

Heat Transfer Laboratory @IITK

Overview of Research Activities (Updated: February 2011))

Sameer Khandekar Associate Professor P. K. Kelkar Research Fellow

Southern Laboratories Room: SL-109 Tel: +91-512-259-7038 Fax: +91-512-259-7408, E-mail: samkhan@iitk.ac.in

Present research focus

Experimental heat transfer with a focus on issues related to phase-change phenomena in mini/micro systems

Development of internet based experiments

Key words

Liquid-Vapor Phase Change Phenomena Heat Pipes/ Pulsating Heat Pipes/ Thermosyphons Flow and Heat Transfer in Narrow Channels Dropwise Condensation Oscillating Taylor bubble flows Passive cooling techniques Energy Systems Nanofluids

Research laboratory development

Clean Air Conditioned Laboratory Space (200 m²)

Major equipment

- High Speed Infrared Thermographic Camera (FIST)
- 200 W Laser micromachining station
- Turbo-molecular / Diffusion vacuum pumps (3)
- Helium leak detector
- 15mW He-Ne Laser, Optical Bench
- Optical microscope
- Air flow facility (wind tunnel)
- Constant temperature baths (4)
- High speed/ Precision NI-DAQ systems (5)
- Color and Monochrome CCD camera (2)
- Digital video/still camera (2)
- Vacuum oven

Fabrication Workshop

- Table Top CNC Machine
- Conventional Lathe Machine
- Milling and Radial Drilling Machine
- Arc/Gas Welding; Brazing station
- Air Compressor

Accessories

- PCs (10); Work Stations (2)
- Fire fighting equipment
- Photo copier, Overhead beamer
- Aquaguard/ Refrigerator
- Online UPS, Voltage Stabilizers

Laboratory photographs

Sponsored research – Completed Projects

 Project # 1 (Completed)
 Modernization of Refrigeration and Air Conditioning Laboratory (ME) and Research Initiation in Microscale Multi-phase Systems
 Indian Institute of Technology Kanpur (Faculty initiation grant)
 Budget: INR 10 lacs Time: 1 Year (May 2005-April 2006)

Project # 2 (Completed)
 Development of Pulsating Heat Pipe Based Space Radiators
 Indian Space Research Organization
 Budget: <u>INR 15 lacs</u> Time: 3 Years (May 2005-April 2008)

 Project # 3 (Completed)
 Drop-wise Condensation on an Inclined Surface Exposed to a Vapor Flux (with Dr. K. Muralidhar)
 Board of Research in Nuclear Sciences
 Budget: INR 40 lacs Time: 4 Years (May 2005-April 2009)

Project # 4 (Completed)
 Design and Development of Novel Pulsating Heat Pipe Based
 Compact Heat Exchangers
 Department of Atomic Energy Young Scientist Award
 Board of Research in Nuclear Sciences
 Budget: INR 10 lacs Time: 3 Years (April 2006-March 2009)

PRINCIPAL INVESTIGATOR

PRINCIPAL INVESTIGATOR

CO-INVESTIGATOR

PRINCIPAL INVESTIGATOR

Sponsored research – Ongoing Projects

Project # 5 (Ongoing)
 (with Dr. D. Kunzru, Dr. S. Panda and Dr. P. K. Panigrahi)
 Micro-devices for Process Applications
 Department of Science and Technology
 Budget: <u>INR 500 lacs</u> Time: 5 Years (April 2006-March 2011)

Project # 7 (Ongoing) Pulsating Heat Pipe Based Compact Heat Exchangers for Passive Heat Removal Department of Atomic Energy Budget: INR 80 lacs Time: 4 Years (January 2009-December 2012)

Project # 8 (Ongoing)
 Development of Internet based Heat Transfer Laboratory
 Ministry of Human Resource Development
 Budget: INR 50 lacs Time: 1 Year (April 2009-March 2010)

