
1

Syllabus

Distributed Computing

Lecture : 4 Hrs / Week Practical : 3 Hrs / Week

One paper : 100 Marks / 3 Hrs duration Term work : 25 Marks

1. Fundamentals

Evolution of Distributed Computing Systems, System
models, issues in design of Distributed Systems, Distributed-
computing environment, web based distributed model, computer
networks related to distributed systems and web based
protocols.

2. Message Passing

Inter process Communication, Desirable Features of Good
Message-Passing Systems, Issues in IPC by Message,
Synchronization, Buffering, Multidatagram Messages, Encoding
and Decoding of Message Data, Process Addressing, Failure
Handling, Group Communication.

3. Remote Procedure Calls

The RPC Model, Transparency of RPC, Implementing RPC
Mechanism, Stub Generation, RPC Messages, Marshaling
Arguments and Results, Server Management, Communication
Protocols for RPCs, Complicated RPCs, Client-Server Binding,
Exception Handling, Security, Some Special Types of RPCs,
Lightweight RPC, Optimization for Better Performance.

4. Distributed Shared Memory

Design and Implementation issues of DSM, Granularity,
Structure of Shared memory Space, Consistency Models,
replacement Strategy, Thrashing, Other Approaches to DSM,
Advantages of DSM.

5. Synchronization

Clock Synchronization, Event Ordering, Mutual Exclusion,
Election Algorithms.

2

6. Resource and Process Management

Desirable Features of a good global scheduling algorithm,
Task assignment approach, Load Balancing approach, Load
Sharing Approach, Process Migration, Threads, Processor
allocation, Real time distributed Systems.

7. Distributed File Systems

Desirable Features of a good Distributed File Systems, File
Models, File Accessing Models, File-shearing Semantics, File-
caching Schemes, File Replication, Fault Tolerance, Design
Principles, Sun’s network file system, Andrews file system,
comparison of NFS and AFS.

8. Naming

Desirable Features of a Good Naming System, Fundamental
Terminologies and Concepts, Systems-Oriented Names, Name
caches, Naming & security, DCE directory services.

9. Case Studies

Mach & Chorus (Keep case studies as tutorial)

Term work/ Practical: Each candidate will submit assignments
based on the above syllabus along with the flow chart and program
listing will be submitted with the internal test paper.

References:

1. Distributed OS by Pradeep K. Sinha (PHI)

2. Tanenbaum S.: Distributed Operating Systems, Pearson
Education

3. Tanenbaum S. Maarten V.S.: Distributed Systems Principles
and Paradigms, (Pearson Education)

4. George Coulouris, Jean Dollimore. Tim Kindberg: Distributed
Systems concepts and design.

3

1
FUNDAMENTALS

Unit Structure:

1.1 What is a Distributed Computing System

1.2 Evolution of Distributed Computing System

1.3 Distributed Computing System Models

1.1 WHAT IS A DISTRIBUTED COMPUTING SYSTEM

Over the past two decades, advancements in
microelectronic technology have resulted in the availability of fast,
inexpensive processors, and advancements in communication
technology have resulted in the availability of cost effective and
highly efficient computer networks. The net result of the
advancements in these two technologies is that the price
performance ratio has now changed to favor the use of inter-
connected, multiple processors in place of a single, high-speed
processor.

Computer architectures consisting of interconnected,
multiple processors are basically of two types:

1. Tightly coupled systems: In these systems, there is a single
system wide primary memory (address space) that is shared by
all the processors [Fig. 1.1(a)]. If any processor writes, for
example, the value 100 to the memory location x, any other
processor subsequently reading from location x will get the
value 100. Therefore, in these systems, any communication
between the processors usually takes place through the shared
memory.

2. Loosely coupled systems: In these systems, the processors
do not share memory, and each processor has its own local
memory [Fig. 1.1(b)]. If a processor writes the value 100 to the
memory location x, this write operation will only change the
contents of its local memory and will not affect the contents of
the memory. In these systems, all physical communication
between the processors is done by passing messages across
the network that interconnects the processors.

4

Interconnection Hardware

Systemwide
shared memory

CPUCPUCPUCPU

(a)

Local memory

CPU

Communication network

(b)

Local memory

CPU

Local memory

CPU

Local memory

CPU

Fig. 1.1 Difference between tightly coupled and loosely
coupled multiprocessor systems (a) a tightly coupled

multiprocessor system; (b) a loosely coupled multiprocessor
system

 Tightly coupled systems are referred to as parallel
processing systems, and loosely coupled systems are
referred to as distributed computing systems, or simply
distributed systems.

 In contrast to the tightly coupled systems, the processor of
distributed computing systems can be located far from each
other to cover a wider geographical area. Furthermore, in
tightly coupled systems, the number of processors that can
be usefully deployed is usually small and limited by the
bandwidth of the shared memory. This is not the case with
distributed computing systems that are more freely
expandable and can have an almost unlimited number of
processors.

 In short, a distributed computing system is basically a
collection of processors interconnected by a communication
network in which each processor has its own local memory
and other peripherals, and the communication between any

5

two processors of the system takes place by message
passing over the communication network.

 For a particular processor, its own resources are local,
whereas the other processors and their resources are
remote. Together, a processor and its resources are usually
referred to as a node or site or machine of the distributed
computing system.

1.2 EVOLUTION OF DISTRIBUTED COMPUTING
SYSTEM

 Computer systems are undergoing a revolution. From 1945,
when the modem Computer era began, until about 1985,
computers were large and expensive. Even minicomputers
cost at least tens of thousands of dollars each. As a result,
most organizations had only a handful of computers, and for
lack of a way to connect them, these operated independently
from one another. Starting around the mid-198 0s, however,
two advances in technology began to change that situation.

 The first was the development of powerful microprocessors.
Initially, these were 8-bit machines, but soon 16-, 32-, and
64-bit CPUs became common. Many of these had the
computing power of a mainframe (i.e., large) computer, but
for a fraction of the price. The amount of improvement that
has occurred in computer technology in the past half century
is truly staggering and totally unprecedented in other
industries. From a machine that cost 10 million dollars and
executed 1 instruction per second. We have come to
machines that cost 1000 dollars and are able to execute 1
billion instructions per second, a price/performance gain of
1013.

 The second development was the invention of high-speed
computer networks. Local-area networks or LANs allow
hundreds of machines within a building to be connected in
such a way that small amounts of information can be
transferred between machines in a few microseconds or so.
Larger amounts of data can be Distributed Computing
become popular with the difficulties of centralized processing
in mainframe use.

 With mainframe software architectures all components are
within a central host computer. Users interact with the host
through a terminal that captures keystrokes and sends that
information to the host. In the last decade however,
mainframes have found a new use as a server in distributed

6

client/server architectures (Edelstein 1994). The original PC
networks (which have largely superseded mainframes) were
based on file sharing architectures, where the server
transfers files from a shared location to a desktop
environment.

 The requested user job is then run (including logic and data)
in the desktop environment. File sharing architectures work
well if shared usage is low, update contention is low, and the
volume of data to be transferred is low. In the 1990s, PC
LAN (local area network) computing changed because the
capacity of the file sharing was strained as the number of
online users grew and graphical user interfaces (GUIs)
became popular (making mainframe and terminal displays
appear out of date).

 The next major step in distributed computing came with
separation of software architecture into 2 or 3 tiers. With two
tier client-server architectures, the GUI is usually located in
the user's desktop environment and the database
management services are usually in a server that is a more
powerful machine that services many clients. Processing
management is split between the user system interface
environment and the database management server
environment. The two tier client/server architecture is a good
solution for locally distributed computing when work groups
are defined as a dozen to 100 people interacting on a LAN
simultaneously. However, when the number of users
exceeds 100, performance begins to deteriorate and the
architecture is also difficult to scale. The three tier
architecture (also referred to as the multi-tier architecture)
emerged to overcome the limitations of the two tier
architecture. In the three tier architecture, a middle tier was
added between the user system interface client environment
and the database management server environment.

 There are a variety of ways of implementing this middle tier,
such as transaction processing monitors, messaging
middleware, or application servers. The middle tier can
perform queuing, application execution, and database
queries. For example, if the middle tier provides queuing, the
client can deliver its request to the middle layer and
disengage because the middle tier will access the data and
return the answer to the client. In addition the middle layer
adds scheduling and prioritization for work in progress. The
three-tier client/server architecture has been shown to
improve performance for groups with a large number of
users (in the thousands) and improves flexibility when
compared to the two tier approach.

7

 Whilst three tier architectures proved successful at
separating the logical design of systems, the complexity of
collaborating interfaces was still relatively difficult due to
technical dependencies between interconnecting processes.
Standards for Remote Procedure Calls (RPC) were then
used as an attempt to standardise interaction between
processes.

 As an interface for software to use it is a set of rules for
marshalling and un-marshalling parameters and results, a
set of rules for encoding and decoding information
transmitted between two processes; a few primitive
operations to invoke an individual call, to return its results,
and to cancel it; provides provision in the operating system
and process structure to maintain and reference state that is
shared by the participating processes. RPC requires a
communications infrastructure to set up the path between
the processes and provide a framework for naming and
addressing.

 There are two models that provide the framework for using
the tools. These are known as the computational model and
the interaction model. The computational model describes
how a program executes a procedure call when the
procedure resides in a different process. The interaction
model describes the activities that take place as the call
progresses. A marshalling component and a encoding
component are brought together by an Interface Definition
Language (IDL). An IDL program defines the signatures of
RPC operations. The signature is the name of the operation,
its input and output parameters, the results it returns and the
exceptions it may be asked to handle. RPC has a definite
model of a flow of control that passes from a calling process
to a called process. The calling process is suspended while
the call is in progress and is resumed when the procedure
terminates. The procedure may, itself, call other procedures.
These can be located anywhere in the systems participating
in the application.

1.3 DISTRIBUTED COMPUTING SYSTEM MODELS

Various models are used for building distributed computing
systems. These models can be broadly classified into five
categories – minicomputer, workstation, workstation-server,
processor pool, and hybrid. They are briefly described below.

8

1.3.1 Minicomputer Model :

 The minicomputer model is a simple extension of the
centralized time sharing system as shown in Figure 1.2, a
distributed computing system based on this model consists
of a few minicomputers (they may be large supercomputers
as well) interconnected by a communication network. Each
minicomputer usually has multiple users simultaneously
logged on to it. For this, several interactive terminals are
connected to each minicomputer. Each user is logged on to
one specific minicomputer, with remote access to other
minicomputers. The network allows a user to access remote
resources that are available on some machine other than the
one on to which the user is currently logged.

 The minicomputer model may be used when resource
sharing (Such as sharing of information databases of
different types, with each type of database located on a
different machine) with remote users is desired.

 The early ARPAnet is an example of a distributed computing
system based on the minicomputer model.

Mini-
Computer

Communication
network

Mini-
Computer

Mini-
Computer

Mini-
Computer

Terminals

Fig. 1.2 : A distributed computing system based on the
minicomputer model

1.3.2 Workstation Model :

 As shown in Fig. 1.3, a distributed computing system based
on the workstation model consists of several workstations

9

interconnected by a communication network. A company’s
office or a university department may have several
workstations scattered throughout a building or campus,
each workstation equipped with its own disk and serving as
a single-user computer.

 It has been often found that in such an environment, at any
one time (especially at night), a significant proportion of the
workstations are idle (not being used), resulting in the waste
of large amounts of CPU time. Therefore, the idea of the
workstation model is to interconnect all these workstations
by a high speed LAN so that idle workstations may be used
to process jobs of users who are logged onto other
workstations and do not have sufficient processing power at
their own workstations to get their jobs processed efficiently.

 In this model, a user logs onto one of the workstations called
his or her “home” workstation and submits jobs for
execution. When the system finds that the user’s
workstation does not have sufficient processing power for
executing the processes of the submitted jobs efficiently, it
transfers one or more of the process from the user’s
workstation to some other workstation that is currently idle
and gets the process executed there, and finally the result of
execution is returned to the user’s workstation.

Workstation

Workstation

Workstation

Workstation

Workstation

Workstation

Workstation

Workstation

Communication

network

Fig. 1.3 : A distributed computing system based on the
workstation model

This model is not so simple to implement as it might appear
at first sight because several issues must be resolved. These
issues are [Tanenbaum 1995] as follows :

10

1. How does the system find an idle workstation?

2. How is a process transferred from one workstation to get it
executed on another workstation?

3. What happens to a remote process if a user logs onto a
workstation that was idle until now and was being used to
execute a process of another workstation?

Three commonly used approaches for handling the third
issue are as follows:

1. The first approach is to allow the remote process share the
resources of the workstation along with its own logged-on user’s
processes. This method is easy to implement, but it defeats the
main idea of workstations serving as personal computers,
because if remote processes are allowed to execute
simultaneously with the logged on user’s own processes, the
logged-on user does not get his of her guaranteed response.

2. The second approach is to kill the remote process. The main
drawbacks of this method are that all processing done for the
remote process gets lost and the file system may be left in an
inconsistent state, making this method unattractive.

3. The third approach is to migrate the remote process back to its
home workstation, so that its execution can be continued there.
This method is difficult to implement because it requires the
system to support preemptive process migration facility.

For a number of reasons, such as higher reliability and better
scalability, multiple servers are often used for managing the
resources of a particular type in a distributed computing system.
For example, there may be multiple file servers, each running on a
separate minicomputer and cooperating via the network, for
managing the files of all the users in the system. Due to this
reason, a distinction is often made between the services that are
provided to clients and the servers that provide them. That is, a
service is an abstract entity that is provided by one or more servers.
For example, one or more file servers may be used in a distributed
computing system to provide file service to the users.

In this model, a user logs onto a workstation called his or her
home workstation. Normal computation activities required by the
user’s processes are preformed at the user’s home workstation, but
requests for services provided by special servers (such as a file
server or a database server) are sent to a server providing that type
of service that performs the user’s requested activity and returns
the result of request processing to the user’s workstation.
Therefore, in his model, the user’s processes need not be migrated

11

to the server machines for getting the work done by those
machines.

For better overall system performance, the local disk of a
diskful workstation is normally used for such purposes as storage of
temporary files, storage of unshared files, storage of shared files
that are rarely changed, paging activity in virtual-memory
management, and changing of remotely accessed data.

As compared to the workstation model, the workstation –
server model has several advantages:

1. In general, it is much cheaper to use a few minicomputers
equipped with large, fast disks that are accessed over the
network than a large number of diskful workstations, with each
workstation having a small, slow disk.

2. Diskless workstations are also preferred to diskful workstations
from a system maintenance point of view. Backup and
hardware maintenance are easier to perform with a few large
disks than with many small disks scattered all over a building or
campus. Furthermore, installing new releases of software (Such
as a file server with new functionalities) is easier when the
software is to be installed on a few file server machines than on
every workstations.

3. In the workstation server model, since all files are managed by
the file servers, user have the flexibility to use any workstation
and access the files in the same manner irrespective of which
workstation the user is currently logged on. Note that this is not
true with the workstation model, in which each workstation has
its local file system, because different mechanisms are needed
to access local and remote files.

4. In the workstation server model, the request response protocol
described above is mainly used to access the services of the
server machines. Therefore, unlike the workstation model, this
model does not need a process migration facility, which is
difficult to implement.

The request response protocol is known as the client-server
model of communication. In this model, a client process (which in
this case resides on a workstation) sends a request to a server
process (Which in his case resides on a minicomputer) for getting
some service such as a block of a file. The server executes the
request and sends back a reply to the client that contains the result
of request processing.

12

The client-server model provides an effective general –
purpose approach to the sharing of information and resources in
distributed computing systems. It is not only meant for use with the
workstation – server model but also can be implemented in a
variety of hardware and software environments. The computers
used to run the client and server processes need not necessarily be
workstations and minicomputers. They can be of many types and
there is no need to distinguish between them. It is even possible
for both the client and server processes to be run on the same
computer. Moreover, some processes are both client and server
processes. That is, a server process may use the services of
another server, appearing as a client to the latter.

5. A user has guaranteed response time because workstations are
not used for executing remote processes. However, the model
does not utilize the processing capability of idle workstations.

1.3.3 Processor Pool Model :

The processor – pool model is based on the observation that
most of the time a user does not need any computing power but
once in a while he or she may need a very large amount of
computing power for a short time. (e.g., when recompiling a
program consisting of a large number of files after changing a basic
shared declaration). Therefore, unlike the workstation – server
model in which a processor is allocated to each user, in the
processor-pool model the processors are pooled together to be
shared by the users as needed. The pool of processors consists of
a large number of microcomputers and minicomputers attached to
the network. Each processor in the pool has its own memory to
load and run a system program or an application program of the
distributed computing system.

As shown in fig. 1.5, in the pure processor-pool model, the
processors in the pool have no terminals attached directly to them,
and users access the system from terminals that are attached to
the network via special devices. These terminals are either small
diskless workstations or graphic terminals, such as X terminals. A
special server (Called a run server) manages and allocates the
processors in the pool to different users on a demand basis. When
a user submits a job for computation, an appropriate number of
processors are temporarily assigned to his or her job by the run
server. For example, if the user’s computation job is the
compilation of a program having n segments, in which each of the
segments can be complied independently to produce separate re-
locatable object files, n processors from the pool can be allocated
to this job to compile all the n segments in parallel. When the
computation is completed, the processors are returned to the pool
for use by other users.

13

In the processor-pool model there is no concept of a home
machine. That is, a user does not log onto a particular machine but
to the system as a whole.

1.3.4 Hybrid Model :

Out of the four models described above, the workstation-
server model, is the most widely used model for building distributed
computing systems. This is because a large number of computer
users only perform simple interactive tasks such as editing jobs,
sending electronic mails, and executing small programs. The
workstation-server model is ideal for such simple usage. However,
in a working environment that has groups of users who often
perform jobs needing massive computation, the processor-pool
model is more attractive and suitable.

To continue the advantages of both the workstation-server
and processor-pool models, a hybrid model may be used to build a
distributed computing system. The hybrid model is based on the
workstation-server model but with the addition of a pool of
processors. The processors in the pool can be allocated
dynamically for computations that are too large for workstations or
that requires several computers concurrently for efficient execution.
In addition to efficient execution of computation-intensive jobs, the
hybrid model gives guaranteed response to interactive jobs by
allowing them to be processed on local workstations of the users.
However, the hybrid model is more expensive to implement than
the workstation – server model or the processor-pool model.

EXERCISE:

1) Differentiate between time-sharing, parallel processing,
network and distributes operating systems.

2) In what respect are distributed computing systems better than
parallel processing systems?

3) Discuss the main guiding principles that a distributed operating
system designer must keep in mind for good performance of
the system?

4) What are the major issues of designing a Distributed OS?

5) What is the major difference between Network OD and
Distributed OS?

6) Why is scalability an important feature in the design of a
distributed OS? Discuss the guiding principles for designing a
scalable distributed system.

14

2

ISSUES IN DESIGNING A DISTRIBUTED
OPERATING SYSTEM

Unit Structure:

2.1 Issues in Designing a Distributed Operating System

2.2 Transparency

2.3 Performance Transparency

2.4 Scaling Transparency
2.5 Reliability
2.6 Fault Avoidance

2.7 Fault Tolerance

2.8 Fault Detection and Recovery

2.9 Flexibility

2.10 Performance

2.11 Scalability

2.1 ISSUES IN DESIGNING A DISTRIBUTED
OPERATING SYSTEM

In general, designing a distributed operating system is more
difficult than designing a centralized operating system for several
reasons. In the design of a centralized operating system, it is
assumed that the operating system has access to complete and
accurate information about the environment in which it is
functioning. For example, a centralized operating system can
request status information, being assured that the interrogated
component will not charge state while awaiting a decision based on
that status information, since only the single operating system
asking the question may give commands. However, a distributed
operating system must be designed with the assumption that
complete information about the system environment will never be
available. In a distributed system, the resources are physically
separated, there is no common clock among the multiple
processors, delivery of messages is delayed, and messages could
even be lost. Due to all these reasons, a distributed operating
system does not have up-to-date, consistent knowledge about the
state of the various components of the underlying distributed
system. Obviously, lack of up-to-date and consistent information

15

makes many things (Such as management of resources and
synchronization of cooperating activities) much harder in the design
of a distributed operating system. For example, it is hard to
schedule the processors optimally if the operation system is not
sure how many of them are up at the moment.

