Overview of

Programming and
Problem Solving

To be able to define computer program, algorithm,
and high-level programming language.

To be able to list the basic stages involved in writ-
ing a computer program.

To be able to distinguish between machine code
and Bytecode.

To be able to describe what compilers and inter-
preters are and what they do.

To be able to describe the compilation, execution, and
interpretation processes.

To be able to list the major components of a computer
and describe how they work together.

To be able to distinguish between hardware and
software.

To be able to discuss some of the basic ethical issues
confronting computing professionals.

To be able to apply an appropriate problem-solving
method for developing an algorithmic solution to a
problem.

J 141D

com-put-er

Chapter 1: Overview of Programming and Problem Solving

1]

\kCin-"pytit-[F\ n. often attrib (1646): one
that computes; specif: a programmable electronic device
that can store, retrieve, and process data®

Overview of Programming

What a brief definition for something that has, in just
a few decades, changed the way of life in industrial-
ized societies! Computers touch all areas of our lives:
paying bills, driving cars, using the telephone, shop-
ping. In fact, it might be easier to list those areas of
our lives in which we do not use computers. You are
probably most familiar with computers through the
use of games, word processors, Web browsers, and other programs. Be forewarned: This
book is not just about using computers. This is a text to teach you how to program
them.

What is Programming?

Much of human behavior and thought is characterized by logical sequences of actions
applied to objects. Since infancy, you have been learning how to act, how to do things;
and you have learned to expect certain behavior from other people.

A lot of what you do every day you do automatically. Fortunately, it is not neces-
sary for you to consciously think of every step involved in a process as simple as turn-
ing a page by hand:

1. Lift hand.

2. Move hand to right side of book.
3. Grasp top-right corner of page.
4

. Move hand from right to left until page is positioned so that you can read what is
on the other side.

5. Let go of page.

Think how many neurons must fire and how many muscles must respond, all in a cer-
tain order or sequence, to move your arm and hand. Yet you do it unconsciously.

Much of what you do unconsciously you once had to learn. Watch how a baby con-
centrates on putting one foot before the other while learning to walk. Then watch a
group of three-year-olds playing tag.

On a broader scale, mathematics never could have been developed without logical
sequences of steps for manipulating symbols to solve problems and prove theorems.
Mass production would never have worked without operations taking place on compo-
nent parts in a certain order. Our whole civilization is based on the order of things and
actions.

*By permission. From Merriam-Webster’s Collegiate Dictionary, Tenth Edition © 1994 by Merriam-Webster Inc.

We create order, both consciously and
unconsciously, through a process called pro-
gramming. This book is concerned with the
programming of one tool in particular, the
electronic computer.

1.1 Overview of Programming | 3

Programming Planning or scheduling the performance
of a task or an event

Electronic computer A programmable device that can
store, retrieve, and process data

Notice that the key word in the definition
of computer is data. Computers manipulate
data. When you write a program (a plan) for a
computer, you specify the properties of the
data and the operations that can be applied to
it. Those operations are then combined as
necessary to solve a problem. Data is infor-
mation in a form the computer can use—for
example, numbers and letters. Information is
any knowledge that can be communicated,
including abstract ideas and concepts such as
“the Earth is round.”

Data comes in many different forms: let-
ters, words, integer numbers, real numbers,
dates, times, coordinates on a map, and so on. Virtually any kind of information can be
represented as data, or as a combination of data and operations on it. Each kind of data
in the computer is said to have a specific data type. For example, if we say that two
data items are of type Integer, we know now they are represented in memory and that
we can apply arithmetic operations to them.

Just as a concert program lists the pieces to be performed and the order in which
the players perform them, a computer program lists the types of data that are to be used
and the sequence of steps the computer performs on them. From now on, when we use
the words programming and program, we mean computer programming and computer
program.

The computer allows us to do tasks more efficiently, quickly, and accurately than
we could by hand—if we could do them by hand at all. In order for this powerful
machine to be a useful tool, it must be programmed. That is, we must specify what we
want done and how. We do this through programming.

Data Information in a form a computer can use

Information Any knowledge that can be communicated

Data type The specification of how information is repre-
sented in the computer as data and the set of operations
that can be applied to it

Computer programming The process of specifying the
data types and the operations for a computer to apply to
data in order to solve a problem

Computer program Data type specifications and
instructions for carrying out operations that are used by a
computer to solve a problem

How Do We Write a Program

A computer is not intelligent. It cannot analyze a problem and come up with a solution.
A human (the programmer) must analyze the problem, develop the instructions for solv-
ing the problem, and then have the computer carry out the instructions. What’s the
advantage of using a computer if it cannot solve problems? Once we have written a
solution for the computer, the computer can repeat the solution very quickly and con-
sistently, again and again. The computer frees people from repetitive and boring tasks.

To write a program for a computer to follow, we must go through a two-phase
process: problem solving and implementation (see Figure 1.1).

Chapter 1: Overview of Programming and Problem Solving

PROBLEM-SOLVING PHASE IMPLEMENTATION PHASE
()
Analysis
and
specification
General solution Concrete solution

(algorithm) — (program)

Verify / |

__J

J

Problem-Solving Phase

1. Analysis and Specification. Understand (define) the problem and what the solution

must do.

2. General Solution (Algorithm). Specify the required data types and the logical
sequences of steps that solve the problem.

3. Verify. Follow the steps exactly to see if the solution really does solve the problem.

Implementation Phase

1. Concrete Solution (Program). Translate the algorithm (the general solution) into a

Figure 1.1

programming language.

2. Test. Have the computer follow the instructions. Then manually check the results. If
you find errors, analyze the program and the algorithm to determine the source of
the errors, and then make corrections.

N

l

Maintenance phase

Programming process

Once a program has been written, it enters a third phase: maintenance.

Maintenance Phase

1. Use. Use the program.

2. Maintain. Modify the program to meet changing requirements or to correct any

errors that show up while using it.

The programmer begins the programming process by analyzing the problem, breaking it
into manageable pieces, and developing a general solution for each piece called an

1.1 Overview of Programming | 5

algorithm. The solutions to the pieces are col-
lected together to form a program that solves Algorithm Instructions for solving a problem or sub-
the original problem. Understanding and ana- problem in a finite amount of time using a finite amount
lyzing a problem take up much more time of data
than Figure 1.1 implies. They are the heart of
the programming process.

If our definitions of a computer program and an algorithm look similar, it is
because a program is simply an algorithm that has been written for a computer.

An algorithm is a written or verbal description of a logical sequence of actions
applied to objects. We use algorithms every day. Recipes, instructions, and directions are
all examples of algorithms that are not programs.

When you start your car, you follow a step-by-step procedure. The algorithm might
look something like this:

G = @ N S

Insert the key.

Make sure the transmission is in Park (or Neutral).

Turn the key to the start position.

If the engine starts within six seconds, release the key to the ignition position.

If the engine doesn't start in six seconds, release the key and gas pedal, wait ten seconds, and repeat Steps 3 through
5, but not more than five times.

. If the car doesn't start, call the garage.

Without the phrase “but not more than five times” in Step 5, you could be trying to
start the car forever. Why? Because if something is wrong with the car, repeating Steps
3 through 5 over and over will not start it. This kind of never-ending situation is called
an infinite loop. If we leave the phrase “but not more than five times” out of Step 5, the
procedure doesn’t fit our definition of an algorithm. An algorithm must terminate in a
finite amount of time for all possible conditions.

Suppose a programmer needs an algorithm to determine an employee’s weekly
wages. The algorithm reflects what would be done by hand:

. Look up the employee's pay rate.

. Determine the hours worked during the week.

. If the number of hours worked is less than or equal to 40, multiply the hours by the pay rate to calculate regular
wages.

. If the number of hours worked is greater than 40, multiply 40 by the pay rate to calculate regular wages, and then
multiply the difference between the hours worked and 40 by 15 times the pay rate to calculate overtime wages.

. Add the regular wages to the overtime wages (if any) to determine total wages for the week.

Chapter 1: Overview of Programming and Problem Solving

The steps the computer follows are often the same steps you would use to do the calcu-
lations by hand.

After developing a general solution, the programmer tests the algorithm, “walking
through” each step manually with paper and pencil. If the algorithm doesn’t work, the
programmer repeats the problem-solving process, analyzing the problem again and
coming up with another algorithm. Often the second algorithm is just a variation of
the first. When the programmer is satisfied with the algorithm, he or she translates it
into a programming language. We use the Visual Basic programming language in this
book.

A programming language is a simplified form of
English (with math symbols) that adheres to a strict

Programming language A set of rules, symbols, and set of grammatical rules. English is far too compli-
special words used to construct a computer program cated and ambiguous for today’s computers to follow.

Code

Data type specifications and instructions for a Programming languages, because they limit vocabu-

computer that are written in a programming language lary and grammar, are much simpler.

Although a programming language is simple in

form, it is not always easy to use. Try giving someone

directions to the nearest airport using a limited vocabulary of no more than 25 words,

and you begin to see the problem. Programming forces you to write very simple, exact
instructions.