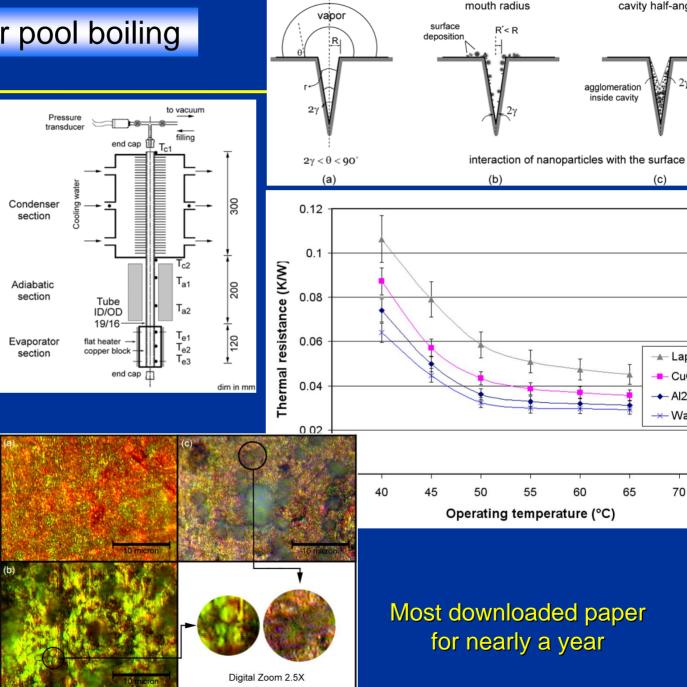
Project # 9 (Ongoing)

Thermo-hydrodynamics of Oscillating Taylor Bubble Flows INDO-FRENCH Center for Promotion of Advanced Scientific Research (CEFIPRA) Budget: <u>INR 80 lacs</u> Time: 3 Years (May 2009-April 2012)

CO-INVESTIGATOR

PRINCIPAL INVESTIGATOR

PRINCIPAL INVESTIGATOR


PRINCIPAL INVESTIGATOR

Research Update/Overview

Nanofluids under pool boiling

liquid

decrease in

increase in cavity half-angle

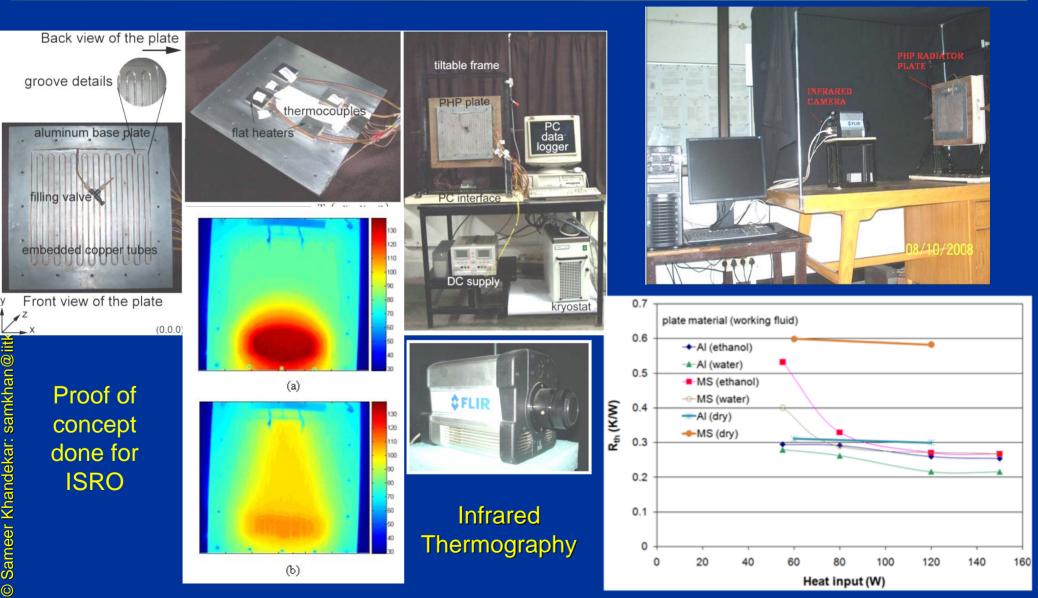
(c)