Despite these complexities and difficulties, a distributed
operating system must be designed to provide all the advantages of
a distributed system to its users. That is, the users should be able
to view a distributed system as a virtual centralized system that is
flexible, efficient, reliable, secure and easy to use. To meet this
challenge, the designers of a distributed operating system must
deal with several design issues

2.2 TRANSPARENCY

A distributed system that is able to present itself to user and
application as if it were only a single computer system is said to be
transparent. There are eight types of transparencies in a distributed
system:

1) Access Transparency: It hides differences in data
representation and how a resource is accessed by a user.
Example, a distributed system may have a computer system
that runs different operating systems, each having their own file
naming conventions. Differences in naming conventions as well
as how files can be manipulated should be hidden from the
users and applications.

2) Location Transparency: Hides where exactly the resource is
located physically. Example, by assigning logical names to
resources like yahoo.com, one cannot get an idea of the
location of the web page’s main server.

3) Migration Transparency: Distributed system in which
resources can be moved without affecting how the resource can
be accessed are said to provide migration transparency. It hides
that the resource may move from one location to another.

4) Relocation Transparency: this transparency deals with the fact
that resources can be relocated while it is being accessed
without the user who is using the application to know anything.
Example: using a Wi-Fi system on laptops while moving from
place to place without getting disconnected.

5) Replication Transparency: Hides the fact that multiple copies
of a resource could exist simultaneously. To hide replication, it

16

is essential that the replicas have the same name.
Consequently, as system that supports replication should also
support location transparency.

6) Concurrency Transparency: It hides the fact that the resource
may be shared by several competitive users. Example, two
independent users may each have stored their file on the same
server and may be accessing the same table in a shared
database. In such cases, it is important that each user doesn’t
notice that the others are making use of the same resource.

7) Failure Transparency: Hides failure and recovery of the
resources. It is the most difficult task of a distributed system and
is even impossible when certain apparently realistic
assumptions are made. Example: A user cannot distinguish
between a very slow or dead resource. Same error message
come when a server is down or when the network is overloaded
of when the connection from the client side is lost. So here, the
user is unable to understand what has to be done, either the
user should wait for the network to clear up, or try again later
when the server is working again.

8) Persistence Transparency: It hides if the resource is in
memory or disk. Example, Object oriented database provides
facilities for directly invoking methods on storage objects. First
the database server copies the object states from the disk i.e.
main memory performs the operation and writes the state back
to the disk. The user does not know that the server is moving
between primary and secondary memory.

Persistence Hide whether a (software) resource is in
memory or on disk

Transparency Description

Access
Hide differences in data representation and how
a resource is accessed

Location Hide where a resource is located

Migration
Hide that a resource may move to another
location

Relocation
Hide that a resource may be moved to another
location while in use

Replication
Hide that a resource may be shared by several
competitive users

Concurrency
Hide that a resource may be shared by several
competitive users

Failure Hide the failure and recovery of a resource

17

Summary of the transparencies

In a distributed system, multiple users who are spatially
separated use the system concurrently. In such a duration, it is
economical to share the system resources (hardware or software)
among the concurrently executing user processes. However since
the number of available resources in a computing system is
restricted, one user process must necessarily influence the action
of other concurrently executing user processes, as it competes for
resources. For example, concurrent updates to the same file by
two different processes should be prevented. Concurrency
transparency means that each user has a feeling that he or she is
the sole user of the system and other users do not exist in the
system. For providing concurrency transparency, the resource
sharing mechanisms of the distributed operating system must have
the following four properties :

1. An event-ordering property ensures that all access requests to
various system resources are properly ordered to provide a
consistent view to all users of the system.

2. A mutual-exclusion property ensures that at any time at most
one process accesses a shared resource, which must not be
used simultaneously by multiple processes if program operation
is to be correct.

3. A no-starvation property ensures that if every process that is
granted a resource, which must not be used simultaneously by
multiple processes, eventually releases it, every request for that
resource is eventually granted.

4. A no-deadlock property ensures that a situation will never occur
in which competing processes prevent their mutual progress
even though no single one requests more resources than
available in the system.

2.3 PERFORMANCE TRANSPARENCY

The aim of performance transparency is to allow the system
to be automatically reconfigured to improve performance, as loads
vary dynamically in the system. As far as practicable, a situation in
which one processor of the system is overloaded with jobs while
another processor is idle should not be allowed to occur. That is,
the processing capability of the system should be uniformly
distributed among the currently available jobs in the system.

This requirements calls for the support of intelligent resource
allocation and process migration facilities in distributed operating
systems.

18

2.4 SCALING TRANSPARENCY

The aim of scaling transparency is to allow the system to
expand in scale without disrupting the activities of the users. This
requirement calls for open-system architecture and the use of
scalable algorithms for designing the distributed operating system
components.

2.5 RELIABILITY

In general, distributed systems are expected to be more
reliable than centralized systems due to the existence of multiple
instances of resources. However, the existence of multiple
instances of the resources alone cannot increase the system’s
reliability. Rather, the distributed operating system, which manages
these resources must be designed properly to increase the
system’s reliability by taking full advantage of this characteristic
feature of a distributed system.

A fault is a mechanical or algorithmic defect that may
generate an error. A fault in a system causes system failure.
Depending on the manner in which a failed system behaves,
system failures are of two types – fail stop [Schlichting and
Schneider 1983] and Byzantine [Lamport et al. 1982]. In the case
of fail-step failure, the system stops functioning after changing to a
state in which its failure can be detected. On the other hand, in the
case of Byzantine failure, the system continues to function but
produces wrong results. Undetected software bugs often cause
Byzantine failure of a system. Obviously, Byzantine failures are
much more difficult to deal with than fail-stop failures.

For higher reliability, the fault-handling mechanisms of a
distributed operating system must be designed properly to avoid
faults, to tolerate faults, and to detect and recover form faults.
Commonly used methods for dealing with these issues are briefly
described text.

2.6 FAULT AVOIDANCE

Fault avoidance deals with designing the components of the
system in such a way that the occurrence of faults in minimized.
Conservative design practice such as using high reliability
components are often employed for improving the system’s
reliability based on the idea of fault avoidance. Although a
distributed operating system often has little or no role to play in
improving the fault avoidance capability of a hardware component,

19

the designers of the various software components of the distributed
operating system must test them thoroughly to make these
components highly reliable.

2.7 FAULT TOLERANCE

Fault tolerance is the ability of a system to continue
functioning in the event of partial system failure. The performance
of the system might be degraded due to partial failure, but
otherwise the system functions properly. Some of the important
concepts that may be used to improve the fault tolerance ability of a
distributed operating system are as follows :

1. Redundancy techniques : The basic idea behind redundancy
techniques is to avoid single points of failure by replicating
critical hardware and software components, so that if one of
them fails, the others can be used to continue. Obviously,
having two or more copies of a critical component makes it
possible, at least in principle, to continue operations in spite of
occasional partial failures. For example, a critical process can
be simultaneously executed on two nodes so that if one of the
two nodes fails, the execution of the process can be completed
at the other node. Similarly, a critical file may be replicated on
two or more storage devices for better reliability.

Notice that with redundancy techniques additional system
overhead is needed to maintain two or more copies of a
replicated resource and to keep all the copies of a resource
consistent. For example, if a file is replicated on two or more
nodes of a distributed system, additional disk storage space is
required and for correct functioning, it is often necessary that all
the copies of the file are mutually consistent. In general, the
larger is the number of copies kept, the better is the reliability
but the incurred overhead involved. Therefore, a distributed
operating system must be designed to maintain a proper
balance between the degree of reliability and the incurred
overhead. This raises an important question : How much
replication is enough? For an answer to this question, note that
a system is said to be k-fault tolerant if it can continue to
function even in the event of the failure of k components
[Cristian 1991, Nelson 1990]. Therefore, if the system is to be
designed to tolerance k fail – stop failures, k + 1 replicas are
needed. If k replicas are lost due to failures, the remaining one
replica can be used for continued functioning of the system. On
the other hand, if the system is to be designed to tolerance k
Byzantine failures, a minimum of 2k + 1 replicas are needed.
This is because a voting mechanism can be used to believe the

20

majority k + 1 of the replicas when k replicas behave
abnormally.

Another application of redundancy technique is in the design of
a stable storage device, which is a virtual storage device that
can even withstand transient I/O faults and decay of the storage
media. The reliability of a critical file may be improved by
storing it on a stable storage device.

2. Distributed control: For better reliability, many of the particular
algorithms or protocols used in a distributed operating system
must employ a distributed control mechanism to avoid single
points of failure. For example, a highly available distributed file
system should have multiple and independent file servers
controlling multiple and independent storage devices. In
addition to file servers, a distributed control technique could also
be used for name servers, scheduling algorithms, and other
executive control functions. It is important to note here that
when multiple distributed servers are used in a distributed
system to provide a particular type of service, the servers must
be independent. That is, the design must not require
simultaneous functioning of the servers; otherwise, the reliability
will become worse instead of getting better. Distributed control
mechanisms are described throughout this book.

2.8 FAULT DETECTION AND RECOVERY

The faulty detection and recovery method of improving
reliability deals with the use of hardware and software mechanisms
to determine the occurrence of a failure and then to correct the
system to a state acceptable for continued operation. Some of the
commonly used techniques for implementing this method in a
distributed operating system are as follows.

1. Atomic transactions : An atomic transaction (or just
transaction for shore) is a computation consisting of a collection
of operation that take place indivisibly in the presence of failures
and concurrent computations. That is, either all of the
operations are performed successfully or none of their effects
prevails, other processes executing concurrently cannot modify
or observe intermediate states of the computation.
Transactions help to preserve the consistency of a set of shared
date objects (e.g. files) in the face of failures and concurrent
access. They make crash recovery much easier, because
transactions can only end in two states : Either all the
operations of the transaction are performed or none of the
operations of the transaction is performed.

21

In a system with transaction facility, if a process halts
unexpectedly due to a hardware error before a transaction is
completed, the system subsequently restores any data objects
that were undergoing modification to their original states. Notice
that if a system does not support a transaction mechanism,
unexpected failure of a process during the processing of an
operation may leave the data objects that were undergoing
modification in an inconsistent state. Therefore, without
transaction facility, it may be difficult or even impossible in some
cases to roll back (recover) the data objects from their current
inconsistent states to their original states.

2. Stateless servers: The client-server model is frequently used in
distributed systems to service user requests. In this model, a
server may be implemented by using any one of the following
two service paradigms – stateful or stateless. The two
paradigms are distinguished by one aspect of the client – server
relationship, whether or not the history of the serviced requests
between a client and a server affects the execution of the next
service request. The stateful approach does depend on the
history of the serviced requests, but the stateless approach
does not depend on it. Stateless servers have a distinct
advantage over stateful servers in the event of a failure. That is,
the stateless service paradigm makes crash recovery very easy
because no client state information is maintained by the server.
On the other hand, the stateful service paradigm requires
complex crash recovery procedures. Both the client and server
need to reliably detect crashes. The server needs to detect
client crashes so that it can discard any state it is holding for the
client, and the client must detect server crashes so that it can
perform necessary error – handling activities. Although stateful
service becomes necessary in some cases, to simplify the
failure detection and recovery actions, the stateless service
paradigm must be used, wherever possible.

3. Acknowledgments and timeout-based retransmission of
messages. In a distributed system, events such as a node
crash or a communication link failure may interrupt a
communication that was in progress between two processes,
resulting in the loss of a message. Therefore, a reliable
interprocess communication mechanism must have ways to
detect lost messages so that they can be retransmitted.
Handling of lost messages usually involves return of
acknowledgment messages and retransmissions on the basis of
timeouts. That is, the receiver must return an acknowledgment
message for every message received, and if the sender does
not receive any acknowledgement for a message within a fixed
timeout period, it assumes that the message was lost and

22

retransmits the message. A problem associated with this
approach is that of duplicate message. Duplicates messages
may be sent in the event of failures or because of timeouts.
Therefore, a reliable interprocess communication mechanism
should also be capable of detecting and handling duplicate
messages. Handling of duplicate messages usually involves a
mechanism for automatically generating and assigning
appropriate sequence numbers to messages. Use of
acknowledgement messages, timeout-based retransmissions of
messages, and handling of duplicate request messages for
reliable communication.

The mechanisms described above may be employed to
create a very reliable distributed system. However, the main
drawback of increased system reliability is potential loss of
execution time efficiency due to the extra overhead involved in
these techniques. For many systems it is just too costly to
incorporate a large number of reliability mechanisms. Therefore,
the major challenge for distributed operating system designers is to
integrate these mechanisms in a cost-effective manner for
producing a reliable system.

2.9 FLEXIBILITY

Another important issue in the design of distributed operating
systems is flexibility. Flexibility is the most important features for
open distributed systems. The design of a distributed operating
system should be flexible due to the following reasons :

1. Ease of modification : From the experience of system
designers, it has been found that some parts of the design often
need to be replaced / modified either because some bug is
detected in the design or because the design is no longer
suitable for the changed system environment or new-user
requirements. Therefore, it should be easy to incorporate
changes in the system in a user-transparent manner or with
minimum interruption caused to the users.

2. Ease of enhancement : In every system, new functionalities
have to be added from time to time it more powerful and easy to
use. Therefore, it should be easy to add new services to the
system. Furthermore, if a group of users do not like the style in
which a particular service is provided by the operating system,
they should have the flexibility to add and use their own service
that works in the style with which the users of that group are
more familiar and feel more comfortable.

23

The most important design factor that influences the
flexibility of a distributed operating system is the model used for
designing its kernel. The kernel of an operating system is its
central controlling part that provides basic system facilities. It
operates in a separate address space that is inaccessible to user
processes. It is the only part of an operating system that a user
cannot replace or modify. We saw that in the case of a distributed
operating system identical kernels are run on all the nodes of the
distributed system.

The two commonly used models for kernel design in
distributed operating systems are the monolithic kernel and the
microkernel. In the monolithic kernel model, most operating system
services such as process management, memory management,
device management, file management, name management, and
inter-process communication are provided by the kernel. As a
result, the kernel has a large, monolithic structure. Many
distributed operating systems that are extensions or limitations of
the UNIX operating system use the monolithic kernel model. This
is mainly because UNIX itself has a large, monolithic kernel.

On the other hand, in the microkernel model, the main goal
is to keep the kernel as small as possible. Therefore, in this model,
the kernel is a very small nucleus of software that provides only the
minimal facilities necessary for implementing additional operating
system services. The only services provided by the kernel in this
model are inter-process communication low level device
management, a limited amount of low-level process management
and some memory management. All other operating system
services, such as file management, name management, additional
process, and memory management activities and much system call
handling are implemented as user-level server processes. Each
server process has its own address space and can be programmed
separately.

As compared to the monolithic kernel model, the microkernel
model has several advantages. In the monolithic kernel model, the
large size of the kernel reduces the overall flexibility and
configurability of the resulting operating system. On the other
hand, the resulting operating system of the microkernel model is
highly modular in nature. Due to this characteristic feature, the
operating system of the microkernel model is easy to design,
implement, and install. Moreover, since most of the services are
implemented as user-level server processes, it is also easy to
modify the design or add new services.

24

In spite of its potential performance cost, the microkernel
model is being preferred for the design of modern distributed
operating systems. The two main reasons for this are as follows.

1. The advantages of the microkernel model more than
compensate for the performance cost. Notice that the situation
here is very similar to the one that caused high level
programming languages to be preferred to assembly languages.
In spite of the better performance of programs written in
assembly languages, most programs are written in high-level
languages due to the advantages of ease of design,
maintenance, and portability. Similarly, the flexibility
advantages of the microkernel model previously described more
than outweigh its small performance penalty.

2. Some experimental results have shown that although in theory
the microkernel model seems to have poorer performance than
the monolithic kernel model, this is not true in practice. This is
because other factors tend to dominate, and the small overhead
involved in exchanging messages is usually negligible.

2.10 PERFORMANCE

If a distributed system is to be used its performance must be
at least as good as a centralized system. That is, when a particular
application is run on a distributed system, its overall performance
should be better than or at least equal to that of running the same
application on a single processor system. However, to achieve his
goal, it is important that the various components of the operating
system of a distributed system be designed properly; otherwise, the
overall performance of the distributed system may turn out to be
worse than a centralized system. Some design principles
considered useful for better performance are as follows :

1. Batch if possible, Batching often helps in improving performance
greatly. For example, transfer of data across the network in
large chunks rather than as individual pages is much more
efficient. Similarly, piggybacking of acknowledgement of
previous messages with the next message during a series of
messages exchanged between two communicating entities also
improves performance.

2. Cache whenever possible : Caching of data at clients’ sites
frequently improves overall system performance because it
makes data available wherever it is being currently used, thus
saving a large amount of computing time and network

25

bandwidth. In addition, caching reduces contention on
centralized resources.

3. Minimize copying of data : Data copying overhead (e.g. moving
data in and out of buffers) involves a substantial CPU cost of
many operations. For example, while being transferred from its
sender to its receiver, a message data may take the following
path on the sending side :

(a) From sender’s stack to its message buffer

(b) From the message buffer in the sender’s address space to
the message buffer in the kernel’s address space

(c) Finally, from the kernel to the network interface board

On the receiving side, the data probably takes a similar path in
the reverse direction. Therefore, in this case, a total of six copy
operations are involved in the message transfer operation.
Similarly, in several systems, the data copying overhead is also
large for read and write operations on block I/O devices.
Therefore, for better performance, it is desirable to avoid
copying of data, although this is not always simple to achieve.
Making optimal use of memory management often helps in
eliminating much data movement between the kernel, block I/O
devices, clients, and servers.

4. Minimize network traffic : System performance may also be
improved by reducing internode communication costs. For
example, accesses to remote resources require communication,
possibly through intermediate nodes. Therefore, migrating a
process closer to the resources it is using most heavily may be
helpful in reducing network traffic in the system if the decreased
cost of accessing its favorite resource offsets the possible
increased post of accessing its less favored ones. Another way
to reduce network traffic is to use the process migration facility
to cluster two or more processes that frequently communicate
with each other on the same node of the system. Avoiding the
collection of global state information for making some decision
also helps in reducing network traffic.

5. Take advantage of fine-grain parallelism for multiprocessing.
Performance can also be improved by taking advantage of fine-
giam parallelism for multiprocessing. For example, threads are
often used for structuring server processes. Servers structured
as a group of threads can operate efficiently, because they can
simultaneously service requests from several clients. Fine-
grained concurrency control of simultaneous accesses by

26

multiple processes, to a shared resource is another example of
application of this principle for better performance.

Throughout the book we will come across the use of these
design principles in the design of the various distributed operating
system components.

2.11 SCALABILITY

Scalability refers to the capability of a system to adapt to
increased service load. It is inevitable that a distributed system will
grow with time since it is very common to add new machines or an
entire subnetwork to the system to take care of increased workload
or organizational changes in a company. Therefore, a distributed
operating system should be designed to easily cope with the growth
of nodes and users in the system. That is, such growth should not
cause serious disruption of service or significant loss of
performance to users. Some guiding principles for designing
scalable distributed systems are as follows :

1. Avoid centralized entities : In the design of a distributed
operating system, use of centralized entities such as a single
central file server or a single database for the entire system
makes the distributed system non-scalable due to the following
reasons :

Security :

In order that the users can trust the system and rely on it, the
various resources of a computer system must be protected against
destruction and unauthorized access. Enforcing security in a
distributed system is more difficult than in a centralized system
because of the lack of a single point of control and the use of
insecure networks for data communication. In a centralized
system, all users are authenticated by the system at login time, and
the system can easily check whether a user is authorized to
perform the requested operation on an accessed resource. In a
distributed system, however, since the client – server model is often
used for requesting and providing services, when a client sends a
request message to a server, the server must have some way of
knowing who is the client. This is not so simple as it might appear
because any client identification field in the message cannot be
trusted. This is because an intruder (a person or program trying to
obtain unauthorized access to system resources) may pretend to
be an authorized client or may change the message contents
during transmission. Therefore, as compared to a centralized
system, enforcement of security in a distributed system has the
following additional requirements :

27

1. It should be possible for the sender of a message to know that
the message was received by the intended receiver.

2. It should be possible for the receiver of a message to know that
the message was sent by the genuine sender.

3. It should be possible for both the sender and receiver of a
message to be guaranteed that the contents of the message
were not changed while it was in transfer.