Translating an algorithm into a programming language is called coding the algo-
rithm. The products of the translation—the code for all the algorithms in the problem—
are tested by collecting them into a program and running (executing) the program on
the computer. If the program fails to produce the desired results, the programmer must
debug it—that is, determine what is wrong and then modify the program, or even one or
more of the algorithms, to fix it. The combination of coding and testing the algorithms
is called implementation.

Code is the product of translating an algorithm into a programming language. The
term code can refer to a complete program or to any portion of a program.

There is no single way to implement an algorithm. For example, an algorithm can
be translated into more than one programming language. Each translation produces a
different implementation (see Figure 1.2a). Even when two people translate an algorithm
into the same programming language, they are likely to come up with different imple-
mentations (see Figure 1.2b). Why? Because every programming language allows the
programmer some flexibility in how an algorithm is translated. Given this flexibility,
people adopt their own styles in writing programs, just as they do in writing short sto-
ries or essays. Once you have some programming experience, you develop a style of
your own. Throughout this book, we offer tips on good programming style.

Some people try to speed up the programming process by going directly from the
problem definition to coding the program (see Figure 1.3). A shortcut here is very
tempting and at first seems to save a lot of time. However, for many reasons that
become obvious to you as you read this book, this kind of shortcut actually takes
more time and effort. Developing a general solution before you write a program helps
you manage the problem, keep your thoughts straight, and avoid mistakes. If you
don’t take the time at the beginning to think out and polish your algorithm, you
spend a lot of extra time debugging and revising your program. So think first and

Algorithm

1.1 Overview of Programming

Nell's Java Code

a. Algorithm translated into different languages

Algorithm

Nell's C++ Code

Nell's Visual Basic Code

Nell's Visual Basic Code

Chip's Visual Basic Code

Mike's Visual Basic Code

b. Algorithm translated by different people

Figure 1.2 Differences in implementation

Problem

PROBLEM-SOLVING PHASE

Shortcut?

Algorithm
N

W

Y (T

Code

IMPLEMENTATION PHASE

Figure 1.3 Programming shortcut?

Chapter 1: Overview of Programming and Problem Solving

code later! The sooner you start coding, the longer it takes to write a program that
works.

Once a program has been put into use, it is often necessary to modify it. Modifica-
tion may involve fixing an error that is discovered during the use of the program or
changing the program in response to changes in the user’s requirements. Each time the
program is modified, it is necessary to repeat the problem-solving and implementation
phases for those aspects of the program that change. This phase of the programming
process is known as maintenance and actually accounts for the majority of the effort
expended on most programs. For example, a program that is implemented in a few
months may need to be maintained over a period of many years. Thus it is a cost-effec-
tive investment of time to carefully develop the initial problem solution and program
implementation. Together, the problem-solving, implementation, and maintenance

phases constitute the program’s life cycle.
In addition to solving the problem, implementing

Documentation The written text and comments that the algorithm, and maintaining the program, writing
make a program easier for others to understand, use, and documentation is an important part of the program-

modify

ming process. Documentation includes written expla-

nations of the problem being solved and the

organization of the solution, comments embedded
within the program itself, and user manuals that describe how to use the program. Many
different people are likely to work on a program over a long period of time. Each of
those people must be able to read and understand the code.

/ Theoretical Foundations

N

Binary Representation of Data

.

In a computer, data is represented electronically by pulses of electricity. Electric circuits, in
their simplest form, are either on or off. Usually, a circuit that is on represents the number 1; a
circuit that is off represents the number 0. Any kind of data can be represented by combinations
of enough 1s and Os. We simply have to choose which combination represents each piece of
data we are using. For example, we could arbitrarily choose the pattern 1101000110 to repre-
sent the word Basic.

Data is represented by 1s and Os in binary form. The binary (base-2) number system uses
only 1s and Os to represent numbers. (The decimal (base-10) number system uses the digits O
through 9.) The word bit (short for binary digit) often is used to refer to a single 1 or 0. So the
pattern 1101000110 has 10 bits. A binary number with 10 bits can represent 2'°(1,024) differ-
ent patterns. A byte is a group of eight bits; it can represent 28 (256) patterns. Inside the com-
puter, each character (such as the letter A, the letter g, or a question mark) is usually
represented by a byte.! Groups of 16, 32, and 64 bits are generally referred to as words.

v

(continued) Y

1.2 How Is a Program Converted into a Form That a Computer Can Use?

~

Binary Representation of Data

The process of assigning bit patterns to pieces of data is called coding—the same name we
give to the process of translating an algorithm into a programming language. The names are the
same because the only language that the first computers recognized was binary in form. Thus,
in the early days of computers, programming meant translating both data and algorithms into
patterns of 1s and Os.

Binary coding schemes are still used inside the computer to represent both the instructions
that it follows and the data that it uses. For example, 16 bits can represent the decimal integers
from 0 to 2'® — 1 (65,535). More complicated coding schemes are necessary to represent nega-
tive numbers, real numbers, and numbers in scientific notation. Characters can be represented by
bit combinations, in one coding scheme, 01001101 represents M and 01101101 represents m.

The patterns of bits that represent data vary from one family of computers to another. Even
on the same computer, different programming languages can use different binary representa-
tions for the same data. A single programming language may even use the same pattern of bits
to represent different things in different contexts. (People do this too. The four letters that form
the word tack have different meanings depending on whether you are talking about upholstery,
sailing, sewing, paint, or horseback riding.) The point is that patterns of bits by themselves are
meaningless. It is the way in which the patterns are used that gives them their meaning.

Fortunately, we no longer have to work with binary coding schemes. Today the process of
coding is usually just a matter of writing down the data in letters, numbers, and symbols. The
computer automatically converts these letters, numbers, and symbols into binary form. Still, as
you work with computers, you continually run into numbers that are related to powers of 2—
numbers like 256, 32,768, 65,536—reminders that the binary number system is lurking some-
where nearby.

"Most programming languages use the American Standard Code for Information Interchange (ASCII) to represent the
English alphabet and other symbols. ASCII characters are stored in a single byte. Visual Basic recognizes both ASCIl and
a newer standard called Unicode, which includes the alphabets of many other human languages. A single Unicode char-
acter takes up two bytes in the computer's memory.

.

/

l.2

How Is a Program Converted into a Form That a Computer Can Use?

In the computer, all data, whatever its form, is stored and used in binary codes, strings
of 1s and Os. Instructions and data are stored together in the computer’s memory using
these binary codes. If you were to look at the binary codes representing instructions and
data in memory, you could not tell the difference between them; they are distinguished

10 | Chapter 1: Overview of Programming and Problem Solving

Machine language The language, made up of binary-

only by the manner in which the computer uses them.
It is thus possible for the computer to process its own

coded instructions, that is used directly by the computer instructions as a form of data.

Assembly language

in which a mnemonic is used to represent each of the

When computers were first developed, the only

A low-level programming language . . N
programming language available was the primitive

machine language instructions for a particular computer instruction set built into each machine, the machine

Assembler A program that translates an assembly lan-
guage program into machine code

Compiler A program that translates a program written
in a high-level language into machine code

Source code Data type specifications and instructions
written in a high-level programming language

Object code A machine language version of source code

language, or machine code.

Even though most computers perform the same
kinds of operations, their designers choose different
sets of binary codes for each instruction. So the
machine code for one family of computers is not the
same as for another.

When programmers used machine language for
programming, they had to enter the binary codes for
the various instructions, a tedious process that was
prone to error. Moreover, their programs were difficult
to read and modify. In time, assembly languages were developed to make the program-
mer’s job easier.

Instructions in an assembly language are in an easy-to-remember form called a
mnemonic (pronounced “ni- * mén - ik”). Typical instructions for addition and subtrac-
tion might look like this:

Assembly Language Machine Language
ADD 100101
SUB 010011

Although assembly language is easier for humans to work with, the computer can-
not directly execute the instructions. Because a computer can process its own instruc-
tions as a form of data, it is possible to write a program to translate assembly language
into machine code. Such a program is called an assembler.

Assembly language is a step in the right direction, but it still forces programmers to
think in terms of individual machine instructions. Eventually, computer scientists devel-
oped high-level programming languages. These languages are easier to use than assem-
bly languages or machine code because they are closer to English and other natural
languages (see Figure 1.4).

A program called a compiler translates algorithms written in certain high-level lan-
guages (Visual Basic, C++, Java, Pascal, and Ada, for example) into machine language.
If you write a program in a high-level language, you can run it on any computer that
has the appropriate compiler. This is possible because most high-level languages are
standardized, which means that an official description of the language exists.

The text of an algorithm written in a high-level language is called source code. To
the compiler, source code is just input data. It translates the source code into a machine
language form called object code (see Figure 1.5).

1.2 How Is a Program Converted into a Form That a Computer Can Use?

e
®)

Natural language
(English, French, German, etc.)

High-level language
(C++, Visual Basic, Java, etc.)

Figure 1.4 Levels of abstraction

12 | Chapter 1: Overview of Programming and Problem Solving

SOURCE CODE COMPUTER OBJECT COMPUTER
(C++) EXECUTES CODE EXECUTES
TRANSLATOR (MACHINE OBJECT
CODE LANGUAGE CODE
(COMPILER) VERSION OF
SOURCE CODE)
~ ™ ' " 3 ™
Windows PC Windows PC Windows PC
C++ compiler machine computer
language
" J \ J “ J
" ™ (" " ™
UNIX UNIX UNIX
workstation workstation workstation
C++ compiler machine computer
language
») " J ")
4 ™ 4 ™ " ™
Macintosh Macintosh Macintosh
C++ compiler machine computer
language
L v \ J “ v

Figure 1.5 High-level programming languages allow programs to be compiled on different systems.

