

[1] Oracle® Database
Data Warehousing Guide

12c Release 1 (12.1)

E41670-08

November 2014

Oracle Database Data Warehousing Guide, 12c Release 1 (12.1)

E41670-08

Copyright © 2001, 2014, Oracle and/or its affiliates. All rights reserved.

Primary Authors: Paul Lane, Padmaja Potineni

Contributors: Hermann Baer, Mark Bauer, Subhransu Basu, Nigel Bayliss, Donna Carver, Maria Colgan,
Benoit Dageville, Luping Ding, Bud Endress, Bruce Golbus, John Haydu, Chun-Chieh Lin, William Lee,
George Lumpkin, Alex Melidis, Valarie Moore, Ananth Raghavan, Jack Raitto, Lei Sheng, Wayne Smith,
Sankar Subramanian, Margaret Taft, Murali Thiyagarajan, Jean-Francois Verrier, Andreas Walter, Andy
Witkowski, Min Xiao, Tsae-Feng Yu, Fred Zemke, Mohamed Ziauddin

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... xxi

Audience... xxi
Documentation Accessibility ... xxi
Related Documents ... xxi
Conventions .. xxii

Changes in This Release for Oracle Database Data Warehousing Guide xxiii

Changes in Oracle Database 12c Release 1 (12.1.0.2).. xxiii
Changes in Oracle Database 12c Release 1 (12.1.0.1).. xxiv

Part I Data Warehouse - Fundamentals

1 Introduction to Data Warehousing Concepts

What Is a Data Warehouse? .. 1-1
Key Characteristics of a Data Warehouse... 1-3

Contrasting OLTP and Data Warehousing Environments... 1-3
Common Data Warehouse Tasks .. 1-4
Data Warehouse Architectures .. 1-5

Data Warehouse Architecture: Basic ... 1-5
Data Warehouse Architecture: with a Staging Area ... 1-6
Data Warehouse Architecture: with a Staging Area and Data Marts .. 1-7

2 Data Warehousing Logical Design

Logical Versus Physical Design in Data Warehouses... 2-1
Creating a Logical Design... 2-2

What is a Schema?.. 2-2
About Third Normal Form Schemas .. 2-2

About Normalization... 2-3
Design Concepts for 3NF Schemas.. 2-4

Identifying Candidate Primary Keys ... 2-4
Foreign Key Relationships and Referential Integrity Constraints 2-5
Denormalization.. 2-5

About Star Schemas ... 2-5
Facts and Dimensions.. 2-6

iv

Fact Tables.. 2-7
Dimension Tables.. 2-7

Design Concepts in Star Schemas .. 2-8
Data Grain .. 2-8
Working with Multiple Star Schemas .. 2-8
Conformed Dimensions ... 2-9
Conformed Facts ... 2-9
Surrogate Keys .. 2-9
Degenerate Dimensions ... 2-9
Junk Dimensions ... 2-9
Embedded Hierarchy ... 2-9
Factless Fact Tables ... 2-9
Slowly Changing Dimensions.. 2-10

About Snowflake Schemas... 2-10
About the Oracle In-Memory Column Store ... 2-11

Benefits of Using the Oracle In-Memory Column Store.. 2-12
Faster Performance for Analytic Queries ... 2-13
Enhanced Join Performance Using Vector Joins ... 2-13
Enhanced Aggregation Using VECTOR GROUP BY Transformations........................... 2-13

Using the Oracle In-Memory Column Store ... 2-13
Using Vector Joins to Enhance Join Performance... 2-14

Automatic Big Table Caching to Improve the Performance of In-Memory Parallel Queries 2-15
About In-Memory Aggregation.. 2-16

VECTOR GROUP BY Aggregation and the Oracle In-Memory Column Store..................... 2-17
When to Use VECTOR GROUP BY Aggregation... 2-17

Situations Where VECTOR GROUP BY Aggregation Is Useful 2-17
Situations Where VECTOR GROUP BY Aggregation Is Not Advantageous 2-17

When Is VECTOR GROUP BY Aggregation Used to Process Analytic Queries? 2-17

3 Data Warehousing Physical Design

Moving from Logical to Physical Design .. 3-1
About Physical Design .. 3-1

Physical Design Structures ... 3-2
Tablespaces .. 3-3
About Partitioning .. 3-3
Index Partitioning ... 3-4
Partitioning for Manageability.. 3-5
Partitioning for Performance... 3-5
Partitioning for Availability .. 3-6

Views.. 3-6
Integrity Constraints.. 3-6
Indexes and Partitioned Indexes.. 3-7
Materialized Views .. 3-7
Dimensions.. 3-7

Hierarchies ... 3-7
Typical Dimension Hierarchy ... 3-8

v

4 Data Warehousing Optimizations and Techniques

Using Indexes in Data Warehouses .. 4-1
Using Bitmap Indexes in Data Warehouses ... 4-1
Benefits for Data Warehousing Applications... 4-2

Cardinality ... 4-2
Using Bitmap Join Indexes in Data Warehouses.. 4-5

Using B-Tree Indexes in Data Warehouses .. 4-7
Using Index Compression... 4-8
Choosing Between Local Indexes and Global Indexes ... 4-9

Using Integrity Constraints in a Data Warehouse ... 4-9
Overview of Constraint States... 4-10
Typical Data Warehouse Integrity Constraints .. 4-10

UNIQUE Constraints in a Data Warehouse... 4-10
FOREIGN KEY Constraints in a Data Warehouse.. 4-11
RELY Constraints... 4-12
NOT NULL Constraints.. 4-12
Integrity Constraints and Parallelism ... 4-13
Integrity Constraints and Partitioning.. 4-13
View Constraints.. 4-13

About Parallel Execution in Data Warehouses.. 4-13
Why Use Parallel Execution?... 4-14

When to Implement Parallel Execution .. 4-14
When Not to Implement Parallel Execution .. 4-15

Automatic Degree of Parallelism and Statement Queuing... 4-15
In-Memory Parallel Execution .. 4-16

Optimizing Storage Requirements .. 4-17
Using Data Compression to Improve Storage .. 4-17

Optimizing Star Queries and 3NF Schemas .. 4-18
Optimizing Star Queries .. 4-18

Tuning Star Queries... 4-18
Using Star Transformation .. 4-19

Star Transformation with a Bitmap Index.. 4-19
Execution Plan for a Star Transformation with a Bitmap Index 4-21
Star Transformation with a Bitmap Join Index.. 4-21
Execution Plan for a Star Transformation with a Bitmap Join Index 4-22
How Oracle Chooses to Use Star Transformation .. 4-22
Star Transformation Restrictions ... 4-23

