INVENTORY SYSTEM REDESIGN

(Prerequisite: Independent demand inventory models)

- Before any changes are considered
- Define the objectives of the inventory system and their relative importance
- Redesign is based on the resultant benefit

Benefit - Incremental cost savings

- Improved customer service
- Final decision should not be based solely on a cost analysis
- Since other intangible or unquantifiable factors also must be considered.
- A simulation study is an excellent analysis tool for determining the impact of different system designs without actually implementing them.
- A pilot study of the inventory system can reveal the potential benefit of redesign

Pilot study procedure

1. A representative sample of inventory items is selected and analysed
2. Using appropriate inventory models, theoretical and actual performance are compared
3. The potential cost savings and resultant benefit are determined
4. A decision is made to continue the study, stop the study, revise the inventory system, or make no changes in the inventory system.

An example

An organization with an inventory of five items is considering a change from a periodic to a perpetual inventory system.

Currently each item is ordered at the end of the month.
The ordering cost per item is Rs 10 per order, and the holding cost is 12% per year.
The relevant item data are listed in table below.
Should the organization adopt a perpetual inventory system?

Item, i	Annual Demand, R_{i}	Unit Cost, P_{i}
1	600	3
2	900	10
3	2,400	5
4	12,000	5
5	18,000	1

Solution

Periodic System

Item, i	Annual Demand, R_{i}	Unit Cost, P_{i}	Orders per year	Average Inventory, $P_{i} R_{i} / 24$
1	600	3	12	75
2	900	10	12	375
3	2,400	5	12	500
4	12,000	5	12	2500
5	18,000	1	12	750

Annual cost $=60(10)+0.12(4200)=$ Rs 1104
Perpetual System

Item, i	Optimal order size in Rs, $P_{i} Q_{o i}$	Orders per year $P_{i} R_{i} / P_{i} Q_{o i}$
1	548	3.28
2	1225	7.35
3	1414	8.49
4	3162	18.98
5	1732	10.39
Rs 8081		

Annual cost $=48.49(10)+0.12(8081 / 2)=$ Rs 970

INVENTORY SYSTEM CONSTRAINTS

- EOQ apply to single inventory items
- Appropriate to treat each item in inventory on an individual basis when no limitations are placed on aggregate inventory
- Limitations exist, and they arise because scarce resource exist such as capital, storage space and equipment capacities
- Stringent budget requirement may put restriction in inventory investment
- Reduction of investment in inventory means reducing order quantity
- This necessitates an increase in the holding cost fraction

Calculation of increase in holding cost fraction

I_{c} - Current investment in inventory
I_{n} - New investment in inventory
$F_{c}-$ Current holding cost fraction
$F_{n}-$ New holding cost fraction

$$
\begin{aligned}
& P_{i}-\text { Price of item } i \\
& { }_{c} Q_{o i} \text { - Current optimum order quantity for item } i \\
& { }_{n} Q_{o i} \text { - New optimum order quantity for item } i \\
& N-\text { Number of items }
\end{aligned}
$$

- Same C and F for all the items included in the analysis
- If there is restriction in inventory investment and order cost is not changed, the new holding cost fraction due to the restriction in inventory investment can be found in the following way

$$
\begin{gathered}
\frac{\sum_{i=1}^{N} \frac{P_{i} Q_{o i}}{2}}{\sum_{i=1}^{N} \frac{P_{i n} Q_{o i}}{2}}=\frac{I_{c}}{I_{n}} \\
\sqrt{\frac{F_{n}}{F_{c}}}=\frac{I_{c}}{I_{n}}
\end{gathered}
$$

The new order quantity or the new review period can be calculated using F_{n}

Example

Consider a shop producing three items which are produced in lots with the following characteristics:

Item	1	2	3
Holding cost (Rs./unit/year)	0.20	0.20	0.20
Set-up cost (Rs./set-up)	50	40	60
Cost per units (Rs.)	6	7	5
Annual Demand (Units)	10,000	12,000	7,500

The replenishment rate of the above items is infinite. All the items have two week lead time. Currently, the organisation was following Q-system of inventory control.
(a) Determine the parameters of the Q-system.
(b) What is the average inventory level of the system?
(c) Now, the organisation desires to have an average inventory level of Rs 5000/-. What is the new holding cost fraction?
Answer:
(a)

