 It uses a client-server architecture.

 The server waits for incoming requests by listening to specified ports.

 All porst below 1024 are well known ports(eg. 23 is for telnet,21 for ftp ,80

for http etc)

 If a client makes a request for a connection,it is assigned a port number by

the host computer (>1024)

 The above diagram shows that a client on host X with IP address

146.86.5.2/1625 wants to communicate with a web server at

161.25.19.8/80

 All connections established are unique.

www.vidyarthiplus.com

www.vidyarthiplus.com

2. Remote Procedure Call(RPC)

 The messages exchanged for RPC are well structured.

 They are addressed to an RPC daemon listening to a port on the remote

system.

 Stubs – client-side proxy for the actual procedure on the server.

 The client-side stub locates the server and marshalls the parameters.

 Parameter Marshalling involves packaging the parameters into a form that

can be transmitted over the network.

 The stub then transmits a message to the server using message passing.

 A similar stub on the server side receives this message and invokes the

procedure on the server.

 The return values are passed back to the client using the same technique.

www.vidyarthiplus.com

www.vidyarthiplus.com

www.vidyarthiplus.com

www.vidyarthiplus.com

3. Remote Method Invocation(RMI)

 Remote Method Invocation (RMI) is a Java mechanism similar to RPCs.

 It allows a thread to invoke a method on a remote object.

Differences between RPC and RMI

1. RPC supports procedural programming where only remote procedures or

functions can be called. RMI is object based.

2. The parameters to remote procedures are ordinary data structures in

RPC,with RMI we can pass objects as parameters to remote objects.

 RMI implements remote objects using stubs and skeletons.

 A stub is a proxy for the remote object.

 When a client invokes a remote method,the stub for the remote object is

called. This client side stub creates a parcel containing the name of the

method to be invoked on the server and the marshaled parameters for the

method.

 The stub sends this parcel to the server.

 The skeleton for the remote system receives it.

 It is responsible for unmarshalling the parameters invoking the desired

method on the server.

 The skeleton then marshalls the return value into a parcel and return it to the

client.

 The stub unmarshalls the return value and passes it to the client.

www.vidyarthiplus.com

www.vidyarthiplus.com

Threads

 A thread is the basic unit of CPU utilization.

 It is sometimes called as a lightweight process.

 It consists of a thread ID ,a program counter, a register set and a stack.

 It shares with other threads belonging to the same process its code section ,

data section, and resources such as open files and signals.

 A traditional or heavy weight process has a single thread of control.

 If the process has multiple threads of control,it can do more than one task at a

time.

Benefits of multithreaded programming

 Responsiveness

 Resource Sharing

 Economy

 Utilization of MP Architectures

www.vidyarthiplus.com

www.vidyarthiplus.com

User thread and Kernel threads

User threads

 Supported above the kernel and implemented by a thread library at

the user level.

 Thread creation , management and scheduling are done in user space.

 Fast to create and manage

 When a user thread performs a blocking system call ,it will cause the

entire process to block even if other threads are available to run within

the application.

 Example: POSIX Pthreads,Mach C-threads and Solaris 2 UI-threads.

Kernel threads

 Supported directly by the OS.

 Thread creation , management and scheduling are done in kernel

space.

 Slow to create and manage

 When a kernel thread performs a blocking system call ,the kernel

schedules another thread in the application for execution.

 Example: Windows NT, Windows 2000 , Solaris 2,BeOS and Tru64

UNIX support kernel threads.

Multithreading models

1. Many-to-One

2. One-to-One

3. Many-to-Many

1. Many-to-One:

 Many user-level threads mapped to single kernel thread.

 Used on systems that do not support kernel threads.

www.vidyarthiplus.com

www.vidyarthiplus.com

Many-to-One Model

2.One-to-One:

 Each user-level thread maps to a kernel thread.

 Examples

 - Windows 95/98/NT/2000

 - OS/2

One-to-one Model

www.vidyarthiplus.com

www.vidyarthiplus.com

3.Many-to-Many Model:

 Allows many user level threads to be mapped to many kernel threads.

 Allows the operating system to create a sufficient number of kernel threads.

 Solaris 2

 Windows NT/2000

Many-to-Many Model

Threading Issues:

1. fork() and exec() system calls.

A fork() system call may duplicate allthreads or duplicate only the thread that

invoked fork().

If a thread invoke exec() system call ,the program specified in the parameter to

exec will replace the entire process.

www.vidyarthiplus.com

www.vidyarthiplus.com

2. Thread cancellation.

It is the task of terminating a thread before it has completed .

A thread that is to be cancelled is called a target thread.

There are two types of cancellation namely

1. Asynchronous Cancellation – One thread immediately terminates the

target thread.

2. Deferred Cancellation – The target thread can periodically check if it

should terminate , and does so in an orderly fashion.

3. Signal handling

1. A signal is a used to notify a process that a particular event has occurred.

2. A generated signal is delivered to the process.

a. Deliver the signal to the thread to which the signal applies.

b. Deliver the signal to every thread in the process.

c. Deliver the signal to certain threads in the process.

d. Assign a specific thread to receive all signals for the process.

3. Once delivered the signal must be handled.

a. Signal is handled by

i. A default signal handler

ii. A user defined signal handler

4. Thread pools

Creation of unlimited threads exhaust system resources such as CPU time or

memory. Hence we use a thread pool.

In a thread pool , a number of threads are created at process startup and placed

in the pool.

www.vidyarthiplus.com

www.vidyarthiplus.com

When there is a need for a thread the process will pick a thread from the pool

and assign it a task.

After completion of the task,the thread is returned to the pool.

5. Thread specific data

Threads belonging to a process share the data of the process. However each

thread might need its own copy of certain data known as thread-specific data.