Cryptography is the only known practical method for dealing
with these security aspects of a distributed system. In this method
comprehension of private information is prevented by encrypting
the information, which can then be decrypted only by authorized
users.

Another guiding principle for security is that a system whose
security depends on the integrity of the fewest possible entities is
more likely to remain secure as it grows. For example, it is much
simpler to ensure security based on the integrity of the much
smaller number of servers rather than trusting thousands of clients.
In this case, it is sufficient to only ensure the physical security of
these servers and the software they run.

Exercise:

1) Explain the various transparencies of a distributed system

2) How are location, relocation and migration transparencies
different from each other. Explain with examples.

3) Explain the flexibility of a DS.

4) Discuss the security aspects of a DS.

28

3

REMOTE PROCEDURE CALLS

Unit Structure:

3.1 Introduction to RPC

3.2 Transparency of RPC

3.3 Implementing RPC mechanism

3.4 Stub Generation

3.5 RPC Messages

3.6 Marshaling Arguments and Results

3.7 Server Management

3.1 INTRODUCTION TO RPC

 A remote procedure call (RPC) is an inter-process
communication that allows a computer program to cause a
procedure to execute in another address space (commonly
on another computer on a shared network) without the
programmer explicitly coding the details for this remote
interaction.

 It further aims at hiding most of the intricacies of message
passing and is idle for client-server application.

 RPC allows programs to call procedures located on other
machines. But the procedures ‘send’ and ‘receive’ do not
conceal the communication which leads to achieving access
transparence in distributed systems.

 Example: when process A calls a procedure on B, the calling
process on A is suspended and the execution of the called
procedure takes place. (PS: function, method, procedure
difference, stub, 5 state process model definition)

 Information can be transported in the form of parameters
and can come back in procedure result. No message
passing is visible to the programmer. As calling and called
procedures exist on different machines, they execute in

29

different address spaces, the parameters and result should
be identical and if machines crash during communication, it
causes problems.

3.1.1 RPC Operations:

1) Conventional procedure call
For a call of a program, an empty stack is present to make the

call, the caller pushes the parameters onto the stack (last one first
order). After the read has finished running, it puts the return values
in a register and removes the return address and transfers controls
back to the caller. Parameters can be called by value or reference.

 Call by Value: Here the parameters are copied into the
stack. The value parameter is just an initialized local
variable. The called procedure may modify the variable, but
such changes do not affect the original value at the calling
side.

 Call by reference: It is a pointer to the variable. In the call to
Read, the second parameter is a reference parameter. It
does not modify the array in the calling procedure.

 Call-by-copy: Another parameter passing mechanism exists
along with the above two, its called call-by-copy or Restore.
Here the caller copies the variable to the stack and then
copies the variable to the stack and then copies it back after
the call, overwriting the caller’s original values. The decision
of which parameter passing mechanism to use is normally
made by the language designers and is a fixed property of
the language. Sometimes it depends on the data type being
passed.

2) Client and Server Stubs
 A stub in distributed computing is a piece of code used for

converting parameters passed during a Remote Procedure
Call.

 The main idea of an RPC is to allow a local computer (client)
to remotely call procedures on a remote computer (server).
The client and server use different address spaces, so
conversion of parameters used in a function call have to be
performed; otherwise the values of those parameters could
not be used, because of pointers to the computer's memory
pointing to different data on each machine.

 The client and server may also use different data
representations even for simple parameters. Stubs are used
to perform the conversion of the parameters, so a Remote

30

Function Call looks like a local function call for the remote
computer.

For transparency of RPC, the calling procedure should not
know that the called procedure is executing on a different
machine.

Figure 3.1: Principle of RPC between a client and server
program.

 Client Stub: Used when read is a remote procedure. Client
stub is put into a library and is called using a calling
sequence. It calls for the local operating system. It does not
ask for the local operating system to give data, it asks the
server and then blocks itself till the reply comes.

 Server Stub: when a message arrives, it directly goes to the
server stub. Server stub has the same functions as the client
stub. The stub here unpacks the parameters from the
message and then calls the server procedure in the usual
way.

 Summary of the process:
1) The client procedure calls the client stub in the normal

way.
2) The client stub builds a message and calls the local

operating system.
3) The client's as sends the message to the remote as.
4) The remote as gives the message to the server stub.
5) The server stub unpacks the parameters and calls the

server.
6) The server does the work and returns the result to the

stub.
7) The server stub packs it in a message and calls its local

as.

31

8) The server's as sends the message to the client's as.
9) The client's as gives the message to the client stub.
10)The stub unpacks the result and returns to the client.

3.2 TRANSPARENCY OF RPC

A major issue in the design of an RPC facility is its
transparency property. A transparent RPC mechanism is one in
which local procedures and remote procedures are (effectively)
indistinguishable to programmers. This requires the following two
types of transparencies:

1. Syntactic transparency means that a remote procedures call
should have exactly the same syntax as a local procedure call.

2. Semantic transparency means that the semantics of a remote
procedure call are identical to those of a local procedure call.

It is not very difficult to achieve syntactic transparency of an
RPC mechanism, and we have seen that the semantics of remote
procedure calls are also analogous to that of local procedure calls
for most parts :

 The calling process is suspended until the called procedure
returns.

 The caller can pass arguments to the called procedure (remote
procedure).

 The called procedure (remote procedure) can return results to
the caller.

Unfortunately, achieving exactly the same semantics for
remote procedure calls as for local procedure calls is close to
impossible. This is mainly because of the following differences
between remote procedure calls and local procedure calls.

1. Unlike local procedure calls, with remote procedure calls the
called procedure is executed in an address space that is disjoint
from the calling program’s address space. Due to this reason,
the called (remote) procedure cannot have access to any
variables or data values in the calling program’s environment.
Thus in the absence of shared memory, it is meaningless to
pass addresses in arguments, making call-by-reference pointers
highly unattractive. Similarly, it is meaningless to pass
argument values containing pointer structures (e.g., linked lists),
since pointers are normally represented by memory addresses.

32

According to Bal et al. [1989] dereferencing a pointer passed by
the caller has to be done at the caller’s side, which implies extra
communication. An alternative implementation is to send a
copy of the value pointed at the receiver, but this has subtly
different semantics and may be difficult to implement if the
pointer points into the middle of a complex data structure, such
as a directed graph. Similarly, call by reference can be replaced
by copy in / copy out, but at the cost of slightly different
semantics.

2. Remote procedure calls are more vulnerable to failure than local
procedure calls, since they involve two different processes and
possibly a network and two different computers. Therefore
programs that make use of remote procedure calls must have
the capability of handling even those errors that cannot occur in
local procedure calls. The need for the ability to take care of the
possibility of processor crashes and communication problems of
a network makes it even more difficult to obtain the same
semantics for remote procedure calls as for local procedure
calls.

3. Remote procedure calls consume much more time (100 – 1000
times more) than local procedure calls. This is mainly due to
the involvement of a communication network in RPCs.
Therefore applications using RPCs must also have the
capability to handle the long delays that may possibly occur due
to network congestion.

Because of these difficulties in achieving normal call
semantics for remote procedure calls, some researchers feel that
the RPC facility should be nontransparent. For example, Hamilton
[1984] argues that remote procedures should be treated differently
from local procedures from the start, resulting in a nontransparent
RPC mechanism. Similarly, the designers of RPC were of the
opinion that although the RPC system should hide low-level details
of message passing from the users, failures and long delays should
not be hidden from the caller. That is, the caller should have the
flexibility of handling failures and long delays in an application –
dependent manner. In conclusion, although in most environments
total semantic transparency is impossible, enough can be done to
ensure that distributed application programmers feel comfortable.

3.3 IMPLEMENTING RPC MECHANISM

To achieve the goal of semantic transparency, the
implementation of an RPC mechanism is based on the concept of
stubs, which provide a perfectly normal (local) procedure call

33

abstraction by concealing from programs the interface to the
underlying RPC system. We saw that an RPC involves a client
process and a server process. Therefore, to conceal the interface
of the underlying RPC system from both the client and server
processes, a separate stub procedure is associated with each of
the two processes. Moreover, to hide the existence and functional
details of the underlying network, an RPC communication package
(known as RPCRuntime) is used on both the client and server
sides. Thus, implementation of an RPC mechanism usually
involves the following five elements of program [Birrell and Nelson
1984].

1. The client

2. The client stub

3. The RPCRuntime

4. The server stub

5. The server

The interaction between them is shown in Figure 4.2. The
client, the client stub, and one instance of RPCRuntime execute on
the client machine, while the server, the server stub, and another
instance of RPCRuntime execute on the server machine. The job
of each of these elements is described below.

34

Return Call

Client stub

Unpack Pack

Receive Send
Wait

Client

Client machine

Call packet

RPCRuntime

ReturnCall

Server stub

Unpack Pack

Receive Send

Server

Server machine

RPCRuntime

Execute

Result packet

Fig. 3.2 : Implementation of RPC mechanism

Client :

The client is a user process that intitiates a remote
procedure call. To make a remote procedure call, the client makes
a perfectly normal local call that invokes a corresponding procedure
in the client stub.

Client Stub :

The client stub is responsible for carrying out the following two
tasks :

 On receipt of a call request from the client, it packs a
specification of the target procedure and the arguments into a

35

message and then asks the local RPCRuntime to send it to the
server stub.

 On receipt of the result of procedure execution, it unpacks the
result and passes it to the client.

RPCRuntime :

The RPCRuntime handles transmission of messages across
the network between client and server machines. It is responsible
for retransmissions, acknowledgements, packet routing, and
encryption. The RPCRuntime on the client machine receives the
call request message from the client stub and sends it to the server
machine. It also receives the message containing the result of
procedure execution from the server machine and passes it to the
client stub.

On the other hand, the RPCRuntime on the server machine
receives the message containing the result of procedure execution
from the server stub and sends it to the client machine. It also
receives the call request message from the client machine and
passes it to the server stub.

Server Stub :

The job of the server stub is very similar to that of the client
stub. It performs the following two tasks :

 On the receipt of the call request message from the local
RPCRuntime, the server stub unpacks it and makes a perfectly
normal call to invoke the appropriate procedure in the server.

 On receipt of the result of procedure execution from the server,
the server stub packs the result into a message and then asks
the local RPCRuntime to send it to the client stub.

Server :

On receiving a call request from the server stub, the server
executes the appropriate procedure and returns the result of
procedure execution to the server stub.

Note here that the beauty of the whole scheme is the total
ignorance on the part of the client that the work was done remotely
instead of by the local kernel. When the client gets control
following the procedure call that it made, all it knows is that the
results of the procedure execution are available to it. Therefore, as
far as the client is concerned, remote services are accessed by
making ordinary (local) procedure calls, not by using the send and
receive primitives. All the details of the message passing are

36

hidden in the client and server stubs, making the steps involved in
message passing invisible to both the client and the server.

3.4 STUB GENERATION

Stubs can be generated in one of the following two ways :

1. Manually : In this method, the RPC implementor provides a set
of translation functions from which a user can construct his or
her own stubs. This method is simple to implement and can
handle very complex parameter types.

2. Automatically : This is the more commonly used method for
stub generation. It uses Interface Definition Language (IDL) that
is used to define the interface between a client and a server. An
interface definition is mainly a list of procedure names
supported by the interface, together with the types of their
arguments and results. This is sufficient information for the
client and server to independently perform compile-time type
checking and to generate appropriate calling sequences.
However, an interface definition also contains other information
that helps RPC reduce data storage and the amount of data
transferred over the network. For example, an interface
definition has information to indicate whether each argument is
input, output, or both – only input arguments need be copied
from client to server and only output arguments need be copied
from server to client. Similarly, an interface definition also has
information about type definitions, enumerated types, and
defined constants that each side uses to manipulate data from
RPC calls making it unnecessary for both the client and the
server to store this information separately.

A server program that implements procedures in an interface
is said to export the interface and a client program that calls
procedures from an interface is said to import the interface. When
writing a distributed application, a programmer first writes an
interface definition using the IDL. He or she can then write the
client program that imports the interface and the server program
that exports the interface. The interface definition is processed
using an IDL computer to generate components that can be
combined with client and server programs, without making any
changes to the existing compliers. In particular, from an interface
definition, an IDL complier generate a client stub procedure and a
server such procedure for each procedure is the interface, the
appropriate marshaling and un-marshaling operations (described
later in this chapter) in each stub procedure, and a header file that
supports the data types in the interface definition. The header file

37

is included in the source files of both the client and server
programs, the client stub procedures are complied and linked with
the client program, and the server stub procedures are compiled
and linked with the server program. An IDL compiler an be
designed to process interface definitions for use with different
languages, enabling clients and servers written in different
languages, to communicate by using remote procedure calls.

3.5 RPC MESSAGES

Any remote procedure call involves a client process and a
server process that are possibly located on different computers.
The mode of interaction between the client and server is that the
client asks the server to execute a remote procedure and the server
returns the result of execution of the concerned procedure to the
client. Based on this mode of interaction, the two types of
messages involved in the implementation of an RPC system are as
follows :

1. Call messages that are sent by the client to the server for
requesting execution of a particular remote procedure.

2. Reply messages that are sent by the server to the client for
returning the result of remote procedure execution.

The protocol of the concerned RPC system defines the
format of these two types of message. Normally, an RPC protocol
is independent of transport protocols. That is, RPC does not care
how a message is passed from one process to another. Therefore
an RPC protocol deals only with the specification and interpretation
of these two types of messages.

Call Messages :

Since a call message is used to request execution of a
particular remote procedure the two basic components necessary
in a call message are as follows :

1. The identification information of the remote procedure to be
executed.

2. The arguments necessary for the execution of the procedure.

In addition to these two fields, a call message normally has the
following fields.

3. A message identification field that consists of a sequence
number. This field is useful of two ways – for identifying lost

38

messages and duplicate messages in case of system failures
and for properly matching reply messages to outstanding call
messages, especially in those cases when the replies of several
outstanding call messages arrive out of order.

4. A message type field that is used to distinguish call messages
from reply messages. For example, in an RPC system, this field
may be set to 0 for all call messages and set to 1 for all reply
messages.

5. A client identification field that may be used for two purposes –
to allow the server of the RPC to identify the client to whom the
reply message has to be returned and to allow the server to
check the authentication of the client process for executing the
concerned procedure.

Thus, a typical RPC all message format may be of the form
shown in Figure 3.2.

Reply Messages :

When the server of an RPC receives a call message from a
client, it could be faced with one of the following conditions. In the
list below, it is assumed for a particular condition that no problem
was detected by the server for any of the previously listed
conditions :

Message
Identifier

Reply
status

(successful)
Resulttype

Message

(a)

Message
Identifier type

Message Reply
status

(unsuccessful)

Reason for
failure

(b)

Fig. 3.3 A typical RPC reply message format : (a) a successful
reply message format; (b) an unsuccessful reply message

format

39

3.6 MARSHALING ARGUMENTS AND RESULTS

Implementation of remote procedure calls involves the
transfer of arguments from the client process to the server process
and the transfer of results from the server process to the client
process. These arguments and results are basically language-level
data structures (program objects), which are transferred in the form
of message data between the two computers involved in the call.
The transfer of message data between two computers requires
encoding and decoding of the message data. For RPC this
operation is known as marshaling and basically involves the
following actions.

1. Taking the arguments (of a client process) or the result (of a
server process) that will form the message data to be set to the
remote process.

2. Encoding the message data of step 1 above on the sender’s
computer. This encoding process involves the conversion of
program objects into a stream form that is suitable for
transmission and placing them into a message buffer.

3. Decoding of the message data on the receiver’s computer. This
decoding process involves the reconstruction of program
objects from the message data that was received in stream
form.

In order that encoding and decoding of an RPC message
can be performed successfully, the order and the representation
method (tagged or untagged) used to marshal arguments and
results must be known to both the client and the server of the RPC.
This provides a degree of type safety between a client a server
because the server will not accept a call from a client until the client
uses the same interface definition as the server. Type safety is of
particular importance to servers since it allows them to survive
against corrupt call requests.

The marshaling process must reflect the structure of all
types of program objects used in the concerned language. These
include primitive types, structured types, and user defined types.
Marshaling procedures may be classified into two groups :

1. Those provided as a part of the RPC software. Normally
marshaling procedures for scalar data types, together with
procedures to marshal compound types built from the scalar
ones, fall in this group.

40

2. Those that are defined by the users of the RPC system. This
group contains marshaling procedures for user – defined data
types and data types that include pointers. For example, in
Concurrent CLU, developed for use in the Cambridge
Distributed Computer System, for user-defined types, the type
definition must contain procedures for marshaling.

A good RPC system should always generate in-line
marshaling code for every remote call so that the users are relieved
of the burden of writing their own marshaling procedures.
However, practically it is difficult to achieve this goal because of the
unacceptable large amounts of code that may have to be generated
for handling all possible data types.

3.7 SERVER MANAGEMENT

In RPC based applications, two important issues that need
to be considered for every management are server implementation
and server creation.

Server Implementation :

Based on the style of implementation used, servers may be
of two types : stateful and stateless.

Stateful Servers :

A stateful server maintains clients’ state information from
one remote procedure call to the next. That is, in case of two
subsequent calls by a client to a stateful server, some state
information pertaining to the service performed for the client as a
result of the first call execution is stored by the server process.
These clients’ state information is subsequently used at the time of
executing the second call.

For example, let us consider a server for byte-stream files
that allows the following operations on files :

Open (filename, mode) : This operation is used to open a file
identified by filename in the specified mode. When the server
executes this operation, it creates an entry for this file in a file-table
that it uses for maintaining the file state information of all the open
files. The file state information normally consists of the identifier of
the file, the open mode, and the current position of a nonnegative
integer pointer, called the read write pointer. When a file is opened,
its read-write pointer is set to zero and the server returns to the
client a file identifier (fid), which is used by the client for subsequent
accesses to that file.

41

Read (fid, n, buffer) : This operation is used to get n bytes of data
from the file identified by fid into the buffer named buffer. When
the server executes this operation, it returns to the client n bytes of
file data starting from the byte currently addressed by the read –
write pointer and then increments the read – write pointer by n.

Write (fid, n, buffer) : On execution of this operation, the server
takes n bytes of data from the specified buffer, writes it into the file
identified by fid at the byte position currently addressed by the read
– write pointer, and then increments the read – write pointer by n.

Seek (fid, position) : This operation causes the server to change
the value of the read write pointer of the file identified by fid to the
new value specified as position.

Close (fid) : This statement causes the server to delete from its file
table the file state information of the file identified by fid.

The file server mentioned above is stateful because it
maintains the current state information for a file that has been
opened for use by a client. Therefore, as shown in Fig. 3.3, after
opening a file, if a client makes two subsequent Read (fig, 100,
buf), calls, the first call will return the first 100 bytes (bytes 0 – 99)
and the second call will return the next 100 bytes (bytes 100 – 199).

File table

fid Mode
R/W

pointer

Server process

Open (file name, mode)

Return (fid)

Read (fid, 100, buf)

Return (bytes 0 to 99)

Read (fid, 100, buf)

Return (bytes 100 to 199)

Client process

.

.

.
.
.
.

.

.

.

Fig. 3.3 An example of a stateful file server

To keep track of the current record position for each client that has
opened the file for accessing. Therefore to design an idempotent

42

interface for reading the next record from the file, it is important that
each client keeps track of its own current record position and the
server is made stateless, that is, no client state should be
maintained on the server side. Based on this idea, an idempotent
procedure for reading the next record from a sequential file is

ReadRecordN (Filename, N)

which returns the Nth record from the specified file. In this case,
the client has to correctly specify the value of n to get desired
record from the file.

However, not all non idempotent interfaces can be so easily
transformed to an idempotent form. For example, consider the
following procedure for appending a new record to the same
sequential file.

AppendRecord (Filename, Record)

It is clearly not idempotent since repeated execution will add further
copies of the same record to the file. This interface may be
converted into an idempotent interface by using the following two
procedures instead of the one defined above :

GetLastRecordNo (Filename)

WriteRecordN (Filename, Record, N)

The first procedure returns the record number of the last record
currently in the file, and the second procedure writes a record at
specified in the file. Now, for appending a record, the client will
have to use the following two procedures :

Last = GetLastRecordNo (Filename)

WriteRecordN (Filename, Record, Last)

For exactly-once semantics, the programmer is relieved of
the burden of implementing the server procedure in an idempotent
manner because the call semantics itself takes care of executing
the procedure only once. The implementation of exactly-once call
semantics is based on the use of timeouts, retransmissions, call
identifiers with the same identifier for repeated calls, a reply cache
associated with the callee.