Item	1	2	3
$Q_{o i}$	913	828	949
B_{i}	385	462	288

(b) Average inventory in Rs. $=8008$
(c) New holding cost fraction $=0.5131$

Exchange Curve

- Order cost and holding cost fraction are not explicitly available
- Some times undesirable to minimize cost on individual basis
- Management want to control aggregate inventory levels without being burdened with individual item decisions
- Under the above circumstances management attempt to use the total average inventory investment and total number of annual replenishments as decision variables
- Tradeoff is possible between these variable
- The tradeoff between management policies can be shown by a method called exchange curve
- An exchange curve shows the optimal tradeoffs that can be achieved between two or more aggregate measures of performance

Construction of Exchange Curve

Assumption

- Order cost and carrying cost fraction are same for all inventory items

Construction

If EOQ is used for each item in the system, the total average inventory investment (AI) for N items is

$$
A I=\sum_{i=1}^{N} \frac{P_{i} Q_{o i}}{2}=\sum_{i=1}^{N} \sqrt{\frac{C P_{i} R_{i}}{2 F}}=\sqrt{\frac{C}{F}} \sum_{i=1}^{N} \sqrt{\frac{P_{i} R_{i}}{2}}
$$

The total number of annual replenishments $(A R)$ is

$$
\begin{gathered}
A R=\sum_{i=1}^{N} \frac{R_{i}}{Q_{o i}}=\sum_{i=1}^{N} \sqrt{\frac{P_{i} R_{i} F}{2 C}}=\sqrt{\frac{F}{C} \sum_{i=1}^{N} \sqrt{\frac{P_{i} R_{i}}{2}}} \\
(A I)(A R)=\left(\sum_{i=1}^{N} \sqrt{\frac{P_{i} R_{i}}{2}}\right)^{2}-\text { Hyperbolic curve } \\
\frac{A I}{A R}=\frac{C}{F}
\end{gathered}
$$

Fig. 1 Exchange curve or Optimal Policy Curve

- Management may select an acceptable operating point on an aggregate exchange curve
- At the selected point, value of C and F are implied
- Order quantities for individual items can be calculated based on the ratio, C / F
- These quantities will lie within the chosen limitations and conform to aggregate policies.
- Based on the inventory control system the parameters will be determined

For Q-System

$$
\begin{gathered}
Q_{0 i}=\sqrt{\frac{2 C R_{i}}{P_{i} F}} \\
Q_{0 i}=\sqrt{\frac{C}{F}} \sqrt{\frac{2 R_{i}}{P_{i}}}=\sqrt{\frac{A I}{A R}} \sqrt{\frac{2 R_{i}}{P_{i}}}
\end{gathered}
$$

For P-System

$$
\begin{gathered}
T_{0 i}=\sqrt{\frac{2 C}{P_{i} F R_{i}}} \\
T_{0 i}=\sqrt{\frac{C}{F}} \sqrt{\frac{2}{P_{i} R_{i}}}=\sqrt{\frac{A I}{A R}} \sqrt{\frac{2}{P_{i} R_{i}}}
\end{gathered}
$$

- The general effect of the ratio C / F apply to all items considered in the analysis
- As C / F increases, each order quantity increases, which in turn increases the total average inventory investment and decreases the total number of annual replenishment
- By varying C / F, the aggregate exchange curve can be traced

Example

An organisation uses periodic system of inventory control for the following items.

Item	1	2	3
Cost per units (Rs.)	6	7	5
Annual Demand (Units)	10,000	12,000	7,500
Lead Time in Weeks	2	3	2

The organisation desires to have an average inventory level of Rs $10,000 /$ - for all items together. Determine the parameters of the periodic system for each item. Assume 52 weeks in a year.

Solution

$$
\begin{aligned}
& (A I)(A R)=\left(\sum_{i=1}^{N} \sqrt{\frac{P_{i} R_{i}}{2}}\right)^{2} \\
& \frac{A I}{A R}=\frac{C}{F} \\
& T_{0 i}=\sqrt{\frac{C}{F}} \sqrt{\frac{2}{P_{i} R_{i}}}=\sqrt{\frac{A I}{A R}} \sqrt{\frac{2}{P_{i} R_{i}}} \\
& E_{i}=\frac{R\left(T_{0 i}+L_{i}\right)}{52}
\end{aligned}
$$

Item	1	2	3
Cost per units (Rs.)	6	7	5
Annual Demand (Units)	10,000	12,000	7,500
Lead Time in Weeks	2	3	2
$\frac{p_{i} R_{i}}{2}$	30,000	42,000	18,750

$\sqrt{\frac{p_{i} R_{i}}{2}}$	173.21	204.93	136.93
$\sqrt{\frac{2}{p_{i} R}}$	0.00577	0.004879	0.007303
T_{o} in years	0.1119	0.0947	0.1417
T_{o} in weeks	$5.81 \approx 6$	$4.92 \approx 5$	$7.36 \approx 7$
E_{i}	1538	1846	1298