Optimizing Third Normal Form Schemas... 4-23
3NF Schemas: Partitioning ... 4-24
3NF Schemas: Parallel Query Execution .. 4-27

Optimizing Star Queries Using VECTOR GROUP BY Aggregation....................................... 4-28

Part II Optimizing Data Warehouses

5 Basic Materialized Views

Overview of Data Warehousing with Materialized Views.. 5-1

vi

Materialized Views for Data Warehouses .. 5-2
Materialized Views for Distributed Computing ... 5-2
Materialized Views for Mobile Computing ... 5-2
The Need for Materialized Views.. 5-2
Components of Summary Management... 5-4
Data Warehousing Terminology ... 5-5
Materialized View Schema Design.. 5-6

Schemas and Dimension Tables.. 5-6
Guidelines for Materialized View Schema Design .. 5-7

Loading Data into Data Warehouses .. 5-8
Overview of Materialized View Management Tasks ... 5-8

Types of Materialized Views ... 5-9
Materialized Views with Aggregates ... 5-10

Requirements for Using Materialized Views with Aggregates .. 5-12
Materialized Views Containing Only Joins... 5-12

Materialized Join Views FROM Clause Considerations .. 5-13
Nested Materialized Views.. 5-13

Why Use Nested Materialized Views? ... 5-14
Nesting Materialized Views with Joins and Aggregates ... 5-15
Nested Materialized View Usage Guidelines .. 5-15
Restrictions When Using Nested Materialized Views.. 5-15

Creating Materialized Views .. 5-16
Creating Materialized Views with Column Alias Lists... 5-17
Materialized Views Names.. 5-18
Storage And Table Compression .. 5-18
Build Methods ... 5-18
Enabling Query Rewrite... 5-19
Query Rewrite Restrictions.. 5-19

Materialized View Restrictions .. 5-19
General Query Rewrite Restrictions.. 5-20

Refresh Options ... 5-20
General Restrictions on Fast Refresh... 5-22
Restrictions on Fast Refresh on Materialized Views with Joins Only.............................. 5-23
Restrictions on Fast Refresh on Materialized Views with Aggregates 5-23
Restrictions on Fast Refresh on Materialized Views with UNION ALL 5-24
Achieving Refresh Goals... 5-25
Refreshing Nested Materialized Views .. 5-25

ORDER BY Clause... 5-26
Using Oracle Enterprise Manager .. 5-26
Using Materialized Views with NLS Parameters... 5-26
Adding Comments to Materialized Views.. 5-27

Creating Materialized View Logs .. 5-27
Using the FORCE Option With Materialized View Logs.. 5-28
Materialized View Log Purging.. 5-28

Registering Existing Materialized Views ... 5-29
Choosing Indexes for Materialized Views ... 5-30
Dropping Materialized Views .. 5-31

vii

Analyzing Materialized View Capabilities ... 5-31
Using the DBMS_MVIEW.EXPLAIN_MVIEW Procedure ... 5-32

DBMS_MVIEW.EXPLAIN_MVIEW Declarations .. 5-32
Using MV_CAPABILITIES_TABLE.. 5-32
MV_CAPABILITIES_TABLE.CAPABILITY_NAME Details .. 5-35
MV_CAPABILITIES_TABLE Column Details... 5-36

6 Advanced Materialized Views

Partitioning and Materialized Views ... 6-1
About Partition Change Tracking.. 6-1

Partition Key .. 6-3
Join Dependent Expression ... 6-3
Partition Marker .. 6-4
Partial Rewrite ... 6-5

Partitioning a Materialized View... 6-5
Partitioning a Prebuilt Table... 6-6

Benefits of Partitioning a Materialized View.. 6-6
Rolling Materialized Views .. 6-7

Materialized Views in Analytic Processing Environments ... 6-7
Materialized Views and Hierarchical Cubes.. 6-7
Benefits of Partitioning Materialized Views .. 6-8
Compressing Materialized Views.. 6-9
Materialized Views with Set Operators .. 6-9

Examples of Materialized Views Using UNION ALL... 6-9
Materialized Views and Models .. 6-10
Invalidating Materialized Views ... 6-11
Security Issues with Materialized Views ... 6-11

Querying Materialized Views with Virtual Private Database (VPD)...................................... 6-12
Using Query Rewrite with Virtual Private Database ... 6-12
Restrictions with Materialized Views and Virtual Private Database 6-13

Altering Materialized Views... 6-13

7 Refreshing Materialized Views

Refreshing Materialized Views... 7-1
Complete Refresh ... 7-4
Fast Refresh ... 7-4
Partition Change Tracking (PCT) Refresh .. 7-4
The Out-of-Place Refresh Option... 7-4

Types of Out-of-Place Refresh... 7-5
Restrictions and Considerations with Out-of-Place Refresh .. 7-5

ON COMMIT Refresh ... 7-6
Manual Refresh Using the DBMS_MVIEW Package .. 7-6
Refresh Specific Materialized Views with REFRESH ... 7-7
Refresh All Materialized Views with REFRESH_ALL_MVIEWS... 7-8
Refresh Dependent Materialized Views with REFRESH_DEPENDENT 7-9
Using Job Queues for Refresh .. 7-9

viii

When Fast Refresh is Possible ... 7-10
Recommended Initialization Parameters for Parallelism.. 7-10
Monitoring a Refresh .. 7-10
Checking the Status of a Materialized View ... 7-11

Viewing Partition Freshness... 7-11
Scheduling Refresh ... 7-13

Tips for Refreshing Materialized Views .. 7-13
Tips for Refreshing Materialized Views with Aggregates .. 7-14
Tips for Refreshing Materialized Views Without Aggregates ... 7-16
Tips for Refreshing Nested Materialized Views... 7-17
Tips for Fast Refresh with UNION ALL.. 7-17
Tips for Fast Refresh with Commit SCN-Based Materialized View Logs 7-18
Tips After Refreshing Materialized Views .. 7-18

Using Materialized Views with Partitioned Tables ... 7-18
Fast Refresh with Partition Change Tracking ... 7-19

PCT Fast Refresh Scenario 1 ... 7-19
PCT Fast Refresh Scenario 2 ... 7-20
PCT Fast Refresh Scenario 3 ... 7-21