43

Exercise:

1) What is the primary motivation for development of RPC?

2) What is the main difference between RPC model and an
ordinary procedure call model?

3) What is a stub? How are they generated? State their
functionality and purpose.

4) What are the issues in developing a transparent RPC
mechanism?

44

4
REMOTE PROCEDURE CALL

Unit Structure:

4.1 Communication Protocols for RPCs

4.2 Complicated RPCs

4.3 Client – Server Binding

4.4 Exception Handling

4.5 Security

4.6 Some Special Types of RPCs

4.7 Lightweight RPC

4.8 Optimizations for Better Performance

4.1 COMMUNICATION PROTOCOLS FOR RPCS

Different systems, developed on the basis of remote
procedure calls, have different IPC requirements. Based on the
needs of different systems, several communication protocols have
been proposed for use in RPCs. A brief description of these
protocols is given below.

Client Server

First RPC

Request message

Reply message

Reply acknowledgment message

Procedure
execution

Next RPC

Request message

Reply message

Reply acknowledgment message

Procedure
execution

Fig. 4.1 : The request / reply / acknowledge reply (RRA)
protocol

45

In the RRA protocol, there is a possibility that the
acknowledgement message may itself get lost. Therefore
implementation of the RRA protocol requires that the unique
message identifiers associated with request messages must be
ordered. Each reply message contains the message identifier of
the corresponding request message, and each acknowledgement
message also contains the name same message identifier. This
helps in matching a reply with its corresponding request and an
acknowledgement with its corresponding reply. A client
acknowledges a reply message only if it has received the replies to
all the requests previous to the request corresponding to this reply.
Thus an acknowledgement message is interpreted as
acknowledging the receipt of all reply messages corresponding to
the request messages with lower message identifiers. Therefore,
the loss of an acknowledgement message is harmless.

4.2 COMPLICATED RPCs

The following are the two types of RPCs as complicated :

1. RPCs involving long-duration calls or large gaps between
calls.

2. RPCs involving arguments and / or results that are too large
to fit in a signle datagram packet.

Different protocols are used for handling these two types of
complicated RPCs.

4.3 CLIENT – SERVER BINDING

How does a client locate a server ?

 Stubs are generated from a formal specification of a
server's interface:

 procedure names, signatures, in/out, version, etc.

 When server is initialized, it exports its interface by
registering at a binder program with a handle (e.g., ip
address and port)

 Upon a remote-procedure call, if client not-bound yet,
it imports interface from binder

 Advantages:

 location independence

 can balance load

 fault tolerance

 authentication, version validation

46

 Disadvantage:

 costly (first lookup)

 bottleneck, single-point of failure

It is necessary for a client to know the location of a server
before a RPC call can take place between them. The process by
which a client associated with a server so that calls can take place
is known as binding. Here the server exports its operations to
register its acceptance or availability to connect with the client. And
client imports their operations.

4.4 EXCEPTION HANDLING

We saw in Figure 4.1 that when a remote procedure cannot
be executed successfully, the server reports an error in the reply
message. An RPC also fails when a client cannot contact the
server of the RPC. An RPC system must have an effective
exception – handling mechanism for reporting such failures to
clients. One approach to do this is to define an exception condition
for each possible error type and have the corresponding exception
raised when an error of that type occurs, causing the exception-
handling procedure to be called and automatically executed in the
client’s environment. This approach can be used with those
programming languages that provide language constructs for
exception handling. Some such programming languages are ADA,
CLU, and Modula – 3. In C language, signal handlers can be used
for the purpose of exception handling.

However, not every language has an exception – handling
mechanism. For example, Pascal does not have such a
mechanism. RPC systems designed for use with such languages
generally use the method provided in conventional operating
systems for exception handling. One such method is to return a
well-known value to the process, making a system call to indicate
failure and to report the type of error by storing a suitable value in a
variable in the environment of the calling program. For example, in
UNIX the value – 1 is used to indicate failure, and the type of erro is
reported in the global variable erino. In an RPC, a return value
indicating an error is used both for errors due to failure to
communicate with the server and errors reported in the reply
message from the server. The details of the type of error is
reported by storing a suitable value in a global variable in the client
program. This approach suffers from two main drawbacks. First, it
requires the client to test every return value. Second, it is not
general enough because a return value used to indicate failure may
be a perfectly legal value to be returned by a procedure. For

47

example, if the value – 1 is used to indicate failure, this value is
also the return value of a procedure call with arguments – 5 and 4
to a procedure for getting the sum of two numbers.

4.5 SECURITY

Some implementations of RPC include facilities for client and
server authentication as well as for providing encryption – based
security for calls. For example, callers are given a guarantee of the
identity of the callee, and vice versa, by using the authentication
service of Grapevine. For full end-to-end encryption of calls and
results, the federal data encryption standard is used in. The
encryption techniques provide protection from eavesdropping (and
conceal pattern of data) and detect attempts at modification, replay,
or creation of calls.

In other implementations of RPC that do not include security
facilities, the arguments and results of RPC are readable by anyone
monitoring communications between the caller and the callee.
Therefore, in this case, if security is desired, the user must
implement his or her own authentication and data encryption
mechanisms. When designing an application, the user should
consider the following security issues related with the
communication of messages :

 Is the authentication of the server by the client required?

 Is the authentication of the client by the server required
when the result is returned?

 Is it all right if the arguments and results of the RPC are
accessible to users other than the caller and the callee?

These and other security issues are described in detail in

4.6 SOME SPECIAL TYPES OF RPCs

4.6.1 Callback RPC :

In the usual RPC protocol, the caller and callee processes
have a client – server relationship. Unlike this, the callback RPC
facilitates a peer-to-peer paradigm among the participating
processes. It allows a process to be both a client and a server.

Callback RPC facility is very useful in certain distributed
applications. For example, remotely processed interactive
applications that need user input from time to time or under special
conditions for further processing require this type of facility. In such

48

applications, the client process makes an RPC to the concerned
server process, and during procedure execution for the client, the
server process makes a callback RPC to the client process. The
client process takes necessary action based on the server’s
request and returns a reply for the call back RPC to the server
process. On receiving this reply, the server resumes the execution
of the procedure and finally returns the result of the initial call to the
client. Note that the server may make several callbacks to the
client before returning the result of the initial call to the client
process.

The ability for a server to call its client back is very important,
and care is needed in the design of RPC protocols to ensure that it
is possible. In particular, to provide callback RPC facility, the
following are necessary :

 Providing the server with the client’s handle

 Making the client process wait for the callback RPC

 Handling callback deadlocks

4.6.2 Commonly used methods to handle these issues are
described below.

Notation in one machine architecture and in 2’s complement
notation in another machine architecture. Floating-point
representations may also vary between two different machine
architectures. Therefore, an RPC system for a heterogeneous
environment must be designed to take care of such differences in
data representations between the architectures of client and server
machines of a procedure call.

1. Transport protocol : For better portability of applications, an
RPC system must be independent of the underlying network
transport protocol. This will allow distributed applications using
the RPC system to be run on different networks that use
different transport protocols.

2. Control protocol : For better portability of applications, an RPC
system must also be independent of the underlying network
control protocol that defines control information in each
transport packet to track the state of a call.

The most commonly used approach to deal with these types
of heterogeneity while designing an RPC system for a
heterogeneous environment is to delay the choices of data
representation, transport protocol, and control protocol until bind
time. In conventional RPC systems, all these decisions are made
when the RPC system is designed. That is, the binding mechanism

49

of an RPC system for a heterogeneous environment is considerably
richer in information than the binding mechanism used by a
conventional RPC system. It includes mechanisms for determining
which data conversion software (if any conversion is needed),
which transport protocol, and which control protocol should be used
between a specific client and server and returns the correct
procedures to the stubs as result parameters of the binding call.
These binding mechanism details are transparent to the users.
That is, application programs never directly access the component
structures of the binding mechanism; they deal with bindings only
as atomic types and acquire and discard them via the calls of the
RPC system.

4.7 LIGHTWEIGHT RPC

The Lightweight Remote Procedure Call (LRPC) was
introduced by Berhsad and integrated into the Taos operating
system of the DEC SRC Firefly microprocessor workstation. The
description below is based on the material in their paper.

Based on the size of the kernel, operating systems may be
broadly classified into two cateogies – monolithic – kernel operating
systems and microkernel operating systems. Monolithic – kernel
operating systems have a large, monolithic kernel that is insulated
from user programs by simple hardware boundaries. On the other
hand, in microkernel operating systems, a small kernel provides
only primitive operations and most of the services are provided by
user-level servers. The servers are usually implemented as
processes and can be programmed separately. Each server forms
a component of the operating system and usually has its own
address space. As compared to the monolithic – kernel approach,
in this approach services are provided less efficiently because the
various components of the operating system have to use some
form of IPC to communicate with each other. The advantages of
this approach include simplicity and flexibility. Due to modular
structure, microkernel operating systems are simple and easy to
design, implement, and maintain.

In the microkernel approach, when different components of
the operating system have their own address spaces, the address
space of each component is said to form a domain, and messages
are used for all interdomain communication. In this case, the
communication traffic in operating systems are of two types:

1. Cross-domain, which involves communication between domains
on the same machine.

2. Cross-machine, which involves communication between
domains located on separate machines.

50

The LRPC is a communication facility designed and
optimized for cross-domain communications.

Although conventional RPC systems can be used for both
cross-domain and cross machine communications. Bershad et al.
observed that the use of conventional RPC systems for cross-
domain communications, which dominate cross-machine
communications, incurs an unnecessarily high cost. This cost
leads system designers to coalesce weakly related components of
microkernel operating systems into a single domain, trading safety
and performance. Therefore, the basic advantages of using the
microkernel approach are not fully exploited. Based on these
observations, Bershad et al. designed the LRPC facility for cross-
domain communications, which has better performance than
conventional RPC systems. Nonetheless, LPRC is safe and
transparent and represents a viable communication alternative for
microkernel operating systems.

To achieve better performance than conventional RPC
systems, the four techniques described below are used by LRPC.

4.7.1 Simple Control Transfer :

Whenever possible, LRPC uses a control transfer
mechanism that is simpler than the used in conventional RPC
systems. For example, it uses a special threads scheduling
mechanism, called handoff scheduling for direct context switch from
the client thread to the server thread of an LRPC. In this
mechanism, when a client calls a server’s procedure, it provides the
server with an argument stack and its own thread of execution.
The call causes a trap to the kernel. The kernel validates the caller,
creates a call linkage, and dispatches the client’s thread directly to
the server domain, causing the server to start executing
immediately. When the called procedure completes, control and
results return through the kernel back to the point of the client’s call.
In contrast to this, is conventional RPC implementations, context
switching between the client and server threads of an RPC is slow
because the client thread and the server thread are fixed in their
own domains, signaling one another at a rendezvous, and the
critical domain transfer path. On the other hand, latency is reduced
by reducing context switching overhead by caching domains on idle
processors. This is basically a generalization of the idea of
decreasing operating system latency by caching recently blocked
threads on idle processors to reduce wake-up latency. Instead of
threads, LRPC caches domains so that any thread that needs to
run in the context of an idle domain can do so quickly, not just the
thread that ran there most recently.

51

It was found that LRPC achieves a factor-of-three
performance improvement over more traditional approaches. Thus
LRPC reduces the cost of cross-domain communication to nearly
the lower bound imposed by conventional hardware.

4.8 OPTIMIZATIONS FOR BETTER PERFORMANCE

As with any software design, performance is an issue in the
design of a distributed application. The description of LRPC shows
some optimizations that may be adopted for better performance of
distributed applications using RPC. Some other optimizations that
may also have significant payoff when adopted for designing RPC
based distributed applications are described below.

Concurrent Access to Multiple Servers :

Although one of the benefits of RPC is its synchronization
property, many distributed applications can benefit from concurrent
access to multiple servers. One of the following three approaches
may be used for providing this facility :

1. The use of threads in the implementation of a client process
where each thread can independently make remote procedure
calls to different servers. This method requires that the
addressing in the underlying protocol is rich enough to provide
correct routing of responses.

2. Another method is the use of the early reply. As shown in
Figure 3.5, in this method a call is split into two separate RPC
calls, one passing the parameters to the server and the other
requesting the result. In reply to the first call, the server returns
a tag that is sent back with the second call to match the call with
the correct result. The client decides the time delay between
the two calls and carries out other activities during this period,
possibly making several other RPC calls. A drawback of this
method is that the server must hold the result of a call until the
client makes a request for it. Therefore, if the request for results
is delayed, it may cause congestion or unnecessary overhead at
the server.

52

Client Server

Reply tag

Request result (tag)

procedureExecute

Call procedure (parameter)

Return (tag)

Reply (result)

Store (result)

Return (result)

Carry out other
activities

Fig. 4.2 : The early reply approach for providing the reality of
concurrent access to multiple servers

3. The third approach, known as the call buffering approach, was
proposed by Gimson [1985]. In this method, clients and servers
do not interact directly with each other. They interact indirectly
via a call buffer server. To make an RPC call, a client sends its
call request to the call buffer server, where the request
parameters together with the name of the server and the client
are buffered. The client can then perform other activities until it
needs the result of the RPC call. When the client reaches a
state in which it needs the result, it periodically polls the call
buffer server to see if the result of the call is available, and if so,
it recovers the result. On the server side, when a server is free,
it periodically polls the call buffer server to see if there is any call
for it. If so, it recovers the call request, executes it, and makes
a call back to the call buffer server to return the result of
execution to the call buffer server. The method is illustrated in
Figure 4.2

The Mercury communication system has a new data type
called promise that is created during an RPC call and is given a
type corresponding to those of the results and exceptions of the
remote procedure. When the results arrive, they are stores in the
appropriate promise from where the caller claims the results at a

53

time suitable to it. Therefore, after making a call, a caller can
continue with other work and subsequently pick up the results of
the call from the appropriate promise.

A promise is in one of two states – blocked or ready. It is in
a blocked state from the time of creation to the time the results of
the call arrive, whereupon it enters the ready state. A promise in
the ready state is immutable.

Exercise

1) The caller process of an RPC must wait for a reply from the
callee process after making a call. Explain how this can
actually be done.

2) How is optimization of RPC done to enhance the
performance?

3) Elaborate on Lightweight RPC.

4) List and explain the special RPC models.

54

5

DISTRIBUTED SHARED MEMORY

Unit Structure:

5.1 Consistency Models

5.3 Sequential Consistency Model

5.4 Causal Consistency Model

5.5 Reduction

5.6 Conventional

5.7 Replacement Strategy

5.8 Which Block to Replace

5.9 Where to place a replaced Block

5.10 Thrashing

5.11 Advantages of DSM

5.12 Simpler Abstruction

5.13 Better Portability of Distributed Application Programs

5.14 Better Performance of some applications

5.15 Flexible Communication Environment

5.1 CONSISTENCY MODELS

Consistency requirements vary from application to
application. A consistency model basically refers to the degree of
consistency that has to be maintained for the shared – memory
data for the memory to work correctly for a certain set of
applications. It is defined as a set of rules that applications must
obey if they want to DSM system to provide the degree of
consistency guaranteed by the consistency model. Several
consistency models have been proposed in the literature. Of these,
the main ones are described below.

It may be noted here that the investigation of new
consistency models is currently an active area of research. The
basic idea is to invent a consistency model that can allow
consistency requirements to be related to a greater degree than
existing consistency models, with the relaxation done in such a way
that a set of applications can function correctly. This helps in
improving the performance of these applications because better
concurrency can be achieved by relaxing the consistency

55

requirement. However, applications that depend on a stronger
consistency model may not perform correctly if executed in a
system that supports only a weaker consistency model. This is
because if a system supports the stronger consistency model, then
the weaker consistency model is automatically supported but the
converse is not true.

5.2 STRICT CONSISTENCY MODEL

The strict consistency model is the strongest form of memory
coherence, having the most stringent consistency requirement. A
shared-memory system is said to support the strict consistency
model if the value returned by a read operation on a memory
address is always the same as the value written by the most recent
write operation to that address, irrespective of the locations of the
processes performing the read and write operations. That is, all
writes instantaneously become visible to all processes.

Implementation of the strict consistency model requires the
existence of an absolute global time so that memory read / write
operations can be correctly ordered to make the meaning of “most
recent” clear. However, absolute synchronization of clocks of all
the nodes of a distributed system is not possible. Therefore, the
existence of an absolute global time in a distributed system is also
not possible. Consequently, implementation of the strict
consistency model for a DSM system is practically impossible.

5.3 SEQUENTIAL CONSISTENCY MODEL

The sequential consistency model was proposed Lamport
[1979]. A shared-memory system is said to support the sequential
consistency model if all processes see the same order of all
memory access operations on the shared memory. The exact
order in which the memory access operations are interleaved does

not matter. That is, if the three operations read 1r , write 1w ,

read 2r are preformed on a memory address in that order, any of

the orderings 1 1 2 1 2 1 1 1 2 1 2 1 2 1 1, , , , , , , , , , , , , , ,r w r r r w w r r w r r r r w

 2 1 1, ,r w r of the three operations is acceptable provided all

processes see the same ordering. If one process sees one of the
orderings of the three operations and another process sees a
different one, the memory is not a sequentially consistent memory.
Note here that the only acceptable ordering for a strictly consistent

memory is 1 1 2, ,r w r .

56

The consistency requirement of the sequential consistency
model is weaker than that of the strict consistency model because
the sequential consistency model does not guarantee that a read
operation on a particular memory address always return the same
value as written by the most recent write operation to that address.
As a consequence, with a sequentially consistent memory, running
a program twice may not give the same result in the absence of
explicit synchronization operations. This problem does not exist in
a strictly consistent memory.

A DSM system supporting the sequential consistency model
can be implemented by ensuring that no memory operation is
started until all the previous ones have been completed. A
sequentially consistent memory provides one-copy / single-copy
semantics because all the process sharing a memory location
always see exactly the same contents stored in it. This is the most
intuitively expected semantics for memory coherence. Therefore,
sequential consistency is acceptable by most applications.

5.4 CAUSAL CONSISTENCY MODEL

The causal consistency model, relaxes the requirement of
the sequential consistency model for better concurrency. Unlike
the sequential consistency model, in the causal consistency model,
all processes see only those memory reference operations in the
same (correct) order that are potentially causally related. Memory
reference operations that are not potentially causally related may
be seen by different processes in different orders. A memory
reference operation (Read / write) is said to be potentially causally
related to another memory reference operation if the first one might
have been influenced in any way by the second one. For example,
if a process performs a read operation followed by a write
operation, the write operation is potentially causally related to the
read operation because the computation of the value written may
have depended in some way on the value obtained by the read
operation. On the other hand, a write operation performed by one
process is not causally related to a write operation performed by
another process if the first process has not read either the value
written by the second process or any memory variable that was
directly or indirectly derived from the value written by the second
process.

A shared memory system is said to support the causal
consistency model if all write operations that are potentially causally
related are seen by all processes in the same (correct) order. Write
operations that are not potentially causally related may be seen by
different processes in different orders. Note that “correct order”

57

means that if a write operation 2w is causally related to another

write operation 1w , the acceptable order is 1 2,w w because the

value written by 2w might have been influenced in some way by the

value written by 1w . Therefore, 2 1,w w is not an acceptable

order.

5.5 REDUCTION

Shared variables that must be aomatically modified may be
annotated to be reduction type. For example, in a parallel
computation application, a global minimum must be atomically
fetched and modified if it is greater than the local minimum. In
Munin, a reduction variable is always modified by being locked
(acquire lock), read, updated, and unlocked (release lock). For
better performance, a reduction variable is stored at a fixed owner
that receives updates to the variable from other processes,
synchronizes the updates received from different processes,
performs the updates on the variable, and propagates the updated
variable to its replica locations.

5.6 CONVENTIONAL

Shared variables that are not annotated as one of the above
types are conventional variables. The already described release
consistency protocol of Munin is used to maintain the consistency
of replicated conventional variables. The write invalidation protocol
is used in this case of ensure that no process ever reads a stale
version of a conventional variable. The page containing a
conventional variable is dynamically moved to the location of a
process that wants to perform a write operation on the variable.

