PART-A
 MATHEMATICS

Solutions of SET-D5

Note: Questions with (*) mark are from syllab us of class XL

*1. The mean of the numbers $a, b, 8,5,10$ is 6 and the variance is 6.80 . Then which one of the following gives possible values of a and b ?
(1) $a=1, b=6$
(2) $a=3, b=4$
(3) $a=0, b=7$
(4) $a=5, b=2$

Sol: Variance is $\frac{\sum x^{2}}{n}-\left(\frac{\sum x}{n}\right)^{2}=6.8$ and $\left(\frac{\sum x}{n}\right)=6$ (given)
$\Rightarrow \frac{a^{2}+b^{2}+64+25+100}{5}-36=6.8 \Rightarrow a^{2}+b^{2}+9=340 \Rightarrow a^{2}+b^{2}=25$
Correct choice: (2)
2. The vector $\vec{a}=\alpha \hat{i}+2 \hat{j}+\beta \hat{k}$ lies in the plane of the vectors $\vec{b}=\hat{i}+\hat{j}$ and $\vec{c}=\hat{j}+\hat{k}$ and bisects the angle between \vec{b} and $\stackrel{\rightharpoonup}{c}$. Then which one of the following gives possible values of α and β ?
(1) $\alpha=2, \beta=1$
(2) $\alpha=1, \beta=1$
(3) $\alpha=2, \beta=2$
(4) $\alpha=1, \beta=2$

Sol: $\because \vec{a}, \vec{b}$ and \vec{c} are coplanar. $\Rightarrow \quad\left[\begin{array}{l}+ \\ \vec{b} \\ c\end{array}\right]=0 \Rightarrow \alpha+\beta=2$
(i)

Also \dot{a} bisects the angle between $\stackrel{\rightharpoonup}{b}$ and $\vec{c} . \Rightarrow \quad \stackrel{+}{a}=\lambda(\hat{b}+\hat{c}) \Rightarrow \vec{a}=\lambda\left(\frac{\hat{i}+2 \hat{j}+\hat{k}}{\sqrt{2}}\right)$
Comparing (ii) with $\vec{a}=\alpha \hat{i}+2 \hat{j}+\beta \hat{k}$, we get $\lambda=\sqrt{2}, \quad \therefore \alpha=1$ and $\beta=1$, whichalso satisfies (i).
Correct choice: (2)
3. The non-zero vectors \vec{a}, \vec{b} and \vec{c} are related by $\vec{a}=8 \vec{b}$ and $\vec{c}=-7 \vec{b}$. Then the angle between \vec{a} and \vec{c} is
(1) $\frac{\pi}{2}$
(2) π
(3) 0
(4) $\frac{\pi}{4}$

Sol: Clearly \vec{a} and $\stackrel{\rightharpoonup}{c}$ are anti parallel.
\therefore Angle between $\stackrel{+}{a}$ and $\stackrel{+}{c}$ is π.
Correct choice: (2)
*4. The line passing through the poirts $(5,1, a)$ and $(3, b, 1)$ crosses the $y z$-plane at the point $\left(0, \frac{17}{2}, \frac{-13}{2}\right)$. Then
(1) $a=6, b=4$
(2) $a=8, b=2$
(3) $a=2, b=8$
(4) $a=4, b=6$

Sol: Equation of given line in symmetric form is $\frac{x-5}{-2}=\frac{y-1}{b-1}=\frac{z-a}{1-a}=\lambda$
\therefore Any point on (i) can be $(5-2 \lambda, 1+(b-1) a, a+\lambda(1-a))$
$\because\left(0, \frac{17}{2},-\frac{13}{2}\right)$ lies on (i) $\Rightarrow \lambda=\frac{5}{2}$
Using (iii) in (i) and comparing with given point we get $a=6, b=4$
Correct choice: (1)
5. If the straight lines $\frac{x-1}{k}=\frac{y-2}{2}=\frac{z-3}{3}$ and $\frac{x-2}{3}=\frac{y-3}{k}=\frac{z-1}{2}$ intersect at a point, then the integer k is equal to
(1) 2
(2) -2
(3) -5
(4) 5

Sol: \because Two given lines are intersecting.
$\therefore\left|\begin{array}{ccc}1 & 1 & -2 \\ k & 2 & 3 \\ 3 & k & 2\end{array}\right|=0 \Rightarrow k=-5$ is the required integral value.
Correct choice: (3)
(1) $(y-2)^{2} y^{\prime 2}=25-(y-2)^{2}$
(2) $(x-2)^{2} y^{\prime 2}=25-(y-2)^{2}$
(3) $(x-2) y^{\prime 2}=25-(y-2)^{2}$
(4) $(y-2) y^{\prime 2}=25-(y-2)^{2}$

Sol: Equation of circle can be $(x-a)^{2}+(y-2)^{2}=25$
$\Rightarrow a=x+(y-2) y^{\prime}$
Using (ii) in (i), we get $(y-2)^{2} y^{2}=25-(y-2)^{2}$
Correct choire: (1)
7. Let a, b, c be any real numbers. Suppose that there are real numbers x, y, z not all zero such that $x=c y+b z, y=a z+a x$ and $z=b x+a y$. Then $a^{2}+b^{2}+c^{2}+2 a b c$ is equal to
(1) 0
(2) 1
(3) 2

8. Let A be a square matrix all of whose entries are integers. Then which one of the folloying is true?
(1) If det $A= \pm 1$, then A^{-1} exists and all its entries are integers
(2) If det $A= \pm 1$, then A^{-1} need not exist
(3) If $\operatorname{det} A= \pm 1$, then A^{-1} exists but all its entries are not necessarily integers
(4) If det $A \neq \pm 1$, then A^{-1} exists and all its entries are non-initesers

Sol: Obviously (1) is the correct answer.

Correct choice: (1)

*9. The quadratic equations $x^{2}-6 x+a=0$ and $x^{2}-c x+6=0$ have one root in common. The other roots of the first and second equations are integers in the ratio $4: 3$. Then the common root is
(1) 3
(2) 2
(3) 1
(4) 4

Sol: Let the roots of $x^{2}-6 x+a=0$ be $\alpha, 4 \beta$ and the roots of $x^{2}-c x+6=0$ be $\alpha, 3 \beta$
$\therefore \alpha+4 \beta=6$
$4 \alpha \beta=a$
$\alpha+3 \beta=c$
and $3 \alpha \beta=6$
(ii) and (iv)
$\therefore 1^{\text {st }}$ equation reduces to $x^{2}-6 x+8=0$
Clearly $\alpha=2$ and $\beta=1$
\therefore Corman root is 2 .
Correct choice: (2)
*10. Hovy many diffe rent words can be formed by jumbling the letters in the word MISSISSIPPI in which no two S are adjacent?
(1) $6.8 \cdot{ }^{7} C_{4}$
(2) $7 .{ }^{6} \mathrm{C}_{4} \cdot{ }^{8} \mathrm{C}_{4}$
(3) $8 .{ }^{6} \mathrm{C}_{4} \cdot{ }^{7} \mathrm{C}_{4}$
(4) $6.7 .{ }^{8} \mathrm{C}_{4}$

Sol: $1 \mathrm{M}, 4 \mathrm{I}$'s and 2 F 's can be arranged by $\frac{7!}{4!2!}$ and in the 8 gape 4 S can arranged with ${ }^{8} \mathrm{C}_{4}$ ways, so total ways are 7. ${ }^{6} C_{4} \cdot{ }^{8} C_{4}$

Correct choice: (2)
11. Let $I=\int_{0}^{1} \frac{\sin x}{\sqrt{x}} d x$ and $J=\int_{0}^{1} \frac{\cos x}{\sqrt{x}} d x$. Then which one of the following is true?
(1) $I<\frac{2}{3}$ and $J>2$
(2) $I>\frac{2}{3}$ and $J<2$
(3) $I>\frac{2}{3}$ and $J>2$
(4) $I<\frac{2}{3}$ and $J<2$

Sol: We know that $\frac{\sin x}{x}<1$, when $x \in(0,1) \Rightarrow \frac{\sin x}{\sqrt{x}}<\sqrt{x} \Rightarrow \int_{0}^{1} \frac{\sin x}{\sqrt{x}}<\frac{2}{3}$
Again $\frac{\cos x}{\sqrt{x}}<\frac{1}{\sqrt{x}}$ when $x \in(0,1) \Rightarrow \int_{0}^{1} \frac{\cos x}{\sqrt{x}}<2$

Correct choice: (4)

12. The area of the plane region bounded by the curves $x+2 y^{2}=0$ and $x+3 y^{2}=1$ is equal to
(1) $\frac{2}{3}$
(2) $\frac{4}{3}$
(3) $\frac{5}{3}$
(4) $\frac{1}{3}$

Sol: $\quad x+2 y^{2}=0 \Rightarrow y^{2}=-\frac{x}{2}$ parabola
$x+3 y^{2}=1 \Rightarrow y^{2}=-\frac{1}{3}(x-1)$ parabola
Solving equation of two parabolas simultane ously, we get $x=-2 ; y= \pm 1$
Area of the region $A B C A$
$=\left|\int_{0}^{1}\left(-2 y^{2}-1+3 y^{2}\right) d y\right|=\left|\int_{0}^{1}\left(y^{2}-1\right) d y\right|=\left|\left|\frac{y^{3}}{3}-y\right|_{0}^{1}\right|=\left|\frac{1}{3}-1\right|=\frac{2}{3}$
Hence area of region bounded by given curves is equal to
Correct choice: (2)
13. The value of $\sqrt{2} \int \frac{\sin x d x}{\sin \left(x-\frac{\pi}{4}\right)}$ is
(1) $x+\log \left|\sin \left(x-\frac{\pi}{4}\right)\right|+c$
(2) $x-\log \left|\cos \left(x-\frac{\pi}{4}\right)\right|+c$
(3) $x+\log \left|\cos \left(x-\frac{\pi}{4}\right)\right|+c$
(4) $x-\log \left|\sin \left(x-\frac{\pi}{4}\right)\right|+c$

Sol: Let $x-\frac{\pi}{4}=t \Rightarrow x=\frac{\pi}{4}+t$
$d t=d t$

$$
\begin{aligned}
\therefore \sqrt{2} \int \frac{\sin x}{\sin \left(x-\frac{\pi}{4}\right)} d x & =\sqrt{2} \int \frac{\sin \left(t+\frac{\pi}{4}\right)}{\sin t} d t=\int\left(1+\cot t t^{\prime}\right) d t=t+\log _{e}|\sin t|+c \\
& =x-\frac{\pi}{4}+\log _{e}\left|\sin \left(x-\frac{\pi}{4}\right)\right|+c=x+\log _{e}\left|\sin \left(x-\frac{\pi}{4}\right)\right|+c
\end{aligned}
$$