Using Partitioning to Improve Data Warehouse Refresh.. 7-21
Refresh Scenarios .. 7-24
Scenarios for Using Partitioning for Refreshing Data Warehouses... 7-25

Refresh Scenario 1 .. 7-26
Refresh Scenario 2 .. 7-26

Optimizing DML Operations During Refresh.. 7-26
Implementing an Efficient MERGE Operation ... 7-26
Maintaining Referential Integrity ... 7-29
Purging Data .. 7-30

8 Synchronous Refresh

About Synchronous Refresh .. 8-1
What Is Synchronous Refresh?... 8-2
Why Use Synchronous Refresh? .. 8-2
Registering Tables and Materialized Views for Synchronous Refresh 8-3
Specifying Change Data for Refresh ... 8-3
Synchronous Refresh Preparation and Execution... 8-4
Materialized View Eligibility Rules and Restrictions for Synchronous Refresh 8-4

Synchronous Refresh Restrictions: Partitioning... 8-5
Synchronous Refresh Restrictions: Refresh Options ... 8-5
Synchronous Refresh Restrictions: Constraints.. 8-5
Synchronous Refresh Restrictions: Tables... 8-5
Synchronous Refresh Restrictions: Materialized Views.. 8-6
Synchronous Refresh Restrictions: Materialized Views with Aggregates 8-6

Using Synchronous Refresh... 8-6
The Registration Phase .. 8-7
The Synchronous Refresh Phase .. 8-7
The Unregistration Phase.. 8-8

Using Synchronous Refresh Groups .. 8-9

ix

Examples of Common Actions with Synchronous Refresh Groups.. 8-10
Examples of Working with Multiple Synchronous Refresh Groups....................................... 8-11

Specifying and Preparing Change Data.. 8-12
Working with Partition Operations.. 8-12
Working with Staging Logs ... 8-14

Staging Log Key ... 8-15
Staging Log Rules .. 8-15
Columns Being Updated to NULL.. 8-16
Examples of Working with Staging Logs ... 8-16
Error Handling in Preparing Staging Logs .. 8-18

Troubleshooting Synchronous Refresh Operations... 8-18
Overview of the Status of Refresh Operations.. 8-19
How PREPARE_REFRESH Sets the STATUS Fields ... 8-19
Examples of PREPARE_REFRESH... 8-20
How EXECUTE_REFRESH Sets the Status Fields.. 8-22
Examples of EXECUTE_REFRESH... 8-23
Example of EXECUTE_REFRESH with Constraint Violations .. 8-26

Performing Synchronous Refresh Eligibility Analysis ... 8-27
Using SYNCREF_TABLE... 8-28
Using a VARRAY .. 8-28
Demo Scripts .. 8-29

Overview of Synchronous Refresh Security Considerations ... 8-29

9 Dimensions

What are Dimensions?... 9-1
Creating Dimensions ... 9-3

Dropping and Creating Attributes with Columns.. 9-6
Multiple Hierarchies .. 9-7
Using Normalized Dimension Tables ... 9-8

Viewing Dimensions ... 9-8
Viewing Dimensions With Oracle Enterprise Manager ... 9-8
Viewing Dimensions With the DESCRIBE_DIMENSION Procedure.. 9-9

Using Dimensions with Constraints .. 9-9
Validating Dimensions .. 9-10
Altering Dimensions .. 9-10
Deleting Dimensions.. 9-11

10 Basic Query Rewrite for Materialized Views

Overview of Query Rewrite .. 10-1
When Does Oracle Rewrite a Query?... 10-2

Ensuring that Query Rewrite Takes Effect... 10-2
Initialization Parameters for Query Rewrite... 10-3
Controlling Query Rewrite .. 10-3
Accuracy of Query Rewrite ... 10-4
Privileges for Enabling Query Rewrite .. 10-5
Sample Schema and Materialized Views... 10-5

x

How to Verify Query Rewrite Occurred ... 10-6
Example of Query Rewrite .. 10-6

11 Advanced Query Rewrite for Materialized Views

How Oracle Rewrites Queries .. 11-1
Cost-Based Optimization ... 11-2
General Query Rewrite Methods.. 11-3

When are Constraints and Dimensions Needed? ... 11-4
Checks Made by Query Rewrite ... 11-4

Join Compatibility Check.. 11-4
Data Sufficiency Check ... 11-8
Grouping Compatibility Check ... 11-9
Aggregate Computability Check ... 11-9

Query Rewrite Using Dimensions.. 11-9
Benefits of Using Dimensions .. 11-9
How to Define Dimensions .. 11-10

Types of Query Rewrite ... 11-11
Text Match Rewrite... 11-11
Join Back ... 11-13
Aggregate Computability .. 11-14
Aggregate Rollup .. 11-15
Rollup Using a Dimension... 11-16
When Materialized Views Have Only a Subset of Data.. 11-16

Query Rewrite Definitions.. 11-17
Selection Categories... 11-17
Examples of Query Rewrite Selection... 11-18
Handling of the HAVING Clause in Query Rewrite.. 11-21
Query Rewrite When the Materialized View has an IN-List .. 11-21

Partition Change Tracking (PCT) Rewrite... 11-21
PCT Rewrite Based on Range Partitioned Tables ... 11-22
PCT Rewrite Based on Range-List Partitioned Tables.. 11-23
PCT Rewrite Based on List Partitioned Tables .. 11-25
PCT Rewrite and PMARKER ... 11-27
PCT Rewrite Using Rowid as PMARKER.. 11-29

Multiple Materialized Views... 11-30
Other Query Rewrite Considerations ... 11-37

Query Rewrite Using Nested Materialized Views... 11-37
Query Rewrite in the Presence of Inline Views .. 11-38
Query Rewrite Using Remote Tables ... 11-39
Query Rewrite in the Presence of Duplicate Tables... 11-40
Query Rewrite Using Date Folding.. 11-41
Query Rewrite Using View Constraints .. 11-43

View Constraints Restrictions .. 11-44
Query Rewrite Using Set Operator Materialized Views ... 11-44

UNION ALL Marker ... 11-46
Query Rewrite in the Presence of Grouping Sets ... 11-47

Query Rewrite When Using GROUP BY Extensions.. 11-47

xi

Hint for Queries with Extended GROUP BY... 11-51
Query Rewrite in the Presence of Window Functions... 11-51
Query Rewrite and Expression Matching ... 11-51

Query Rewrite Using Partially Stale Materialized Views.. 11-52
Cursor Sharing and Bind Variables.. 11-54
Handling Expressions in Query Rewrite... 11-55