Experience with Munin has shown that read-only migratory,
and write shared annotation types are very useful because
variables of these types are frequently used, but producer,
consumer, result and reduction annotation types are of little use
because variable of these types are less frequently used.

5.7 REPLACEMENT STRATEGY

In DSM systems that allow shared memory blocks to be
dynamically migrated / replicated, the following issues must be
addressed when the available space for caching shared data fills
up at a node :

58

1. Which block should be replaced to make space for a newly
required block?

2. Where should the replaced block be placed?

5.8 WHICH BLOCK TO REPLACE

The problem of replacement has been studied extensively
for paged main memories and shared memory multiprocessor
systems. The usual classification of replacement algorithms group
them into the following categories [Smith 1982] :

1. Usage based versus non-usage based : Usage based
algorithms keep track of the history of usage of a cache line (or
page) and use this information to make replacement decisions.
That is, the reuse of a cache line normally improves the
replacement status of that line. Least recently used (LRU) is an
example of this type of algorithm. Conversely, non-usage-
based algorithms do not take the record of use of cache lines
into account when doing replacement. First in, first out (FIFO)
and Rand (Random or pseudorandom) belong to this class.

2. Fixed space versus variable space : Fixed space algorithms
assume that the cache size is fixed while variable space
algorithms are based on the assumption that the cache size can
be changed dynamically depending on the need. Therefore,
replacement in fixed space algorithms simply involves the
selection of a selection of a specific cache line. On the other
hand, in a variable space algorithm, a fetch does not imply a
replacement, and a swap out can take place without a
corresponding fetch.

Variable space algorithms are not suitable for a DSM system
became each node’s memory that acts as cache for the virtually
shared memory is fixed in size. Moreover, as compared to non
usage based algorithms, usage based algorithms are more suitable
for DSM systems because they allow to take advantage of the data
access locality feature. However, unlike most caching systems,
which use a simple LRU policy for replacement, most DSM systems
differentiate the status of data items and use a priority spechanism.
As an example, the replacement policy used by the DSM system of
IVY [LL 1986, 1988] is presented here. In the DSM system of IVY,
each memory block of a node is classified into one of the following
five types.

1. Unused : A free memory block that is not currently being used.

2. Nil : A block that has been invalidated.

59

3. Read-only : A block for which the node has only read access
right.

4. Read owned : A block for which the node has only read access
right but is also the owner of the block.

5. Writable : A block for which the node has write access
permission, Obviously, the node is the owner of the block
because IVY uses the write invalidate protocol.

Based on this classification of blocks, the following
replacement priority is used.

1. Both unused and nil blocks have the highest replacement
priority. That is, they will be replaced first if a block is needed.
It is obvious for an usused block to have the highest
replacement priority. A nil block also has the same replacement
priority because it is no longer useful and future access to the
block would cause a network fault to occur. Notice that a nil
block may be a recently referenced block, and this is exactly
why a simple LRU policy is not adequate.

2. The read only blocks have the next replacement priority. This is
because a copy of a read only block is available with its owner,
and therefore it is possible to simply discard that block. When
the node again requires that block in the future, the block has to
be brought from its owner node at that time.

3. Read owned and writable blocks for which replica(s) exist on
some other node(s) have the next replacement priority because
it is sufficient to pass ownership to one of the replica nodes.
The block itself need not be sent, resulting in a smaller
message.

4. Read owned and writable blocks for which only this node has a
copy have the lowest replacement priority because replacement
of such a block involves transfer of the block’s ownership as
well as the block from the current node to some other nodes.
An LRU policy is used to select a block for replacement when all
the blocks in the local cache have the same priority.

5.9 WHERE TO PLACE A REPLACED BLOCK

Once a memory block has been selected for replacement, it
should be ensured that if there is some useful information in the
block, it should not be lost. For example, simply discarding a block
having unused, Nil, or read only status does not lead to any loss of

60

data. Similarly, discarding a read owned of a writable block for
which replica(s) exist on some other node(s) is also harmless.
However, discarding a read owned or a writable block for which
there is no replica on any other node may lead to loss of useful
data. Therefore, care must be taken to store them somewhere
before discarding. The two commonly used approaches for storing
a useful block at the time of its replacement are as follows :

1. Using secondary store : In this method, the block is simply
transferred on to a local disk. The advantage of this method is
that it does not waste any memory space and if the node wants
to access the same block again, it can get the block locally
without a need for network access.

2. Using the memory space of other nodes : Sometimes it may
be faster to transfer a block over the network than to transfer it
to a local disk. Therefore, another method for storing a useful
block is to keep track of free memory space at all nodes in the
system and to simply transfer the replaced block to the memory
or a node with available space. This method requires each
node to maintain a table of free memory space in all other
nodes. This table may be updated by having each node
piggyback its memory status information during normal traffic.

5.10 THRASHING

Thrashing is said to occur when the system spends a large
amount of time transferring shared data blocks from one node to
another, compared to the time spent doing the useful work of
executing application processes. It is a serious performance
problem with DSM systems that allow data blocks to migrate from
one node to another. Thrashing may occur in the following
situations :

1. When interleaved data accesses made by processes on two or
more nodes causes a data block to move back and forth fro one
node to another in quick succession (a ping – pong effect)

2. When blocks with read only permissions are repeatedly
invalidated soon after they are replicated.

Such situations indicate poor (node) locality in references. If
not properly handled, thrashing degrades system performance
considerably. Therefore, steps must be taken to solve this problem.
The following methods may be used to solve the thrashing problem
in DSM systems :

61

1. Providing application – controlled locks : Locking data to prevent
other nodes from accessing that for a short period of time can
reduce thrashing. An application controlled lock can be
associated with each data block to implement this method.

2. Nailing a block to a node for a minimum amount of time :
Another method to reduce thrashing is to disallow a block to be
taken away from a node until a minimum amount of time t
elapses after its allocation to that node. The time t can either be
fixed statically or be turned dynamically on the basis of access
patterns. For example, Mirage [Fleisch and Popek 1989]
employs this method to reduce thrashing and dynamically
determines the minimum amount of time for which a block will
be available at a node on the basis of access patterns.

The main drawback of this scheme is that it is very difficult to
choose the appropriate value for the time. If the value is fixed
statically, it is liable to be inappropriate in many cases. For
example, if a process accesses a block for writing to it only
once, other processes will be prevented from accessing the
block until time t elapses. On the other hand, it a process
accesses a block for performing several write operations on it,
time t may elapse before the process has finished using the
block and the system may grant permission to another process
for accessing the block. Therefore, tuning the value of t
dynamically is the preferred approach in this case, the value of t
for a block can be decided based on past access patterns of the
block. The MMU’s reference bits may be used for this purpose.
Another factor that may be used for deciding the value of t for a
block is the length of a the queue of processes waiting for their
turn to access the block.

3. Tailoring the coherence algorithm to the shared data usage
pattern Thrashing can also minimized by using different
coherence protocols for shared data having different
characteristics. For example, the coherence protocol used in
Munin for write shared variables avoids the false sharing
problem, which ultimately results in the avoidance of thrashing.

Notice from the description above that complete
transparency of distributed shared memory is compromised
somewhat while trying to minimize thrashing. This is because most
of the approaches described above require the programmer’s
assistance. For example, in the method of application controlled
locks, the use of locks needs to be directed towards a particular
shared memory algorithm and hence the shared memory
abstraction can no longer be transparent. Moreover, the
application must be aware of the shared data it is accessing and its

62

shared access patterns. Similarly, Munin requires programmers to
annotate shared variables with standard annotation types, which
makes the shared memory abstraction nontransparent.

2. Smallest page size algorithm : In this method, the DSM block
size is taken as the smallest VM page size of all machines. If a
page fault occurs on a node with a large page size, multiple
blocks (whose total size is equal to the page size of the faulting
node) are moved to satisfy the page fault. Although this
algorithm reduces data contention, it suffers from the increased
communication and block table management overheads
associated with small sized blocks.

3. Intermediate page size algorithm : To balance between the
problems of large and small sized blocks, a heterogeneous
DSM system may select to choose a block size somewhere in
between the largest VM page size and the smallest VM page
size of all machines.

5.11 ADVANTAGES OF DSM

Distributed Shared Memory is a high level mechanism for
interprocess communication in loosely coupled distributed systems.
It is receiving increased attention because of the advantages it has
over the message passing mechanisms. These advantages are
discussed below.

5.12 SIMPLER ABSTRUCTION

By now it is widely recognized that directly programming
loosely coupled distributed memory machines using message
passing models is tedious and error phone. The main reason is
that the message passing models force programmers to be
conscious of data movement between processes at all times, since
processes must explicitly use communication primitives and
channels or ports. To alleviate this burden, RPC was introduced to
provide a procedure call interface. However, even in RPC, since
the procedure call is performed in an address space different from
that of the caller’s address space, it is difficult for the caller to pass
context related data or complex data structures; that is, parameters
must be passed by value. In the message passing model, the
programming task is further complicated by the fact that data
structures passed between processes in the front of messages
must be packed and unpacked. The shared memory programming
paradigm shields the application programmers from many such low
level concerns. Therefore, the primary advantage of DSM is the

63

simpler abstraction it provides to the application programmers of
loosely coupled distributed memory machines.

5.13 BETTER PORTABILITY OF DISTRIBUTED
APPLICATION PROGRAMS

The access protocol used in case of DSM is consistent with
the way sequential applications access data. This allows for a
more natural transition from sequential to distributed applications.
In principle, distributed application programs written for a shared
memory multiprocessor system can be executed on a distributed
shared memory system without change. Therefore, it is easier to
port an existing distributed application program to a distributed
memory system with DSM facility than to a distributed men system
without this facility.

5.14 BETTER PERFORMANCE OF SOME
APPLICATIONS

The layer of software that provides DSM abstraction is
implemented on top of a message passing system and uses the
services of the underlying message passing communication
system. Therefore, in principle, the performance of applications
that the DSM is expected to be worse than if they use message
passing directly. However, this is not always true, and it has been
found that some applications using DSM can even outperform their
message passing counterparts. This is possible for three reasons
[Stumm and Zhou 1990] :

1. Locality of data : The communication model of DSM is to make
the data more accessible by moving it around. DSM algorithms
normally move data between nodes in large blocks. Therefore,
in those applications that exhibit a reasonable degree of locality
in their data accesses, communication overhead is amortized
over multiple memory accesses. This ultimately results in
reduced overall communication cost for such applications.

2. On demand data movement : The computation model of DSM
also facilitates on demand movement of data as they are being
accessed. On the other hand, there are several distributed
applications that execute in phase, where each computation
phase is preceded by a data exchange phase. The time
needed for the data exchange phase is often dictated by the
throughput of existing communication bottlenecks. Therefore, in
such applications, the on demand data movement facility
provided by DSM eliminates the data exchange phase, spreads

64

the communication load over a longer period of time, and allows
for a greater degree of concurrency.

3. Larger memory space : With DSM facility, the total memory
size is the sum of the memory sizes of all the nodes in the
system. Thus, paging and swapping activities, which involve
disk access, are greatly reduced.

5.15 FLEXIBLE COMMUNICATION ENVIRONMENT

The message passing paradigm requires recipient
identification and coexistence of the sender and receiver
processes. That is, the sender process of a piece of data must
know the names of its receiver processes (except in multicast
communication), and the receivers of the data must exist at the
time the data is sent and in a state that they can (or eventually can)
receive the data. Otherwise, the data is undeliverable. In contrast,
the shared memory paradigm of DSM provides a more flexible
communication environment in which the sender process need not
specify the identity of the receiver processes of the data. It simply
places the data in the shared memory and the receivers access it
directly from the shared memory. Therefore, the coexistence of the
sender and receiver processes is also not necessary in the shared
memory paradigm. In fact, the lifetime of the shared data is
independent of the lifetime of any of its receiver processes.

Exercises :

5.1 The distributed shared memory abstraction is implemented by
using the services of the underlying message passing
communication system. Therefore, in principle, the
performance of applications that the use DSM is expected to
be worse than if they use message passing directly. In spite
of this fact, why do some distributed operating system
designers support the DSM abstraction in their systems? Are
there any applications that can have better performance in a
system with DSM facility than in a system that has only
message passing facility? If yes, give the types of such
applications. If no, explain why.

5.2 Discuss the relative advantages and disadvantages of using
large block size and small block size in the design of a block-
based DSM system. Why do most DSM system designers
prefer to use the typical page size used in a conventional
virtual memory implementation as the block size of the DSM
system?

65

5.3 It is often said that the structure of the shared memory space
and the granularity of data sharing in a DSM system are
closely related. Explain why?

5.4 What is false sharing? When is it likely to occur? Can this
problem lead to any other problem in a DSM system? Give
reasons for your answer.

5.5 What should be done to minimize the false sharing problem?
Can this problem be complete eliminated? What other
problems may occur if one tries to completely eliminate the
false sharing problem?

5.6 Discuss the relative advantages and disadvantages of using
the NRNMB, NRMB, RMB and RNMB strategies in the design
of a DSM system.

5.7 Discuss the relative advantages and disadvantages of the
various data locating mechanisms that may be used in a DSM
system that uses the NRMB strategy.

5.8 A sequentially consistent DSM system uses the RMB
strategy. It employs the write invalidate approach for updating
data blocks and the centralized server algorithm for locating
the owner of a block and keeping track of the nodes that
currently have a valid copy of the block. Write pseudocode
for the implementation of the memory coherence scheme of
this DSM system.

5.9 Why is a global sequencer needed in a sequentially
consistent DSM system that employs the write update
protocol?

5.10 Most DSM system in which caching is managed by the
operating system use the write invalidate scheme for
consistency instead of the write update scheme. Explain
why?

5.11 Differentiate between weak consistency and release
consistency. Which of the two will you prefer to use in the
design of a DSM system? Give reasons for our answer.

5.12 A programmer is writing an application for a release
consistent DSM system. However the application needs
sequential consistency to produce correct results. What
precautions must the programmer take?

5.13 Differentiate between PRAM consistency and processor
consistency.

66

5.14 Give the relative advantages and disadvantages of sequential
and release consistency models.

5.15 What is causal consistency? Give an example of an
application for which causal consistency is the most suitable
consistency model.

5.16 Propose a suitable replacement algorithm for a DSM system
whose shared memory space is structured as objects. One of
the goals in this case may be to minimize memory
fragmentation.

5.17 Why does the simple LRU policy often used for replacing
cache lines in a buffer cache not work well as a replacement
policy for replacement policy for replacing blocks in a DSM
system?

5.18 To handle the issue of where to place a replaced block, the
DSM system of Memnet [Delp 1988] uses the concept of
“home memory”, in which each block has a home memory.
When replacement of a block requires that the block be
transferred to some other node’s memory, the block is
transferred to the node whose memory is the home memory
for the block. What are the advantages and disadvantages of
this approach as compared to the one presented in this
chapter?

5.19 What are the main causes of thrashing in a DSM system?
What are the commonly used methods to solve the trashing
problem in a DSM system?

5.20 Complete transparency of a DSM system is compromised
somewhat when a method is used to minimize thrashing.
Therefore, the designer of a DSM system is of the opinion
that instead of using a method to minimize thrashing, a
method should be used by which the system automatically
detects and resolves this problem. Propose a method by
which the system can detect thrashing and a method to
resolve it once it has been detected.

5.21 A distributed system has DSM facility. The process
scheduling mechanism of this system selects another process
to run when a fault occurs for the currently running process,
and the CPU is utilized while the block is being fetched. Two
systems engineering arguing about how to better utilize the
CPUs of this system have the following opinions.

(a) The first one says that if a large number of processes are
scheduled for execution at a node, the available memory
space of the node can be distributed among these

67

processes so that almost always there will be a ready
process to run when a page fault occurs. Thus, CPU
utilization can be kept high.

(b) The second one says that if only a few processes are
scheduled for execution at a node, the available memory
space of the node can be allocated to each of the few
processes and each process will produce fewer page
faults. Thus, CPU utilization can be kept high. Whose
argument is correct? Give reasons for your answer.

5.22 What are the three main approaches for designing a DSM
system?

5.23 What are some of the issues involved in building a DSM
system on a network of heterogeneous machines? Suggest
suitable methods for handling these issues.

5.24 Are DSM systems suitable for both LAN and WAN
environments? Give reasons for your answer.

5.25 Suggest some programming practices that will reduce
network block faults in a DSM system.

5.26 Write pseudocode descriptions for handling a block fault in
each of the following types of DSM systems :

(a) A DSM system that uses the NRNMB strategy

(b) A DSM system that uses the NRMB strategy

(c) A DSM system that uses the RMB strategy

(d) A DSM system that uses the RNMB strategy

You can make any assumptions that you feel necessary, but
you feel necessary, but state the assumptions made.

68

6
SYNCHRONIZATION

Unit Structure:

6.1 Clock Synchronization

6.2 How Computer Clocks are implemented

6.3 Mutual Exclusion

6.4 Election Algorithms

6.5 Mutual Exclusion

Synchronization mechanisms that are suitable for
distributed systems. In particular, the following synchronization
related issues are described :

 Clock synchronization

 Event ordering

 Mutual exclusion

 Deadlock

 Election algorithm

6.1 CLOCK SYNCHRONIZATION

Every computer needs a timer mechanism (called a
computer clock) to keep track of current time and also for various
accounting purposes such as calculating the time spent by a
process in CPU utilization, disk I/O and so on, so that the
corresponding user can be charged properly. In a distributed
system, an application may have processes that concurrently run
on multiple nodes of the system. For correct results, several such
distributed applications require that the clocks of the nodes are
subchronised with each other. For example, for a distributed on
line reservation system to be fair, the only remaining seat booked
almost simultaneously from two different nodes should be offered to
the client who booked first, even if the time different between the
two bookings is very small. It may not be possible to guarantee this
if the clocks of the nodes of the system are not synchronized. In a
distributed system, synchronized clocks also enable one to
measure the duration of distributed activities that start on one node
and terminate on another node, for instance calculating the time
taken to transmit a message from one node to another at any
arbitrary time. It is difficult to get the correct result in the case if the
clocks of the sender and receiver nodes are not synchronized.

69

There are several other applications of synchronized clocks in
distributed systems. Some good examples of such applications
may be found in [Liskov 1993].

The discussion above shows that it is the job of a distributed
operating system designer to devise and use suitable algorithms for
properly synchronizing the clocks of a distributed system. This
section presents a description of such algorithms. However, for a
better understanding of these algorithms, we will first discuss how
computer clocks are implemented and what are the main issues in
synchronizing the clocks of a distributed system?

6.2 HOW COMPUTER CLOCKS ARE IMPLEMENTED

A computer clock usually consists of three components – a
quartz crystal that oscillates at a well – defined frequency, a
counter register, and a holding register. The holding register is used
to store a constant value that is decided based on the frequency of
oscillation of the quartz crystal. That is, the value in the counter
register is decremented by 1 for each oscillation of the quartz
crystal. When the value of the counter register becomes zero, an
interrupt is generated and its value is reinitialized to the value in the
holding register. Each interrupt is called clock tick. The value in the
holding register is chosen 60 so that on 60 clock ticks occur in a
second.

CMOS RAM is also present in most of the machines which
keeps the clock of the machine up-to-date even when the machine
is switched off. When we consider one machine and one clock,
then slight delay in the clock ticks over the period of time does not
matter, but when we consider n computers having n crystals, all
running at a slightly different time, then the clocks get out of sync
over the period of time. This difference in time values is called clock
skew.

Tool Ordering of Events :

We have seen how a system of clocks satisfying the clock
condition can be used to order the events of a system based on the
happened before relationship among the events. We simply need
to order the events by the times at which they occur. However that
the happened before relation is only a partial ordering on the set of
all events in the system. With this event ordering scheme, it is
possible that two events a and b that are not related by the
happened before relation (either directly or indirectly) may have the
same timestamps associated with them. For instance, if events a
and b happen respectively in processes 1P and 2P , when the

70

clocks of both processes show exactly the same time (Say 100),
both events will have a timestamp of 100. In this situation, nothing
can be said about the order of the two events. Therefore, for total
ordering on the set of all system events an additional requirement is
desirable. No two events ever occur all exactly the same time. To
fulfill this requirement, Lamport proposed the use of any arbitrary
total ordering of the processes. For example, process identity
numbers may be used to break ties and to create a total ordering
on events. For instance, in the situation described above, the
timestamps associated with events a and b will be 100.001 and
100.002, respectively, where the process identity numbers of
processes 1P and 2P are 001 and 002 respectively. Using this

method, we now have a way to assign a unique timestamp to each
event in a distributed system to provide a total ordering of all events
in the system.