70

75

agglomeration inside cavity

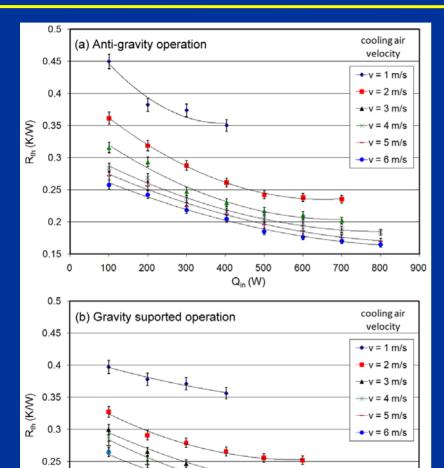
 $(>2\gamma)$


Most downloaded paper for nearly a year

60

65

Pulsating heat pipes as radiators



Power Electronics Cooling Pulsating Heat Pipes

Department of Mechanical Engineering Indian Institute of Technology Kanpur Kanpur 208016 India

PHP details	
Base area : 100 mm X 100 mm	
Height	: 92 mm
Rows	: 8
Columns	: 14
Turns	: 112 on each side
Pipe OD	: 3.0 mm
Pipe ID	: 2.0 mm

900

800

Photograph of the PHP

Air flow facility details

Section : Rectangular height (H) - 135 mm width (W) - 156 mm length (L) - 2000 mm