Advanced Query Rewrite Using Equivalences ... 11-56
Creating Result Cache Materialized Views with Equivalences... 11-58
Verifying that Query Rewrite has Occurred .. 11-60

Using EXPLAIN PLAN with Query Rewrite.. 11-60
Using the EXPLAIN_REWRITE Procedure with Query Rewrite .. 11-61

DBMS_MVIEW.EXPLAIN_REWRITE Syntax... 11-61
Using REWRITE_TABLE .. 11-62
Using a Varray.. 11-63
EXPLAIN_REWRITE Benefit Statistics... 11-65
Support for Query Text Larger than 32KB in EXPLAIN_REWRITE.............................. 11-65
EXPLAIN_REWRITE and Multiple Materialized Views ... 11-66
EXPLAIN_REWRITE Output... 11-66

Design Considerations for Improving Query Rewrite Capabilities ... 11-67
Query Rewrite Considerations: Constraints ... 11-67
Query Rewrite Considerations: Dimensions... 11-68
Query Rewrite Considerations: Outer Joins.. 11-68
Query Rewrite Considerations: Text Match.. 11-68
Query Rewrite Considerations: Aggregates ... 11-68
Query Rewrite Considerations: Grouping Conditions.. 11-68
Query Rewrite Considerations: Expression Matching .. 11-69
Query Rewrite Considerations: Date Folding... 11-69
Query Rewrite Considerations: Statistics .. 11-69
Query Rewrite Considerations: Hints.. 11-69

REWRITE and NOREWRITE Hints .. 11-69
REWRITE_OR_ERROR Hint.. 11-70
Multiple Materialized View Rewrite Hints.. 11-70
EXPAND_GSET_TO_UNION Hint .. 11-70

12 Attribute Clustering

About Attribute Clustering ... 12-1
Types of Attribute Clustering.. 12-2

Attribute Clustering with Linear Ordering.. 12-2
Attribute Clustering with Interleaved Ordering... 12-3
Example: Attribute Clustered Table.. 12-3
Guidelines for Using Attribute Clustering... 12-4

Advantages of Attribute-Clustered Tables.. 12-4
About Defining Attribute Clustering for Tables .. 12-5
About Specifying When Attribute Clustering Must be Performed ... 12-6

Attribute Clustering Operations .. 12-6
Privileges for Attribute-Clustered Tables.. 12-7
Creating Attribute-Clustered Tables with Linear Ordering ... 12-7

xii

Examples of Attribute Clustering with Linear Ordering... 12-7
Creating Attribute-Clustered Tables with Interleaved Ordering .. 12-8

Examples of Attribute Clustering with Interleaved Ordering .. 12-8
Maintaining Attribute Clustering... 12-9

Adding Attribute Clustering to an Existing Table.. 12-10
Modifying Attribute Clustering Definitions .. 12-10
Dropping Attribute Clustering for an Existing Table... 12-10
Using Hints to Control Attribute Clustering for DML Operations 12-11
Overriding Table-level Settings for Attribute Clustering During DDL Operations 12-11
Clustering Table Data During Online Table Redefinition ... 12-11

Viewing Attribute Clustering Information.. 12-12
Determining if Attribute Clustering is Defined for Tables .. 12-13
Viewing Attribute-Clustering Information for Tables... 12-13
Viewing Information About the Columns on Which Attribute Clustering is Performed.. 12-13
Viewing Information About Dimensions and Joins on Which Attribute Clustering is Performed
12-14

13 Using Zone Maps

About Zone Maps.. 13-1
Difference Between Zone Maps and Indexes.. 13-2
Zone Maps and Attribute Clustering ... 13-2
Types of Zone Maps ... 13-2
Benefits of Zone Maps .. 13-2
Scenarios Which Benefit from Zone Maps .. 13-3
About Maintaining Zone Maps... 13-3

Operations that Require Zone Map Maintenance... 13-4
Scenarios in Which Zone Maps are Automatically Refreshed .. 13-4

Zone Map Operations... 13-5
Privileges Required for Zone Maps.. 13-5
Creating Zone Maps ... 13-5

Creating Zone Maps with Attribute Clustering .. 13-6
Creating Zone Maps Independent of Attribute Clustering ... 13-8

Modifying Zone Maps.. 13-9
Dropping Zone Maps ... 13-10
Compiling Zone Maps.. 13-10
Controlling the Use of Zone Maps ... 13-10

Controlling Zone Map Usage for Entire SQL Workloads.. 13-11
Controlling Zone Map Usage for Specific SQL Statements ... 13-11

Maintaining Zone Maps... 13-11
Zone Map Maintenance Considerations... 13-12

Refresh and Staleness of Zone Maps .. 13-14
About Staleness of Zone Maps.. 13-14
About Refreshing Zone Maps ... 13-16
Refreshing Zone Maps.. 13-17

Refreshing Zone Maps Using the ALTER MATERIALIZED ZONEMAP Command 13-17
Refreshing Zone Maps Using the DBMS_MVIEW Package.. 13-17

Performing Pruning Using Zone Maps... 13-18

xiii

How Oracle Database Performs Pruning Using Zone Maps.. 13-18
Pruning Tables Using Zone Maps ... 13-18
Pruning Partitioned Tables Using Zone Maps and Attribute Clustering...................... 13-19

Examples: Performing Pruning with Zone Maps and Attribute Clustering........................ 13-20
Example: Partitions and Table Scan Pruning... 13-21
Example: Zone Map Join Pruning ... 13-22

Viewing Zone Map Information .. 13-23
Viewing Details of Zone Maps in the Database.. 13-23
Viewing the Measures of a Zone Map ... 13-23

Part III Data Movement/ETL

14 Data Movement/ETL Overview

Overview of ETL in Data Warehouses .. 14-1
ETL Basics in Data Warehousing.. 14-1

Extraction of Data .. 14-1
Transportation of Data .. 14-2

ETL Tools for Data Warehouses ... 14-2
Daily Operations in Data Warehouses... 14-2
Evolution of the Data Warehouse... 14-3

15 Extraction in Data Warehouses

Overview of Extraction in Data Warehouses ... 15-1
Introduction to Extraction Methods in Data Warehouses ... 15-2

Logical Extraction Methods... 15-2
Full Extraction .. 15-2
Incremental Extraction .. 15-2

Physical Extraction Methods ... 15-2
Online Extraction ... 15-3
Offline Extraction... 15-3