6.3 MUTUAL EXCLUSION

There are several resources in a system that must not be
used simultaneously by multiple processes if program operation is
to be correct. For example, a file must not be simultaneously
updated by multiple processes. Similarly, use of unit record
peripherals such as tape drives or printers must be restricted to a
single process at a time. Therefore, exclusive access to such a
shared resource by a process must be ensured. This exclusiveness
of access is called mutual exclusion between processes. The
sections of a program that need exclusive access to shared
resources are referred to as critical sections. For mutual exclusion,
means are introduced to prevent processes from executing
concurrently within their associated critical sections.

An algorithm for implementing mutual exclusion must
satisfy the following requirements :

Issues in Recovery from Deadlock :

Two important issues in the recovery action are selection of
victims and use of transaction mechanism. These are described
below.

Selection of Victim(s): In any of the recovery approaches
described above, deadlock is broken by killing or rolling back one or
more processes. These processes are called victims. Notice that
even in the operator intervention approach, recovery involves killing
one or more victims. Therefore, an important issue in any recovery
procedure is to select the victims. Selection of victim(s) is normally
based on two major factors:

71

1. Minimization of recovery cost : This factor suggests that
those processes should be selected as victims whose
termination / rollback will incur the minimum recovery cost.
Unfortunately, it is not possible to have a universal cost function,
and therefore, each system should determine its own cost
function to select victims. Some of the factors that may be
considered for this purpose are (a) the priority of the processes;
(b) the nature of the processes, such as interactive or batch and
possibility of return with no ill effects; (c) the number and types
of resources held by the processes; (d) the length of service
already received and the expected length of service further
needed by the processes; and (e) the total number of processes
that will be affected.

2. Prevention of starvation : If a system only aims at
minimization of recovery cost, it may happen that the same
process (probably because its priority is very low) is repeatedly
selected as a victim and may never complete. This situation
known as starvation, must be somehow prevented in any
practical system. One approach to handle this problem is to
raise the priority of the process every time it is victimized.
Another approach is to include the number of times a process is
victimized as a parameter in the cost function.

Use of Transaction Mechanism: After a process is killed or rolled
back for recovery from deadlock, it has to be return. However,
rerunning a process may not always be safe, especially when the
operations already performed by the process are non-idempotent.
For example, if a process has updated the amount of a bank
account by adding a certain amount to it, re-execution of the
process will result in adding the same amount once again, leaving
the balance in the account in an incorrect state. Therefore, the use
of transaction mechanism (which ensures all or no effect) becomes
almost inevitable for most processes when the system chooses the
method of detection and recovery for handling deadlocks.
However, notice that the transaction mechanism need not be used
for those processes that can be rerun with no ill effects. For
example, rerun of a compilation process has no ill effects because
all it does is read a source file and produce an object file.

6.4 ELECTION ALGORITHMS

 Several distributed algorithms require that there be a
coordinator process in the entire system that performs some
type of coordination activity needed for the smooth running
of other processes in the system. Two examples of such
coordinator processes encountered in this chapter are the

72

coordinator in the centralized algorithm for mutual exclusion
and the central coordinator in the centralized deadlock
detection algorithm.

 Since all other processes in the system have to interact with
the coordinator, they all must unanimously agree on who the
coordinator is. Furthermore, if the coordinator process fails
due to the failure of the site on which it is located, a new
coordinator process must be elected to take up the of the
failed coordinator.

 Election algorithms are meant for electing to take coordinator
process from among the currently running processes in such
a manner that at any instance of time there is a single
coordinator for all processes in the system.

 Election algorithm are based on the following assumptions :

1. Each process in the system has a unique priority number.

2. Whenever an election is held, the process having the
highest priority number among the currently active
processes is elected as the coordinator.

3. On recovery, a failed process can take appropriate
actions to rejoin the set of active processes.

 Therefore, whenever initiated, an election algorithm basically
finds out which of the currently active processes has the
highest priority number and then informs this to all other
active processes. Different election algorithms differ in the
way they do this. Two such election algorithms are described
below.

6.4.1 Bully Algorithm:

When any process notices that the coordinator is no longer
responding to the requests, it asks for the election.

Example: A process P holds an election as follows

1) P sends an ELECTION message to all the processes with
higher numbers.

2) If no one responds, P wins the election and becomes the
coordinator.

3) If one higher process answers; it takes over the job and P’s
job is done.

At any moment an “election” message can arrive to process
from one of its lowered numbered colleague. The receiving process
replies with an OK to say that it is alive and can take over as a
coordinator. Now this receiver holds an election and in the end all

73

the processes give uo except one and that one is the new
coordinator.

The new coordinator announces its new post by sending all
the processes a message that it is starting immediately and is the
new coordinator of the system.

If the old coordinator was down and if it gets up again; it
holds for an election which works in the above mentioned fashion.
The biggest numbered process always wins and hence the name
“bully” is used for this algorithm.

Figure 6.1: The bully election algorithm

a) Process 4 holds an election.

b) Process 5 and 6 respond, telling 4 to stop.

c) Now 5 and 6 each hold an election.

d) Process 6 tells 5 to stop.

e) Process 6 wins and tells everyone.

74

6.4.2 Ring Algorithm:

 It is based on the use of a ring as the name suggests. But
this doesnot use a toke. Processes are physically ordered in
such a way that every process knows its successor.

 When any process notices that the coordinator is no longer
functioning, it builds up an ELECTION message containing
its own number and passes it along the to its successor. If
the successor is down, then sender skips that member along
the ring to the next working process.

 At each step, the sender adds its own process number to the
list in the message effectively making itself a candidate to be
elected s the coordinator. At the end, the message gets back
to the process that started it.

 That process identifies this event when it receives an
incoming message containing its own process number. Then
the same message is changed as coordinator and is
circulated once again.

 Example: two process, Number 2 and Number 5 discover
together that the previous coordinator; Number 7 has
crashed. Number 2 and Number 5 will each build an election
meaage and start circulating it along the ring. Both the
messages in the end will go to Number 2 and Number 5 and
they will convert the message into the coordinator with
exactly the same number of members and in the same
order. When both such messages have gone around the
ring, they both will be discarded and the process of election
will re-start.

Figure6.2: Election algorithm using Ring

75

6.5 MUTUAL EXCLUSION

Mutual exclusion (often abbreviated to mutex) algorithms are
used in concurrent programming to avoid the simultaneous use of a
common resource, such as a global variable, by pieces of computer
code called critical sections. A critical section is a piece of code in
which a process or thread accesses a common resource. The
critical section by itself is not a mechanism or algorithm for mutual
exclusion. A program, process, or thread can have the critical
section in it without any mechanism or algorithm which implements
mutual exclusion.

Examples of such resources are fine-grained flags, counters
or queues, used to communicate between code that runs
concurrently, such as an application and its interrupt handlers. The
synchronization of access to those resources is an acute problem
because a thread can be stopped or started at any time. A mutex is
also a common name for a program object that negotiates mutual
exclusion among threads, also called a lock.

Following are the algorithms for mutual exclusion:

6.5.1 Centralized Algorithm

 Here one process is selected as the coordinator of the system
with the authority of giving access to other process for entering
the critical region. If any process wants to enter the critical, it
has to take the permission from the coordinator process. This
permission is taking by sending a REQUEST message.

Figure: 6.3:

a) Process 1 asks the coordinator for permission to enter a
critical region. Permission is granted.

b) Process 2 then asks permission to enter the same critical
region. The coordinator does not reply.

c) When process 1 exits the critical region, it tells the
coordinator, when then replies to process 2.

76

 As shown in figure 5.3-a), the coordinator is not reply to
process 2 when the critical region is occupied. Here,
depending on the type of system, the coordinator can also
reply back to the process 2 that it is in queue. If the
coordinator doesn’t do so, then the waiting process 2 will be
unable to distinguish between ‘permission denied” or a
“dead” coordinator.

 This type of system as a single point of failure, if the
coordinator fails, then the entire system crashes.

6.5.2 Distributed Algorithm:

 A distributed algorithm for mutual exclusion is presented. No
particular assumptions on the network topology are required,
except connectivity; the communication graph may be
arbitrary. The processes communicate by using messages
only and there is no global controller. Furthermore, no
process needs to know or learn the global network topology.
In that sense, the algorithm is more general than the mutual
exclusion algorithms which make use of an a priori
knowledge of the network topology.

 When a process wants to enter a critical region, it builds a
message containing:

 name of the critical region

 it’s process number

 it’s current time.

 The process sends this message to all the processes in the
network. When another process receives this message, it
takes the action pertaining on its state and the critical region
mentioned. Three cases are possible here:

1) If the message receiving process is not in the critical
region and does not wish to enter it, it sends it back.

2) Receiver is already in the critical region and does not
reply

3) Receiver wants to enter the same critical region and a

4) Has not done so, it compares the “time stamp” of the
incoming message with the one it has sent to others
for permission. The lowest one wins and can enter the
critical region.

 When the process exists from the critical region, it sends an
OK message to inform everyone.

77

Figure 6.4:

a) Two processes want to enter the same critical region at
the same moment.

b) Process 0 has the lowest timestamp, so it wins.

c) When process 0 is done, it sends an OK also, so 2 can
now enter the critical region.

 Disadvantage:

1) If one process crashes, it will fail to respond. Thus
other possesses will assume that the process is still
working in the critical region which will make other
processes go through a starvation.

2) Here each process must maintain the group
membership list that includes processes entering or
leaving the group.

3) Here all the processes are involved in all decisions;
this could lead to bottle neck when the numbers of
processes in the group are more.

4) This algorithm is comparatively expensive, slower and
complex.

6.5.3 Token Ring Algorithm:

 Here we have a bus network (e.g., Ethernet), with no
inherent ordering of the processes. In software, a logical
ring is constructed in which each process is assigned a
position in the ring. The ring positions may be allocated in
numerical order of network addresses or some other
means. It does not matter what the ordering is. All that
matters is that each process knows who is next in line after
itself.

78

 When the ring is initialized, process 0 is given a token. The
token circulates around the ring. It is passed from process k
to process k +1 in point-to-point messages. When a process
acquires the token from its neighbour, it checks to see if it is
attempting to enter a critical region. If so, the process enters
the region, does all the work it needs to, and leaves the
region. After it has exited, it passes the token along the ring.
It is not permitted to enter a second critical region using the
same token. If a process is handed the token by its
neighbour and is not interested in entering a critical region,
it just passes it along. As a consequence, when no
processes want to enter any critical regions, the token just
circulates at high speed around the ring.

 The correctness of this algorithm is easy to see. Only one
process has the token at any instant, so only one process
can actually be in a critical region. Since the token circulates
among the processes in a well-defined order, starvation
cannot occur. Once a process decides it wants to enter a
critical region, at worst it will have to wait for every other
process to enter and leave one critical region.

 As usual, this algorithm has problems too. If the token is
ever lost, it must be regenerated. In fact, detecting that it is
lost is difficult, since the amount of time between successive
appearances of the token on the network is unbounded. The
fact that the token has not been spotted for an hour does
not mean that it has been lost; somebody may still be using
it.

 The algorithm also runs into trouble if a process crashes, but
recovery is easier than in the other cases. If we require a
process receiving the token to acknowledge receipt, a dead
process will be detected when its neighbour tries to give it
the token and fails. At that point the dead process can be
removed from the group, and the token holder can throw the
token over the head of the dead process to the next
member down the line, or the one after that, if necessary. Of
course, doing so requires that everyone maintains the
current ring configuration.

79

Figure 5.5:
a) An unordered group of processes on a network.
b) A logical ring constructed in software.

Exercises :

6.1 Write pseudocode for an algorithm that decides whether a
given set of clocks are synchronized or not. What input
parameters are needed in your algorithm?

6.2 How do clock synchronization issues differ in centralized and
distributed computing systems?

A resource manager schedules the processes in a
distributed system to make use of the system resources in such a
manner that resource usage, response time, network congestion,
and scheduling overhead are optimized. A varied of widely differing
techniques and methodologies for scheduling processes of a
distributed system have been proposed. These techniques can be
broadly classified into three types :

1. Task assignment approach, in which each process submitted by
a user for processing is viewed as a collection of related tasks
and these tasks are scheduled to suitable nodes so as to
improve performance.

2. Load-balancing approach, in which all the processes submitted
by the users are distributed among the nodes of the system so
as to equalize the workload among the nodes.

3. Load sharing approach, which simply attempts to conserve the
ability of the system to perform work by assuring that no node is
idle while processes wait for being processed.

Of the three approaches, the task assignment approach has
limited applicability in practical situations because it works on the
assumption that the characteristics of all the processes to be

80

scheduled are known in advance. Furthermore, the scheduling
algorithms that fall in this category do not normally take care of the
dynamically changing date of the system. Therefore, this approach
will be covered very briefly just to give an idea of now it works.
Before presenting a description of each of these techniques, the
desirable features of a good global scheduling algorithm are
presented.

Exercise:

1) How do clock synchronization issues differ in centralized and
distributed computing systems?

2) What is a dead lock? What are the necessary condition
which lead to a dead lock?

3) Explain the Bully’s algorithm.

4) Explain the concept of logical clocks and their importance in
distributed systems.

5) Prove that an unsafe state is not a dead lock.

6) Explain the ring based algorithm.

7) What will happen if in a bully algorithm for electing a
coordinator when two or more processes almost
simultaneously discover that the coordinator has crashed.

8) Why are election algorithms needed is a distributed system?

9) How are false dead locks detected by the dead lock
detection systems?

81

7

RESOURCE MANAGEMENT-I

Unit Structure:

7.1 Desirable Features of a Good Global Schedules Algorithm

7.2 Task Assignment Approach

7.3 Process Migration

7.4 Desirable Features of a Good Process Migration

7.5 Load Sharing Approach

7.1 DESIRABLE FEATURES OF A GOOD GLOBAL
SCHEDULES ALGORITHM

7.1.1 No A Priori knowledge about the Processes:

A good process scheduling algorithm should operate with
absolutely no a priori knowledge about the processes to be
executed. Scheduling algorithms that operate based on the
information about the characteristics and resource requirements of
the processes normally pose an extra burden upon the users who
must specify this information while submitting their processes for
execution.

7.1.2 Dynamic in Nature :

It is intended that a good process scheduling algorithm
should be able to take care of the dynamically changing load (or
status) of the various nodes of the system. That is, process
assignment decisions should be based on the current load of the
system and not on some fixed static policy. For this, sometimes it
is also recommended that the scheduling algorithm should possess
the flexibility to migrate a process more than once because the
initial decision of placing a process on a particular node may have
to be changed after some time to adapt to the new system load.
This feature may also require that the system support preemptive
process migration facility in which a process can be migrated from
one node to another during the course of its execution.

82

7.1.3 Quick Decision Making Capability :

A good process scheduling algorithm must make quick
decisions about the assignment of processes to processors. This is
an extremely important aspect of the algorithms and makes many
potential solutions unsuitable. For example, an algorithm that
models the system by a mathematical program and solves it on line
is unsuitable because it does not meet this requirement. Heuristic
methods requiring less computational effort while providing near
optimal results are therefore normally preferable to exhaustive
(optimal) solution methods.

7.1.4 Balanced System Performance and Scheduling Overhead

Several global scheduling algorithms collect global state
information and use this information in making process assignment
decisions. A common intuition is that greater amounts of
information describing global system state allow more intelligent
process assignment decisions to be made that have a positive
affect on the system as a whole. In a distributed environment,
however, information regarding the state of the system is typically
gathered at a higher cost than in a centralized system. The general
observation is that, as overhead is increased in an attempt to obtain
more information regarding the global state of the system, the
usefulness of that information is decreased due to both the aging of
the information being gathered and the low scheduling frequency
as a result of the cost of gathering and processing that information.
Hence algorithms that provide near optimal system performance
with a minimum of global state information gathering overhead are
desirable.

7.1.5 Stability :

A scheduling algorithm is said to be unstable if it can enter a
state in which all the nodes of the system are spending all of their
time migrating processes without accomplishing any useful work in
an attempt to properly schedule the processes for better
performance. This form of fruitless migration of processes is known
as processor thrashing. Processor thrashing can occur in
situations where each node of the system has the power of
scheduling its own processes and scheduling decisions either are
made independently of decisions made by other processors or are
based on relatively old data de to transmission delay between
nodes. For example, it may happen that node 1n and 2n both

observe that node 3n is idle and then both offload a portion of their

work to node 3n without being aware of the offloading decision

made by the other. Now if node 3n becomes overloaded due to the

83

processes received fro both nodes 1n and 2n , then it may again

start transferring its processes to other nodes. This entire cycle
may be repeated again and again, resulting in an unstable state.
This is certainly not desirable for a good scheduling algorithm.

7.2 TASK ASSIGNMENT APPROACH

7.2.1 The Basic Idea:

In this approach, a process is considered to be composed of
multiple tasks and the goal is to find an optimal assignment policy
for the tasks of an individual process. Typical assumptions found in
task assignment work are as follows :

 A process has already been split into pieces called tasks.
This split occurs along natural boundaries, so that each task
will have integrity in itself and data transfers among the tasks
will be minimized.

 The amount of computation required by each task and the
speed of each processor are known.

 The cost of processing each task on every node of the
system is known. This cost is usually derived based on the
information about the speed of each processor and the
amount of computation required by each task.

 The Interprocesses Communication (IPC) costs between
every pair of tasks is known. The IPC cost of considered
zero (negligible) for tasks assigned to the same node. They
are usually estimated by an analysis of the static program of
a process. For example during the execution of the process,
if two tasks communicate n times and average time for each
intertask communication is t, the intertask communication
cost for the two tasks is n t .

 Other constraints, such as resource requirements of the
tasks and the available resources at each node, precedence
relationships among the tasks, and so on, are also known.

 Reassignment of the tasks is generally not possible.

With these assumptions, the task assignment algorithms
seek to assign the tasks of a process to the nodes of the distributed
system in such a manner so as to achieve goals such as the
following.

 Minimization of IPC costs

 Quick turnaround time for the complete process

 A high degree of parallelism

 Efficient utilization of system resources in general

84

7.3 PROCESS MIGRATION

Process migration is the relocation of a process from its
current location (the source node) to another node (the destination
node). The flow of execution of a migrating process is illustrated in
Figure 7.1.

Time

Execution
suspended

Source
node

Process in

execution

P1

Transfer of
control

Destination
node

Freezing

time
Execution

Process in

execution

P1

resumed

Fig 7.1 : Flow of execution of a migrating process

A process may be migrated either before it starts executing
on its source node on during the course of its execution. The
former is known as nonpreemptive process migration, and the latter
is known as preemptive process migration. Preemptive process
migration is costlier than non-preemptive process migration since
the process environment must also accompany the process to its
new node for an already executing process.

Process migration involves the following major steps :

1. Selection of a process that should be migrated.

2. Selection of the destination node to which the selected process
should be migrated

3. Actual transfer of the selected process to the destination node.

The first two steps are taken care of by the process
migration policy and the third step is taken care of by the process
migration mechanism. The policies for the selection of a source
node, a destination node, and the process to be migrated on
resource management.

85

7.4 DESIRABLE FEATURES OF A GOOD PROCESS
MIGRATION

A good migration mechanism must process transparency,
minimal interferences, minimal residue dependencies, efficiency,
robustness, and communication between co-processes.

7.4.1 Transparency:

Transparency is an important requirement for a system that
supports process migration. The following levels of transparency
can be identified :

1. Object access level : Transparency at the object access level is
the minimum requirement for a system to support non – preemptive
process migration facility. If a system supports transparency at the
object access level, access to objects such as files and devices can
be done in a location independent manner. Thus, the object
access level transparency allows free initiation of programs at an
arbitrary node. Of course, to support transparency at object access
level, the system must provide a mechanism for transparent object
naming and locating.