A benefit of standardized high-level languages is that they allow you to write
portable (or machine independent) code. As Figure 1.5 emphasizes, a single C++ program
can be run on different machines, whereas a program written in assembly language or
machine language is not portable from one computer to another. Because each com-
puter family has its own machine language, a machine language program written for
computer A may not run on computer B.

Visual Basic takes a somewhat different approach than we have described. Visual

Basic programs are translated into a standard machine
language called Bytecode.
Bytecode A standard machine language into which However, there are no computers that actually use
Visual Basic source code is compiled Bytecode as their machine language. In order for a
computer to run Bytecode programs, it must have
another program called the Common Language Run-
time (CLR) that serves as a language interpreter for the program. Just as an interpreter
of human languages listens to words spoken in one language and speaks a translation
of them in a language that another person understands, the CLR reads the Bytecode
machine language instructions and translates them into machine language operations
that the particular computer executes. Interpretation is done as the program is running,
one instruction at a time. It is not the same as compilation, which is a separate step that

1.4 How Is Compilation Related to Interpretation and Execution? | 13

,
[Java Program]—»[Java Compiler

Windows PC
Running JVM

1.3

14

UNIX Workstation

Java Bytecode Running JVM

Macintosh
Running JVM

Figure 1.6 Java compiler produces Bytecode that can be run on any machine with the JVM.

translates all of the instructions in a program prior to execution. Figure 1.6 shows how

the Visual Basic translation process works.

How Is Interpreting a Program Different from Executing It?

There is a significant distinction between direct execution and interpretation of a pro-
gram. A computer can directly execute a program that is compiled into machine lan-

guage. The CLR is one such machine language
program that is directly executed. The com-
puter cannot directly execute Bytecode. It
must execute the CLR to interpret each Byte-
code instruction in order to run the compiled
Visual Basic program. The CLR does not pro-
duce machine code, like a compiler, but
instead it reads each Bytecode instruction and
gives the computer a corresponding series of

Direct execution The process by which a computer per-
forms the actions specified in a machine language pro-
gram

Interpretation The translation, while a program is run-
ning, of non-machine language instructions (such as
Bytecode) into executable operations

operations to perform. Because each Bytecode instruction must first be interpreted, the
computer cannot run Bytecode programs as quickly as it can execute machine language.
Slower execution is the price we pay for increased portability.

How Is Compilation Related to Interpretation and Execution?

It is important to understand that compilation and execution are two distinct processes.
During compilation, the computer runs the compiler program. During execution, the
object program is loaded into the computer’s memory unit, replacing the compiler pro-
gram. The computer then directly executes the object program, doing whatever the pro-

gram instructs it to do (see Figure 1.7).

14 |

Chapter 1: Overview of Programming and Problem Solving

Code listing,
possibly with
error messages.

Computer

< Source executes
code compiler

code

COMPILATION

Machine language
version of
source code
(object code)

I

(E Loading)
I
I

Computer executes
Input machine language
data version of
source code

EXECUTION Results

Figure 1.7 Compilation/Execution

We can use the CLR as an example of the process shown in Figure 1.7. The CLR is
written in a high-level programming language such as C++ and then compiled into
machine language. The machine language is loaded into the computer’s memory, and
the CLR is executed. Its input is a Visual Basic program that has been compiled into
Bytecode. Its results are the series of actions that would take place if the computer could
directly execute Bytecode. Figure 1.8 illustrates this process.

As you look at Figure 1.8, it is important to understand that the output from the
compiler can be saved for future use. Once the CLR and the Visual Basic program have
been compiled, they can be used over and over without being compiled again. You never
need to compile the CLR because that has already been done for you. We have shown its
compilation in Figure 1.8 simply to illustrate the difference between the traditional com-
pile-execute steps and the compile-interpret steps that are used with Visual Basic.

Viewed from a different perspective, the CLR makes the computer look like a different
computer that has Bytecode as its machine language. The computer itself hasn’t changed—

it is still the same collection of electronic circuits—but
the CLR makes it appear that it has become a different

Virtual machine A program that makes one computer machine. When a program is used to make one com-

act like another

puter act like another computer, we call it a virtual

machine. For convenience we may refer to the com-

puter as “executing a Visual Basic program, “ but keep
in mind this is just shorthand for saying that “the computer is executing the CLR running
a Visual Basic program.”

1.5 What Kinds of Instructions Can Be Written in a Programming Language?

4 N
JVM source
code in C++
4 ¢ N
Source code Computer executes
in Java C++ compiler code

Y

Y

Computer executes Machine language
Java compiler code version of JVM

T
|
|
| Compilation
——————————————————— { : Loading ——————————
l
| Execution
Computer executes Computer appears
Bytecode version of machine language to execute
Java code version of JVM to Bytecode version
interpret Bytecode of Java code

Figure 1.8 Compilation and execution of JYM combined with compilation and interpretation of Bytecode

'| What Kinds of Instructions Can Be Written in a
. Programming Language?

The instructions in a programming language reflect the operations a computer can perform:

A computer can transfer data from one place to another.

A computer can get data from an input device (a keyboard or mouse, for exam-
ple) and write data to an output device (a screen, for example).

A computer can store data into and retrieve data from its memory and secondary
storage (parts of a computer that we discuss in the next section).

A computer can compare data values for equality or inequality and make deci-
sions based on the result.

A computer can perform arithmetic operations (addition and subtraction, for
example) very quickly.

A computer can branch to a different section of the instructions.

16

Chapter 1: Overview of Programming and Problem Solving

Programming languages require that we use certain control structures to express
algorithms as source code. There are four basic ways of structuring statements
(instructions) in most programming languages: by sequence, selection, loop, and with
subprograms. Visual Basic adds a fifth way: asynchronously (see Figure 1.9). A
sequence is a series of statements that are executed one after another. Selection, the
conditional control structure, executes different statements depending on certain con-
ditions. The repetitive control structure, the loop, repeats statements while certain
conditions are met. The subprogram allows us to structure our code by breaking it
into smaller units. Asynchronous control lets us write code that handles events that
originate outside of our program, such as the user clicking a button on the screen
with their mouse. Each of these ways of structuring statements controls the order in
which the computer executes the statements, which is why they are called control
structures.

Assume you're driving a car. Going down a straight stretch of road is like following
sequence of instructions. When you come to a fork in the road, you must decide which
way to go and then take one or the other branch of the fork. This is what the computer
does when it encounters a selection control structure (sometimes called a branch or deci-
sion) in a program. Sometimes you have to go around the block several times to find a
place to park. The computer does the same sort of thing when it encounters a loop in a
program.

A subprogram is a named sequence of instructions written separately from the
main program. When the program executes an instruction that refers to the name of
the subprogram, the code for the subprogram is executed. When the subprogram has
finished executing, execution of the program resumes at the next instruction. Sup-
pose, for example, that every day you go to work at an office. The directions for get-
ting from home to work form a procedure called “Go to the office.” It makes sense,
then, for someone to give you directions to a meeting by saying “Go to the office,
then go four blocks west,” without listing all the steps you have to take to get to the
office. Subprograms allow us to write parts of our programs separately and then
assemble them into final form. They can greatly simplify the task of writing large
programs.

Responding to asynchronous events is like working as a pizza delivery person. You
wait around the dispatch station with all of the other delivery people. The dispatcher
calls your name and gives you some pizzas and a delivery address. You go deliver the
pizzas and return to the dispatch station. At the same time, other delivery people may be
out driving.? The term asynchronous means “not at the same time.” In this context it
refers to the fact that the user can, for example, click the mouse on the screen at any
time while the program is running. The mouse click does not have to happen at some
particular time corresponding to certain instructions within the program. The event
shown in Figure 1.9 is like the dispatcher. You do not have to write it as part of your

2Visual Basic actually allows us to write general asynchronous programs using a construct called a thread.
Threaded programs are beyond the scope of this text. We restrict our use of asynchronous structures to handling
events.

1.5 What Kinds of Instructions Can Be Written in a Programming Language? |

SEQUENCE

—»(Statement)—»(Statement)—»(Statement)—>...

SELECTION (also called branch or decision)
IF condition THEN statement1 ELSE statement2

e Statement1
— o D)
Fa/se

Statement2
LOOP (also called repetition or iteration)

WHILE condition DO statement1

Statement1

SUBPROGRAM (also called procedure, function, method, or subroutine)

—>| SUBPROGRAM1 oo

- >

__»| SUBPROGRAM1
a meaningful collection
of any of the above

EVENTHANDLER

—> EVENT —>| asubprogram executed

when an event occurs

! 1

D PIZ2Z
W

A

™

n

AN
eB|Fizza

Figure 1.9 Basic control structures of programming languages

18 | Chapter 1: Overview of Programming and Problem Solving

program because it is included in Visual Basic. You simply write the event-handler sub-
programs that the event calls.