Change Tracking Methods... 15-3
Timestamps... 15-4
Partitioning ... 15-4
Triggers.. 15-4

Data Warehousing Extraction Examples... 15-5
Extraction Using Data Files ... 15-5

Extracting into Flat Files Using SQL*Plus .. 15-5
Extracting into Flat Files Using OCI or Pro*C Programs ... 15-6
Exporting into Export Files Using the Export Utility ... 15-7
Extracting into Export Files Using External Tables .. 15-7

Extraction Through Distributed Operations ... 15-7

16 Transportation in Data Warehouses

Overview of Transportation in Data Warehouses .. 16-1
Introduction to Transportation Mechanisms in Data Warehouses ... 16-1

Transportation Using Flat Files... 16-1

xiv

Transportation Through Distributed Operations... 16-2
Transportation Using Transportable Tablespaces.. 16-2

Transportable Tablespaces Example... 16-2
Other Uses of Transportable Tablespaces .. 16-5

17 Loading and Transformation in Data Warehouses

Overview of Loading and Transformation in Data Warehouses... 17-1
Data Warehouses: Transformation Flow... 17-2

Multistage Data Transformation ... 17-2
Pipelined Data Transformation ... 17-2
Staging Area.. 17-3

Loading Mechanisms.. 17-3
Loading a Data Warehouse with SQL*Loader.. 17-4
Loading a Data Warehouse with External Tables .. 17-4
Loading a Data Warehouse with OCI and Direct-Path APIs ... 17-6
Loading a Data Warehouse with Export/Import... 17-6

Transformation Mechanisms .. 17-6
Transforming Data Using SQL.. 17-6

CREATE TABLE ... AS SELECT And INSERT /*+APPEND*/ AS SELECT 17-6
Transforming Data Using UPDATE.. 17-7
Transforming Data Using MERGE.. 17-7
Transforming Data Using Multitable INSERT .. 17-8

Transforming Data Using PL/SQL .. 17-10
Transforming Data Using Table Functions ... 17-10

What is a Table Function?... 17-10
Error Logging and Handling Mechanisms ... 17-16

Business Rule Violations .. 17-17
Data Rule Violations (Data Errors) ... 17-17

Handling Data Errors in PL/SQL.. 17-17
Handling Data Errors with an Error Logging Table... 17-18

Loading and Transformation Scenarios.. 17-19
Key Lookup Scenario.. 17-19
Business Rule Violation Scenario.. 17-20
Data Error Scenarios ... 17-21
Pivoting Scenarios... 17-23

Part IV Relational Analytics

18 SQL for Analysis and Reporting

Overview of SQL for Analysis and Reporting .. 18-1
Ranking, Windowing, and Reporting Functions .. 18-3

Ranking... 18-4
RANK and DENSE_RANK Functions.. 18-4
Bottom N Ranking ... 18-9
CUME_DIST Function... 18-9
PERCENT_RANK Function ... 18-10

xv

NTILE Function.. 18-10
ROW_NUMBER Function .. 18-11

Windowing .. 18-11
Treatment of NULLs as Input to Window Functions... 18-12
Windowing Functions with Logical Offset .. 18-12
Centered Aggregate Function .. 18-14
Windowing Aggregate Functions in the Presence of Duplicates 18-15
Varying Window Size for Each Row... 18-15
Windowing Aggregate Functions with Physical Offsets ... 18-16

Reporting.. 18-17
RATIO_TO_REPORT Function.. 18-18

LAG/LEAD.. 18-19
LAG/LEAD Syntax ... 18-19

FIRST_VALUE, LAST_VALUE, and NTH_VALUE Functions ... 18-20
FIRST_VALUE and LAST_VALUE Functions .. 18-20
NTH_VALUE Function... 18-21

Advanced Aggregates for Analysis.. 18-22
LISTAGG Function ... 18-22

LISTAGG as Aggregate... 18-23
LISTAGG as Reporting Aggregate .. 18-23

FIRST/LAST Functions.. 18-24
FIRST/LAST As Regular Aggregates ... 18-24
FIRST/LAST As Reporting Aggregates ... 18-25

Inverse Percentile .. 18-25
Normal Aggregate Syntax .. 18-26
Inverse Percentile Example Basis .. 18-26
As Reporting Aggregates.. 18-27
Restrictions.. 18-28

Hypothetical Rank .. 18-28
Linear Regression.. 18-29

REGR_COUNT Function .. 18-30
REGR_AVGY and REGR_AVGX Functions .. 18-30
REGR_SLOPE and REGR_INTERCEPT Functions... 18-30
REGR_R2 Function .. 18-30
REGR_SXX, REGR_SYY, and REGR_SXY Functions ... 18-30
Linear Regression Statistics Examples .. 18-31
Sample Linear Regression Calculation ... 18-31

Statistical Aggregates ... 18-31
Descriptive Statistics.. 18-32
Hypothesis Testing - Parametric Tests ... 18-32
Crosstab Statistics .. 18-32
Hypothesis Testing - Non-Parametric Tests .. 18-33
Non-Parametric Correlation... 18-33

User-Defined Aggregates... 18-33
Pivoting Operations .. 18-34

Example: Pivoting ... 18-35
Pivoting on Multiple Columns.. 18-35

xvi

Pivoting: Multiple Aggregates .. 18-35
Distinguishing PIVOT-Generated Nulls from Nulls in Source Data 18-36
Unpivoting Operations .. 18-37
Wildcard and Subquery Pivoting with XML Operations ... 18-38

Data Densification for Reporting... 18-39
Partition Join Syntax ... 18-39
Sample of Sparse Data .. 18-40
Filling Gaps in Data .. 18-40
Filling Gaps in Two Dimensions... 18-41
Filling Gaps in an Inventory Table ... 18-43
Computing Data Values to Fill Gaps ... 18-44

Time Series Calculations on Densified Data... 18-45
Period-to-Period Comparison for One Time Level: Example .. 18-46
Period-to-Period Comparison for Multiple Time Levels: Example....................................... 18-48

Create the Hierarchical Cube View... 18-48
Create the View edge_time, which is a Complete Set of Date Values 18-49
Create the Materialized View mv_prod_time to Support Faster Performance 18-49
Create the Comparison Query ... 18-50

Creating a Custom Member in a Dimension: Example ... 18-52
Miscellaneous Analysis and Reporting Capabilities ... 18-53