System cal and interprocess communication level. So that a
migrated process does not continue to depend upon its originating
node after being migrated. It is necessary that all system calls,
including interprocess communication, are location independent.
Thus, transparency at this level must be provided in a system that
is to support preemptive process migration facility. However,
system calls to request the physical properties of a node need not
be location independent.

Transparency of interprocess communication is also the
transparent redirection of messages during the transient state of
process that recently migrated. That is, once a message sent, it
should reach its receiver process without the need for resending a
from the sender node is sure the receiver process moves to
another node before the message is received.

7.4.2 Minimal Interference :

Migration of a process should cause minimal interference to
the progress of the process involved the system as a whole. One
method to achieve this is by minimizing the freezing time of the
process being migrated. Freezing time is defined as the time

86

period for which the execution of the process is stopped for
transferring its information to the destination node.

7.4.3 Minimal Residual Dependencies:

No residual dependency should be left on the previous node.
That is, a migrated process should not in any way continue to
depend on its previous node once it has started executing on its
new node since, otherwise, the following will occur.

It may be noted that in the model described above, the tasks
of a process were assigned to the various nodes of the system.
This model may be generalized to the general task assignment
problem in which several processes are to be assigned. In this
case, each process is treated to be a task of the process force and
the inter-process communication costs are assumed to be known.

Several extensions to the basic task assignment model
described above have been proposed in the literature. In addition
to the task assignment cost and the inter-task communication cost
parameters of the basic task assignment model, the extended
models take into account to her parameters such as memory size
requirements of the task and memory size constraint of the
processors, precedence relationship among the tasks, and so on.
However, we will not discuss this topic any further because of the
limited applicability of the task assignment approach in practical
situations.

7.4.4 Load Balancing Approach :

The scheduling algorithms using this approach are known as
load balancing algorithms or load leveling algorithms. These
algorithms are based on the intuition that, for better resource
utilization. It is desirable for the load in a distributed system to be
balanced evenly. Thus, a load balancing algorithm tries to balance
the total system load by transparently transferring the workload
from heavily loaded nodes to lightly nodes in an attempt to ensure
good overall performance relative to some specific metric of system
performance. When considering performance from the user point
of view, the metric involved is often the response time of the
processes. However, when performance is considered from the
resources point of view, the metric involved is the total systems
throughput. In contrast to response time, throughput is concerned
with seeing that all users are treated fairly and that all are making
progress. Notice that the resource view of maximizing resource
utilization is compatible with the desire to maximize system

87

throughput. Thus the basic goal of almost all the load balancing
algorithms is to maximize the total system throughput.

7.4.5 Taxonomy of Load Balancing Algorithms :

The taxonomy presented here is a hierarchy of the features
of load balancing algorithms. The structure of the taxonomy is
shown in Figure. To describe a specific load balancing algorithm, a
taxonomy user traces paths through the hierarchy. A description of
this taxonomy is given below.

7.4.6 Static Versus Dynamic :

At the highest level, we may distinguish between static and
dynamic load balancing algorithms. Static algorithms use only
information about the average behaviour of the system, ignoring the
current state of the system. On the other hand, dynamic algorithms
react to the system state that changes dynamically.

7.4.7 Migration Limiting Policies :

Another important policy to be used by a distributed
operating system that supports process migration is to decide about
the total number of times a process should be allowed to migrate.
One of the following two policies may be used for this purpose.

Uncontrolled : In this case, remote process arriving at a node is
treated just as a process originating at the node. Therefore, under
this policy, a process may be migrated any number of times. This
policy has the unfortunate property of causing instability.

Controlled : To overcome the instability problem of the
uncontrolled policy, most systems treat remote processes different
from local processes and use a migration count parameter to fix a
limit on the number of times that a process may migrate. Several
system designers feel that process migration is an expensive
operation and hence a process should not be allowed to migrate
too frequently. Hence this group of designers normally favors an
irrevocable migration policy. That is, the upper limit of the value of
migration count is fixed to t, and hence a process cannot be
migrated more than once under this policy. However, some system
designers feel that multiple process migrations, especially for long
processes, may be very useful for adapting to the dynamically
changing states of the nodes. Thus this group of designers sets
the upper limit of the value of migration count to some value 1k .
The value of k may be decided either statically of dynamically. Its
value may also be different for processes having different

88

characteristics. For example, a long process (a process whose
execution time is large) may be allowed to migrate more times as
compared to a short process.

7.5 LOAD SHARING APPROACH

Several researchers believe that load balancing with its
implication of attempting to equalize workload on all the nodes o
the system, is not an appropriate objective. This is because the
overhead involved in gathering state information to achieve this
objective is normally very large, especially in distributed systems
having a large number of nodes. Moreover, load balancing in the
sense is not achievable because the number of processes in a
node is always fluctuating and the temporal unbalance among the
nodes exists at every moment, even if the static (average) load is
perfectly balanced for the proper utilization the resources of a
distributed system, it is not required to balance the load on all the
nodes. Rather, it is necessary and sufficient to prevent the nodes
from being idle while some other nodes have more than two
processes. Therefore this rectification is often called dynamic load
sharing instead of dynamic load balancing.

7.5.1 Issues in Designing Load Sharing Algorithms :

Similar to the load balancing algorithms, the design of a load
sharing algorithm also requires that proper decisions be made
regarding load estimation policy, process transfer policy, state
information exchange policy, location policy, priority assignment
policy, and

with threads facility, a process having a single thread corresponds
to a process of a traditional operating system. Threads are often
referred to as lightweight processes and traditional processes are
referred to as heavyweight processes.

7.5.2 Motivations for Using Threads :

The main motivations for using a multithreaded process
instead of multiple single threaded processes for performing some
computation activities are as follows :

1. The overheads involved in creating a new process are in
general considerably greater than those of creating a new
thread within a process.

2. Switching between threads sharing the same address space is
considerably cheaper than switching between processes that
have their own address space.

89

3. Threads allow parallelism to be combined with sequential
execution and blocking system calls. Parallelism improves
performance and blocking system calls make programming
easier make programming easier.

4. Resource sharing can be achieved more efficiently and naturally
between threads of a process than between processes because
all threads of a process share the same address space.

These advantages are elaborated below:

The overheads involved in the creation of a new process and
building its execution environment are liable to be much greater
than creating a new thread within an existing process. This is
mainly because when a new process is created its address space
has to be created from scratch, although a part of it might be
inherited from the process’s parent process. However, when a new
thread is created, it uses the address space of its process that need
not be created from scratch. For instance, in case of a kernel
supported virtual memory system, a newly created process will
incur page faults as date and instructions are referenced for the first
time. Moreover, hardware caches will initially contain no data
values for the new process, and cache entries for the process’s
data will be created as the process executes. These overheads
may also occur in thread creation, but they are liable to be less.
This is because when the newly created thread accesses code and
data that have recently been accessed by other threads within the
process, it automatically takes advantage of any hardware or main
memory caching that has taken place.

Threads also minimize context switching time, allowing the
CPU to switch from one unit of computation to another unit of
computation with minimal overhead. Due to the sharing of address
space and other operating system resources among the threads of
a process, the overhead involved in CPU switching among peer
threads is very small as compared to CPU switching among
processes having their own address spaces. This is the reason
why threads are called lightweight processes.

True file service: It is concerned with the operation on individual
files, such operations for accessing and modifying the data in files
and for creating and deleting. To perform these primitive file
operations correctly and efficiently, typical design issues of a true
file service component include file accessing mechanism, file
sharing semantics, file caching mechanism, file replication
mechanism, concurrency control mechanism, data consistency and
multiple copy update protocol, and access control mechanism.
Note that the separation of the storage service from the true file

90

service makes it easy to combine different methods of storage and
different storage media in a single file system.

Name service : IT provides a mapping between text names for files
and references to files, that is, file IDs. Text names are required
because, file IDs are awkward and difficult for human users to
remember and use. Most file systems use directories to perform
this mapping. Therefore, the name service is also known as a
directory service. The directory service is responsible for
performing directory related activities such as creation and deletion
of directories, adding a new file to a directory deleting a file from a
directory, changing the name of a file, moving a file from one
directory to another, and so on.

The design and implementation of the storage service of a
distributed file system is similar to that of the storage service of a
centralized file system. Readers interested in the details of the
storage service may refer to any good book on operating systems.
Therefore, this chapter will mainly deal with the design and
implementation issues of the true file service component of
distributed file systems.

Exercise:

1) What are the issues in designing Load –Balancing
algorithms?

2) Discuss the features of a Local Scheduling algorithm?

3) Why are heuristic methods that provide near optimal results
preferred over optimal solution methods in scheduling
algorithms?

4) Discuss the practical applicability of the load-balancing
approach as a scheduling scheme.

5) Load – balancing in a strictest sense is not achievable in
distributed systems. Justify?

91

8

RESOURCE MANAGEMENT -II

Unit Structure:

8.1 Features of a Good Distributed File System

8.2 File Models

8.3 File Accessing Models

8.4 File Sharing Semantics

8.1 FEATURES OF A GOOD DISTRIBUTED FILE
SYSTEM

A good distributed file system should have the features
described below.

1. Transparency : The following four types of transparencies are
desirable :

Structure transparency : Although not necessary, for
performance, scalability and reliability reasons, a distributed file
system normally uses multiple file servers. Each file server is
normally a user process or sometimes a kernel process that is
responsible for controlling a set of secondary storage device
(used for file storage) of the node on which it runs. In multiple
file servers, the multiplicity of file servers should be transparent
to the clients of a distributed file system. In particular, clients
should not know the number or locations of the file servers and
the storage devices. Ideally, a distributed file system should
look to its clients like a conventional file system offered by a
centralized, time-sharing operating system.

8.2 FILE MODELS

Different file systems use different conceptual models of a
file. The two most commonly used criteria for file modeling are
structure and modifiability. File models based on these criteria are
described below :

92

8.2.1 Unstructured and Structured Files :

According to the simplest model, a file is an unstructured
sequence of data. In this model, there is no substructure known to
the of each file of the file system appears to the file server as an
uninterrupted sequence of bytes. The operating system is not
interested in the information stored in the files, the interpretation of
the meaning and structure of the data stored in the files are entirely
up to the application programs. UNIX and MS-DOS use this fie
model.

Another file model that is rarely used nowadays is the
structured file model. In this model, a file appears to the file server
as an ordered sequence of records. Records of different files of the
same file system can be of different size. Therefore, many types of
files exist in a file system, each having different properties. In this
model a record is the smallest unit of file data that can be
accessed, and the files system read or write operations are carried
out on a set of records.

Structured files are again of two types – files with non-
indexed records and files with indexed records. In the former
model, a file record is accessed by specifying its position within the
file, for example, the fifth record from the beginning of the file or the
second record from the end of the file. In the latter model, records
have one or more key fields and can be addressed by specifying
the values of the key fields. In file systems that allow indexed
records, a file is maintained as a B-tree or other suitable data
structure or a hash able is used to locate records quickly.

Most modern operating systems use the unstructured file
model. This is mainly because sharing of a file by different
applications is easier with the unstructured file model as compared
to the structured file model. Since a file has no structure in the
unstructured model, different applications can interpret the contents
of a file m different ways.

In addition to data items, files also normally have attributes.
A file’s attributes are information describing that file. Each attribute
has a name and a value. For example, typical attributes of a file
may contain information such as owner, size, access permissions,
date of creation, date of last modification, and date of last access.
Users can read and update some of the attribute values using the
primitives provided by the file system. Notice, however, that
although a user may update the value of any attribute, not all
attributes are user modifiable. For example, a user may update the
value of the access permission attribute, but he or she cannot
change the value of the size or date of creation attributes. The

93

types of attributes that can be associated with a file are normally
fixed by the file system. However, a file system may be designed
to provide the flexibility to create and manipulate user defined
attributes in addition to those supported by the file system.

File attributes are normally maintained and used by the
directory service because they are subject to different access
controls than the file they describe. Notice that although file
attributes are maintained and used by the directory service, they
are store with the corresponding file rather than with the file name
in the directory. This is mainly because many directory systems
allow files to be referenced by more than one name.

8.2.2 Mutable and Immutable Files :

According to the modifiability criteria, files are of two types –
mutable and immutable. Most existing operating systems use the
mutable file model. In this model, an update performed on a file
overwrites on its old contents to produce the new contents. That is,
a file is represented as a single stored sequence that is altered by
each update operation.

On the other hand, some more recent file systems, such as
the Cedar File System (CFS), use the immutable file model. In this
model, a file cannot be modified once it has been created except to
be deleted. The file versioning approach is normally used to
implement file updates, and each file is represented by a history of
immutable versions. That is, rather than updating the same file, a
new version of the file is created each time a change is made to the
file contents and the old version is retained unchanged. In practice,
the use of storage space may be reduced by keeping only a record
of the differences between the old and new versions rather than
creating the entire file once again.

Gifford et al. emphasized that sharing only immutable files
makes it easy to support consistent sharing. Due to this feature, it
is much easier to support file caching and replication in a
distributed system with the immutable file model because it
eliminates all the problems associated with keeping multiple copies
of a file consistent. However, due to the need to keep multiple
versions of a file, the immutable file mode, suffers from two
potential problems – increased use of disk space and increased
disk allocation activity. Some mechanism is normally used to
prevent the desk space from filling instantaneously.

94

8.3 FILE ACCESSING MODELS

The manner in which a client’s request to access a file is
serviced depends on the file accessing model used by the file
system. The file accessing model of a distributed file system
mainly depends on two factors – the method used for accessing
remote files and the unit of data access.

Byte level transfer model : In this model, file data transfers across
the network between a client and a server take place in units of
bytes. This model provides maximum flexibility because it allows
storage and retrieval of an arbitrary sequential subrange of a file,
specified by an offset within a file, and a length. The main
drawback of this model is the difficulty in cache management due to
the variable length data for different access requests. The
Cambridge File Server [Dion 1980, Mitchell and Dion 1982,
Needham and Herbert 1982] uses this model.

Record level transfer mode : The three file data transfer models
described above are commonly used with unstructured file models.
The record level transfer model is suitable for use with those file
models in which file contents are structured in the form of records.
In this model, file data transfers across the network between a
client and a server take place in units of records. The Research
Storage System (RSS) [Gray 1978 Gray et al. 1981], which
supports complex access methods to structured and indexed files,
uses the record level transfer mode.

8.4 FILE SHARING SEMANTICS

A shared file may be simultaneously accessed by multiple
users. In such a situation, an important design issue for any file
system is to clearly defined when modifications of file data made by
a user are observable by other users. This is defined by the type of
file sharing semantics adopted by a file system

1. UNIX semantics : this semantics enforces an absolute time
ordering on all operations and ensures that every read operation on
a file sees the effects of all previous write operations performed on
that file [Fig. 8.1(a)]. In particular, writes to an open file by a user
immediately become visible to other users who have this file open
at the same time.

95

Original file
contents

Retrieved file
contents

Retrieved file
contents

Append (c) Read Append (d) Append (e)
Time

New file
contents

Read

t1 2 3 4 5 6
t t t t t

New file
contents

New file
contents

t1 2 3 4 5 6
t t t t t< < < < <

Node boundary

Read request Append request
Client
node 1

Server
node

Client
node 2

sends read request original file contents is sends append (c) request

Read request of client
node 1 reaches and

is returned

to client node 1

append request of

client node 2 reaches
and the file contents is
updated to

Node boundary

(a)

t1 23

4

5

tt

t

t

: : :

:

:

a b c da b c ea b

dc ea bd

c

a ba b c

a b

a b

a b

t1 2 3 4 5
t t t t< < < <

(b)

Fig. 8.1 : (a) Example of UNIX file sharing semantics; (b) an
example explaining why it is difficult to achieve UNIX

semantics in a distributed file system even what the shared file
is handled by a single server

The UNIX semantics is commonly implemented in file
systems for single processor systems because it is the most
desirable semantics and also because it is easy to serialize all

96

read/write requests. However, implementing UNIX semantics in
a distributed file system is not an easy task. One may think that
this semantics can be achieved in a distributed system by
disallowing files to be cached at client nodes and allowing a shared
file to be manage by only one file server that processes all read and
write requests for the file strictly in the order in which it receives
them. However, even with this approach, there is a possibility that,
due to network delays, client requests from different nodes may
arrive and get processed at the server node in an order different
from the actual order in which the requests were made.
Furthermore, having all fie access requests processed by a single
server and disallowing caching on a client nodes is not desirable in
practice due to poor performance, poor scalability, and poor
reliability of the distributed file system. Therefore, distributed file
systems normally implement a more relaxed semantics of file
sharing. Applications that need to guarantee UNIX semantics for
correct functioning should use special means (e.g. locks) for this
purpose and should not rely on the underlying semantics of sharing
provided by the file system.

97

9

DISTRIBUTED FILE SYSTEM (Cont)

Unit Structure:

9.1 File caching Scheme

9.2 Fault Tolerance

9.3 Design Principles

9.1 FILE CACHING SCHEME

File caching has been implemented in several file systems
for centralized time sharing systems to improve file I/O
performance. The idea in file caching in these systems is to retain
recently accessed file data in main memory, so that repeated
accesses to the same information can be handled without
additional disk transfers. Because of locality in file access patterns,
file caching reduces disk transfers substantially, resulting in better
overall performance of the file systems. The property of locality in
file access patterns can as well be exploited in distributed systems
by designing a suitable file caching scheme. In addition to better
performance, a file caching scheme for a distributed file system
may also contribute to its scalability and reliability because it is
possible to cache remotely located data on a client node.
Therefore, every distributed file system in serious use today uses
some form of file caching. Even AT & T’s Remote File System
(RFS) which initially avoided caching to emulate UNIX semantics,
now uses it.

In implementing a file caching scheme for a centralized file
system one has to make several key decisions, such as the
granularity of cached data (large versus small), cache size (large
versus small, fixed versus dynamically changes, and the
replacement policy. A good summary of these design issues is
presented in [Smith 1+82]. In addition to these issues, a file
caching scheme for a distributed file system should also address
the following key decisions :

1. Cache location

2. Modification propagation

3. Cache validation

98

These three design issues are described below.

9.1.1 Cache Location :

Cache location refers to the place where the cached data is
stored. Assuming that the original location of a file is on its server’s
disk, there are three possible cache locations in a distributed file
system.

In this approach, a read quorum of r votes is collected to
read a file and a write quorum of w votes to write a file. Since the
votes assigned to each copy are not the same, the size of a read /
write quorum depends on the copies selected for the quorum. The
number of copies in the quorum will be less if the number of votes
assigned to the selected copies is relatively more. On the other
hand, the number of copies in the quorum will be more if the
number of votes assigned to the selected copies is relatively less.
Therefore, to guarantee that there is a non-null intersection
between every read quorum and every write quorum, the values of
r and w are chosen such that r + w is greater than the total number

of votes (v) as to the file r w v . Here, v is the sum of the

votes of all the copies of the file.

9.1.2 Modification Propagation:

In the file system in which the cache is located on clients’
node; a file’s data may simultaneously be cached on multiple
nodes. In such a situation, when cache of all these nodes contains
exactly the same copy of the file data, we say that the caches are
consistent. It is possible for the cache to become inconsistent
provided the file data is modified by one of the clients’ and the
corresponding data cached at the other nodes are not changed or
discarded.

Keeping file data cached at multiple client nodes consistent
is an important design issue in those distributed file systems that
use client caching. A variety of approaches handle this issue have
been proposed and implemented. These approaches depend on
the schemes used for the following cache design for distributed file
system.

1) When to propagate modifications made to a cached data to
corresponding file server.

2) How to verify the validity of cached data.

9.1.3 Cache Validation Scheme:

A file data may simultaneously reside in the cache of
multiple nodes. The modification propagation policy only specifies

99

when the master copy of a file at a server node is updated upon
modification of a cache entry.

It does not tell anything about when the file data residing in
the cache of other nodes was updated.

As soon as other nodes get updated, the client’s data
become outdated or stale. Thus the consistency of the clients’
cache has to be checked and must be consistent with the master
copy of the data.

Validation is done in two ways:

1) Client initiated approach:

Here client checks for new updates before it accesses its
data or it goes with the periodic checking mechanism i.e.
client checks for updates after regular intervals of time. Here
the pull mechanism is implemented where the client Pulls for
updates.

2) Server initiated approach:

Here the server is responsible for sending periodic updates
to all its clients. The Push protocol is user where she server
pushes the new updates to all its clients.