Object-Oriented Programming Languages

Early programming languages focused their attention on the operations and control
structures of programming. These procedural languages paid little explicit attention to
the relationships between the operations and the data. At that time, a typical computer
program used only simple data types such as integer and real numbers, which have
obvious sets of operations defined by mathematics. Those operations were built directly
into early programming languages. As people gained experience with the programming
process, they began to realize that in solving complex problems, it is helpful to define
new types of data, such as dates and times; these aren’t a standard part of a program-
ming language. Each new type of data typically has an associated set of operations,
such as determining the number of days between two dates.

Procedural languages thus evolved to include the feature of extensibility: the capa-
bility to define new data types. However, they still treated the data and operations as
separate parts of the program. A programmer could define a data type to represent the
time of day and then write a subprogram to compute the number of minutes between
two times, but could not explicitly indicate that the two are related.

Modern programming languages such as Visual Basic allow us to collect a data type
and its associated operations into a single entity called an object. They are thus called
object-oriented programming languages. The advantage of an object is that it makes the

relationship between the data type and operations
explicit. The result is that an ohject is a complete, self-

Object A collection of data values and associated opera- contained unit that can be reused again in other pro-
tions grams. Reusability enables us to write a significant
Class A description of an object that specifies the types portion of our programs using existing objects,
of data values that it can hold and the operations that it thereby saving us a considerable amount of time and
can perform effort

Instantiate To create an object based on the description A class is a description of one or more like

supplied by a class

objects. Classes are usually collected into groups called
namespaces. When we need an object in a program,
we instantiate the class that describes the object. That
is, we tell the Visual Basic compiler to provide us with one or more of the objects
described by a specified class. One characteristic of an object-oriented programming
language is having a large library of classes. In this text we present only a small subset
of the classes that are available from the Visual Basic library. It is easy to be over-
whelmed by the sheer size of Visual Basic’s library, but many of those objects are highly
specialized and unnecessary for learning the essential concepts of programming.
In the next few chapters we consider how to write simple codes that instantiate just
a few of the classes in Visual Basic’s library. By Chapter 7 we develop enough of the
basic concepts of programming to start designing our own classes. Leading up to that
point, we learn how to write some specific classes using patterns of Visual Basic code
that we provide.

1.6

What Is a Computer?

1.6 What Is a Computer? |

You can learn a programming language, how to write programs, and how to run (exe-
cute) these programs without knowing much about computers. But if you know some-
thing about the parts of the computer, you can better understand the effect of each
instruction in a programming language.

Most computers have six basic components: the memory unit, the arithmetic/logic
unit, the control unit, input devices, output devices, and auxiliary storage devices. Fig-
ure 1.10 is a stylized diagram of the basic components of a computer.

The memory unit is an ordered sequence
of storage cells, each capable of holding a

piece of data. Each memory cell has a distinct

address to which we refer in order to store
data into it or retrieve data from it. These
storage cells are called memory cells, or mem-
ory locations.> The memory unit holds data (input data or the product of computation)

and instructions (programs), as shown in Figure 1.11.

Memory unit Internal data storage in a computer

3The memory unit is also referred to as RAM, an acronym for random-access memory (because we can access

any location at random).

Input
device

Central processing unit

Control unit

‘ Arithmetic/logic unit ’

Output
device

S

Memory unit

Auxiliary
storage
device

| S —

Figure 1.10 Basic components of a computer

20 |

Chapter 1: Overview of Programming and Problem Solving

MEMORY

Your data

e

~<——Your program

Central processing unit (CPU) The part of the computer
that executes the instructions (program) stored in mem-
ory; made up of the arithmetic/logic unit and the control
unit

Arithmetic/Logic unit (ALU) The component of the
central processing unit that performs arithmetic and logi-
cal operations

Control unit The component of the central processing
unit that controls the actions of the other components so
that instructions (the program) are executed in the cor-
rect sequence

Input/Output (1/0) devices The parts of the computer
that accept data to be processed (input) and present the
results of that processing (output)

Figure 1.11 Memory

The part of the computer that follows instructions
is called the central processing unit (CPU). The CPU
usually has two components. The arithmetic/logic unit
(ALU) performs arithmetic operations (addition, sub-
traction, multiplication, and division) and logical
operations (comparing two values). The control unit
controls the actions of the other components so that
program instructions are executed in the correct order.

For us to use computers, we must have some way
of getting data into and out of them. Input/Output
(I/0) devices accept data that have been prepared
(input) and present data that have been processed
(output). A keyboard is a common input device.
Another is the mouse. A video display is a common
output device, as are printers and liquid crystal dis-
play (LCD) screens.

For the most part, computers simply move and
combine data in memory. The many types of comput-

ers differ primarily in the size of their memories, the speed with which data can be
recalled, the efficiency with which data can be moved or combined, and limitations on

I/0 devices.

When a program is executing, the computer proceeds through a series of steps, the

fetch-execute cycle:

1. The control unit retrieves (fetches) the next coded instruction from memory.

2. The instruction is translated into control signals.

3. The control signals tell the appropriate unit (arithmetic/logic unit, memory, I/0O
device) to perform (execute) the instruction.

4. The sequence repeats from Step 1.

Computers can have a wide variety of periph-
eral devices. An auxiliary storage device, or
secondary storage device, holds coded data for
the computer until we actually want to use
the data. Instead of inputting data every time,
we can input it once and have the computer

1.6 What Is a Computer? | 21

Peripheral device An input, output, or auxiliary storage
device attached to a computer

Auxiliary storage device A device that stores data in
encoded form outside the computer's main memory

Hardware The physical components of a computer

store it in an auxiliary storage device. When-
ever we need to use the data, we tell the com-
puter to transfer the data from the auxiliary
storage device to its memory. An auxiliary
storage device therefore serves as both an
input and an output device. A disk drive is a
cross between a compact disk player and a
tape recorder. It uses a thin disk made out of
magnetic material. A read/write head (similar
to the record/playback head in a tape
recorder) travels across the spinning disk,
retrieving or recording data. A CD-ROM or a
DVD-ROM drive use a laser to read information stored optically on a plastic disk. The
CD-R and DVD-RAM forms of the CD and DVD can be used to both read and write data.
A magnetic tape drive is like a tape recorder and is most often used to back up (make a
copy of) the data on a disk in case the disk is ever damaged.

Together, all of these physical components are known as hardware. The programs
that allow the hardware to operate are called software. Hardware is usually fixed in
design; software is easily changed. In fact, the ease with which software can be manipu-
lated is what makes the computer such a versatile, powerful tool.

In addition to the programs that we write or purchase, there are programs in the
computer that are designed to simplify the user/computer interface, making it easier for
us to use the machine. The interface between user and computer is a set of I/0 devices—
for example, the keyboard, mouse, and a screen—that allows the user to communicate
with the computer. We work with the keyboard, mouse, and screen on our side of the
interface boundary; wires attached to the keyboard and the screen carry the electronic
pulses that the computer works with on its side of the interface boundary. At the
boundary itself is a mechanism that translates information for the two sides.

When we communicate directly with the computer through an interface, we are
using an interactive system. Interactive systems allow direct entry of programs and data
and provide immediate feedback to the user. In contrast, batch systems require that all
data be entered before a program is run and provide feedback only after a program has
been executed. In this text we focus on interactive systems, although in Chapter 9 we
discuss file-oriented programs, which share certain similarities with batch systems.

The set of programs that simplifies the user/computer interface and improves the
efficiency of processing is called system software. It includes the CLR and the Visual
Basic compiler as well as the operating system and the editor (see Figure 1.12). The
operating system manages all of the computer’s resources. It can input programs, call

Software
available on a computer

municate with each other

nication between user and computer

the computer's resources

Computer programs; the set of all programs

Interface A connecting link at a shared boundary that
allows independent systems to meet and act on or com-

Interactive system A system that allows direct commu-

Operating system A set of programs that manages all of

22 | Chapter 1: Overview of Programming and Problem Solving

INPUT Program entry
— Data entry

System software: operating system,
compiler, editor

Reports, lists

OuTPUT

Figure 1.12 User/Computer interface

the compiler, execute object programs, and carry out

Editor An interactive program used to create and mod- any other system commands. The editor is an inter-
ify source programs or data active program used to create and modify source

17

programs or data.

Ethics and Responsibilities in the Computing Profession

Every profession operates with a set of ethics that help to define the responsibilities of
people who practice the profession. For example, medical professionals have an ethical
responsibility to keep information about their patients confidential. Engineers have an
ethical responsibility to their employers to protect proprietary information, but they also
have a responsibility to protect the public and the environment from harm that may
result from their work. Writers are ethically bound not to plagiarize the work of others,
and so on.

1.7 Ethics and Responsibilities in the Computing Profession

The computer presents us with a vast new range of capabilities that can affect people
and the environment in dramatic ways. It thus challenges society with many new ethical
issues. Some of our existing ethical practices apply to the computer, whereas other situa-
tions require new ethical rules. In some cases, there may not be established guidelines,
but it is up to you to decide what is ethical. In this section we examine some common
situations encountered in the computing profession that raise particular ethical issues.