Air velocity : 0.2 - 6 m/s Fully developed turbulent flow

Sameer Khandekar: samkhan@iitk.ac.in

0.2

0.15

0

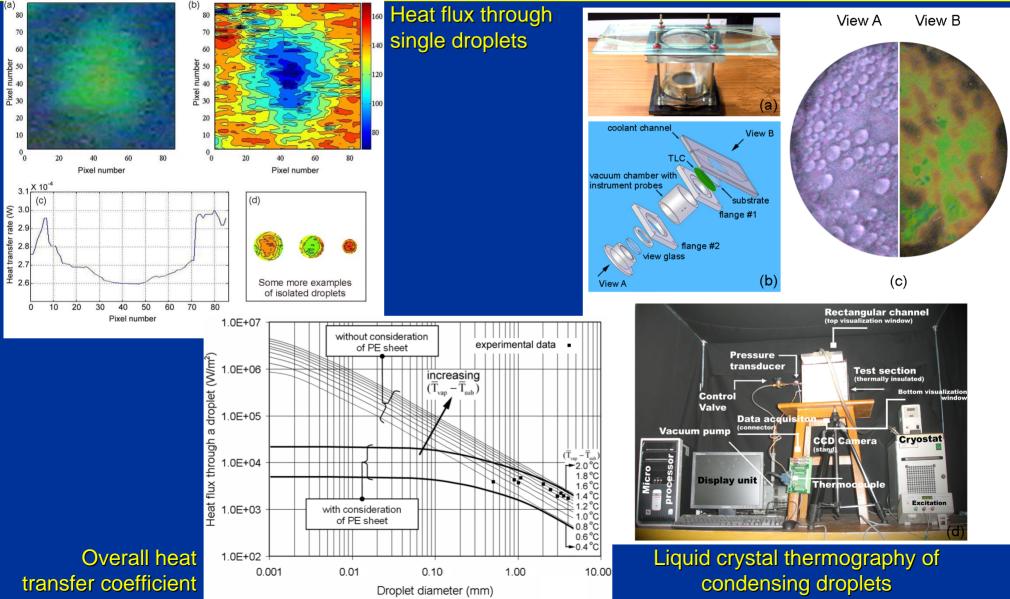
100

200

300

400

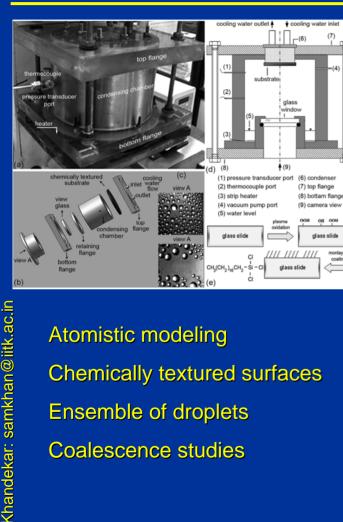
500

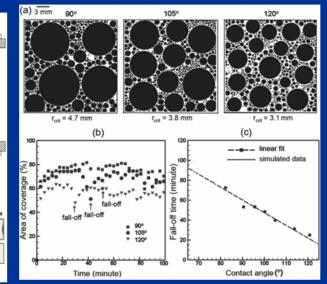

 $Q_{in}(W)$

600

700

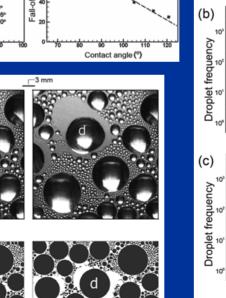
Dropwise condensation Liquid Crystal Thermography

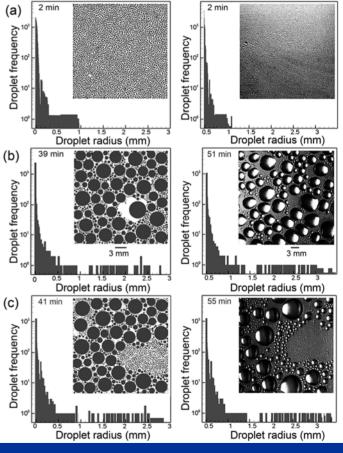




Dropwise condensation Simulation and Experiments

Department of Mechanical Engineering Indian Institute of Technology Kanpur Kanpur 208016 India

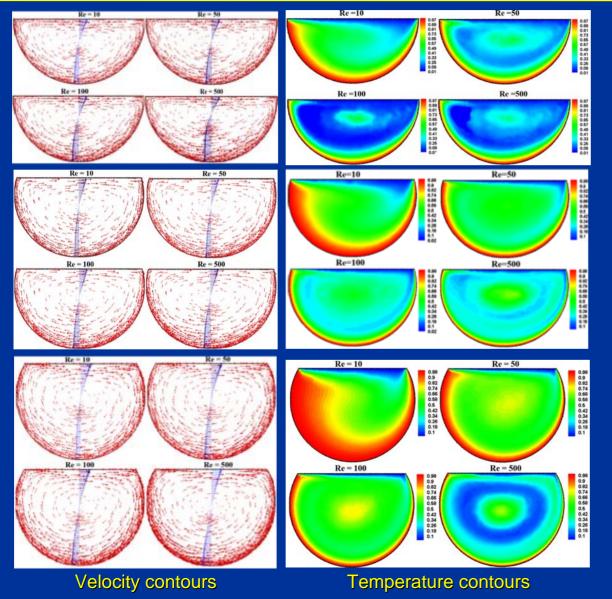

(a) experiment

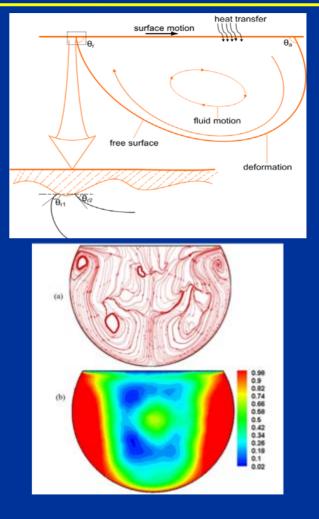

(b) simulation

Atomistic modeling Chemically textured surfaces **Ensemble of droplets Coalescence studies**