Correct choice: (1)
*14. The state ment $p \rightarrow(q \rightarrow p)$ is equivalent to
(1) $p \rightarrow(p \wedge q)$
(2) $p \rightarrow(p \leftrightarrow q)$
(3) $p \rightarrow(p \rightarrow q)$
(4) $p \rightarrow(p \vee q)$

Sol:

p	q	$p \vee q$	$q \rightarrow p$	$p \rightarrow(q \rightarrow p)$	$p \rightarrow(p \vee q)$
T	T	T	T	T	T
T	F	T	T	T	T
F	T	T	F	T	T
F	F	F	T	T	T

Correct choice: (4)
15. The value of $\cot \left(\operatorname{cosec}^{-1} \frac{5}{3}+\tan ^{-1} \frac{2}{3}\right)$ is
(1) $\frac{4}{17}$
(2) $\frac{5}{17}$
(3) $\frac{6}{17}$

Sol: $\quad \cot \left(\operatorname{cosec}^{-1}\left(\frac{5}{3}\right)+\tan ^{-1}\left(\frac{2}{3}\right)\right)=\cot \left(\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{2}{3}\right)=\cot \left(\tan ^{-1}\left(\frac{\frac{3}{4}+\frac{2}{3}}{1-\frac{3}{4} \cdot \frac{2}{3}}\right)\right)$
$\cot \left(\tan ^{-1}\left(\frac{9+8}{12-6}\right)\right)=\cot \left(\cot ^{-1}\left(\frac{6}{17}\right)\right)=\frac{6}{17}$
Correct choice: (3)

Directions: Questions number 16 to 20 are Assertion-Reason type questions. Each of these questions contains two statements: Statement-I (Assertion) and Statement-2 (Reasont, Each of these questions also has four altemative choices, only one of which is the correct answer. You have toselect the correct choice.
16. Let A be a 2×2 matrix with real entries. Let Ibe the 2×2 identity matrix. De note by $\mathrm{t}(A)$, the sum of diagonal entries of A. Assume that $A^{2}=I$.
Statement-1: If $A \neq I$ and $A \neq-I$, then $\operatorname{det} A=-1$.
Statement-2: If $A \neq I$ and $A \neq-I$, then $t(A) \neq 0$.
(1) Statement-1 is true, Statement-2 is true; State ment -2 is not a correct explanation for Statement-1.
(2) Statement-1 is true, Statement-2 is false.
(3) Statement-1 is false, State ment-2 is true.
(4) Statement-1 is true Staterment-2 is true; State ment-2 is a correct explanation for Statement-1.

Sol: Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$

$$
a^{2}+b c=1, b c+d^{2}=1,(a+d) b=0,(a+d) c=0
$$

Out of all possible matrices if we consider $A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$, then $\operatorname{tr} A=0$.
\Rightarrow Statement-2 is wrong.
Again if $A \neq \pm$, then $|A|=-1$
\Rightarrow Statement-1 is correct.
Correct choice: (2)
*17. Let p be the state ment " x is an irrational number", q be the statement " y is a transcendental number", and r be the statement " x is a rational number iff y is a transcendental number".
State ment-1: r is equivalent to either q or p.
State ment-2: r is equivalent to $\sim(p \leftrightarrow \sim q)$.
(1) State ment- 1 is true, Statement-2 is true; Statement -2 is not a conrect explanation for State ment-1.
(2) Statement-1 is true, Statement-2 is false.
(3) Statement-1 is false, Statement-2 is true.
(4) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.

Sol: $p: x$ is an irrational number
$q: y$ is a transcendental number
$r: x$ is a rational number iff y is a transcendental number
$\Rightarrow r: \sim p \leftrightarrow q$
$s_{1}: q$ or p
$s_{2}: \sim(p \leftrightarrow \sim q)$

p	q	$\sim p$	$\sim q$	r $\sim p \leftrightarrow q$	s_{1} q or p	$p \leftrightarrow \sim q$	s_{2} $p \leftrightarrow q)$
T	T	F	F	F	T	F	T
T	F	F	T	T	T	T	F
F	T	T	F	T	T	T	F
F	F	T	T	F	F	F	T

Clearly s_{1} and r are not equivalent \Rightarrow Statement-1 is false.
Also s_{2} and r are not equivalent \Rightarrow Statement-2 is also false. Hence none of the option is correct.
*18. In a shop there are five types of ice-creams available. Achild buys six ice-creams.
State ment-1: The number of different ways the child canbuy the six ice-creams is ${ }^{10} \mathrm{C}_{5}$.
Statement-2: The number of different ways the child can buy the six ice-creams is equal to the number of different waye of arranging 6 A's and 4 B 's in a row
(1) State ment-1 is true, Statement-2 is true Statement-2 is not a conect explanation for State ment-1.
(2) Statement-1 is true, Statement-2 is false.
(3) Statement-1 is false, Statement-2is true.
(4) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.

Sol: State ment-1: Number of ways $=$ number of non negative integral solutions of the equation $T_{1}+T_{2}+T_{3}+T_{4}+T_{5}=6$ $={ }^{6+5-1} C_{5-1}$

Statement-1is wrong.
Statement-2: Number of different ways of arranging 6 A 's and 4 B 's in a row $=\frac{10!}{6!4!}={ }^{10} C_{4}$
\therefore State ment-2 is correct.
Correct choice: (3)
*19. Statement-1: $\sum_{r=0}^{n}(r+1)^{n} C_{r}=(n+2) 2^{n-1}$.
Statement-2: $\sum_{r=0}^{n}(r+1)^{n} C_{r} x^{\gamma}=(1+x)^{n}+n x(1+x)^{n-1}$.
(1) Statement-1 is true, State ment-2 is true; Statement -2 is not a correct explanation for Statement-1.
(2) Statement-1 is true, Statement-2 is false.
(3) Statement-1 is false, State ment-2 is true.
(4) Statement-1 is true, State ment-2 is true; State ment-2 is a correct explanation for Statement-1.

Sol: $\quad \sum_{\gamma=0}^{n}(r+1)^{n} C_{\gamma} x^{\gamma}=\sum_{\gamma=0}^{n} r \cdot{ }^{n} C_{\gamma} x^{\gamma}+\sum_{\gamma=0}^{n}{ }^{n} C_{\gamma} \cdot x^{\gamma}=n x \sum_{\gamma=1}^{n}{ }^{n-1} C_{r-1} x^{\gamma-1}+\sum_{\gamma=0}^{n}{ }^{n} C_{\gamma} x^{\gamma}=n x(1+x)^{n-1}+(1+x)^{n}$
Statement-2 is true.
Putting $x=1$ in (i), we get $\sum_{r=0}^{n}(r+1) \cdot{ }^{n} C_{r}=(n+2) \cdot 2^{n-1}$.
Statement-1 is also true.
Correct choice: (4)
*20. Statement-1: For everynatural number $n \geq 2, \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots . .+\frac{1}{\sqrt{n}}>\sqrt{n}$
Statement-2: For everynatural number $n \geq 2, \sqrt{n(n+1)}<n+1$.
(1) Statement-1 is true, State ment-2 is true; Statement -2 is not a correctexplanation for Statement-1.
(2) Statement-1 is true, Statement-2 is false.
(3) Statement-1 is false, State ment-2 is true.
(4) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.

Sol: Statement-2: $\sqrt{n}<\sqrt{n+1}$ is true for $n \geq 2$.
Statement-1: $\sqrt{n}<\sqrt{n+1} \Rightarrow \sqrt{2}<\sqrt{3}<\sqrt{4}<\ldots \sqrt{n}$
Now $\sqrt{2}<\sqrt{n} \Rightarrow \frac{1}{\sqrt{2}}>\frac{1}{\sqrt{n}}$

$$
\sqrt{3}<\sqrt{n} \Rightarrow \frac{1}{\sqrt{3}}>\frac{1}{\sqrt{n}}
$$

$$
\sqrt{n} \leq \sqrt{n} \Rightarrow \frac{1}{\sqrt{n}} \geq \frac{1}{\sqrt{n}}
$$

Also $\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{n}}$. So $\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots \ldots+\frac{1}{\sqrt{n}}>\frac{n}{\sqrt{n}}=\sqrt{n}$
Correct choice: (4)
+21. The conjugate of a complex number is $\frac{1}{i-1}$. Then that complex number is
(1) $\frac{-1}{i+1}$
(2) $\frac{1}{i-1}$
(3) $\frac{-1}{i-1}$
(4) $\frac{1}{i+1}$

Sol: $\quad z=\frac{1}{i-1} \Rightarrow z=\frac{i+1}{-2} \quad \Rightarrow \quad \bar{z}=\frac{1-i}{-2}=\frac{(1-i)(i+1)}{-2(i+1)} \Rightarrow-\frac{1}{i+1}$

Correct choice: (1)

22. Let R be the real line. Consider the following subsets of the plane $R \times R$:
$S=\{(x, y): y=x+1$ and $0<x<2\}$
$T=\{(x, y): x-y$ is ant integet $\}$.
Which one of the following is tru?
(1) S is an equivalence relation on R but T is not
(2) T is an equivalence relation on R but S is not
(3) Ne ither S nor T is an equivalence relation on R
(4) Both S and T are equivalence relations on R

Sol: For $S, y=x+1$
for reflexive $x=x+1 \Rightarrow 0=1$
$\Rightarrow S$ is not reflexive. So S can not be equivalence.
For $T, x-y \in I$, then $x-x=0 \in I \Rightarrow$ Tis reflexive.
$x-y \in I$, then $y-x \in I \Rightarrow$ Tis symmetric also.
Now $x-y \in I$ and $y-z \in I \quad \Rightarrow x-z \in I \Rightarrow T$ is transitive also.
Hence T is an equivalence relation.

