Graph Theory - I

Today's Plan

- Introduction
- Special Graphs
- Various Representations
- Depth First Search
- Solve a problem from GCJ
- Breadth First Search
- Solve a problem from SPOJ
- Dijkstra's Algorithm
- Solve a problem from SPOJ

Special Graphs

- Undirected Graphs
- Edge Weighted Graphs
- Directed Graphs
- Trees
- Directed Acyclic Graphs
- Bi-Partite Graphs

Representation - I

- Adjacency matrix
- 2 D Array \mathbf{M} of size $|\mathrm{V}| \mathrm{x}|\mathrm{V}|$
- $\mathbf{M}[\mathbf{i}][\mathbf{j}]-1$ if Vi and Vj are connected by and edge and 0 otherwise.
- Adjacency List
- Each vertex maintains a list of vertices that are adjacent to it.
- We can use: vector< vector<int>>

Representation - II

- Edge List
- Checking if edge $(\mathrm{Vi}, \mathrm{Vj})$ is present in G .
- Adjacency Matrix - O(1)
- Adjacency List - $\mathrm{O}(\min (\operatorname{deg}(\mathrm{Vi}), \operatorname{deg}(\mathrm{Vj})))$
- Iterating through the list of neighbours of Vi
- Adjacency Matrix - $\mathrm{O}(|\mathrm{V}|)$
- Adjacency List - O(deg(Vi))

Representation - III

- Implicit graphs
- Two squares on an 8×8 chessboard. Determine the shortest sequence of knight moves from one square to the other.
- Tricks:
- Use Dx[] , Dy[] for generating the neighbors of a position in grid problems.

Depth First Search

- Finding Connected Components
- Implemented using
- Stack
- Recursion (Most Frequently used)
- Complexity
- Time: $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$
- Space: $\mathrm{O}(|\mathrm{V}|)$ [to maintain the vertices visited till now]
- Google Code Jam Problem
- http:/ / code.google.com / codejam / contest/ dashboard?c=9010 $1 \# \mathrm{~s}=\mathrm{p} 1$

Breadth First Search

- Finding a Path with Minimum \# of edges from starting vertex to any other vertex.
- Used to Solve Shortest Path problem in un weighted graphs
- Implemented using queue
- Same Time and Space Complexity as DFS.
- SPOJ Problem
- http:/ / www.spoj.pl/problems/PPATH/

Dijkstra's Algorithm

- Used to solve Shortest Path problem in Weighted Graphs
- Only for Graphs with positive edge weights
- Greedy strategy
- Use priority_queue<node> for implementing Dijkstra's
- SPOJ Problem
- http: / / www.spoj.pl / problems / CHICAGO

Practice problems

- http://www.spoj.pl/problems/PARADOX/
- http: / /www.spoj.pl/problems/HERDING /
- http: / / www.spoj.pl/problems / COMCB/
- http:/ / www. spoj.pl/problems / PT07Y /
- http:/ / www.spoj.pl/problems / PT07Z/

More Practice Problems

- SRM 453.5 Division 2500 Pt
- http:/ / www.codechef.com/problems/N4
- http:/ /www.spoj.pl/problems/ ONEZERO
- http://www.spoj.pl/problems/CERC07K/