9.2 FAULT TOLERANCE

Fault tolerance is an important issue in the design of a
distributed file system. Various types of faults could harm the
integrity of the data stored by such a system. For instance, a
processor loses the coments of its main memory in the event of a
crash. Such a failure could result in logically complete but
physically incomplete file operations, making the data that are
stored by the file system inconsistent. Similarly, during a request
processing, the server or client machine may crash, resulting in the
loss of state information of the file being accessed. This may have
an uncertain effect on the integrity of file data. Also, other adverse
environmental phenomena such as transient faults (caused by
electromagnetic fluctuations) or decay of disk storage devices may
result in the loss or corruption of data stored by a file system. A
portion of a disk storage device is said to be ‘decay’. The data on
that portion of the device are irretrievable.

The primary file properties that directly influence ability of a
distributed file system to tolerate faults are as follows.

1. Availability : Availability of a file refers to the fraction of time for
which the file is available for use. Note that the availability

100

property depends on the location of the file and the locations of
its clients (users). For example, if a network is partitioned due
to a communication link failure, a file may be available to the
clients of some nodes, but at the same time, it may not be
available to the clients of other nodes. Replication is a primary
mechanism for improving the availability of a file.

2. Robustness : Robustness of a file refers to its power to survive
crashes of the storage device and decays of the storage
medium on which it is stored. Storage devices that are
implemented by using redundancy techniques, such as stable
storage device, are often used to store robust files. Note that a
robust file may not be available until the faulty component has
been recovered. Furthermore, unlike availability, robustness is
independent of either the location of the file or the location of its
clients.

On the other hand, if a failure occurs that causes a
subtransaction to abort before its completion, all of its tentative
updates are undone, and its parent is notified. The parent may
then choose to continue processing and try to complete its task
using an alternative method or it may abort itself. Therefore, the
abort of a subtransaction may not necessarily cause its ancestors
to abort. However, if a failure causes an ancestor transaction to
abort, the updates of all its descendant transactions (That have
already committed) have to be undone. Thus no updates
performed within an entire transaction family are made permanent
until the top level transaction commits. Only after the top level
transaction commits is success reported to the client.

9.2.1 Advantages of Nested Transactions :

Nested transactions facility is considered to be an important
extension to the traditional transaction facility (especially in
distributed system) due to its following main advantages:

1. It allows concurrency within a transaction. That is a transaction
may generate several subtransactions that run in parallel on
different processors. Notice that all children of a parent
transaction are synchronized so that the parent transaction still
exhibits serializability.

2. It provides greater protection against failures, in that it allows
checkpoints to be established within a transaction. This is
because the subtransactions of a parent transaction fail
independently of the parent transaction and of one teacher.
Therefore, when a subtransaction aborts, its parent can still
continue and may fork alternative subtransaction in place of the
failed subtransaction in order to complete its task.

101

9.3 DESIGN PRINCIPLES

Based on his experience with the AFS and other distributed
file systems, Satyanarayanan [1992] has stated the following
general principles for designing distributed file systems :

1. Clients have cycles to burn : This principle says that, if
possible, it is always preferable to perform an operation on a
client’s own machine rather than performing it on a server
machine. This is because server is a common resource for all
clients, and hence cycles of a server machine are more
precious than the cycles of client machines. This principle aims
at enhancing the scalability of the design, since it lessens the
need to increase centralized (commonly used) resources and
allows graceful degradation of system performance as the
system grows in size.

2. Cache whenever possible : Better performance, scalability,
user mobility, etc autonomy motivate this principle. Caching of
data at clients’ sites frequently to improve overall system
performance because it makes data available wherever it is
being currently used, thus saving a large amount of computing
time and network bandwidth. Caching also enhances scalability
because it reduces contention on centralized resources.

3. Exploit usage properties : This principle says that, depending
on usage properties (access and modification patterns), files
should be grouped into a small number of easily identifiable
classes, and then class specific properties should be exploited
for independent optimization for improved performance. For
example, files known to be frequently read and modified only
once in a while can be treated as immutable files for read only
replication. Files containing the object code of system programs
are good candidates for this class.

Notice that the use of different mechanisms for handling files
belonging to different classes for improved performance makes
the design of a file system complex. Hence, for simplicity of
design, some designers prefer the single mechanism for
handling all files.

4. Minimize system-wide knowledge and change : This
principle is aimed at enhancing the scalability of design. The
larger is a distributed system, the more difficult it is to be aware
at all times of the entire state of the system and to update
distributed or replicated data structures in consistent manner.
Therefore monitoring or automatically updating of global
information should be avoided as far as practicable. The

102

callback approach for cache validation and the use of negative
rights in an access control list (ACL) based access control
mechanism are two instances of the application of this principle.
The use of hierarchical system structure is also an application of
this principle.

5. Trust the fewest possible entities : This principle is aimed at
changing the security of the system. For example, it is much
simpler to ensure security based on the integrity of the much
smaller number of servers rather than trusting thousands of
clients. In this case, it is sufficient to only ensure the physical
security of these servers and the software they run.

6. Batch if possible : Parching often helps in improving
performance greatly. For example, grouping operation together
can improve throughput, although it is often at the cost of
latency. Similarly transfer of data across the network in large
chunks rather than as individual pages in much more efficient.
The full file transfer protocol is an instance of the application of
this principle.

Exercise:

1) In what aspects is t6he design of a distributed file system
different from that of a file system for a centralized time-sharing
system?

2) Name the main components of a distributed file system. What
might be the reason for separating the various functions of a
distributed file system into these components?

3) In the design of the distributed file system, high availability and
high scalability are mutually related properties. Discuss.

4) Discuss the advantages and disadvantages of using full0file
caching and block caching models for data-caching mechanism
of a distributed file system.

5) What is a transaction? What are the two main factors that
threaten the atomicity of transactions? Describe how atomicity is
ensured for a transaction in both commit and abort.

6) Why are transaction models needed in a file system? Give
example.

7) What is transaction deadlock? Give examples to justify and
support your answer.

8) What is false sharing?

103

10

NAMING

Unit Structure:

10.1 Desirable Features for a Good Naming System

10.2 Source Routing Name

10.3 System Oriented Names

10.4 Name Caches

10.5 On-Use Update

10.1 DESIRABLE FEATURES FOR A GOOD NAMING
SYSTEM

A good naming system or a distributed system should have
the features described below.

1. Location transparency : Location transparency means that the
name of an object should not reveal any hint as to the physical
location of the object. That is, an object’s name should be
independent of the physical connectivity or topology of the
system, or the current location of the object.

2. Location independency : For performance, reliability,
availability and security reasons, distributed systems provide the
facility of object migration that allows the movement and
relocation of objects dynamically among the various nodes of a
system. Location independency means that the name of an
object need not be changed when the object’s location changes.
Furthermore, a user should be able to access an object by its
same name irrespective of the node from where he or she
accesses it. Therefore, the requirement of location
independency calls for a global naming faculty with the following
two features :

 An object at any node can be accessed without the
knowledge of its physical location (location independency of
request receiving objects).

 An object at any node can issue an access request without
the knowledge of its own physical location (location
independency of request issuing objects). This property is
also known as user mobility.

104

A location independency naming system must support a
dynamic mapping scheme so that it can map the same object
name to different locations at two different instances of time.
Therefore, location independency is a stronger property than
location transparency.

3. Scalability : Distributed systems vary in size ranging from one
with a few nodes to one with many nodes. Moreover,
distributed systems are normally open systems, and their size
changes dynamically. Therefore, it is impossible to have an a
priori idea about how large the set of names to be dealt with is
liable to get. Hence a naming system must be capable of
adapting to the dynamically changing scale of a distributed
system that normally leads to a change in the size of the name
space. That is, a change in the system scale should not require
any change in the naming or locating mechanisms.

4. Uniform naming convention : In many existing systems,
different ways of naming objects, called naming conventions,
are used for naming different types of objects. For example,
filenames typically differ from user names and process names.
Instead of using such non-uniform naming conventions, a good
naming system should use the same naming convention for all
types of objects in the system.

Note that an attribute value may be the same for several
objects, but if all considered together refer to a single object.
Moreover, it is not always necessary that all the attributes of a
naming convention to identify an object. Attribute based naming
systems usually work based on the idea that a query must supply
enough attributes so that the target object can be uniquely
identified. Also notice that in a partitioned name space using
descriptive naming convention, domains can be arranged in any
arbitrary manner.

Multicast or group naming facility can be easily provided with
attribute based naming by constructing an attribute for a list of
names. Group names are particularly useful in forming mail
distribution lists and access control lists.

10.2 SOURCE ROUTING NAME

Many name spaces mirror the structure of the underlying
physical network. When the structure of a name space has the
same form as the underlying network of a distributed system, the
name space defines source routing anmes. A source routing name
identities a path through the network of a distributed system. The

105

UNIX-to-UNIX Copy (UUCP) name space that defines names of the
form host-1! host-2! host-3! sinha is all example of a source routing
name space. The UUCP style names are called source routing
names because the route through the network is specified at the
source computer. For instance in the example above, the specified
route is from host-1 to host-2 to host-3 sinha. The UUCP style
names are relative names because they must be interpreted
relative to the starting point.

10.3 SYSTEM ORIENTED NAMES

System oriented names normally have the following
characteristic features :

1. They are large integers or bit strings.

2. They are also referred to as unique identifiers because in most
naming systems they are guaranteed to be unique in both space
and time. That is, these names do not change during their
lifetime, and once used, they are ever reused. Therefore, in the
naming system discussed above, a 128 – bit pattern refers
either to nothing or, if it refers to anything, to the same thing at
all times. This is the main reason why unique identifiers are so
large.

3. Unlike human oriented names that are variable in length, all
system oriented names of a naming system are of the same
size irrespective of the type or location of the object identified by
these names. This allow the naming of all objects uniformly.

4. Since all the system oriented names of a naming system are of
uniform size and also are normally shorter than human oriented
names, manipulations like hashing, sorting, and so on, can be
easily performed on them. Hence, they are suitable for efficient
handling my machines.

10.4 NAME CACHES

Readers might have observed that name resolution
operations are not likely to be especially cheap. Based on the
measurements made by few researchers in the past, it has been
found that in operating systems that provide a flexible, hierarchical
name space, the system overhead involved in name resolution
operations is considerably large. For instance, Leffler et al. [1984]
attribute 40% of the system call overhead in UNIX to file name
resolution. Also, Mogul’s measurements of the UNIX system call
frequency indicate that name mapping operations (open, stat, Istat)
constitute over 50% of the file system calls [Mogul 1986]. Shaltzer

106

at al. [1986] also made an observation that in a large distributed
system a substantial portion of network traffic is naming related.
Hence it is very desirable for a client to be able to cache the result
of a name resolution operation for a while rather than repeating it
every time the value is needed.

Work has been carried out in the past by some researchers
[Sheltzer et al. 1986. Cheriton and Mann 1989] to investigate
whether a distributed name cache is a suitable solution to improve
the performance of name service as well as to reduce the overall
system overhead. The conclusion drawn by these researchers is
that a simple distributed name cache can have a substantial
positive effect on distributed system performance. This is mainly
due to the following characteristics of name service related
activities :

1. High degree of locality of name lookup : The property of
“locality of reference” has been observed in program execution,
file access, as well as data base access. Measurements clearly
show that a high degree of locality also exists in the use of
pathnames for accessing objects. Due to this locality feature, a
reasonable size name cache, used for caching recently used
naming information, can provide excellent hit ratios.

2. Slow update of name information database : It has also been
found that naming data does not change very fast, so
inconsistencies are rare. The activity of most users is usually
confined to a small, slowly changing subset of the entire name
information database. Furthermore, most naming data have a
high read to modify ratio. This behavior implies that the cost of
maintaining the consistency of cached data is significantly low.

3. On-use consistency of cached information is possible : An
attractive feature of name service related activity is that it is
possible to find that something does not work if one tries to use
obsolete naming data, so that it can be attended to at the time
of use. That is, name cache consistency can be maintained by
detecting and discarding stale cache entries on use. With on-
use consistency checking, there is no need to invalidate all
related cache entries when a naming data update occurs, et
stale data never cause a name to be mapped to the wrong
object.

Some issues specific to the design of name caches are
discussed in the next section.

107

10.5 ON-USE UPDATE

This is the more commonly used method for maintaining
name cache consistency. In this method, no attempt is made to
invalidate all related cache entries when a naming data update
occurs. Rather, when a client uses a stale cached data, it is
informed by the naming system that the data being used is either
incorrectly specified or stale. On receiving a negative reply,
necessary steps are taken (Either by broadcasting or multicasting a
request or by using some other implementation dependent
approach) to obtain the updated data, which is then used to refresh
the stale cache entry.

10.5.1 Naming and Security :

An important job of the naming system of several centralized
and distributed operating systems is to control unauthorized access
to both the named objects and the information in the naming
database. Many different security mechanisms have been
proposed and are used by operating systems to control
unauthorized access to the various resources (objects) of the
system. Three basic naming related access control mechanisms
are described below.

10.5.2 Object Names as Protection Keys :

In this method, an object’s name acts as a protection key for
the object. A user who knows the name of an object 9i.e. has the
key for the object) can access the object by using its name. Notice
that an object may have several keys in those systems that allow
an object to have multiple names. In this case, any of the keys can
be used to access the object.

In systems using this method, users are not allowed by the
system to define a name for an object that they are not authorized
to access. Obviously, if a user cannot name the object, he or she
cannot operate on it. This scheme is based on the assumption that
object names cannot be forged or stolen. That is, there is no way
for a user to obtain the names of other user’s objects and the
names cannot be guessed easily. However, in practice, since
object names are generally picked to be mnemonic, they can often
be guessed easily. Therefore, the scheme does not guarantee a
reliable access control mechanism. Another limitation of this
scheme is that it does not provide the flexibility of specifying the
modes of access control. That is, a user having a name for an
object usually has all types of possible access rights for the object.
For instance, providing only read access to a file object to one user

108

and both read and write accesses to another user is not possible by
this scheme alone.

10.5.3 Capabilities :

This is a simple extension of the above scheme that
overcomes its limitations.

Object identifier Rights information

Fig. 10.1 : The two basic parts of a capability

As shown in Figure 10.1, a capability is a special type of
object identifier that contains additional information redundancy for
protection. It may be considered as an unforgeable ticket that
allows its holders to access the object (identified by its object
identifier part) in one or more permission modes (specified by its
access control information part). Therefore, capabilities are object
names having the following properties :

1. A capability is a system oriented name that uniquely identifies
an object.

2. In addition to identifying an object, it is also used to protect the
object it references by defining operations that may be
performed on the object it identifies.

3. A client that possesses a capability can access the object
identified by it in the modes allowed by it.

4. There are usually several capabilities for the same object. Each
one confers different access rights to its holders. The same
capability held by different holders provides the same access
rights to all of them.

5. All clients that have capabilities to a given object can share this
object. This exact mode of sharing depends on the capability
possessed by each client of the same object.

6. Capabilities are un-forgeable protected objects that are
maintained by the operating system and only indirectly
accessed by the users. Capability based protection relies on
the fact that the capabilities are never allowed to migrate into
any address space directly accessible by a user process (where
they could be modified). If all capabilities are secure, the
objects they protect are also secure against unauthorized
access.

109

When a process wants to perform an operation on an
operation on an object, it must send to the name server a message
containing the object’s capability. The name server verifies if the
capability provided by the client allows the type of operation
requested by the client on the relevant object. If not, a “permission
denied” message is returned to the client process. If allowed, the
client’s request is forwarded to the manager of the object. Notice
that in the capability based approach, there is no checking of user
identity. If this is required, some user authentication mechanism
must be used.

10.5.4 Associating Protection with Name Resolution Path :

Protection can be associated either with an object or with the
name resolution path of the name used to identify the object. The
more common scheme provides protection on the name resolution
path.

1. It eases the task of programming distributed applications by
relieving the programmers from concerns about message data
formats, operating system peculiarities, and specific
synchronization details.

2. It improves cooperation between programmers working in
different languages by allowing both client and servers to be
written in any of the languages supported within the Mach
environment. The MIG compiler automatically takes care of
differences in language syntax, type representations, record
field layout, procedure call semantics, and exception handling
semantics.

3. It enhances system standardization by providing a uniform
message level interface between processes.

4. It reduces the cost of reprogramming interfaces in multiple
languages whenever a program interface is changed.

10.5.5 Chorus :

Chorus is microkernel based distributed operating system
that started as a research project in 1979 at INRIA (Institute
National de Recherche en Informatique et Automatique), a
government funded laboratory in France. Until now Chorus has
passed through four major versions (versions 0 – 3). Version 0
(1979 1982) was designed to model distributed applications as a
collection of communicating processes called actors Version 1
(1982 – 1984) was aimed at porting the design of Version 0 from a

110

shared memory multiprocessor system to a distributed memory
multiprocessor system. It also had additional features of structured
messages and some support for fault tolerance. The main goal of
Version 2 (1984 – 1986) was to add the UNIX source code
compatibility feature to the system so that existing UNIX programs
could be run on Chorus after recompilation. Version 3 in 1987 was
made with the main goal of changing the research system into a
commercial product. For this, the first goal was to provide binary
compatibility with UNIX so that UNIX programs could be run on
Chorus without the need to recompile them. Many key concepts
from other distributed operating systems were also included in
Version 3. In particular, a message based interprocess
communication mechanism was borrowed from V-System; some of
the concepts of fast interprocess communication, distributed virtual
memory, and external pagers were borrowed from Mach; and the
idea of using capabilities for global naming and protection was
borrowed from Amoeba. Version 3 also has RPC facility, support
for real time operations, and a multithreading feature. It is available
as a commercial product for a wide range of hardware, such as the
Intel 8086 family, the Motorola 68000 and 88000 families, and the
Inmos Transputer.

10.5.7 Design Goals and Main Features :

Chorus’s design was influenced by the research and design
goals given below.

UNIX Emulation and Enhancements :

One of the main goals of Chorus was to provide a UNIX
compatibility feature so that existing UNIX programs could be run
on Chorus. This was not an initial goal but was later realized to be
important for the commercial success of the system. Therefore,
Version 2 of Chorus was designed to provide UNIX source code
compatibility. To achieve this goal, the original kernel of Chorus
was redesigned and converted to a microkernel by moving as much
functionality as possible from it to user address space. Then
several processes were added in the user address space to do
UNIX emulation. Later, in Version 3, a UNIX emulation subsystem,
called Chorus / MIX (MIX stands for Modular UNIX), was built on
top of the Chorus microkernel to provide binary compatibility with
UNIX System V. The microkernel of Version 2 was further refined
by moving out the part added to it for source code UNIX emulation
and placing this part in the new UNIX emulation subsystem. A
4.3BSD UNIX emulation is also being currently implemented.

In addition to UNIX emulation, Chorus design also provides
UNIX enhancements to allow users of the UNIX emulation to use

111

enhanced facilities provided by Chorus from within UNIX
processes. Two such enhancements are the use of multiple
threads in a single process and the ability to create a new process
at a remote node.

10.5.8 Open System Architecture :

Another important feature of Chorus is its microkernel
support, which provides a base for building new operating system
and enmlating existing ones in a modular way. With this feature,
multiple operating system interfaces, such as UNIX System, V,
DSD, UNIX, OS/2, and MS-DOS, can simultaneously exist on the
same machine. Therefore, it will be possible to run several existing
applications that now are run on different machines on a single
machine.

Efficient and Flexible Communication :

The basic communication paradigm used in Chorus is
message passing. Since message passing has a reputation of
being less efficient than shared memory, Chorus’s designers have
made great efforts to optimize the IPC system. The IPC system
also provides a high degree of flexibility in handling different types
of communications. This IPC system has the following features :

1. It provides both asynchronous message passing and request /
reply type interactions.

2. It has RPC facility that provides at most once semantics. It also
has lightweight RPC facility for communication between two
kernel processes.

Exercise:

1) Differentiate between the terms ‘location transparency’ and
location independency’. Which is a more powerful feature?

2) What is a name space? State its hierarchy.

3) Which factors will influence the design decision while
designing object-locating mechanisms for a naming system
of a distributed system?

4) What is a meta-context? Why is it needed is a naming
system?

5) Explain the working and use of consistency control
mechanism.

6) Explain one-use consistency control mechanism.