Correct choice: (2)

23. Let $f: N \rightarrow Y$ be a function defined as $f(x)=4 x+3$, where $Y=\{y \in N: y=4 x+3$ for some $x \in N\}$. Show that f is irvertible and its inverse is
(1) $g(y)=\frac{y+3}{4}$
(2) $g(y)=\frac{y-3}{4}$
(3) $g(y)=\frac{3 y+4}{3}$
(4) $g(y)=4+\frac{y+3}{4}$

Sol: Clearly f is bijective function so it is invertible.
$y=4 x+3 \Rightarrow \frac{y-3}{4}=x \Rightarrow g(y)=\frac{y-3}{4}$
Correct choice: (2)
*24. $A B$ is a vertical pole with B at the ground level and A at the top A man finds that the angle of elevation of the point A from a certain point Con the ground is 60°. He moves away from the pole along the line $B C$ to a point D such that $C D=7 \mathrm{~m}$. From D the angle of elevation of the point A is 45°. Then the height of the pole is
(1) $\frac{7 \sqrt{3}}{2}(\sqrt{3}-1) \mathrm{m}$
(2) $\frac{7 \sqrt{3}}{2} \frac{1}{\sqrt{3}+1} \mathrm{~m}$
(3) $\frac{7 \sqrt{3}}{2} \frac{1}{\sqrt{3}-1} m$
(4) $\frac{7 \sqrt{3}}{2}(\sqrt{3}+1) \mathrm{m}$

Sol: $\quad \tan 60^{\circ}=\frac{h}{B C}$
..(i) and $\tan 45^{\circ}=\frac{h}{7+B C}$
$\Rightarrow 7+B C=h \Rightarrow B C=h-7$
From (i) $\Rightarrow \sqrt{3}=\frac{h}{h-7} \Rightarrow \sqrt{3} h-7 \sqrt{3}=h \Rightarrow \sqrt{3} h-h=7 \sqrt{3}$

$h=\frac{7 \sqrt{3}}{\sqrt{3}-1} \Rightarrow \frac{7 \sqrt{3}[\sqrt{3}+1]}{2} \mathrm{~m}$
Correct choice: (4)
*25. A die is thrown. Let A be the event that the number obtained is greater than 3 . Let B be the event that the number obtained is less than 5 . Then $P(A \cup B)$ is
(1)
(2) $\frac{2}{5}$
(3) $\frac{3}{5}$
(4) 0

Sol: $\quad n(A \cup B)=\{1,2,3,4,5,6\} \Rightarrow P(A \cup B)=1$

Correct choice: (1)

26. It is given that the events A and B are such that $P(A)=\frac{1}{4}, P(A \mid B)=\frac{1}{2}$ and $P(B \mid A)=\frac{2}{3}$. Then $P(B)$ is
(1) $\frac{2}{3}$
(2) $\frac{1}{2}$
(3) $\frac{1}{6}$
(4) $\frac{1}{3}$

Sol: $\quad P(A)=\frac{1}{4}$
$F\left(\frac{A}{B}\right)=\frac{P(A \cap B)}{P(B)} \Rightarrow \frac{1}{2}=\frac{P(A \cap B)}{P(B)}$
$F\left(\frac{B}{A}\right)=\frac{P(A \cap B)}{P(A)} \Rightarrow \frac{2}{3}=\frac{P(A \cap B)}{1 / 4} \Rightarrow P(A \cap B)=\frac{1}{6}$. Putting the value of $P(A \cap B)$ in $(\mathrm{i}) \Rightarrow P(B)=2 \times \frac{1}{6}=\frac{1}{3}$

Correct choire: (4)

*27. A focus of an ellipe is at the origin. The directix is the line $x=4$ and the eccentricity is $\frac{1}{2}$. Then the length of the semimajor axis is
(1) $\frac{4}{3}$
(2) $\frac{5}{3}$
(3) $\frac{8}{3}$
(4) $\frac{2}{3}$

Sol: Perpendicular distance from focus on directrix $=\frac{|0-4|}{\sqrt{1}}=\frac{a}{e}-a e \Rightarrow 4=2 a-\frac{a}{2} \Rightarrow 4=\frac{3 a}{2} \Rightarrow a=\frac{8}{3}$

Correct choise: (3)

*28. A parabola has the origin as its focus and the line $x=2$ as the directrix. Then the vertex of the parabola is at
(1) $(0,1)$
(2) $(2,0)$
(3) $(0,2)$
(4) $(1,0)$

Sol: Vertex will be mid-point of F and M.
So, (1, 0)
Correct choire: (4)

*29. The point diame tricallyopposite to the point $\mathcal{F}(1,0)$ on the circle $x^{2}+y^{2}+2 x+4 y-3=0$ is
(1) $(-3,-4)$
(2) $(3,4)$
(3) $(3,-4)$
(4) $(-3,4)$

Sol: Given $x^{2}+y^{2}+2 x+4 y-3=0$; Centre $(-1,-2)$
C is the mid-point of P and $Q s 0 x_{1}=-3$ and $y_{1}=-4$
$\Rightarrow Q(-3,-4)$

Correct choire: (1)

*30. The perpendicularbisector of the line segment joining $P(1,4)$ and $Q(k, 3)$ has y-intercept -4 . Then a possible value of k is
(1) -2
(2) -4
(3) 1
(4) 2

Sol: Equation of perperdic ular biector of $P Q$ is $y-\frac{7}{2}=(k-1)\left(x-\frac{k+1}{2}\right)$
K-intercept is, $\frac{8-k^{2}}{2}=-4 \Rightarrow k= \pm 4$
Correct choice: (2)
*31. The first two terms of a geometric progressionadd up to 12 . The sum of the third and the fourth terms is 48 . If the terms of the geometric progression are altemately positive and negative, then the first term is
(1) 12
(2) 4
(3) -4
(4) -12

Sol: LetG.P., $a, a r, a r^{2}, a r^{3}$. Given $a+a r=12$ and $a r^{2}+a r^{3}=48 \Rightarrow a r^{2}(1+r)=48$. So $r^{2}=4 \Rightarrow r= \pm 2$ $r=-2$, then $a=-12$
Correct choire: (4)
32. Suppose the cubic $x^{3}-p x+q$ has three distinct real roots where $p>0$ and $q>0$. Then whichone of the following holds?
(1) The cubic has minima at both $\sqrt{\frac{p}{3}}$ and $-\sqrt{\frac{p}{3}}$
(2) The cubic has maxima at both $\sqrt{\frac{p}{3}}$ and $-\sqrt{\frac{p}{3}}$
(3) The cubic has minima at $\sqrt{\frac{p}{3}}$ and maxima at $-\sqrt{\frac{p}{3}}$
(4) The cubic has minima at $-\sqrt{\frac{p}{3}}$ and maxima at $\sqrt{\frac{p}{3}}$

Sol: Let $f(x)=x^{3}-p x+q$
$f^{\prime}(x)=3 x^{2}-p$
For maxima or minima $f^{\prime}(x)=0 \Rightarrow x= \pm \sqrt{\frac{p}{3}}$
$f^{\prime \prime}(x)=6 x \Rightarrow f^{\prime \prime}(x)>0$ for $x=\sqrt{\frac{p}{3}}$ and $f^{\prime \prime}(x)<0$ for $x=-\sqrt{\frac{p}{3}}$

Correct choice: (3)

33. How manyreal solutions does the equation $x^{7}+14 x^{5}+16 x^{3}+30 x-560=0$ have?
(1) 3
(2) 5
(3) 7
(4) 1

Sol: $\quad f(x)=x^{7}+14 x^{5}+16 x^{3}+30 x-560$
$f^{\prime}(x)=7 x^{6}+70 x^{4}+48 x^{2}+30>0$
$\therefore f$ is increasing also $\lim _{x \rightarrow \infty} f(x)=\infty ; \lim _{x \rightarrow-\infty} f(x)=-\infty$
Clearly $f(x)=0$ have exactlyone real root.
Correct choice: (4)
34. Let $f(x)=\left\{\begin{array}{cl}(x-1) \sin \frac{1}{x-1} & \text { if } x \neq 1 \\ 0 & \text { if } x=1\end{array}\right.$. Then which one of the collowing is true?
(1) f is differentiable at $x=0$ but not at $x=1$
(2) f is differentiable at $x=1$ but not at $x=0$
(3) f is neither differ rentiable at $x=0$ nor at $x=1$
(4) f is differentiable at $x=0$ and at $x=1$

Sol: $f(x)=\left\{\begin{array}{cl}(x-1) \sin \frac{1}{x-1} & \text { if } x \neq 1 \\ 0 & \text { if } x=1\end{array}, \quad\right.$ Pf $(1)=\lim _{h \rightarrow 0} \frac{h \sin \frac{1}{h}-0}{h}=\lim _{h \rightarrow 0} \sin \frac{1}{h}$, which does not exist.
$f^{\prime}(0)=\sin \frac{1}{x-1}-\left.\frac{(x-1)}{(x-1)^{2}} \cos \frac{1}{x-1}\right|_{-0}=-\operatorname{sinl}+\cos 1$. So $f(x)$ is differentiable at $x=0$ but not at $x=1$.
Correct choice: (1)
35. The solution of the differertial equation $\frac{d y}{d x}=\frac{x+y}{x}$ satisfying the condition $y(1)=1$ is
(1) $y=x_{e}(x-1)$
(2) $y=x \ln x+x$
(3) $y=\ln x+x$
(4) $y=x \ln x+x^{2}$

Sol: Given $\frac{d y}{d x}=1+\frac{y}{x} \Rightarrow \frac{d y}{d x}-\frac{y}{x}=1$
$I F=e^{-\int \frac{1}{x} d x}=\frac{1}{x}$
$y \cdot \frac{1}{x}=\int 1 \cdot \frac{1}{x} d x+c \Rightarrow \frac{y}{x}=\ln x+c$
$\because y(1)=1$, soc $=1 \Rightarrow y=x \ln x+x$
Correct choice: (2)

PART-B
 CHEMISTRY

*36. Which one of the following is the correct statement?
(1) Chlorides of both beryllium and aluminium have bridged chloride structures in solid phase.
(2) $\mathrm{B}_{2} \mathrm{H}_{6} .2 \mathrm{NH}_{3}$ is known as 'inorganic benzene'.
(3) Boric acid is a protonic acid.
(4) Beryllium exhibits coordination number of six.