A professional in the computing industry, like any other professional, has knowl-
edge that enables him or her to do certain things that others cannot do. Knowing how
to access computers, how to program them, and how to manipulate data gives the com-
puter professional the ability to create new products, solve important problems, and
help people to manage their interactions with the ever-more-complex world that we all
live in. Knowledge of computers can be a powerful means to effecting positive change.

Knowledge also can be used in unethical ways. A computer can be programmed to
trigger a terrorist’s bomb, to sabotage a competitor’s production line, or to steal money.
Although these blatant examples make an extreme point and are unethical in any con-
text, there are more subtle examples that are unique to computers.

Software Piracy

Computer software is easy to copy. But just like books, software is usually copyrighted—
it is illegal to copy software without the per-
mission of its creator. Such copying is called
software piracy.

Copyright laws exist to protect the cre-
ators of software (and books and art) so that
they can make a profit from the effort and
money spent developing the software. A major software package can cost millions of
dollars to develop, and this cost (along with the cost of producing the package, shipping
it, supporting customers, and allowing for retailer markup) is reflected in the purchase
price. If people make unauthorized copies of the software, then the company loses those
sales and either has to raise its prices to compensate or spend less money to develop
improved versions of the software—in either case, a desirable piece of software becomes
harder to obtain.

Software pirates sometimes rationalize their software theft with the excuse that
they’re just making one copy for their own use. It’s not that they're selling a bunch of
bootleg copies, after all. But if thousands of people do the same, then it adds up to mil-
lions of dollars in lost revenue for the company, which leads to higher prices for everyone.

Computing professionals have an ethical obligation to not engage in software
piracy and to try to stop it from occurring. You never should copy software without
permission. If someone asks you for a copy of a piece of software, you should refuse to
supply it. If someone says they just want to “borrow” the software so they can “try it
out,” tell them they are welcome to try it out on your machine (or at a retailer’s shop)
but not to make a copy.

This rule isn’t restricted to duplicating copyrighted software; it includes plagia-
rism of all or part of code. If someone gives you permission to copy some code, then

for either personal use or use by others

23

Software piracy The unauthorized copying of software

24

Chapter 1: Overview of Programming and Problem Solving

just like any responsible writer, you should acknowledge that person with a citation in
the code.

Privacy of Data

The computer enables the compilation of databases containing useful information about
people, companies, geographic regions, and so on. These databases allow employers to
issue payroll checks, banks to cash a customer’s check at any branch, the government to
collect taxes, and mass merchandisers to send out junk mail. Even though we may not
care for every use of databases, they generally have positive benefits. However, they
also can be used in negative ways.

For example, a car thief who gains access to the state motor vehicle registry could
print out a “shopping list” of valuable car models together with their owners’ addresses.
An industrial spy might steal customer data from a company database and sell it to a
competitor. Although these are obviously illegal acts, computer professionals face other
situations that are not so obvious.

Suppose your job includes managing the company payroll database. In that data-
base are the names and salaries of the employees in the company. You might be
tempted to poke around in the database and see how your salary compares to your
associates—this act is unethical and an invasion of your associates’ right to privacy. This
information is confidential. Any information about a person that is not clearly public
should be considered confidential. An example of public information is a phone number
listed in a telephone directory. Private information includes any data that has been pro-
vided with an understanding that it will be used only for a specific purpose (such as the
data on a credit card application).

A computer professional has a responsibility to avoid taking advantage of special
access that he or she may have to confidential data. The professional also has a respon-
sibility to guard that data from unauthorized access. Guarding data can involve such
simple things as shredding old printouts, keeping backup copies in a locked cabinet, not
using passwords that are easy to guess (such as a name or word), and more complex
measures such as encryption (keeping it stored in a secret coded form).

Use of Computer Resources

If you've ever bought a computer, you know that it costs money. A personal computer
can be relatively inexpensive, but it’s still a major purchase. Larger computers can cost
millions of dollars. Operating a PC may cost a few dollars a month for electricity and an
occasional outlay for paper, disks, and repairs. Larger computers can cost tens of thou-
sands of dollars per month to operate. Regardless of the type of computer, whoever
owns it has to pay these costs. They do so because the computer is a resource that justi-
fies its expense.

The computer is an unusual resource because it is valuable only when a program is
running. Thus, the computer’s time is really the valuable resource. There is no signifi-
cant physical difference between a computer that is working and one that is sitting idle.
Thus, unauthorized use of a computer is different from unauthorized use of a car. If one
person uses another’s car without permission, that individual must take possession of it

1.7 Ethics and Responsibilities in the Computing Profession

physically—that is, steal it. If someone uses a computer without permission, the com-
puter isn’t physically stolen, but just as in the case of car theft, the owner is being
deprived of a resource that he or she is paying for.

For some people, theft of computer resources is a game—like joyriding in a car. The
thief really doesn’t want the resources; it is just the challenge of breaking through a
computer’s security system and seeing how far he or she can get without being caught.
Success gives a thrilling boost to this sort of person’s ego. Many computer thieves think
that their actions are acceptable if they don’t do any harm, but whenever real work is
displaced from the computer by such activities, then harm is clearly being done. If noth-
ing else, the thief is trespassing in the computer owner’s property. By analogy, consider
that even though no physical harm may be done by someone who breaks into your bed-
room and takes a nap while you are away, such an action is certainly disturbing to you
because it poses a threat of potential physical harm. In this case, and in the case of
breaking into a computer, mental harm can be done.

Other thieves can be malicious. Like a joyrider who purposely crashes a stolen car,
these people destroy or corrupt data to cause harm. They may feel a sense of power from
being able to hurt others with impunity. Sometimes these people leave behind programs
that act as time bombs, to cause harm long
after they have gone. Another kind of program
that may be left is a virus—a program that
replicates itself, often with the goal of spread-
ing to other computers. Viruses can be benign,
causing no other harm than to use up some
resources. Others can be destructive and cause widespread damage to data. Incidents have
occurred in which viruses have cost billions of dollars in lost computer time and data.

Computing professionals have an ethical responsibility never to use computer
resources without permission. This includes activities such as doing personal work on an
employer’s computer. We also have a responsibility to help guard resources to which we
have access—by using unguessable passwords and keeping them secret, by watching for
signs of unusual computer use, by writing programs that do not provide loopholes in a
computer’s security system, and so on.

possibly with the intent of doing harm

Software Engineering

Humans have come to depend greatly on computers in many aspects of their lives. That
reliance is fostered by the perception that computers function reliably; that is, they work
correctly most of the time. However, the reliability of a computer depends on the care
that is taken in writing its software.

Errors in a program can have serious consequences. Here are a few examples of real
incidents involving software errors. An error in the control software of an F-18 jet
fighter caused it to flip upside down the first time it flew across the equator. A rocket
launch went out of control and had to be blown up because there was a comma typed in
place of a period in its control software. A radiation therapy machine killed several
patients because a software error caused the machine to operate at full power when the
operator typed certain commands too quickly.

25

Virus Code that replicates itself, often with the goal of
spreading to other computers without authorization, and

26 | Chapter 1: Overview of Programming and Problem Solving

Even when the software is used in less critical situations, errors can have significant
effects. Examples of such errors include

e An error in a word processor that causes your term paper to be lost just hours
before it is due

e An error in a statistical program that causes a scientist to draw a wrong conclu-
sion and publish a paper that must later be retracted

® An error in a tax preparation program that produces an incorrect return, leading

to a fine
Programmers thus have a responsibility to develop
Software engineering The application of traditional software that is free from errors. The process that is
engineering methodology and techniques to the develop- used to develop correct software is known as software

ment of software

1.8

engineering.
Software engineering has many aspects. The
software life cycle described at the beginning of this
chapter outlines the stages in the development of software. Different techniques are
used at each of these stages. We address many of the techniques in this text. In
Chapter 5 we introduce methodologies for developing correct algorithms. We discuss
strategies for testing and validating programs in every chapter. We use a modern
programming language that enables us to write readable, well-organized programs,
and so on. Some aspects of software engineering, such as the development of a for-
mal, mathematical specification for a program, are beyond the scope of this text.

Problem-Solving Techniques

You solve problems every day, often unaware of the process you are going through. In
a learning environment, you usually are given most of the information you need: a
clear statement of the problem, the necessary input, and the required output. In real
life, the process is not always so simple. You often have to define the problem your-
self and then decide what information you have to work with and what the results
should be.

After you understand and analyze a problem, you must come up with a solution—an
algorithm. Earlier we defined an algorithm as a step-by-step procedure for solving a
problem in a finite amount of time with a finite amount of data. Although you work
with algorithms all the time, most of your experience with them is in the context of fol-
lowing them. You follow a recipe, play a game, assemble a toy, or take medicine. In the
problem-solving phase of computer programming, you will be designing algorithms, not
following them. This means you must be conscious of the strategies you use to solve
problems in order to apply them to programming problems.

Ask Questions

If you are given a task orally, you ask questions—When? Why? Where?—until you
understand exactly what you have to do. If your instructions are written, you might put

1.8 Problem-Solving Techniques

question marks in the margin, underline a word or a sentence, or in some other way
indicate that the task is not clear. Your questions may be answered by a later paragraph,
or you might have to discuss them with the person who gave you the task.