WIDTH_BUCKET Function... 18-53
WIDTH_BUCKET Syntax ... 18-54

Linear Algebra ... 18-56
CASE Expressions ... 18-57

Creating Histograms ... 18-58
Frequent Itemsets .. 18-59

Limiting SQL Rows .. 18-60
SQL Row Limiting Restrictions and Considerations ... 18-63

19 SQL for Aggregation in Data Warehouses

Overview of SQL for Aggregation in Data Warehouses ... 19-1
Analyzing Across Multiple Dimensions.. 19-2
Optimized Performance ... 19-3
An Aggregate Scenario... 19-4
Interpreting NULLs in Examples.. 19-4

ROLLUP Extension to GROUP BY .. 19-5
When to Use ROLLUP.. 19-5
ROLLUP Syntax .. 19-5
Partial Rollup ... 19-6

CUBE Extension to GROUP BY.. 19-7
When to Use CUBE ... 19-7
CUBE Syntax.. 19-8
Partial CUBE .. 19-9
Calculating Subtotals Without CUBE .. 19-10

GROUPING Functions... 19-10
GROUPING Function... 19-10
When to Use GROUPING.. 19-12

xvii

GROUPING_ID Function .. 19-12
GROUP_ID Function .. 19-13

GROUPING SETS Expression.. 19-14
GROUPING SETS Syntax .. 19-15

Composite Columns ... 19-16
Concatenated Groupings ... 19-17

Concatenated Groupings and Hierarchical Data Cubes ... 19-19
Considerations when Using Aggregation .. 19-20

Hierarchy Handling in ROLLUP and CUBE .. 19-20
Column Capacity in ROLLUP and CUBE ... 19-21
HAVING Clause Used with GROUP BY Extensions... 19-21
ORDER BY Clause Used with GROUP BY Extensions.. 19-21
Using Other Aggregate Functions with ROLLUP and CUBE.. 19-22
In-Memory Aggregation .. 19-22

Computation Using the WITH Clause .. 19-23
Working with Hierarchical Cubes in SQL ... 19-24

Specifying Hierarchical Cubes in SQL ... 19-24
Querying Hierarchical Cubes in SQL... 19-24

SQL for Creating Materialized Views to Store Hierarchical Cubes 19-26
Examples of Hierarchical Cube Materialized Views .. 19-26

20 SQL for Pattern Matching

Overview of Pattern Matching ... 20-1
Why Use Pattern Matching?.. 20-2
How Data is Processed in Pattern Matching... 20-5
Pattern Matching Special Capabilities ... 20-6

Basic Topics in Pattern Matching... 20-6
Basic Examples of Pattern Matching .. 20-6
Tasks and Keywords in Pattern Matching .. 20-10

PARTITION BY: Logically Dividing the Rows into Groups ... 20-10
ORDER BY: Logically Ordering the Rows in a Partition ... 20-10
[ONE ROW | ALL ROWS] PER MATCH: Choosing Summaries or Details for Each Match.
20-10
MEASURES: Defining Calculations for Export from the Pattern Matching 20-10
PATTERN: Defining the Row Pattern That Will be Matched ... 20-11
DEFINE: Defining Primary Pattern Variables ... 20-11
AFTER MATCH SKIP: Restarting the Matching Process After a Match is Found 20-11
MATCH_NUMBER: Finding Which Rows are Members of Which Match 20-11
CLASSIFIER: Finding Which Pattern Variable Applies to Which Rows....................... 20-11

Pattern Matching Syntax.. 20-11
Pattern Matching Details ... 20-14

PARTITION BY: Logically Dividing the Rows into Groups .. 20-14
ORDER BY: Logically Ordering the Rows in a Partition .. 20-14
[ONE ROW | ALL ROWS] PER MATCH: Choosing Summaries or Details for Each Match
20-14
MEASURES: Defining Calculations for Use in the Query .. 20-15
PATTERN: Defining the Row Pattern to Be Matched ... 20-15

xviii

Reluctant Versus Greedy Quantifier ... 20-16
Operator Precedence ... 20-17

SUBSET: Defining Union Row Pattern Variables... 20-17
DEFINE: Defining Primary Pattern Variables .. 20-18
AFTER MATCH SKIP: Defining Where to Restart the Matching Process After a Match Is
Found 20-20
Expressions in MEASURES and DEFINE.. 20-21

MATCH_NUMBER: Finding Which Rows Are in Which Match................................... 20-22
CLASSIFIER: Finding Which Pattern Variable Applies to Which Rows....................... 20-22
Row Pattern Column References ... 20-22
Aggregates .. 20-23
Row Pattern Navigation Operations... 20-24
Running Versus Final Semantics and Keywords .. 20-26

Row Pattern Output.. 20-31
Correlation Name and Row Pattern Output.. 20-31

Advanced Topics in Pattern Matching.. 20-32
Nesting FIRST and LAST Within PREV and NEXT... 20-32
Handling Empty Matches or Unmatched Rows... 20-33

Handling Empty Matches... 20-33
Handling Unmatched Rows... 20-34

How to Exclude Portions of the Pattern from the Output .. 20-34
How to Express All Permutations .. 20-35

Rules and Restrictions in Pattern Matching .. 20-36
Input Table Requirements ... 20-36
Prohibited Nesting in the MATCH_RECOGNIZE Clause.. 20-37
Concatenated MATCH_RECOGNIZE Clause.. 20-37
Aggregate Restrictions ... 20-37

Examples of Pattern Matching .. 20-37
Pattern Matching Examples: Stock Market ... 20-38
Pattern Matching Examples: Security Log Analysis .. 20-46
Pattern Matching Examples: Sessionization ... 20-50
Pattern Matching Example: Financial Tracking.. 20-55

21 SQL for Modeling

Overview of SQL Modeling .. 21-1
How Data is Processed in a SQL Model .. 21-3
Why Use SQL Modeling?... 21-4
SQL Modeling Capabilities.. 21-5

Basic Topics in SQL Modeling ... 21-8
Base Schema... 21-8
MODEL Clause Syntax... 21-8
Keywords in SQL Modeling .. 21-11

Assigning Values and Null Handling... 21-11
Calculation Definition ... 21-11

Cell Referencing .. 21-12
Symbolic Dimension References.. 21-12
Positional Dimension References .. 21-12

xix

Rules.. 21-13
Single Cell References ... 21-13
Multi-Cell References on the Right Side... 21-13
Multi-Cell References on the Left Side ... 21-14
Use of the CV Function ... 21-14
Use of the ANY Wildcard ... 21-15
Nested Cell References.. 21-15