Sol: Inorganic berzene is $\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}$, Boric acid is a Lewis acid and berylium exhibits co-ordination number of 4 only. BeCl_{2} and AlCl_{3} both exhibit bridged structures in the solid state.
Correct choice: (1)
*37. The treatment of $\mathrm{CH}_{3} \mathrm{MgX}$ with $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{C}-\mathrm{H}$ produces
(1) $\mathrm{CH}_{3}-\stackrel{+}{\mathrm{C}} \underset{\mathrm{C}}{\mathrm{H}}-\mathrm{CH}_{3}$
(2) CH_{4}
(3) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$
(4) $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$

Sol: $\quad \mathrm{CH}_{3} \mathrm{MgX}+\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H} \longrightarrow \mathrm{CH}_{4} \uparrow+\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C} \mathrm{MgX}$
Correct choice: (2)
*38. The correct decreasing order of priority for the functional groups of organic compounds in the IUPAC system of nome nclature is
(1) $-\mathrm{CHO},-\mathrm{COOH},-\mathrm{SO}_{3} \mathrm{H},-\mathrm{CONH}_{2}$
(2) $-\mathrm{CONH}_{2},-\mathrm{CHO},-\mathrm{SO}_{3} \mathrm{H},-\mathrm{COOH}$
(3) $-\mathrm{COOH},-\mathrm{SO}_{3} \mathrm{H},-\mathrm{CONH}_{2},-\mathrm{CHO}$
(4) $-\mathrm{SO}_{3} \mathrm{H},-\mathrm{COOH},-\mathrm{CONH}_{2},-\mathrm{CHO}$

Sol: The correct decreasing order of prionity for the functional groups according to IUPAC nome nclature is $-\mathrm{CO}_{2} \mathrm{H}>-\mathrm{SO}_{3} \mathrm{H}>-\mathrm{CONH}_{2}>-\mathrm{CHO}$

Correct choice: (3)

*39. The pK_{s} of a weak acid, HA is 4.80 . The pK_{b} of a weak base, BOH , is 4.78 . The pH of an aqueous solution of the corresponding salt, BA , will be
(1) 7.01
(2) 9.22
(3) 9.58
(4) 4.79

Sol: $\mathrm{B}^{+}+\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{BOH}+\mathrm{HA}$
$\mathrm{pH}=\frac{1}{2} \mathrm{pK}_{\mathrm{w}}+\frac{1}{2} \mathrm{pK}_{\mathrm{s}}-\frac{1}{2} \mathrm{pK}_{\mathrm{b}}=\frac{1}{2}(14+4.80-4.78)=7.01$
Correct choice: (1)
*40. The hydrocarbon which can react with sodime in liquid ammonia is
(1) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$
(2) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{3}$
(3) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
(4) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}$

Sol: $\quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH} \xrightarrow[\text { liquid } \mathrm{NH}_{3}]{\mathrm{Na} \text { 咅 }} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}^{-} \mathrm{Na}^{+}+\frac{1}{2} \mathrm{H}_{2} \uparrow$

Correct choice: (4)

41. Given $\mathrm{E}_{\mathrm{Cr}^{3+} / 0}^{0}=-0.72 \mathrm{~V}, \mathrm{E}_{\mathrm{Fe}^{2+} / \mathrm{Fe}}^{0}=-0.42 \mathrm{~V}$. The potential for the cell
$\mathrm{Cr}\left|\mathrm{Cr}^{3+}(0.1 \mathrm{M}) \| \mathrm{Fe}^{2+}(0.01 \mathrm{M})\right| \mathrm{Fe}$ is
(1) -0.339 V
(2) -0.26 V
(3) 0.26 V
(4) 0.339 V

Sol: $2 \mathrm{Cr}(\mathrm{s})+3 \mathrm{Fe}^{2+}(\mathrm{aq}) \longrightarrow 2 \mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{Fe}(\mathrm{s})$
$\mathrm{E}_{\mathrm{coII}}=\mathrm{E}_{\mathrm{F}}^{0}{ }^{2+} \mathrm{FFe}_{\mathrm{Fe}}-\mathrm{E}_{\mathrm{Cr}^{3+} \mid \mathrm{CO}^{2}}^{0}-\frac{0.0059}{6} \log \frac{\left[\mathrm{Cr}^{3+}\right]^{2}}{\left[\mathrm{Fe}^{2+}\right]^{3}}=-0.42-(-0.72)-\frac{0.059}{6} \log \frac{(0.1)^{2}}{(0.01)^{3}}=0.26 \mathrm{~V}$
Correct choice: (3)
42. Amount of oxalic acid present in a solution can be determined byits titration with KMnO_{4} solution in the presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$.

The titration gives unsatisfactory result when carried out in the presence of HCl , because HCl
(1) reduces permang anate to Mn^{2+}.
(2) oxidises oxalic acid to carbondioxide and water.
(3) gets oxidised by oxalic acid to chlorine.
(4) furnishes H^{+}ions in addition to those from oxalic acid.

Sol: KMnO_{4} can oxidise HCl also (along with $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$) into Cl_{2} and itself gets reduced to Mn^{2+}.
Correct choice: (1)
*43. Among the following substituted silanes the one which will give rise to cross linked silicone polymer on hydrolysis is

Sol:

Correct choice: (4)
44. Oxidising power of chlorine in aqueous solution can be determined by the parameters indicated below.

The energy involved in the conversionof

$$
\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g}) \text { to } \mathrm{Cl}^{-}(\mathrm{aq})
$$

(using the data, $A_{\text {dis }} \mathrm{H}_{\mathrm{Cl}_{2}}^{\mathrm{E}}=240 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta_{\mathrm{eg}_{\mathrm{g}}} \mathrm{H}_{\mathrm{Cl}}^{\mathrm{P}}=-349 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta_{\mathrm{lyd}^{\prime}} \mathrm{H}_{\mathrm{Cl}^{-}}=-381 \mathrm{~kJ} \mathrm{~mol}^{-1}$) will be
(1) $-850 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(2) $+120 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(3) $+152 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(4) $-610 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Sol: $\quad \Delta \mathrm{H}=\left(\frac{1}{2} \times 240\right)+(-349)+(-381)=-610 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

Correct choice: (4)

45. Which of the following factors is of no significance for roasting sulphide ores to the oxides and not subjecting the sulphide ores to carbon reduction directly?
(1) Metal sulphides are less stable than the corresponding oxides.
(2) CO_{2} is more volatile than CS_{2}.
(3) Metal sulphides are thermodynamically more stable than CS_{2}.
(4) CO_{2} is thermodynamically more stable than CS

Sol: $\quad 2 \mathrm{MS}+\mathrm{C} \longrightarrow 2 \mathrm{M}+\mathrm{CS}_{2} ; \quad \Delta \mathrm{G}_{1}=$ positive $2 \mathrm{MO}+\mathrm{C} \longrightarrow 2 \mathrm{M}+\mathrm{CO}_{2} ; \quad \Delta \mathrm{G}_{2}=$ negative
This suggests that CO_{2} is the modynamically mone stable than CS_{2}. Me tal sulphides are thermodynamically more stable than CS_{2} while metal sulphides are more stable than the corresponding oxides.

Correct choice: (1)

*46. Four species are listed below:
(i) HCO_{3}^{-}
(ii) $\mathrm{H}_{3} \mathrm{O}^{+}$
(3) HSO_{4}^{-}
(4) $\mathrm{HSO}_{3} \mathrm{~F}$

Which one of the following is the correct sequence of their acid strength?
(1) (i) $<$ (iii) $<$ (ii) $\&$ (iv)
(2) (iii) $<$ (i) $<$ (iv) $<$ (ii)
(3) $($ iv $)<($ ii $)<($ iii $)<($ i $)$
(4) (ii) $<$ (iii) $<$ (i) $<$ (iv)

Sol: The decreasing order of acidic strength is

$$
\mathrm{HSO}_{3} \mathrm{~F}>\mathrm{H}_{3} \mathrm{O}^{+}>\mathrm{HSO}_{4}^{-}>\mathrm{HCO}_{3}^{-}
$$

Correct choice: (1)

*47. Which one of the following constitutes a group of the isoe lectronic species?
(1) $\mathrm{CH}, \mathrm{N}_{2}, \mathrm{O}_{2}^{2-}, \mathrm{C}_{2}^{2-}$
(2) $\mathrm{N}_{2}, \mathrm{O}_{2}^{-}, \mathrm{NO}^{+}, \mathrm{CO}$
(3) $\mathrm{C}_{2}^{2-}, \mathrm{O}_{2}^{-}, \mathrm{CO}, \mathrm{NO}$
(4) $\mathrm{NO}^{+}, \mathrm{C}_{2}^{2-}, \mathrm{CN}^{-}, \mathrm{N}_{2}$

Sol: Isoelectronic species possess same number of electrons. $\mathrm{NO}^{+}, \mathrm{C}_{2}^{2-}, \mathrm{CN}^{-}$and N_{2}, each have 14 electrons and thus are isoelectronic.
Correct choice: (4)
48. Phenol, when it first reacts with concentrated sulphuric acid and then with concentrated nitric acid, gives
(1) p-nitrophenol
(2) ritrobenze ne
(3) 2,4,6-trinitrobenzene
(4) o-ritrophenol

Sol:

The temperature is not mentioned, so it can be assumed to be room temperature at which ortho is the stable product.
Correct choice: (4)
*49. The ionization enthalpy of hydrogen atom is $1.312 \times 10^{6} \mathrm{~J} \mathrm{~mol}^{-1}$. The energy required to excite the electron in the atom from
$\mathrm{n}=1$ to $\mathrm{n}=2$ is
(1) $7.56 \times 10^{5} \mathrm{~J} \mathrm{~mol}^{-1}$
(2) $9.84 \times 10^{5} \mathrm{~J} \mathrm{~mol}^{-1}$
(3) $8.51 \times 10^{5} \mathrm{~J} \mathrm{~mol}^{-1}$
(4) $6.56 \times 10 \mathrm{~J} \mathrm{~mol}^{-1}$

Sol: $\quad E_{2}=\frac{-1.312 \times 10^{6} \times(1)^{2}}{(2)^{2}}=-3.28 \times 10^{5} \mathrm{~J} \mathrm{~mol}^{-1} ; E_{1}=-1.312 \times 10^{6} \mathrm{~J} \mathrm{~mol}^{-1}$
$\Delta \mathrm{E}=\mathrm{E}_{1}-\mathrm{E}_{1}=\left(-3.28 \times 10^{5}+1.312 \times 10^{6}\right) \mathrm{J} \mathrm{mol}^{-1}=9.84 \times 10^{5} \mathrm{~J} \mathrm{~mol}^{-1}$.
Correct choice: (2)
50. The organic chloro compound, which shows complete stereochemical irversion during a S_{12} reaction is
(1) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCl}$
(2) $\mathrm{CH}_{3} \mathrm{Cl}$
(3) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{CHCl}$
(4) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}$

Sol: $\mathrm{S}_{\mathrm{H}} 2$ reaction is shown by primary halides more than secondary halides and secondary halides more than tertiary halides.
Correct choice: (2)
51. Toluene is nitrated and the resulting product is reduced with tin and hydrochloric asid. The product so obtained is diazotized and then heated with cuprous bromide. The reaction mixture so formed contains
(1) mixture of 0 - and p-bromoanilines
(3) mixture of o - and p -bromotoluenes
2) mixture of 0 - and m-bromotoluenes
(4) mixture of 0 - and p-dibromobenzenes

Sol:

\rightarrow

Correct choice: (3)
*52. In the following sequence of reactions, the alkene affords the compound ' B '

$$
\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3} \xrightarrow{\mathrm{O}_{3}} \mathrm{~A} \xrightarrow[2]{\mathrm{H}_{2} \mathrm{O}} \mathrm{~B} .
$$

The compound B is
(1) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}$
(2) $\mathrm{CH}_{3} \mathrm{CHO}$
(3) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
(4) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$

Sol:

Correct choice: (2)
*53. Which one of the following pairs of species have the same bond order?
(1) O_{2}^{-}and CN^{-}
(2) NO^{+}and CN^{+}
(3) CN^{-}and NO^{+}
(4) CN^{-}and CN^{+}

Sol: Same bond order would be for the species which have same number of to tal electrons. CN^{-}and NO^{+}both have 14 elelc trons and will have a bond order of 3 .
Correct choice: (3)

At $80^{\circ} \mathrm{C}$, the vapour pressure of pure liquid ' A ' is 520 mm Hg and that of pure liquid ' B ' is 1000 mm Hg . If a mixture
solution of ' A ' and ' B ' boils at $80^{\circ} \mathrm{C}$ and 1 atm pressure, the amount of ' A ' in the mixture is ($1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg}$)
(1) 48 mol percent
(2) 50 mol percent
(3) 52 mol percent
(4) 34 mol percent

Sol: $\mathrm{P}_{\mathrm{I}}=760=\mathrm{P}_{\mathrm{A}}^{0} \mathrm{X}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}^{0} \mathrm{X}_{\mathrm{B}}=520 \mathrm{X}_{\mathrm{A}}+1000\left(1-\mathrm{X}_{\mathrm{A}}\right)$
$\mathrm{X}_{\mathrm{A}}=\frac{1}{2}$ or 50 mol percent.