Optimising Constrained Functions

Lagrange Method

- Lagrange method specifically applies to equality constraints
- Problems with inequality constraints can be solved by combining Lagrange method with Kuhn-Tucker conditions

One Equality Constraint

Min. $f\left(X_{1}, X_{2}, \ldots X_{n}\right)$
Subjected to

$$
g\left(X_{1}, X_{2}, \ldots X_{n}\right)=a
$$

is equivalent to minimise the unconstrained function

$$
h\left(X_{1}, X_{2}, \ldots X_{n}\right)=f\left(X_{1}, X_{2}, \ldots X_{n}\right)+\lambda\left(g\left(X_{1}, X_{2}, \ldots X_{n}\right)-a\right)
$$

where λ is a Lagrange multiplier unrestricted in sign.

- To minimise this function

Take partial derivative of h with respect to X_{j} and λ and set them equal to zero.

$$
\begin{aligned}
& \frac{\partial h}{\partial X_{j}}=\frac{\partial f}{\partial X_{j}}+\lambda \frac{\partial g}{\partial X_{j}}=0, \quad j=1, \ldots, h \\
& \frac{\partial h}{\partial \lambda}=g-a=0
\end{aligned}
$$

- By simultaneously solving the above equations for X_{j} and λ, the minimum point is obtained.
- If the multiplier is positive, it indicates the rate at which the objective function will decrease per unit increase in the parameter a.

More Than One Equality Constraint

$$
\begin{aligned}
h\left(X_{1}, X_{2}, \ldots, X_{n}\right)= & \left.f\left(X_{1}, X_{2}, \ldots, X_{n}\right)+\lambda_{1}\left[g_{1}\left(X_{1}, X_{2}, \ldots, X_{n}\right)-a_{1}\right)\right]+ \\
& \left.\lambda_{2}\left[g_{2}\left(X_{1}, X_{2}, \ldots, X_{n}\right)-a_{2}\right)\right] \\
\frac{\partial h}{\partial X_{j}} & =\frac{\partial f}{\partial X_{j}}+\lambda_{1} \frac{\partial g_{1}}{\partial X_{j}}+\lambda_{2} \frac{\partial g_{2}}{\partial X_{j}}=0, \quad j=1, \ldots, n \\
\frac{\partial h}{\partial \lambda_{1}} & =g_{1}-a_{1}=0 \\
\frac{\partial h}{\partial \lambda_{2}} & =g_{2}-a_{2}=0
\end{aligned}
$$

One Inequality Constraint

$$
g\left(X_{1}, X_{2}, \ldots X_{n}\right) \leq a
$$

Lagrange method combined with Kuhn-Tucker Conditions

$$
\begin{gathered}
h\left(X_{1}, X_{2}, \ldots X_{n}\right)=f\left(X_{1}, X_{2}, \ldots X_{n}\right)+\lambda\left[g\left(X_{1}, X_{2}, \ldots X_{n}\right)-a\right] \\
\frac{\downarrow}{\partial X_{j}}=\frac{\partial f}{\partial X_{j}}+\lambda \frac{\partial g}{\partial X_{j}}=0, \quad j=1, \ldots, n \\
\lambda(g-a)=0
\end{gathered}
$$

More Than One Inequality Constraint

$$
\begin{aligned}
& \frac{\partial h}{\partial X_{j}}=\frac{\partial f}{\partial X_{j}}+\lambda_{1} \frac{\partial g_{1}}{\partial X_{j}}+\lambda_{2} \frac{\partial g_{2}}{\partial X_{j}}=0, \quad j=1, \ldots, n \\
& \lambda_{1}\left(g_{1}-a_{1}\right)=0 \\
& \lambda_{2}\left(g_{2}-a_{2}\right)=0
\end{aligned}
$$

WORKING CAPITAL RESTRICTION

Lagrange-multiplier Method

Minimise the inventory cost subjected to average inventory investment J rupees Min: Annual Variable Inventory Cost $=$ Order cost + Holding cost

$$
=\sum_{i=1}^{N}\left(\frac{R_{i} C}{Q_{i}}+\frac{Q_{i} P_{i} F}{2}\right)
$$

Subjected to $g=\sum_{i=1}^{N} \frac{P_{i} Q_{i}}{2}=J$
The Lagrange expression is

$$
h=C \sum_{i=1}^{N} \frac{R_{i}}{Q_{i}}+F \sum_{i=1}^{N} \frac{P_{i} Q_{i}}{2}+\lambda\left(\sum_{i=1}^{N} \frac{P_{i} Q_{i}}{2}-J\right)
$$