Order of Evaluation of Rules... 21-15
Global and Local Keywords for Rules ... 21-16
UPDATE, UPSERT, and UPSERT ALL Behavior ... 21-17

UPDATE Behavior ... 21-17
UPSERT Behavior .. 21-17
UPSERT ALL Behavior ... 21-18

Treatment of NULLs and Missing Cells .. 21-19
Distinguishing Missing Cells from NULLs.. 21-20
Use Defaults for Missing Cells and NULLs ... 21-21
Using NULLs in a Cell Reference .. 21-21

Reference Models .. 21-21
Advanced Topics in SQL Modeling .. 21-24

FOR Loops.. 21-24
Evaluation of Formulas with FOR Loops... 21-27

Iterative Models... 21-28
Rule Dependency in AUTOMATIC ORDER Models .. 21-30
Ordered Rules.. 21-31
Analytic Functions .. 21-32
Unique Dimensions Versus Unique Single References ... 21-33
Rules and Restrictions when Using SQL for Modeling... 21-34

Performance Considerations with SQL Modeling ... 21-36
Parallel Execution.. 21-36
Aggregate Computation... 21-37
Using EXPLAIN PLAN to Understand Model Queries .. 21-38

Using ORDERED FAST: Example ... 21-38
Using ORDERED: Example.. 21-38
Using ACYCLIC FAST: Example .. 21-39
Using ACYCLIC: Example ... 21-39
Using CYCLIC: Example .. 21-39

Examples of SQL Modeling .. 21-40
SQL Modeling Example 1: Calculating Sales Differences ... 21-40
SQL Modeling Example 2: Calculating Percentage Change... 21-40
SQL Modeling Example 3: Calculating Net Present Value... 21-41
SQL Modeling Example 4: Calculating Using Simultaneous Equations 21-41
SQL Modeling Example 5: Calculating Using Regression .. 21-42
SQL Modeling Example 6: Calculating Mortgage Amortization... 21-43

22 Advanced Analytical SQL

Examples of Business Intelligence Queries ... 22-1
Example 1: Percent Change in Market Share of Products in a Calculated Set 22-2

xx

Example 2: Sales Projection that Fills in Missing Data .. 22-4
Example 3: Customer Analysis by Grouping Customers into Buckets................................... 22-6
Example 4: Frequent Itemsets.. 22-8

Glossary

Index

xxi

Preface

This preface contains these topics:

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
This guide is intended for database administrators, system administrators, and
database application developers who design, maintain, and use data warehouses.

To use this document, you need to be familiar with relational database concepts, basic
Oracle server concepts, and the operating system environment under which you are
running Oracle.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
Many of the examples in this book use the sample schemas of the seed database, which
is installed by default when you install Oracle. Refer to Oracle Database Sample Schemas
for information on how these schemas were created and how you can use them
yourself.

Note that this book is meant as a supplement to standard texts about data
warehousing. This book focuses on Oracle-specific material and does not reproduce in
detail material of a general nature. For additional information, see:

■ The Data Warehouse Toolkit by Ralph Kimball (John Wiley and Sons, 1996)

xxii

■ Building the Data Warehouse by William Inmon (John Wiley and Sons, 1996)

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xxiii

Changes in This Release for Oracle Database
Data Warehousing Guide

This chapter contains:

■ Changes in Oracle Database 12c Release 1 (12.1.0.2)

■ Changes in Oracle Database 12c Release 1 (12.1.0.1)

Changes in Oracle Database 12c Release 1 (12.1.0.2)
The following are the changes in Oracle Database Data Warehousing Guide for Oracle
Database 12c Release 1 (12.1.0.2):

New Features
■ Oracle In-Memory Column Store

The Oracle In-Memory Column Store (IM column store) in an optional area in the
SGA that stores tables, table partitions, and individual columns in a compressed
columnar format. The IM column store is a supplement to rather than a
replacement for the database buffer cache.

The IM column store primarily improves the performance of table scans and the
application of WHERE clause predicates. Faster table scans make it more likely that
the optimizer will choose bloom filters and VECTOR GROUP BY transformations.

■ Attribute clustering

Attribute clustering of tables enables you to store data in close proximity on disk
in a ordered way that is based on the values of certain columns in the table. I/O
and CPU costs of table scans and table data lookup through indexes are reduced
because pruning though table zone maps becomes more effective.

■ Zone maps

Zone maps enable natural pruning of data based on physical location of the data
on disk. Accessing only the relevant data blocks during full table scans and

See Also:

■ "About the Oracle In-Memory Column Store" on page 2-11

■ "In-Memory Aggregation" on page 19-22

See Also: Chapter 12, "Attribute Clustering"

xxiv

accessing only the relevant data rows during index scans reduces I/O and CPU
costs of data access.

■ In-memory aggregation

The VECTOR GROUP BY operation improves the performance of queries that join one
or more relatively small tables to a larger table and aggregate data. In the context
of data warehousing, VECTOR GROUP BY aggregation will often be chosen for star
queries that select data from the IM column store.

VECTOR GROUP BY aggregation minimizes the processing involved in joining
multiple dimension tables to one fact table. It uses the infrastructure related to
parallel query and blends it with CPU-efficient algorithms that maximize
performance.

■ Automatic Big Table Caching

Automatic big table caching improves in-memory query performance for large
tables that do not fit completely in the buffer cache. Such tables can be stored in
the big table cache, an optional, configurable portion of the database buffer cache.

Changes in Oracle Database 12c Release 1 (12.1.0.1)
The following are changes in Oracle Database Data Warehousing Guide for Oracle
Database 12c Release 1 (12.1.0.1).

New Features
■ Pattern Matching

SQL has been extended to support pattern matching, which makes it easy to detect
various patterns over sequences. Pattern matching is useful in many commercial
applications, such as stock monitoring, network intrusion detection, and
e-commerce purchase tracking.

■ Native SQL Support for Top-N Queries

The new row_limiting_clause enables you to limit the rows returned by a query.
You can specify an offset, and number of rows or percentage of rows to return.
This enables you to implement top-N reporting.

■ Online Statistics Gathering for Bulk Load Operations

Starting in Oracle Database 12c, the database automatically gathers table statistics
as part of bulk load operations.