Correct choice: (2)

55. For a reaction $\frac{1}{2} \mathrm{~A} \longrightarrow 2 \mathrm{~B}$, rate of disappearance of ' A ' is re lated to the rate of appearance of ' B ' by the expression
(1) $-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\frac{\mathrm{d}[\mathrm{B}]}{\mathrm{dt}}$
(2) $-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=4 \frac{\mathrm{~d}[\mathrm{~B}]}{\mathrm{dt}}$
(3) $-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\frac{1}{2} \frac{\mathrm{~d}[\mathrm{~B}]}{\mathrm{dt}}$
(4) $-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\frac{1}{4} \frac{\mathrm{~d}[\mathrm{~B}]}{\mathrm{dt}}$

Sol: $\quad \frac{-2 d[A]}{d t}=$ Rate of reaction with respect to A.
$\frac{1}{2} \frac{\mathrm{~d}[\mathrm{~B}]}{\mathrm{dt}}=$ Rate of reaction with respect to B .
$\frac{-2 \mathrm{~d}[\mathrm{~A}]}{\mathrm{dt}}=\frac{1}{2} \frac{\mathrm{~d}[\mathrm{~B}]}{\mathrm{dt}},-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\frac{1}{4} \frac{\mathrm{~d}[\mathrm{~B}]}{\mathrm{dt}}$

Correct choice: (4)

*56. The equilibrium constants $\mathrm{K}_{\mathrm{P}_{1}}$ and $\mathrm{K}_{\mathrm{P}_{2}}$ for the reactions $\mathrm{X} \rightleftharpoons 2 \mathrm{Y}$ and $\mathrm{Z} \rightleftharpoons \mathrm{P}+\mathrm{Q}$, regpectively are in the ratio of 1:9. If the degree of dissociation of X and Z be equal then the ratio of total pressures at these equilibria is
(1) $1: 3$
(2) $1: 9$
(3) $1: 36$
(4) $1: 1$

Sol: Let initial moles of X and Z taken are ' a ' and ' b ' respectively.
Moles at equilibrium
$\mathrm{X}(1-\alpha)$

$K_{\mathrm{P}_{1}}=\frac{(2 \alpha \alpha)^{2} \mathrm{P}_{\mathrm{T}_{1}}}{\mathrm{a}(1-\alpha) \mathrm{a}(1+\alpha)}$

$\frac{\mathrm{K}_{\mathrm{P}_{1}}}{\mathrm{~K}_{\mathrm{P}_{2}}}=\frac{4 \mathrm{P}_{\mathrm{T}_{1}}}{\mathrm{P}_{\mathrm{T}_{2}}}=\frac{1}{9} ; \frac{\mathrm{P}_{\mathrm{T}_{1}}}{\mathrm{P}_{\mathrm{T}_{2}}}=\frac{1}{36}$.
Correct choice: (3)
*57. In context with the industrial preparation of hydrogen from water gas ($\mathrm{CO}+\mathrm{H}_{2}$), which of the following is the correct statement?
(1) H_{2} is re moved through occlusion uxith Fd .
(2) CO is oxidised to CO_{2} with ste ame in the presence of a catalyst followed by absorption of CO_{2} in alkali.
(3) CO and H_{2} are fractionally separated using differences in the ir densities.
(4) CO is re moved by absorption in aqueous $\mathrm{Cu}_{2} \mathrm{Cl}_{2}$ solution.

Sol: $\underbrace{\mathrm{CO}+\mathrm{H}_{3}}_{\text {Whter Zas }}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { Cethlyst }} \mathrm{CO}_{2}+2 \mathrm{H}_{2} \xrightarrow[\left(\mathrm{a}_{2} \mathrm{kil}\right)]{2 \mathrm{NaOH}}, \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}$
Correct choice: (2)
58. In which of the following octahe dral complexes of Co (atomic number 27), will the magnitude of \triangle, be the highest?
(1) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3}$
(2) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)\right]^{3+}$
(3) $[\mathrm{Co}(\mathrm{CN})]^{3-}$
(4) $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}{ }^{3-}\right.$

Sol: Magritude of $\mathrm{A}_{\text {, }}$ will be highest with the strongest ligand. Since, CN^{-}is the strongest ligand of all, thus would lead to a greater separation between t_{2} and e_{z} orbitals.

Correct choice: (3)

59. The coordination number and the oxidation state of the element ' E ' in the complex $\left[\mathrm{E}\left(\mathrm{en}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right] \mathrm{NO}_{2}$ (where (en) is ethyle ne diamine) are, respectively,
(1) 4 and 3
(2) 6 and 3
(3) 6 and 2
(4) 4 and 2

Sol: (en) and oxalate ion are both bidentate ligands. Co-ordination number of E in the comple $\mathrm{x}=(2 \times 2)+(1 \times 2)=6$.
Oxidation state of E in the complex $=[x+(-2)=+1]=+3$.
Correct choice: (2)
*60. Identify the wrong statement in the following:
(1) Ozone layer does not permit infrared radiation from the sun to reach the earth.
(2) Acid rain is mostlybecause of oxides of nitrogen and sulphur.
(3) Chlorofluorocarbons are responsible for ozone layer depletion.
(4) Greenhouse effect is responsible for global warming.

Sol: Ozone layer prevents the ultra violet radiations and not the infrared radiations from the sun to reach the earth.
Correct choice: (1)
61. Larger number of oxidation states are exhibited by the actinoids than those by lanthanoids, the main reason being
(1) more energy difference between $5 f$ and 6 d than between 4 f and 5 d orbitals.
(2) more reactive nature of the actinoids than the lanthanoids.
(3) $4 f$ orbitals more diffused than the 5 forbitals.
(4) lesser energy differe nce between $5 f$ and $6 d$ than between $4 f$ and $5 d$ orbitals.

Sol: The energy difference between 5 f and 6 d is lesser than that between 4 f and 5 d orbitals. Thus, in actinoids, the electrons can be removed from $5 f$ as well as $6 d$, so more number of oxidation states are exhibited by them.
Correct choice: (4)
62. In a compound, atoms of element Y form ccp lattice and those of element X occupy $2 / 3^{\text {rl }}$ of tetrahedral voids. The formula of the compound will be
(1) $X_{2} Y$
(2) $\mathrm{X}_{3} \mathrm{Y}_{4}$
(3) $\mathrm{X}_{4} \mathrm{Y}_{3}$
(4) $\mathrm{X}_{2} \mathrm{Y}_{3}$

Sol: Number of effective Y in a unit cell $=4$.
Number of effective X in a unit cell $=8 \times \frac{2}{3}=\frac{16}{3}$.
So, formula of the compound $=X_{16 / 3} Y_{4}=X_{1 / 3} Y_{1 / 4}=X_{4} Y_{3}$
Correct choice: (3)
63. Gold numbers of protective colloids (A), (B), (C) and (D) are $0.50,0.01,0.10$ and 0.005 , respectively. The correct order of the ir protective powers is
(1) $(\mathrm{A})<(\mathrm{C})<(\mathrm{B})<$ (D)
(2) $(\mathrm{B})<(\mathrm{D})<(\mathrm{A})<(\mathrm{C})$
(3) $(\mathrm{D})<(\mathrm{A})<(\mathrm{C})<(\mathrm{B})$
(4) $(\mathrm{C})<(\mathrm{B})<(\mathrm{D})<(\mathrm{A})$

Sol: Lesser the value of gold number of a protective colloid better is its protective power. $\therefore(\mathrm{A})<(\mathrm{C})<(\mathrm{B})<(\mathrm{D})$
Correct choice: (1)
64. The vapour pressure of water at $20^{\circ} \mathrm{C}$ is 17.5 mmHg . If 18 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ is added to 178.2 g of water at $20^{\circ} \mathrm{C}$, the vapour pressure of the resulting solution will be
(1) 16.500 mm Hg
(2) 17325 muHg
(3) 17.675 mm Hg
(4) 15.750 mm Hg

Sol: Moles of glucose $=\frac{18}{180}=0.1$, moles of $\mathrm{H}_{2} \mathrm{O}=\frac{178.2}{18}=9.9$
$\frac{\mathrm{P}^{0}-\mathrm{P}_{\mathrm{S}}}{\mathrm{P}_{\mathrm{S}}}=\frac{\text { moles of glucose }}{\text { moles of water }}, 17.5-\mathrm{P}_{\mathrm{s}}=\frac{0.1 \times \mathrm{P}_{\mathrm{S}}}{9.9}$
$\mathrm{P}_{8}=17.325$ mm Hg.
Correct choire: (2)
65. Bake lite is obtained from phenol by reacting with
(1) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
(2) HCHO
(3) $\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}$
(4) $\mathrm{CH}_{3} \mathrm{CHO}$

Sol: Pherol $+\mathrm{HCHO} \xrightarrow{\text { acid }} 0$ - and p-hydroxybenzylalcohol $\xrightarrow{\Delta}$ Bakelite
Correct choice: (2)
66. The absolute configuration of

is
(1) R,S
(2) S, R
(3) S, S
(4) R, R

Sol:

Correct choice: (4)
*67. For the following three reactions a, b, c, equilibrium constants are given:
a. $\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g) \rightleftharpoons \mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g) ; \mathrm{K}_{1}$
b. $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{2}$
c. $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{3}$

Which of the following relations is correct?
(1) $\mathrm{K}_{3}=\mathrm{K}_{1} \mathrm{~K}_{2}$
(2) $\mathrm{K}_{3} \cdot \mathrm{~K}_{2}^{3}=\mathrm{K}_{1}^{2}$
(3) $\mathrm{K}_{1} \sqrt{\mathrm{~K}_{2}}=\mathrm{K}_{3}$
(4) $K_{2} K_{3}=K_{1}$

Sol: $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{1}$
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{2}$
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{K}_{3}=\mathrm{K}_{1} \times \mathrm{K}_{2}$
Correct choice: (1)
68. Standard entropy of $\mathrm{X}_{2}, \mathrm{Y}_{2}$ and $\mathrm{XY} Y_{3}$ are 60,40 and $50 \mathrm{JK}^{-1}$ mol ${ }^{-1}$, respectively. For the reaction, $\frac{1}{2} \mathrm{X}_{2}+\frac{3}{2} \mathrm{Y}_{2} \longrightarrow X Y_{3}$, $\Delta \mathrm{H}=-30 \mathrm{~kJ}$, to be at equilibrium, the temperature will be
(1) 750 K
(2) 1000 K
(3) 1250 K
(4) 500 K

Sol: $\quad \frac{1}{2} \mathrm{X}_{2}+\frac{3}{2} \mathrm{Y}_{2} \longrightarrow \mathrm{XY}_{3} ; \Delta \mathrm{S}=50-\left[\left(60 \times \frac{1}{2}\right)+\left(40 \times \frac{3}{2}\right)\right]=-40 \mathrm{JK}^{-1} ; \Delta H=-30 \mathrm{~kJ} ; \quad \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
At equilibrium, $\Delta \mathrm{G}=0 ; \therefore \Delta \mathrm{H}=\mathrm{T} \Delta \mathrm{S} ; \mathrm{T}=\frac{\Delta \mathrm{H}}{\Delta \mathrm{S}}=\frac{-30000 \mathrm{~J}}{-40 \mathrm{~K}^{-1}}=750 \mathrm{~K}$.