To minimise the objective function subjected to the restriction requires the minimisation of h with respect to Q_{i} and λ

Take partial derivative and equate them to zero

$$
\begin{aligned}
& \frac{\partial h}{\partial Q_{i}}=-\frac{C R_{i}}{Q_{i}^{2}}+\frac{F P_{i}}{2}+\frac{\lambda P_{i}}{2}=0 \\
& \frac{\partial h}{\partial \lambda}=\sum_{i=1}^{n} \frac{P_{i} Q_{i}}{2}-J=0
\end{aligned}
$$

Q_{i} and λ can be found out by solving the above simultaneous equations
$Q_{0 i}=\sqrt{\frac{2 C R_{i}}{(F+\lambda) P_{i}}}$ and $\lambda=\frac{C\left(\sum_{i=1}^{N} \sqrt{P_{i} R_{i}}\right)^{2}}{2 J^{2}}-F$

Examples

1. Consider a shop with three items which are produced in lots with the following characteristics:

Item	1	2	3
Holding cost (Rs./unit/year)	20	20	20
Set-up cost (Rs./set-up)	50	40	60
Cost per units (Rs.)	6	7	5
Annual Demand (Units)	10,000	12,000	7,500

The replenishment rate is infinite. The organisation desires to have an average inventory level of Rs 1000/-. a) Show the problem formulation which minimise the total relevant cost b) Write the Lagrangian of the optimisation problem and derive the equation for order quantity. c) Determine the batch size for each item.
(Note: If all the items have same holding cost fraction and order cost (set-up cost), exchange curve method is a suitable procedure for batch size determination. Hence, the batch size is to be determined using Lagrange method)

Answer
Minimise
Total relevant cost $T C_{v}=\sum_{i=1}^{N}\left(\frac{R_{i} C_{i}}{Q_{i}}+\frac{Q_{i}}{2} H\right)$
Subjected to
$\sum_{i=1}^{N} \frac{P_{i} Q_{i}}{2}=2000$
Langrangian expression
$h=\sum_{i=1}^{N} \frac{R_{i} C_{i}}{Q_{i}}+\sum_{i=1}^{N} \frac{Q_{i} H_{i}}{2}+\lambda\left(\sum_{i=1}^{N} \frac{P_{i} Q_{i}}{2}-2000\right)$
$\frac{\partial h}{\partial Q_{i}}=\frac{-R_{i} C}{Q_{i}^{2}}+\frac{H_{i}}{2}+\frac{\lambda P_{i}}{2} \quad \mathrm{~L}$
$\frac{\partial h}{\partial \lambda}=\sum_{i=1}^{N} \frac{P_{i} Q_{i}}{2}-2000$
L (2)

Equate equation (1) to zero and simplify

$$
\begin{aligned}
& \frac{R_{i} C_{i}}{Q_{i}^{2}}=\frac{H_{i}}{2}+\lambda \frac{P_{i}}{2} \\
& Q_{i}=\sqrt{\frac{2 R_{i} C_{i}}{H_{i}+\lambda P_{i}}}
\end{aligned}
$$

λ	Q_{1}	Q_{2}	Q_{3}	$\sum P_{i} Q_{i}$
10	118.8	103.28	113.39	1960.7
0.5	208.5	202.1	200	3665.7
0.1	220.3	215.3	209.5	3876.5
-1	267.26	271.75	244.95	4448.8
0	223.6	219.1	212.1	$3935.8 \approx 4000$

Therefore $\lambda=0, Q_{1}=224, Q_{2}=219$ and $Q_{3}=212$
2. A firm with an inventory of three different items has the following information on the inventoried items.

Item	Annual Demand (Units)	Unit Cost (Rs.)
A	300	80
B	800	105
C	1500	40

The current policy is to order each item once in each month. What is the optimal ordering policy, which gives the same total number of orders? Assume same holding cost fraction and order cost for all items.
(Note: Exchange curve principle can be used)
3. A company producing three items has limited storage space of average 750 items of all types. Determine the optimal production quantities for each item separately, when the following information is given:

Product	1	2	3
Holding cost (Rs)	0.05	0.02	0.04
Set-up cost (Rs)	50	40	60
Demand rate	100	120	75

(Answer: $\lambda=0.00235, \mathrm{Q}_{1}=428$ units, $\mathrm{Q}_{2}=623$ units and $\mathrm{Q}_{3}=449$ units)