These are some of the questions you might ask in the context of programming;:

e What do I have to work with—that is, what are my data?
e What do the data items look like?

e What are the operations to be performed on the data?

e How much data is there?

e How will I know when I have processed all the data?

e What should my output look like?

e What special error conditions might come up?

Look for Things That Are Familiar

Never reinvent the wheel. If a solution exists, use it. If you've solved the same or a simi-
lar problem before, just repeat your solution. People are good at recognizing similar sit-
uations. We don’t have to learn how to go to the store to buy milk, then to buy eggs,
and then to buy candy. We know that going to the store is always the same; only what
we buy is different.

In programming, certain problems occur again and again in different guises. A
good programmer immediately recognizes a subtask he or she has solved before and
plugs in the solution. For example, finding the daily high and low temperatures is really
the same problem as finding the highest and lowest grades on a test. You want the
largest and smallest values in a set of numbers (see Figure 1.13).

LIST OF TEMPERATURES LIST OF TEST SCORES
42 27
18 14
27 55
95 98
55 72
72 Use the same 66
33 method to 45
78 find these 12
86 values in 39
61 both cases. 70
58 68
91
HIGHEST = 95 HIGHEST = 98
LOWEST = 18 LOWEST = 12

Figure 1.13 Look for things that are familiar.

27

28

Chapter 1: Overview of Programming and Problem Solving

In Chapter 8, we see how this problem-solving strategy can be implemented in
Visual Basic using a mechanism called inheritance, which allows us to define a new
object that adds to the capabilities of an existing object.

Solve by Analogy

Often a problem reminds you of one you have seen before. You may find solving the
problem at hand easier if you remember how you solved the other problem. In other
words, draw an analogy between the two problems. For example, a solution to a perspec-
tive projection problem from an art class might help you figure out how to compute the
distance to a landmark when you are on a cross-country hike. As you work your way
through the new problem, you come across things that are different than they were in the
old problem, but usually these are just details that you can deal with one at a time.
Analogy is really just a broader application of the strategy of looking for things
that are familiar. When you are trying to find an algorithm for solving a problem, don’t
limit yourself to computer-oriented solutions. Step back and try to get a larger view of
the problem. Don’t worry if your analogy doesn’t match perfectly—the only reason for
starting with an analogy is that it gives you a place to start (see Figure 1.14). The best
programmers are people who have broad experience in solving all kinds of problems.

Means-Ends Analysis

Often the beginning state and the ending state are given; the problem is to define a set
of actions that can be used to get from one to the other. Suppose you want to go from
Boston, Massachusetts to Austin, Texas. You know the beginning state (you are in
Boston) and the ending state (you want to be in Austin). The problem is how to get from
one to the other.

In this example, you have lots of choices. You can fly, walk, hitchhike, ride a bike,
or whatever. The method you choose depends on your circumstances. If you're in a
hurry, you’ll probably decide to fly.

Once you've narrowed down the set of actions, you have to work out the details. It
may help to establish intermediate goals that are easier to meet than the overall goal.
Let’s say there is a really cheap, direct flight to Austin out of Newark, New Jersey. You
might decide to divide the trip into legs: Boston to Newark and then Newark to Austin.
Your intermediate goal is to get from Boston to Newark. Now you only have to examine
the means of meeting that intermediate goal (see Figure 1.15).

 \

A library catalog system can give insight into how to organize a parts inventory.

Figure 1.14 Analogy

1.8 Problem-Solving Techniques

Start: Boston Means: Fly, walk, hitchhike, bike,
Goal: Austin drive, sail, bus

Start: Boston Revised Means: Fly to Chicago and then Austin;
Goal: Austin fly to Newark and then Austin: fly to Atlanta and
then Austin

Start: Boston Means to Intermediate Goal: Commuter flight, walk,
Intermediate Goal: Newark hitchhike, bike, drive, sail, bus
Goal: Austin

Solution: Take commuter flight to Newark and then catch cheap flight to Austin

Figure 1.15 Means-ends analysis

The overall strategy of means-ends analysis is to define the ends and then to ana-
lyze your means of getting between them. The process translates easily to computer pro-
gramming. You begin by writing down what the input is and what the output should be.
Then you consider the actions a computer can perform and choose a sequence of
actions that can transform the input into the results.

Divide and Conquer

We often break up large problems into smaller units that are easier to handle. Cleaning
the whole house may seem overwhelming; cleaning the rooms one at a time seems
much more manageable. The same principle applies to programming. We break up a
large problem into smaller pieces that we can solve individually (see Figure 1.16). In

Hard problem

Easy Hard Easy
subproblem subproblem subproblem

Easy Easy
subsubproblem subsubproblem

Figure 1.16 Divide and conquer

29

30

EXISTING
SOFTWARE

Shipping
System

Receiving
System

Chapter 1: Overview of Programming and Problem Solving

fact, the object-oriented design and functional decomposition methodologies, which we
describe in Chapter 5, are both based on the principle of divide and conquer.

The Building-Block Approach

Another way of attacking a large problem is to see if any solutions for smaller pieces of
the problem exist. It may be possible to put some of these solutions together end to end
to solve most of the big problem. This strategy is just a combination of the look-for-
familiar-things and divide-and-conquer approaches. You look at the big problem and
see that it can be divided into smaller problems for which solutions already exist. Solv-
ing the big problem is just a matter of putting the existing solutions together, like mor-
taring together blocks to form a wall (see Figure 1.17).

With an object-oriented programming language, we often solve a problem by first
looking in the class library to see what solutions have been developed previously and
then writing a small amount of additional code to put the pieces together. As we see
later, this problem-solving technique is the basis for the methodology called object-ori-
ented design.

Merging Solutions

Another way to combine existing solutions is to merge them on a step-by-step basis.
For example, to compute the average of a list of values, we must both sum and count
the values. If we already have separate solutions for summing values and for counting
the number of values, we can combine them. But if we first do the summing and then
do the counting, we have to read the list twice. We can save steps if we merge these two
solutions: read a value and then add it to the running total and add 1 to our count

NEW PROGRAM EXISTING
SOFTWARE

Inventory System

Accounts

Parts Parts on

Payable
System

shipped order

New code to mortar blocks together

Parts Parts sold, Accounts

Receivable

received not shipped Qi

Figure 1.17 Building-block approach

1.8 Problem-Solving Techniques

before going on to the next value. Whenever the solutions to subproblems duplicate
steps, think about merging them instead of joining them end to end.

Mental Blocks: The Fear of Starting

Writers are all too familiar with the experience of staring at a blank page, not knowing
where to begin. Programmers have the same difficulty when they first tackle a big prob-
lem. They look at the problem and it seems overwhelming (see Figure 1.18).

Remember that you always have a place to begin solving any problem: Write it
down on paper in your own words so that you understand it. Once you paraphrase the
problem, you can focus on each of the subparts individually instead of trying to tackle
the entire problem at once. This process gives you a clearer picture of the overall prob-
lem. It helps you see pieces of the problem that look familiar or that are analogous to
other problems you have solved. And it pinpoints areas where something is unclear,
where you need more information.

As you write down a problem, you tend to group things together into small, under-
standable chunks of data and operations, which may be natural places to split the prob-
lem up—to divide and conquer. Your description of the problem may collect all of the
information about data and results into one place for easy reference. Then you can see
the beginning and ending states necessary for means-ends analysis.

THE FAR SIDE® By GARY LARSON

Works, i AR Flights Flesswrvei Ui by Groalors Syndicale

<?/MI'|

The Far Side® by Gary Larson © 1982 FarWorks, Inc. All Rights Reserved.

Used with permission.

Figure 1.18 Mental block.

31

32

Chapter 1: Overview of Programming and Problem Solving

Most mental blocks are caused by not really understanding the problem. Rewriting
the problem in your own words is a good way to focus on the subparts of the problem,
one at a time, and to understand what is required for a solution.

Algorithmic Problem Solving

Coming up with an algorithm for solving a particular problem is not always cut-and-
dried. It fact, it is usually a trial-and-error process requiring several attempts and refine-
ments. We test each attempt to see if it really solves the problem. If it does, fine. If it
doesn’t, we try again. We typically use a combination of the techniques we’ve described
to solve any nontrivial problem.

Remember that the computer can only do certain things. Your primary concern,
then, is how to make the computer transform, manipulate, calculate, or process the
input data to produce the desired output. If you keep in mind the allowable instructions
and data types in your programming language, you won’t design an algorithm that is
difficult or impossible to code.

In the case study that follows, we develop a program for calculating employees’
weekly wages. It typifies the thought processes involved in writing an algorithm and cod-
ing it as a program, and it shows you what a complete Visual Basic program looks like.

Problem-Salving Case Stud

A Company Payroll Program

Problem A company needs a program to figure its weekly payroll. The input data, consisting
of each employee's identification number, pay rate, and hours worked, is in the file datafile.dat
in secondary storage. The program should input the data for each employee, calculate the
weekly wages, save the input information for each employee along with the weekly wages in a
file, and display the total wages for the week on the screen, so that the payroll clerk can
transfer the appropriate amount into the payroll account.