Correct choice: (1)

*69. The electrophile, E^{\oplus} attacks the benzene ring to generate the intermediate σ-complex. Of the following, which σ-comple x is of lowest energy?
(1)

(2)

H
(3)

(4)

Sol: Arenium ion (σ-complex) formed by the attack of electrophile on nitrobenzene at anyone of the three positions is les stable than that formed by the attack of electrophile on benzene.

Correct choice: (4)

70. $\alpha-\mathrm{D}-(+)-$ glucose and $\beta-\mathrm{D}-(+)$-glucose are
(1) anomers
(2) enantiomers
(3) conformers
(4) epimers

Sol: $\quad \alpha-\mathrm{D}-(+)-g l u c o s e$ and $\beta-\mathrm{D}-(+)-g l u c o s e$ are those diastereomers that differ in configuration at $\mathrm{C}-1$ atom. Such isomers are referred as anomers.
Correct choice: (1)

PHYSICS

71. This question contains Statement-1 and Statement-2. Of the four choices given after the statements, choose the one that best describes the two statements.
Statement - I: Energy is released when heavy nuclei undergo fission or light nuclei undergo fusion.
and
Statement -2: For heavy nuclei, binding energy per nucleon increases with increasing Z while for light nuclei it decreases with increasing Z.
(1) Statement -1 is true, State ment- 2 is true; Statement -2 is not a correct explanation for Statement- 1
(2) Statement -1 is true, Statement- 2 is false
(3) Statement-1 is false, Statement- 2 is true
(4) Statement -1 is true, State ment- 2 is true; Statement -2 is a corect explanation for Statement- 1

Sol: Correct choice: (2)

*72. This question contains Statement-1 and Statement-2. Of the four choices given after the statements, choose the one that best describes the two statements.
Statement - I: For a mass M kept at the centre of a cube of side 'a' the flux of gravitational field pessing through its sides is $4 \pi \mathrm{GM}$.
and
Statement -2: If the direction of a field due to a point source is radial and its dependence on the distance ' r ' from the source is given as $\frac{1}{\mathrm{r}^{2}}$, its flux through a closed surface depends only on the strength of the source enclosed by the surface and not on the size or shape of the surface.
(1) Statement -1 is true, Statement- 2 is true; State ment -2 is not a correct explanation for Statement- 1
(2) Statement -1 is true, State ment- 2 is false
(3) Statement -1 is false, State ment- 2 is true
(4) Statement -1 is true, State ment- 2 is true ; State ment -2 is a contect explanation for Statement-1

Sol: $\int \mathrm{E}_{\mathrm{g}} \cdot \mathrm{d} \stackrel{\mathrm{s}}{ }=-4 \pi \mathrm{GM}_{\mathrm{amb} \cdot \kappa \mathrm{d}}=-4 \pi \mathrm{GM}$
Correct choice: (4)
*73. Two full tums of the circular scale of a screw gauge cover a distance of 1 mm on its main scale. The total number of divisions on circular scale is 50 . Further, it is found that screw gauge has a zero error of -0.03 mm . While measuring the diameter of a thin wire, a student notes the main scale reading of 3 mm and the number of circular scale divisions in line with the main scale as 35 . The diameter of wire is
(1) 3.67 mm
2) 3.38 mm
(3) 3.32 mm
(4) 3.73 mm

Sol: Least count $=\frac{0.5 \mathrm{rmm}}{50}=0.01 \mathrm{~mm}$
Zero error $=-0.03 \mathrm{~mm}$
Measured diameter $=3 \mathrm{~mm}+35 \times 0.01 \mathrm{~mm}=3.35 \mathrm{~mm}$
Corrected diame ter $=3.35 \mathrm{~mm}-(-0.03 \mathrm{~mm})=3.38 \mathrm{~mm}$
Correct choine: (2)

An insulated container of gas has two chambers se parated by an insulating partition. One of the chambers has volume V_{1} and contains ideal gas at pressure P_{1} and te mperature T_{1}. The other chamber has volume V_{2} and contains ideal gas at pressure P_{2} and temperature T_{2}. If the partition is removed without doing any work on the gas, the final equilibrium temperature of the gas in the container will be
(1) $\frac{\mathrm{P}_{1} \mathrm{~V}_{1} \mathrm{~T}_{2}+\mathrm{P}_{2} \mathrm{~V}_{2} \mathrm{~T}_{1}}{\mathrm{P}_{1} \mathrm{~V}_{1}+\mathrm{P}_{2} \mathrm{~V}_{2}}$
(2) $\frac{\mathrm{T}_{1} \mathrm{~T}_{2}\left(\mathrm{P}_{1} \mathrm{~V}_{1}+\mathrm{P}_{2} \mathrm{~V}_{2}\right)}{\mathrm{P}_{1} \mathrm{~V}_{1} \mathrm{~T}_{1}+\mathrm{P}_{2} \mathrm{~V}_{2} \mathrm{~T}_{2}}$
(3) $\frac{\mathrm{T}_{1} \mathrm{~T}_{2}\left(\mathrm{P}_{1} \mathrm{~V}_{1}+\mathrm{P}_{2} \mathrm{~V}_{2}\right)}{\mathrm{P}_{1} \mathrm{~V}_{1} \mathrm{~T}_{2}+\mathrm{P}_{2} \mathrm{~V}_{2} \mathrm{~T}_{1}}$
(4) $\frac{P_{1} V_{1} T_{1}+P_{2} V_{2} T_{2}}{P_{1} V_{1}+P_{2} V_{2}}$

Sol: Intemal energy of the system will remain conserved.
$\left(\mathrm{r}_{\mathrm{1}}+\mathrm{n}_{2}\right) \mathrm{C}_{\mathrm{v}} \mathrm{T}=\mathrm{n}_{1} \mathrm{C}_{\mathrm{V}} \mathrm{T}_{1}+\mathrm{n}_{2} \mathrm{C}_{\mathrm{V}} \cdot \mathrm{T}_{2}$
$\left(\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{RT}_{1}}+\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{RT}_{2}}\right) \mathrm{T}=\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{R}}+\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{R}} ; \quad \mathrm{T}=\frac{\mathrm{T}_{1} \mathrm{~T}_{2}\left(\mathrm{P}_{1} \mathrm{~V}_{1}+\mathrm{P}_{2} \mathrm{~V}_{2}\right)}{\mathrm{P}_{1} \mathrm{~V}_{1} \mathrm{~T}_{2}+\mathrm{P}_{2} \mathrm{~V}_{2} \mathrm{~T}_{1}}$
Correct choice: (3)
75. A student measures the focal length of a convex lens by putting an object pin at a distance 'u' from the lens and measuring the distance ' v ' of the image pin. The graph between ' u ' and ' v ' plotted by the student should look like
(1)

(2)

(3)

(4)

Correct choice: (1)

Diections: Questions N6. 76 and 77 are based on the following paragrap h
Consider ablock of conducting material of resistivity ' ρ ' shown in the figure. Current ' I ' enters at ' A ' and leaves from ' D '. We apply superposition principal to find voltage ' A V ' developed between ' B ' and ' C '. The calculation is done in the following steps:
(i) Take current ' I ' entering from ' A ' and assume it to spread over a hemispherical surface in the block.
(ii) Calculate field $\mathrm{E}(\mathrm{r})$ at distance ' r ' from A byusing Qhm's law $E=\rho j$, where ' j ' is the current per unit area at ' r '.
(iii) From the ' r ' dependence of $E(r)$, obtain the potential $V(r)$ at ' r '.
(iv) Repeat (i), (ii) and (iii) for current ' I ' leaving ' D ' and superpose results for ' A ' and ' D '.
76. ΔV measured between B and C is
(1) $\frac{\rho I}{2 \pi a}-\frac{\rho I}{2 \pi(a+b)}$
(2) $\frac{\rho \mathrm{I}}{2 \pi(a-b)}$
(3) $\frac{\rho \mathrm{I}}{\pi \mathrm{a}}-\frac{\rho \mathrm{I}}{\pi(\mathrm{a}+\mathrm{b})}$
(4) $\frac{\rho I}{a}-\frac{\rho I}{(a+b)}$

Sol: $\quad E=\beta j=\rho \frac{I}{2 \pi r^{2}}$
Potential difference due to current at A
$V_{B}-V_{C}=-\int_{C}^{B} E \cdot d I^{+}=-\int_{a+b}^{a} \rho \frac{I}{2 \pi r^{2}} \cdot d r ; \Delta V^{\prime}=-\frac{\rho I}{2 \pi}\left[-\frac{1}{r}\right]_{a+b}^{a}=\frac{\rho I}{2 \pi a}-\frac{\rho I}{2 \pi(a+b)}$
By principle of superposition, $\Delta \mathrm{V}=2 \Delta \mathrm{~V}^{\prime}=\frac{\rho \mathrm{II}}{\pi \mathrm{a}}-\frac{\rho \mathrm{II}}{\pi(a+b)}$

Correct choice: (3)

77. For current entering at A, the electric field at a distance ' r ' from A is

(1) $\frac{\mathrm{\rho I}}{2 \pi r^{2}}$

(2) $\frac{\mathrm{fI}}{4 \pi r^{2}}$
(3) $\frac{\rho I}{8 \pi r^{2}}$
(4) $\frac{\mathrm{fI}}{\mathrm{r}^{2}}$