Sameer

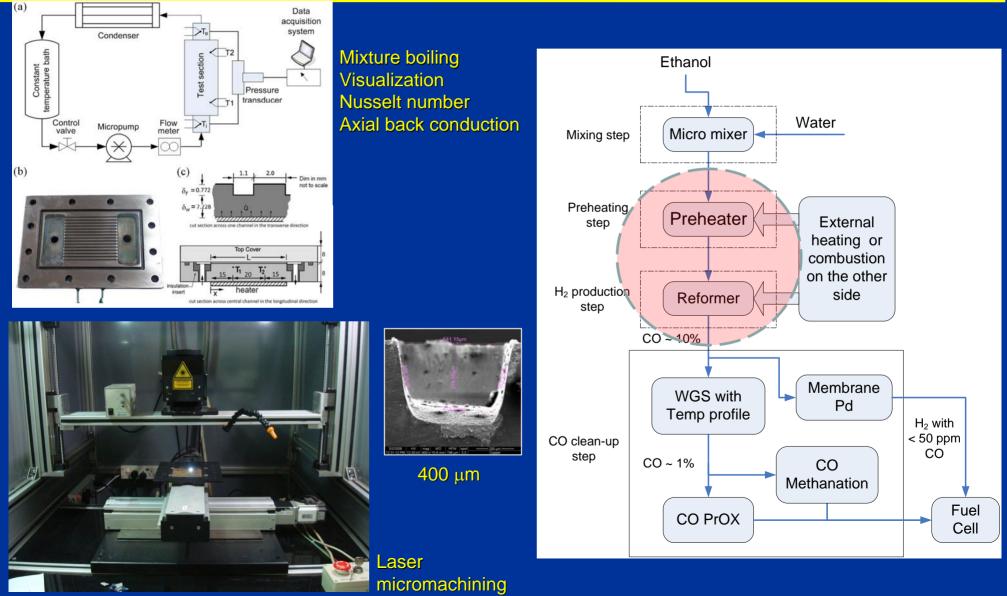
0





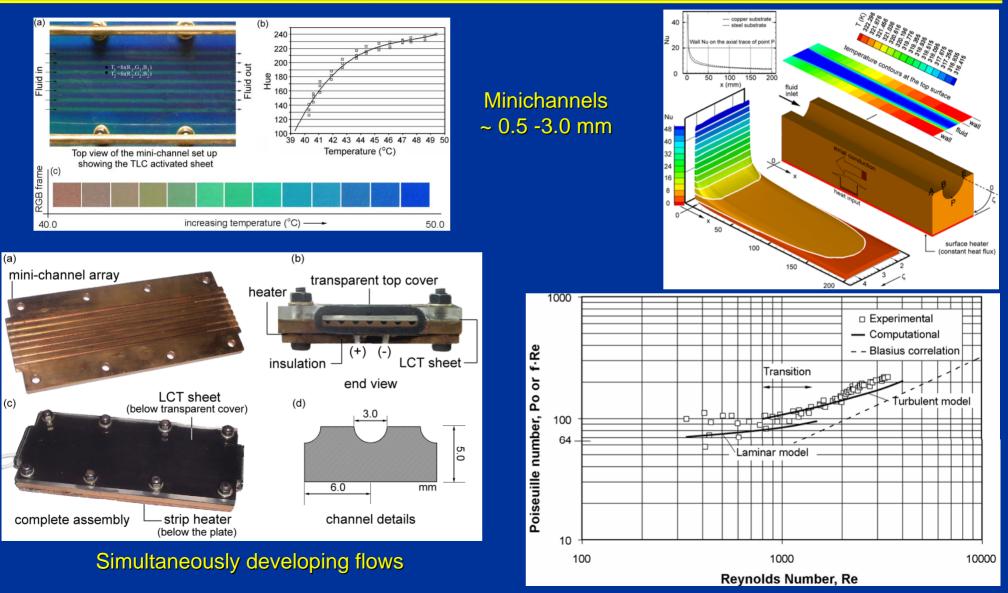
Numerical simulation of pendant drops

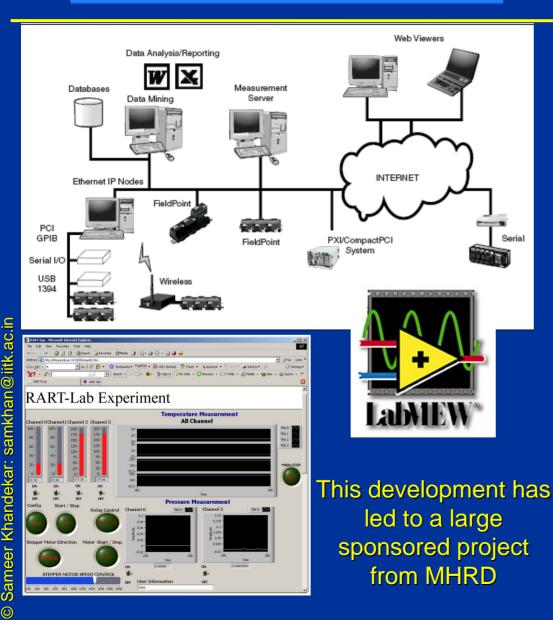
Department of Mechanical Engineering Indian Institute of Technology Kanpur Kanpur 208016 India

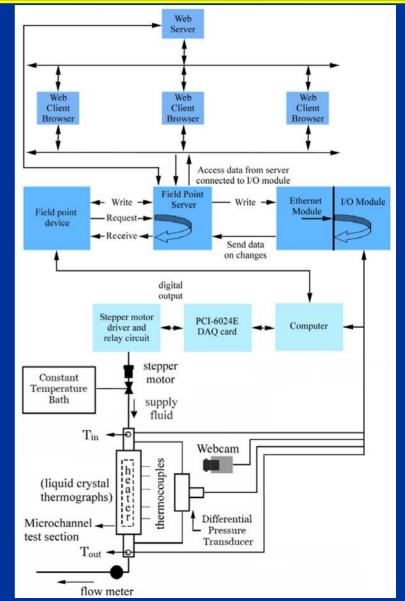

3D Navier-Stokes + Energy Equation Solver for droplets sliding on a textured surface

Flow boiling in micro channels (Aim: Hydrogen production)

Sameer Khandekar: samkhan@iitk.ac.in


0


Liquid crystal thermography of developing single-phase flows



Remote Access Laboratory (Internet based experiments)

Ongoing doctoral research

Ph.D. theses advising

Ongoing students: 03

<u>Title 1</u>: Flow boiling of ethanol-water mixtures in narrow channels.

<u>Title 2</u>: Droplet dynamics on textured engineered surfaces.

Title 3: Pulsating flow in micro-channels.

Faculty colleagues

Dr. K. Muralidhar, Professor

Dr. P. K. Panigrahi, Professor

Collaboration/ Sponsors

International

CETHIL, INSA de Lyon, France (Sponsored Project Partner) IKE, Uni-Stuttgart, Germany (Student Exchange) University of Bergamo, Italy (Student Exchange)

National

Bhabha Atomic Research Center, Mumbai
Indian Space Research Organization
Department of Science and Technology
Ministry of Human Resource and Development
Defense Research and Development Organization

Recent publications (2010-2011)