Discussion At first glance, this seems like a simple problem. But if you think about how you
would do it by hand, you see that you need to ask questions about the specifics of the process:
What is the employee data that we need and how is the data written to the file? How are wages
computed? In what file should the results be stored? How does the program know that all of the
employees have been processed? How should the total be displayed?

e The data for each employee includes an employee identification number, the employee's
hourly pay rate, and the hours worked. Each data value is written on a separate line.

e Wages equal the employees pay rate times the number of hours worked up to 40 hours.
If an employee worked more than 40 hours, wages equal the employee's pay rate times
40 hours, plus 15 times the employee's reqular pay rate times the number of hours
worked above 40.

e The results should be stored in a file called payfile.dat.

Problem-Solving Case Study

e The program knows to finish the processing when there is no more data in the input file.
¢ The total should be shown in a window on the screen that can be closed by the user.

We begin by looking for things that are familiar. An experienced Visual Basic programmer
immediately recognizes that this problem contains many different objects that are represented
as classes in the Visual Basic library. The input file and the output file are objects, as is the
window in which the total payroll is displayed on the screen. The employee identification num-
ber, pay rate, hours worked, wages earned, and total wages are objects in the problem that we
must find a way to represent in our algorithm. Here's a list of the objects we've identified:

e Input file, datafile.dat, represented by one of the Visual Basic file classes
e Qutput file, payfile.dat, represented by another Visual Basic file class

e Display window, represented by a Visual Basic Messagebox class

e Employee identification number

e Pay rate

® Hours worked

e Wages

e Total wages

Now that we know the objects we are working with, we need to fit them together with
operations that enable them to exchange information. The operations coordinate the behavior
of the objects in a way that solves the problem, like the choreography that coordinates ballet
dancers moving around a stage, interacting with each other.

Let's apply the divide-and-conquer approach to identify the main operations in which our
objects must participate. It's clear that there are two main steps to be accomplished. One is to
process the input file, and the other is to display the total on the screen. Let's look at each of
those steps separately, once again applying divide-and-conquer.

First we consider the processing of the data in the input file. Each data set represents one
employee, and we process each employee's data in turn. There are three obvious steps in
almost any problem of this type. For each person, we must:

1. Get the data.
2. Compute the results.
3. Output the results.

Our first step is to get the data. (By get, we mean read or input the data.) We need three
pieces of data for each employee: employee identification number, hourly pay rate, and num-
ber of hours worked. Each data value is written in the input file. Therefore, to input the data,
we take these steps:

Read the employee number.

Read the pay rate.

Read the number of hours worked.

The next step is to compute the wages. Let's expand this step with means-ends analysis.
Our starting point is the set of data values that was input; our desired ending, the payroll for

33

34

Chapter 1: Overview of Programming and Problem Solving

the week. The means at our disposal are the basic operations that the computer can perform,
which include calculation and control structures. Let's begin by working backward from the end.

We know that there are two formulas for computing wages: one for regular hours and
one for overtime. If there is no overtime, wages are simply the pay rate times the number of
hours worked. If the number of hours worked is greater than 40, however, wages are 40 times
the pay rate, plus the number of overtime hours times 1; times the pay rate. The overtime
hours are computed by subtracting 40 from the total number of hours worked. Here are the
two formulas:

We now have the means to compute the wages for each person. Our intermediate goal is
then to execute the correct formula given the input data. We must decide which formula to
use and employ a branching control structure to make the computer execute the appropriate
formula. The decision that controls the branching structure is simply whether more than 40
hours have been worked. We now have the means to get from our starting point to the desired
end. To figure the wages, then, we take the following steps:

If hours worked is greater than 40.0, then

wages = (40.0 X pay rate) + (hours worked — 40.0) X 1.5 X pay rate
otherwise

wages = hours worked X pay rate

The last step, outputting the results, is simply a matter of directing the computer to write
the employee number, the pay rate, the number of hours worked, and the wages into payfile.dat:

Write the employee number, pay rate, hours worked, and wages into payfile.dat

We now have an algorithm that processes the data for one employee. We need to extend
this algorithm to handle all of the employees. Let's use the building-block approach to enclose
our three main steps (getting the data, computing the wages, and outputting the results)
within a looping structure that continues until each employee has been processed. Once we
have computed the wages for one employee, we need to add them to a running total so that
we can display it at the end of processing. Our algorithm now coordinates the behavior of the
objects to accomplish the first of our two major steps.

The second major step is to display the total wages and stop the program. We again use
divide-and-conquer to break this into a series of steps:

Call a Messagebox object

Pass the total to the Messagebox
Show the Messagebox on the screen
Stop the program

Problem-Solving Case Study

Finally, we must take care of housekeeping chores. Before we start processing, we must
prepare the input file for reading, prepare the output file to receive the results, and set the
running total to zero.

What follows is the complete algorithm. Calculating the wages is written as a separate
subalgorithm that is defined below the main algorithm. Notice that the algorithm is simply a
very precise description of the same steps you would follow to do this process by hand.

Main Algorithm

Prepare to read a list of employee information (open file object datafile.dat)
Prepare to write a list of employees' wages (open file object payfile.dat)
Set the total payroll to zero
while there is more data in file dataFile
Read employee number
Read the pay rate
Read the number of hours worked
Calculate pay
Add the employee's wages to the total payroll
Write the employee number, pay rate, hours worked, and wages into the
list (file payFile)
Call a Messagebox object
Pass the total to the Messagebox
Display the Messagebox on the screen
Stop the program

Subalgorithm for Calculating Pay

if number of hours worked is greater than 40.0, then

wages = (40.0 X pay rate) + (hours worked — 40.0) X 1.5 X pay rate
else

wages = hours worked X pay rate

Before we implement this algorithm, we should test it by hand, simulating the algorithm
with specific data values. Case Study Follow-Up Exercise 2 asks you to carry out this test.

What follows is the Visual Basic program for this algorithm. It's here to give you an idea
of what you'll be learning. If you've had no previous exposure to programming, you probably
won't understand most of the program. Don't worry; you will soon. In fact, throughout this
book as we introduce new constructs, we refer you back to the Payroll program. One more
thing: The remarks following apostrophes (') are called comments. They are here to help you
understand the program; the compiler ignores them.

35

Chapter 1: Overview of Programming and Problem Solving

Imports System.io

Public Class Forml

Inherits System.Windows.Forms.Form

Dim empNum As String

Dim payRate As Double

Dim hours As Double

Dim wages As Double

Dim total As Double = 0

Dim theFile As File

Dim dataFile As StreamReader

Dim payFile As StreamWriter
#iRegion " Windows Form Designer generated code "

Public Sub New()
MyBase.New ()

'This call is required by the Windows Form Designer.
InitializeComponent ()
dataFile = theFile.OpenText("datafile.dat")
payFile = theFile.CreateText("payfile.dat")
While (dataFile.Peek <> —1)
empNum = dataFile.ReadLine()
payRate = CDbl(dataFile.ReadLine())
hours = CDbl(dataFile.ReadLine())
wages = CalcPay(payRate, hours)
total = total + wages
' Put results into payFile
payFile.WriteLine(empNum & " " & payRate & " " & hours _
& " " & wages)
End While
MessageBox.Show("Total payroll for the week is $" & total & _
" Close window to exit program.")
payFile.Close()
dataFile.Close()
'Add any dinitialization after the InitializeComponent() call

End Sub
Private Function calcPay(ByVal payRate As Double,
ByVal hours As Double)

Const MAX HOURS As Double = 40

Const OVERTIME As Double = 1.5

If (hours > MAX HOURS) Then

Return (MAX HOURS * payRate) + (hours - MAX HOURS) * _
payrate * OVERTIME

Problem-Solving Case Study

Else
Return hours * payRate
End If
End Function
'Form overrides dispose to clean up the component list.
Protected Overloads Overrides Sub Dispose(ByVal disposing _
As Boolean)
If disposing Then
If Not (components Is Nothing) Then
components.Dispose ()

End If
End If
MyBase.Dispose(disposing)

End Sub

'Required by the Windows Form Designer
#End Region

End Class
Given the following input in file datafile.dat:

534923445
6.54

45
103428439
12.82

38
131909545
8.20

52
739219803
10.00

40

The program outputs the following in file payfile.dat:

534923445 6.54 45 310.65
103428439 12.82 38 487.16
131909545 8.2 52 475.6
739219803 10 40 400

37

38

Chapter 1: Overview of Programming and Problem Solving

And then it displays the following window:

B x|
Totsl paetol For e wasai iy FLETD, 21 Closs vwandesy (o ol program. |

For such a simple task, the length of this program is rather daunting. Don't worry. A large part
of this program involves preparation for inputting and outputting data. These steps become
second nature to you very shortly, and you can use the same algorithmic steps again and again
(the building-block approach).

Summary

We think nothing of turning on the television and sitting down to watch it. It’s a com-
munication tool we use to enhance our lives. Computers are becoming as common as
televisions, just a normal part of our lives. And like televisions, computers are based on
complex principles but are designed for easy use.

Computers are unintelligent; they must be told what to do. A true computer error is
extremely rare (usually due to a component malfunction or an electrical fault). Because
we tell the computer what to do, most errors in computer-generated output are really
human errors.