Sol: Correct choice: (1)
*78. Consider a uniform square plate of side ' a ' and mass ' m '. The moment of inertia of this plate about an axis perpendicular to its plane and passing through one of its comers is
(1) $\frac{7}{12} \mathrm{ma}^{2}$
(2) $\frac{2}{3} \mathrm{ma}^{2}$
(3) $\frac{5}{6} \mathrm{ma}^{2}$
(4) $\frac{1}{12} \mathrm{ma}^{2}$

Sol: $\quad I=I_{o m}+\mathrm{md}^{2}=\frac{m a^{2}}{6}+m\left(\frac{\mathrm{a}}{\sqrt{2}}\right)^{2}=\frac{2}{3} \mathrm{ma}^{2}$

Correct choice: (2)

79. An experiment is performed to find the refractive index of glass using a travelling microscope. In this experiment distances are measured by
(1) a meter scale provided on the mic roscope
(2) a screwgauge provided on the microscope
(3) a vemier scale provided on the microscope
(4) a standard laboratoryscal

Sol: Correct choice: (3)
80. A horizontal ove rhead powerline is at a height of 4 m from the ground and carries a current of 100 A from east to west. The magnetic field directlybelow it on the ground is $\left(\mu=4 \pi \times 10^{-7} \mathrm{~T} \mathrm{~m}^{-1}\right)$
(1) $5 \times 10^{-6} \mathrm{~T}$ southward
(2) $2.5 \times 10^{-7} \mathrm{~T}$ northward
(3) $2.5 \times 10^{-7} \mathrm{~T}$ southward
(4) $5 \times 10^{-6} \mathrm{~T}$ northward

Sol: $\quad B=\frac{\mu_{0}}{4 \pi} \frac{2 i}{r}=5 \times 10^{-6} \mathrm{~T}$
Correct choice: (1)
*81. The speed of sound in oxygen $\left(\mathrm{O}_{2}\right)$ at a certain temperature is $460 \mathrm{~ms}^{-1}$. The speed of sound in helium (He) at the same te mperature will be (assume both gases to be ideal)
(1) $650 \mathrm{~ms}^{-1}$
(2) 330 ms
(3) $460 \mathrm{~ms}^{-1}$
(4) $500 \mathrm{~ms}^{-1}$

Sol: $\quad \mathrm{V}=\sqrt{\frac{\gamma \mathrm{RT}}{\mathrm{M}_{0}}}$
$460=\sqrt{\frac{7 R T}{5 \times 32}} \quad \mathrm{~V}=\sqrt{\frac{5 R T}{3 \times 4}}$
$\Rightarrow \quad \mathrm{V}=3.08 \times 460=1419 \mathrm{~ms}^{-1}$

Correct choire: (no ne of the answers is correct)

82. A 5 V battery with intemal resistance 2Ω and a 2 V
battery with intemal resistance 1Ω are connected to a 10
Ω resistor as show in the figure. The current in the 10Ω resistor is
(1) $0.03 \mathrm{~A}_{2}$ to P_{1}
(2) $0.27 \mathrm{~A} \mathrm{P}_{1}$ to P_{2}
(3) $0.27 \mathrm{~A}_{2}$ to P_{1}
(4) $0.03 \mathrm{~A} \mathrm{P}_{1}$ to P_{2}

Sol: $\quad i=\frac{\varepsilon_{1} r_{2}+\varepsilon_{2} \mathrm{r}_{1}}{\mathrm{r}_{1} \mathrm{r}_{2}+\mathrm{Rr}_{1}+\mathrm{Rr}_{2}}=\frac{5 \times 1+(-2) \times 2}{2 \times 1+10 \times 2+10 \times 1}=0.03 \mathrm{~A}$
Correct choice: (1)
*83. A body of mass $m=3.513 \mathrm{~kg}$ is moving along the x -axis with a speed of $5.00 \mathrm{~ms}^{-1}$. The magnitude of its momentum is recorded as

Sol: $\quad \mathrm{p}=\mathrm{nvv}=3.513 \times 5.00=17.565 \mathrm{~kg} \mathrm{~ms}^{-1}$
Since result should have only 3 significant digits
$\therefore \mathrm{p}=17.6 \mathrm{~kg} \mathrm{~ms}^{-1}$
Correct choice: (3)
84. A working transistor with its three legs marked P, Q and R is tested using a multimeter. No conduction is fourd between P and Q . By connecting the common (negative) terminal of the multimeter to R and the other (positive) terminal to P on Q some resistance is seen on the multimeter. Which of the following is true for the transistor?
(1) It is a pnp transistor with R as emitter
(2) It is an npm transistor with R as collector
(3) It is an npon transistor with R as base
(4) It is a pmp transistor with R as collector

Sol: Correct choice: (3)

*85. A block of mass 0.50 kg is moving with a speed of $2.00 \mathrm{~ms}^{-1}$ on a smooth surface. It strikes another mass of 1.00 kg and then they move together as a single body. The energy loss during the collision is
(1) 0.67 J
(2) 0.34 J
(3) 0.16 J
(4) 1.00 J

Sol: Using momentum conservation, $0.5 \times 2=1.5 \times \mathrm{v} \Rightarrow \mathrm{v}=\frac{2}{3} \mathrm{~ms}^{-1}$
Loss of energy $=\left[\left(\frac{1}{2} \times 0.5 \times(2)^{2}\right)-\frac{1}{2} \times 1.5 \times\left(\frac{2}{3}\right)^{2}\right]=1-\frac{1}{3}=0.67 \mathrm{~J}$
Correct choice: (1)
*86. A wave travelling along the x-axis is described by the equation $y(x, t)=0.005 \cos (\alpha x-\beta t)$. If the wave length and the time period of the wave are 0.08 m and 2.0 s , respectively, the α and β in appropriate units are
(1) $\alpha=\frac{0.04}{\pi}, \beta=\frac{1.0}{\pi}$
(2) $\alpha=12.50 \pi \beta=\frac{\pi}{2.0}$
(3) $\alpha=25.00 \pi, \beta=\pi$
(4) $\alpha=\frac{0.08}{\pi}, \beta=\frac{2.0}{\pi}$

Sol: $\quad \alpha=\frac{2 \pi}{\lambda}=\frac{2 \pi}{0.08}=25 \pi$;

Correct choice: (3)
87. Two coaxial solentids are made by winding thin insulated wire over a pipe of cross sectional area $\mathrm{A}=10 \mathrm{~cm}^{2}$ and length $=20 \mathrm{~cm}$. If one of the solenoids has 300 tums and the other 400 tums , the ir mutual inductance is ($\mu=4 \pi \times 10^{-7} \mathrm{~T} \mathrm{~m}^{-1}$)
(1) $4.8 \pi \times 10^{-5} H$
(2) $2.4 \pi \times 10^{-4} \mathrm{H}$
(3) $2.4 \pi \times 10^{-5} \mathrm{H}$
(4) $4.8 \pi \times 10^{-4} \mathrm{H}$

Sol: $\quad M=\mu_{0} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{~A}$
Correct choice: (2)
*88. A capillary tube (A) is dipped in water. Another identical tube (B) is dipped in a soap-water solution. Which of the following shows the relative nature of the liquid columns in the two tubes?

(2)

(3)

(4)

*89. A jar is filled with two non-mixing liquids 1 and 2 having densities ρ_{1} and ρ_{2}, respectively. A solid ball, made of a material of density ρ_{3}, is dropped in the jar. It comes to equilibrium in the position shown in the figure. Which of the following is true for ρ_{1}, ρ_{2} and ρ_{3} ?
(1) $\rho_{1}<\rho_{2}<\rho_{3}$
(2) $\rho_{1}<\rho_{3}<\rho_{2}$
(3) $\rho_{3}<\rho_{1}<\rho_{2}$
(4) $\rho_{1}>\rho_{3}>\rho_{2}$

Sol: Heavier liquid settles down at the bottom
So, $\rho_{1}<\rho_{2}$
$\rho_{3}<\rho_{2}$, othe rwise, ball will sink
$\rho_{3}>\rho_{1}$, otherwise, ball will float in liquid
$\therefore \quad \rho_{1}<\rho_{3}<\rho_{2}$
Correct choice: (2)
90. Suppose an electron is attracted towards the onigin bya force $\frac{k}{r}$ where ' k ' is a constant and ' r ' is the distance of the electron from the origin. By applying Bohr model to this system, the radius of the n 'th orbital of the electron is found to be ' r_{n} ' and the kinetic energy of the electron to be ' T_{n} '. Then which of the following is true?
(1) $T_{n} \propto \frac{1}{n}, R_{n} \in n$
(2) $\mathrm{T}_{\mathrm{n}} \propto \frac{1}{\mathrm{n}}, \mathrm{r}_{\mathrm{n}} \propto \mathrm{n}^{2}$
(3) $T_{n} \propto \frac{1}{n^{2}} r_{n} \propto n^{2}$
(4) T_{n} independent of $n, r_{n} \propto n$
Sol: $\mathrm{L}=\frac{\mathrm{nh}}{2 \pi} \Rightarrow \mathrm{nWr} \mathrm{r}_{\mathrm{n}}=\frac{\mathrm{nh}}{2 \pi}$

$r_{n}=\frac{n h}{2 \pi m \mathrm{VV}}=\frac{n h}{2 \pi \sqrt{\mathrm{~km}}}$
$\therefore \quad r_{n} \propto n$
Correct choice: (4)

Wave property of electrons implies that they will show diffraction effects. Davisson and Germer demonstrated this by diffracting electrons from crystals. The law governing the diffraction from a crystal is obtained by requiring that electron waves reflected from the planes of atoms in a crystal interfere constructively(see figure).