- Sikarwar B. S., Khandekar S., Agrawal S., Kumar S. and Muralidhar K., Dropwise Condensation Studies on Multiple Scales, Heat Transfer Engineering, Special Issue: Advances in Heat Transfer, accepted for publication, 2011.
- Moharana M. K., Agarwal G. and Khandekar S., Axial Conduction in Single-phase Simultaneously Developing Flow in a Rectangular Mini-channel Array, International Journal of Thermal Sciences, DOI: 10.1016/j.ijthermalsci.2011.01.017, January 2011.
- Hemadri V. A., Gupta A., Khandekar S., Thermal Radiators with Embedded Pulsating Heat Pipes: Infra-red Thermography and Simulations, Applied Thermal Engineering, DOI: 10.1016/j.applthermaleng.2011.01.004, January 2011.
- Moharana M. K., Peela N. R., Khandekar S. and Kunzru D., Distributed Hydrogen Production from Ethanol in a Microfuel Processor: Issues and Challenges, Renewable and Sustainable Energy Reviews, Vol. 15, pp. 524-533, 2011.
- Sikarwar B. S., Battoo N. K., Khandekar S. and Muralidhar K., Dropwise Condensation underneath Chemically Textured Surfaces: Simulation and Experiments, ASME Journal of Heat Transfer, Vol. 133, Issue 2, pp. 021501 (1-15), 2011.
- Das S. P., Nikolayev V. S., Lefevre F., Pottier B., Khandekar S. and Bonjour J., Thermally Induced Two-phase Oscillating Flow inside a Capillary Tube, International Journal of Heat and Mass Transfer, Vol. 53, pp. 3905-3913, 2010.
- Khandekar S., Panigrahi P. K., Lefevre F. and Bonjour J., Local Hydrodynamics of Flow in a Pulsating Heat Pipe: A Review, Frontiers in Heat Pipes, Vol. 1, pp. 023003(1-20), 2010.

Recent publications (2008-2009)

- Revellin R., Lips S., Khandekar S. and Bonjour J., Local Entropy Generation for Saturated Two-phase Flow, Energy-The International Journal, Vol. 34, Issue 9, pp. 1113-1121, 2009.
- Bansal G. D., Khandekar S. and Muralidhar K., Measurement of Heat Transfer during Dropwise Condensation of Water on Polyethylene, Nanoscale and Microscale Thermophysical Engineering, Vol. 13, Issue 3, pp. 184-201, 2009.
- Rao M. and Khandekar S., Simultaneously Developing Flows under Conjugate Conditions in a Minichannel Array: Liquid Crystal Thermography and Computational Simulations, Heat Transfer Engineering Journal, Vol. 30, Issue 9, pp. 751-761, 2009.
- Yang H., Khandekar S. and Groll M., Performance Characteristics of Pulsating Heat Pipes as Integral Thermal Spreaders, International Journal of Thermal Sciences, Vol. 48, Issue 4, pp. 815-824, 2009.
- Khandeksar S., Gautam A. P. and Sharma P., Multiple Quasi-Steady States in a Closed Loop Pulsating Heat Pipe, International Journal of Thermal Sciences, Vol. 48, Issue 3, pp. 535-546, 2009.
- SoundraPandian K. K., Rao M. and Khandekar S., Remote Access Real Time Laboratory: Process Monitoring and Control through Internet Protocol, International Journal of Mechanical Engineering Education, Vol. 36, Issue 3, pp. 207-220, 2008.
- Khandekar S., Joshi Y. and Mehta B., Thermal Performance of Closed Two-Phase Thermo-syphon using Nanofluids, International Journal of Thermal Sciences, Vol. 47, Issue 6, pp. 659-667, 2008.
- Yang H., Khandekar S. and Groll M., Operational limit of closed loop pulsating heat pipes, Applied Thermal Engineering, Vol. 28, Issue 1, pp. 49-59, 2008.

Summary and Conclusions

- Understanding heat/fluid flow in micro- and mini channels is vital for further development of enhanced heat transfer components
- Nano technology is coming up fast and many unexplored areas are emerging
- Micro/Mini/Pulsating heat pipes are excellent passive enhancement devices
- Adequate correlations/ models for microscale heat transfer phenomena not available
- New measurement techniques for microchannel devices
- Increased efforts are necessary

You are welcome to join hands in these exciting research activities

Thank you