Computer programming is the process of planning a sequence of steps for a computer
to apply to data. It involves a problem-solving phase and an implementation phase. After
analyzing a problem, we develop and test a general solution (algorithm). This general
solution becomes a concrete solution—our program—when we write it in a high-level pro-
gramming language. The sequence of instructions that makes up our program is then
either compiled into machine code (the language the computer uses) or Bytecode (the lan-
guage the Common Language Runtime, or CLR, uses). After correcting any errors or
“bugs” that show up during testing, our program is ready to use.

Once we begin to use the program, it enters the maintenance phase. Maintenance
involves correcting any errors discovered while the program is being used and changing
the program to reflect changes in the user’s requirements.

Data and instructions are represented as binary numbers (numbers consisting of just
1s and 0s) in electronic computers. The process of converting data and instructions into
a form usable by the computer is called coding.

A programming language reflects the range of operations a computer can perform. In
this text, you will learn to write programs in the high-level programming language
called Visual Basic. The basic control structures in the Visual Basic programming lan-
guage—sequence, selection, loop, subprogram, and asynchronous—are based on the fun-
damental operations of the computer. Visual Basic provides the ability to collect data

Quick Check

and operations into self-contained units called objects that can be reused in other pro-
grams.

Computers are composed of six basic parts: the memory unit, the arithmetic/logic
unit, the control unit, input devices, output devices, and auxiliary storage devices. The
arithmetic/logic unit and control unit together are called the central processing unit. The
physical parts of the computer are called hardware. The programs that are executed by
the computer are called software.

System software is a set of programs designed to simplify the user/computer inter-
face. It includes the compiler, the operating system, the CLR, and the editor.

Computing professionals are guided by a set of ethics, as are members of other pro-
fessions. Among the responsibilities that we have are: copying software only with per-
mission and including attribution to other programmers when we make use of their
code, guarding the privacy of confidential data, using computer resources only with
permission, and carefully engineering our programs so that they work correctly.

We've said that problem solving is a integral part of the programming process.
Although you may have little experience programming computers, you have lots of
experience solving problems. The key is to stop and think about the strategies that you
use to solve problems, and then use those strategies to devise workable algorithms.
Among those strategies are asking questions, looking for things that are familiar, solv-
ing by analogy, applying means-ends analysis, dividing the problem into subproblems,
using existing solutions to small problems to solve a larger problem, merging solutions,
and paraphrasing the problem in order to overcome a mental block.

The computer is widely used today in science, engineering, business, government,
medicine, production of consumer goods, and the arts. Learning to program in Visual
Basic can help you use this powerful tool effectively.

Quick Check

The Quick Check is intended to help you decide if you've met the goals set forth at the
beginning of each chapter. If you understand the material in the chapter, the answer to
each question should be fairly obvious. After reading a question, check your response
against the answers listed at the end of the Quick Check. If you don’t know an answer or
don’t understand the answer that’s provided, turn to the page(s) listed at the end of the
question to review the material.

1. What is a computer program? (p. 3)

2. What are the three phases in a program’s life cycle? (p. 4)

3. Is an algorithm the same as a program? (pp. 4-5)

4. What is a programming language? (p. 6)

5. What are the advantages of using a high-level programming language? (pp.
12-13)

6. What does a compiler do? (p. 10)

7. What is the difference between machine code and Bytecode? (pp. 11-13)

8. What part does the Common Language Runtime play in the compilation and
interpretation process? (pp. 13-15)
9. Name the five basic ways of structuring statements in Visual Basic. (pp. 15-17)

39

40

Chapter 1: Overview of Programming and Problem Solving

10. What are the six basic components of a computer? (pp. 19-22)

11. What is the difference between hardware and software? (pp. 20-21)

12. In what regard is theft of computer time like stealing a car? How are the two
crimes different? (pp. 22-26)

13. What is the divide-and-conquer approach? (p. 29)

Answers

1. A computer program is a sequence of instructions performed by a computer. 2. The three
phases of a program’s life cycle are problem-solving, implementation, and maintenance. 3. No.
All programs are algorithms, but not all algorithms are programs. 4. A set of rules, symbols,
and special words used to construct a program. 5. A high-level programming language is easier
to use than an assembly language or a machine language, and programs written in a high-level
language can be run on many different computers. 6. The compiler translates a program written
in a high-level programming language to either object code or Bytecode. 7. Machine code is the
native binary language that is directly executed by any particular computer. Bytecode is a stan-
dard portable machine language that is executed by the Common Language Runtime, but it is
not directly executed by the computer. 8. It translates the Bytecode instructions into operations
that are executed by the computer. 9. Sequence, selection, loop, subprogram, and asynchronous.
10. The basic components of a computer are the memory unit, arithmetic/logic unit, control
unit, input and output devices, and auxiliary storage devices. 11. Hardware is the physical com-
ponents of the computer; software is the collection of programs that run on the computer. 12.
Both crimes deprive the owner of access to a resource. A physical object is taken in a car theft,
whereas time is the thing being stolen from the computer owner. 13. The divide-and-conquer
approach is a problem-solving technique that breaks a large problem into smaller, simpler sub-
problems.

Exam Preparation Exercises
1. Explain why the following series of steps is not an algorithm, then rewrite the
series so it is.

Shampooing

1. Rinse.
2. Lather.
3. Repeat.

2. Describe the input and output files used by a compiler.

3. In the following recipe for chocolate pound cake, identify the steps that are
branches (selection) and loops, and the steps that are references to subalgorithms
outside the algorithm.

Exam Preparation Exercises

|

Preheat the oven to 350 degrees
Line the bottom of a 9-inch tube pan with wax paper
Sift 2% c flour, ¥t cream of tartar, /2 t baking soda, 1% t salt, and 1% c sugar into a large bow!
Add 1 c shortening to the bowl
If using butter, margarine, or lard, then
add 2/3 ¢ milk to the bowl,
else
(for other shortenings) add 1 ¢ minus 2 T of milk to the bowl
Add 1 t vanilla to the mixture in the bowl
If mixing with a spoon, then
see the instructions in the introduction to the chapter on cakes,
else
(for electric mixers) beat the contents of the bowl for 2 minutes at medium speed, scraping the
bowl and beaters as needed
Add 3 eggs plus 1 extra egg yolk to the bowl
Melt 3 squares of unsweetened chocolate and add to the mixture in the bowl
Beat the mixture for 1 minute at medium speed
Pour the batter into the tube pan
Put the pan into the oven and bake for 1 hour and 10 minutes
Perform the test for doneness described in the introduction to the chapter on cakes
Repeat the test once each minute until the cake is done
Remove the pan from the oven and allow the cake to cool for 2 hours
Follow the instructions for removing the cake from the pan, given in the introduction to the chapter
on cakes
Sprinkle powdered sugar over the cracks on top of the cake just before serving

4. Put a check next to each item below that is a peripheral device.
a. Disk drive

Arithmetic/logic unit

Magnetic tape drive

Printer

CD-ROM drive

Memory

Auxiliary storage device

Control unit

LCD display

Mouse

Troowa ho oan o

41

42

Chapter 1: Overview of Programming and Problem Solving

. Next to each item below, indicate whether it is hardware (H) or software (S).

Disk drive

Memory

Compiler

Arithmetic/logic unit

Editor

Operating system

Object program

Common Language Runtime

i. Central processing unit

Means-ends analysis is a problem-solving strategy.

a. What are three things you must know in order to apply means-ends analysis
to a problem?

b. What is one way of combining this technique with the divide-and-conquer
strategy?

Sempapow

. Show how you would use the divide-and-conquer approach to solve the problem

of finding a job.

. Distinguish between information and data.

Programming Warm-Up Exercises

1.

Write an algorithm for driving from where you live to the nearest airport that
has regularly scheduled flights. Restrict yourself to a vocabulary of 50 words
plus numbers and place names. You must select the appropriate set of words for
this task. An example of a vocabulary is given in Appendix A, the list of
reserved words (words with special meanings) in the Visual Basic programming
language. The purpose of this exercise is to give you practice in writing simple,
exact instructions with an equally small vocabulary.

. Write an algorithm for making a peanut butter and jelly sandwich, using a

vocabulary of just 50 words (you choose the words). Assume that all ingredients
are in the refrigerator and that the necessary tools are in a drawer under the
kitchen counter. The instructions must be very simple and exact because the per-
son making the sandwich has no knowledge of food preparation and takes every
word literally.

. In Exercise 1 above, identify the sequential, conditional, repetitive, and subpro-

grams steps.

Case Study Follow-Up Exercises

1.

Using Figure 1.16 as a guide, construct a divide-and-conquer diagram of the
Problem-Solving Case Study, A Company Payroll Program.

. Use the following data set to test the payroll algorithm presented on page 35.

Follow each step of the algorithm just as it is written, as if you were a computer.
Then check your results by hand to be sure that the algorithm is correct.

Case Study Follow-Up Exercises

ID Number Pay Rate Hours Worked
327 8.30 48
201 6.60 40
29 12.50 40
166 9.25 51
254 7.00 32

3. In the Company Payroll Program case study, we used means-ends analysis to develop
the subalgorithm for calculating pay. What are the ends in the analysis? That is, what
information did we start with and what information did we want to end up with?

4. In the Payroll program, certain remarks are preceded by the symbol '. What are these
remarks called, and what does the compiler do with them? What is their purpose?

43