91. Electrons accelerate d by potential V are diffiacted from a crystal. If $\mathrm{d}=1 \mathrm{~A}$ and $\mathrm{i}=30^{\circ}, \mathrm{V}$ should be about $(\mathrm{h}=6.6$ $\mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}, \mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$)
(1) 500 V
(2) 1000 V
(3) 2000 V
(4) 50 V

Sol: \quad For constructive interference, path difference $=n \lambda$
From the given figure, path difference $=\mathrm{MP}+\mathrm{PN}=2 \mathrm{~d} \cos \mathrm{i}$
$\therefore 2 \mathrm{~d} \cos \mathrm{i}=\mathrm{n} \lambda \Rightarrow \lambda=\frac{\sqrt{3}}{\mathrm{n}} \mathrm{A}$
Also $\lambda=\sqrt{\frac{150}{\mathrm{~V}}} \mathrm{~A}$
$\therefore\left(\frac{\sqrt{3}}{\mathrm{n}}\right)^{2}=\frac{150}{\mathrm{~V}} \Rightarrow \mathrm{~V}=50 \mathrm{n}^{2}$
For $\mathrm{n}=1, \mathrm{~V}=50$ volt

Correct choice: (4)

92. If a strong diffraction peak is observed when electrons are incident at an angle ' i ' from the nomal to the crystal planes with distance 'd' between them (see figure), de Broglie wavelength tale of electrons can be calculated by the relationship (n is an integer)
(1) 2 d sini $=n \lambda^{2} \mathrm{~dB}$
(2) $d \cos i=$
(3) d sini $=n \lambda_{\mathrm{dB}}$
(4) $2 \mathrm{~d} \cos \mathrm{i}=\pi 12 \mathrm{~dB}$

Sol: For strong peak, path difference $=n \lambda_{d B}$
$\therefore 2 \mathrm{~d} \cos \mathrm{i}=\mathrm{n} \lambda_{\mathrm{dB}}$
Correct choice: (4)
93. In an experiment, electrons are made to pass through a namow slit of width comparable to their de Broglie wavelength. They are detected on a screen at a distance ' D ' from the slit (see figure) Which of the following graphs can be expected to represent the number of electrons ' N ' detected as a function of the detector position ' y ' ($\mathrm{y}=0$ corresponds to the middle of the slit)?
(1)

(2)

Sol: After diffraction electron beam will spread.
Correct choice: (2)
94. In the circuit showm A and B represent two inputs and C represents the output. The circuit represents
(1) NAND gate
(2) ORgate
(3) NOR gate
(4) AND gate

Sol: Correct choice: (2)
95. A thin spherical shell of radius R has charge Q spread uniformly over its surface. Which of the following graphs most closely represents the electric field $E(r)$ produced by the shell in the range $0 \leq r<\infty$, where r is the distance from the centre of the shell?
(1)

(2)

(3)

(4)

Sol: For given situation, electric field inside the shell is zero and is invesely proportional to r^{2} for a point outside the shell.
Correct choice: (3)
*96. A body is at rest at $x=0$. At $t=0$, it starts moving in the positive x-direction with a constant acceleration. At the same instant another body passes through $\mathrm{x}=0$ moving in the positive x direction with a constant speed. The position of the first body is given by $x_{1}(t)$ after time t and that of the second bodyby $x_{2}(t)$ after the same time interval. Which of the following graphs correctly describes $\left(x_{1}-x_{2}\right)$ as a function of time t ?
(1)

(4)

Sol: $\quad x_{1}=\frac{1}{2} \mathrm{at}^{2}$ and $\mathrm{x}_{2}=\mathrm{vt}$ $\therefore \quad x_{1}-x_{2}=\frac{1}{2} a t^{2}-v t$
$\Rightarrow \mathrm{x}_{12}=\frac{1}{2} \mathrm{at}^{2}-\mathrm{vt}$
Att $=0, x_{12}=0$ and at any time $\frac{d^{2} x_{12}}{d t^{2}}>0$
Correct choice: (4)
97. Relative permittivity and permeability of a material are ε_{x} and μ_{5}, respectively. Which of the following values of these quantifies are allowed for a diamagnetic material?
(1) $\varepsilon_{\mathrm{r}}=0.5, \mu_{\mathrm{r}}=0.5$
(2) $\varepsilon_{\mathrm{r}}=1.5, \mu_{\mathrm{r}}=1.5$
(3) $\varepsilon_{\mathrm{r}}=0.5, \mu_{\mathrm{r}}=1.5$
(4) $\varepsilon_{\mathrm{T}}=1.5, \mu_{\mathrm{r}}=0.5$

Sol: For diamagnetic material, $0<\mu_{\mathrm{r}}<1$ and for any material $\varepsilon_{\mathrm{r}}>1$

Correct choire: (4)

*98. A planet in a distant solar system is 10 times more massive than the earth and its radius is 10 times smaller. Given that the escape velocity from the earth is $11 \mathrm{~km} \mathrm{~s}^{-1}$, the escape velocity from the surface of the planet would be
(1) $110 \mathrm{~km} \mathrm{~s}^{-1}$
(2) $0.11 \mathrm{~km} \mathrm{~s}^{-1}$
(3) $1.1 \mathrm{~km} \mathrm{~s}^{-1}$
(4) $11 \mathrm{~km} \mathrm{~s}^{-1}$

Sol: $\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\sqrt{\frac{\mathrm{M}_{1}}{\mathrm{M}_{2}} \times \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}}$
$\mathrm{V}_{1}=\mathrm{V}_{2} \sqrt{\frac{\mathrm{M}_{1}}{\mathrm{M}_{2}} \times \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}}=11(\mathrm{~km} / \mathrm{s}) \times \sqrt{10 \times 10}=110 \mathrm{~km} / \mathrm{s}$
Correct choice: (1)
*99. A thin rod of le ngth ' L ' is lying along the x-axis with its ends at $x=0$ and $x=L$. Its linear density (mass'length) varies with x as $k\left(\frac{x}{L}\right)^{n}$, where ' n ' can be zero or any positive number. If the position $x_{C M}$ of the centre of mass of the rod is plotted against ' n ', which of the following graphs best approximates the dependence of $x_{c M}$ on n ?
(1)

(2)

(3)

(4)

Sol: $\quad x_{\mathrm{cm}}=\frac{\int x d m}{\int d m}=\frac{\int_{0}^{L} x k\left(\frac{x}{L}\right)^{n} d x}{\int_{0}^{L} k\left(\frac{x}{L}\right)^{n} d x}=\frac{(n+1) L}{(n+2)}$
If $n=0, x_{\text {mal }}=\frac{L}{2}$ and if $n \rightarrow \infty x_{\text {cm }}=L$
Correct choice: (3)
*100. The dimension of magnetic field in M, L, T and C (Coulomb) is given as
(1) $\mathrm{MT}^{-1} \mathrm{C}^{-1}$
(2) $\mathrm{MT}^{-2} \mathrm{C}^{-1}$
(3) $\mathrm{MLT}^{-1} \mathrm{C}$
(4) $\mathrm{MT}^{2} \mathrm{C}^{-2}$

Sol: Use $\mathrm{F}=\mathrm{iBl}^{\mathrm{Bl}}$

$$
\left[\mathrm{MLT}^{-2}\right]=\left[\frac{\mathrm{C}}{\mathrm{~T}}\right][\mathrm{B}][\mathrm{L}] \quad \therefore \quad[\mathrm{B}]=\left\lfloor\mathrm{MT}^{-1} \mathrm{C}^{-1}\right\rfloor
$$

Correct choice: (1)
101. A parallel plate capacitor with air be tween the plates has a capacitance of 9 FF . The separation between its plates is 'd'. The space between the plates is now filled with two dielectrics. One of the dielectric has dielectric constant $\kappa_{1}=3$ and thickness $\frac{\mathrm{d}}{3}$ while the other one has dielectric constant $k_{2}=6$ and thickness $\frac{2 \mathrm{~d}}{3}$. Capacitance of the capacitor is now
(1) 40.5 pF
(2) 20.25 pF
(3) 1.8 pF
(4) 45 pF

Sol: $\quad C_{0}=9 \mathrm{pF}=\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}, \frac{1}{\mathrm{C}}=\frac{\mathrm{d} / 3}{\varepsilon_{0} \mathrm{~A} K_{1}}+\frac{2 \mathrm{~d} / 3}{\varepsilon_{0} \mathrm{~A} \kappa_{2}}$
$\mathrm{K}_{1}=3, \mathrm{~K}_{2}=6 \quad \mathrm{C}=\frac{9}{2} \frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}=\frac{9}{2}(9 \mathrm{pF})=40.5 \mathrm{pF}$
Correct choice: (1)
*102. Anthle te in the olympic games covers a distance of 100 m in 10 s . His kine tic energy can be estimated to be in the range
(1) $20,000 \mathrm{~J}-50,000 \mathrm{~J}$
(2) $2,000 \mathrm{~J}-5,000 \mathrm{~J}$
(3) $200 \mathrm{~J}-500 \mathrm{~J}$
(4) $2 \times 10^{5} \mathrm{~J}-3 \times 10^{5} \mathrm{~J}$

Sol: Assuming average speed of athlete to be v
$\mathrm{v}=\frac{100 \mathrm{~m}}{10 \mathrm{sec}}=10 \mathrm{~ms}^{-1}$
\therefore estimated kinetic energy $\mathrm{K}=\frac{1}{2} \mathrm{~mW}^{2}$

Let mass of athlete lies between 40 kg and 100 kg
$\therefore 2000 \mathrm{~K}<\mathrm{K}<5000 \mathrm{~J}$
Correct choice: (2)
*103. A spherical solid ball of volume V is made of a mate rial of density ρ_{1}. It is falling through a liquid of density ρ_{2} ($\rho_{2} \leqslant \rho_{1}$). Assume that the liquid applies a viscous force on the ball that is proportional to the square of its speed ν, i.e. $\mathrm{F}_{u \mathrm{~s} \omega \mathrm{v}}=-\mathrm{k} \nu^{2}(\mathrm{k}>0)$. The terminal speed of the ball is
(1) $\sqrt{\frac{\mathrm{Vg} \rho_{1}}{\mathrm{k}}}$
(2) $\frac{V g\left(\rho_{1}-\rho_{2}\right)}{k}$
(3) $\sqrt{\frac{V g\left(\rho_{1}-\rho_{2}\right)}{k}}$
(4) $\frac{V g \rho_{1}}{k}$

Sol: The ball will acquire terminal speed in the state of equilibrium

$$
\begin{aligned}
& \therefore \quad V_{\rho_{2} g}+k v^{2}-V_{\rho_{1} g}=0 \\
& \quad v=\sqrt{\frac{V g\left(\rho_{1}-\rho_{2}\right)}{k}} \\
& \text { Correct choice: (3) }
\end{aligned}
$$

104. Shown in the figure is a meter-bridge set up with null deflection in the galvanometer. The value of the unknown resistor R is
(1) 110Ω
(2) 55Ω
(3) 13.75Ω
(4) 220Ω

Sol: For balanced meter bridge (null deflection)

$$
\begin{aligned}
& \frac{55}{\mathrm{R}}=\frac{20}{80} \\
& \mathrm{R}=220 \Omega
\end{aligned}
$$

Correct choice: (4)
*105. While measuring the speed of sound by performing a resonance column experiment, a student gets the first resonance condition at a column length of 18 cm during winter. Repeating the same experiment during summer, she measures the column length to be $x \mathrm{~cm}$ for the second resonance. Then
(1) $54>x>36$
(2) $36>x>18$
(3) $18>x$
(4) $x>54$

Sol: $\quad \frac{V}{4!}=\frac{3 V^{\prime}}{4 \mathrm{x}}$

$$
=(54 \mathrm{~cm}) \frac{\mathrm{V}^{\prime}}{\mathrm{V}}
$$

As ve locity of sound increases with te mperature, V'>V
$x>54 \mathrm{~cm}$
Correct choice: (4)