■ Synchronous Refresh

See Also: Chapter 13, "Using Zone Maps"

See Also: "About In-Memory Aggregation" on page 2-16

See Also: "Automatic Big Table Caching to Improve the
Performance of In-Memory Parallel Queries" on page 2-15

See Also: Chapter 20, "SQL for Pattern Matching" for more
information

See Also: "Limiting SQL Rows" on page 18-60 for more information

xxv

A new type of refresh called synchronous refresh enables you to keep a set of
tables and materialized views defined on them to always be in sync. It is well
suited for data warehouses where the loading of incremental data is tightly
controlled and occurs at periodic intervals.

■ Out-of-Place Refresh

A new type of refresh is available to improve materialized view refresh
performance and availability. This refresh, called out-of-place refresh because it
uses outside tables during refresh, is particularly effective when handling
situations with large amounts of data changes, where conventional DML
statements do not scale well.

Desupported Features
Some features previously described in this document are desupported in Oracle
Database 12c Release 1. See Oracle Database Upgrade Guide for a list of desupported
features.

See Also: Chapter 8, "Synchronous Refresh" for more information

See Also: Chapter 7, "Refreshing Materialized Views" for more
information

xxvi

Part I
Part I Data Warehouse - Fundamentals

This section introduces basic data warehousing concepts.

It contains the following chapters:

■ Chapter 1, "Introduction to Data Warehousing Concepts"

■ Chapter 2, "Data Warehousing Logical Design"

■ Chapter 3, "Data Warehousing Physical Design"

■ Chapter 4, "Data Warehousing Optimizations and Techniques"

1

Introduction to Data Warehousing Concepts 1-1

1 Introduction to Data Warehousing Concepts

This chapter provides an overview of the Oracle data warehousing implementation. It
contains:

■ What Is a Data Warehouse?

■ Contrasting OLTP and Data Warehousing Environments

■ Common Data Warehouse Tasks

■ Data Warehouse Architectures

What Is a Data Warehouse?
A data warehouse is a database designed to enable business intelligence activities: it
exists to help users understand and enhance their organization's performance. It is
designed for query and analysis rather than for transaction processing, and usually
contains historical data derived from transaction data, but can include data from other
sources. Data warehouses separate analysis workload from transaction workload and
enable an organization to consolidate data from several sources. This helps in:

■ Maintaining historical records

■ Analyzing the data to gain a better understanding of the business and to improve
the business

In addition to a relational database, a data warehouse environment can include an
extraction, transportation, transformation, and loading (ETL) solution, statistical
analysis, reporting, data mining capabilities, client analysis tools, and other
applications that manage the process of gathering data, transforming it into useful,
actionable information, and delivering it to business users.

To achieve the goal of enhanced business intelligence, the data warehouse works with
data collected from multiple sources. The source data may come from internally
developed systems, purchased applications, third-party data syndicators and other
sources. It may involve transactions, production, marketing, human resources and
more. In today's world of big data, the data may be many billions of individual clicks
on web sites or the massive data streams from sensors built into complex machinery.

Data warehouses are distinct from online transaction processing (OLTP) systems. With
a data warehouse you separate analysis workload from transaction workload. Thus
data warehouses are very much read-oriented systems. They have a far higher amount
of data reading versus writing and updating. This enables far better analytical
performance and avoids impacting your transaction systems. A data warehouse
system can be optimized to consolidate data from many sources to achieve a key goal:
it becomes your organization's "single source of truth". There is great value in having a

What Is a Data Warehouse?

1-2 Oracle Database Data Warehousing Guide

consistent source of data that all users can look to; it prevents many disputes and
enhances decision-making efficiency.

A data warehouse usually stores many months or years of data to support historical
analysis. The data in a data warehouse is typically loaded through an extraction,
transformation, and loading (ETL) process from multiple data sources. Modern data
warehouses are moving toward an extract, load, transformation (ELT) architecture in
which all or most data transformation is performed on the database that hosts the data
warehouse. It is important to note that defining the ETL process is a very large part of
the design effort of a data warehouse. Similarly, the speed and reliability of ETL
operations are the foundation of the data warehouse once it is up and running.

Users of the data warehouse perform data analyses that are often time-related.
Examples include consolidation of last year's sales figures, inventory analysis, and
profit by product and by customer. But time-focused or not, users want to "slice and
dice" their data however they see fit and a well-designed data warehouse will be
flexible enough to meet those demands. Users will sometimes need highly aggregated
data, and other times they will need to drill down to details. More sophisticated
analyses include trend analyses and data mining, which use existing data to forecast
trends or predict futures. The data warehouse acts as the underlying engine used by
middleware business intelligence environments that serve reports, dashboards and
other interfaces to end users.

Although the discussion above has focused on the term "data warehouse", there are
two other important terms that need to be mentioned. These are the data mart and the
operation data store (ODS).

A data mart serves the same role as a data warehouse, but it is intentionally limited in
scope. It may serve one particular department or line of business. The advantage of a
data mart versus a data warehouse is that it can be created much faster due to its
limited coverage. However, data marts also create problems with inconsistency. It
takes tight discipline to keep data and calculation definitions consistent across data
marts. This problem has been widely recognized, so data marts exist in two styles.
Independent data marts are those which are fed directly from source data. They can
turn into islands of inconsistent information. Dependent data marts are fed from an
existing data warehouse. Dependent data marts can avoid the problems of
inconsistency, but they require that an enterprise-level data warehouse already exist.

Operational data stores exist to support daily operations. The ODS data is cleaned and
validated, but it is not historically deep: it may be just the data for the current day.
Rather than support the historically rich queries that a data warehouse can handle, the
ODS gives data warehouses a place to get access to the most current data, which has
not yet been loaded into the data warehouse. The ODS may also be used as a source to
load the data warehouse. As data warehousing loading techniques have become more
advanced, data warehouses may have less need for ODS as a source for loading data.
Instead, constant trickle-feed systems can load the data warehouse in near real time.

A common way of introducing data warehousing is to refer to the characteristics of a
data warehouse as set forth by William Inmon:

■ Subject Oriented

■ Integrated

■ Nonvolatile

■ Time Varient

Contrasting OLTP and Data Warehousing Environments

Introduction to Data Warehousing Concepts 1-3

Subject Oriented
Data warehouses are designed to help you analyze data. For example, to learn more
about your company's sales data, you can build a data warehouse that concentrates on
sales. Using this data warehouse, you can answer questions such as "Who was our best
customer for this item last year?" or "Who is likely to be our best customer next year?"
This ability to define a data warehouse by subject matter, sales in this case, makes the
data warehouse subject oriented.

Integrated
Integration is closely related to subject orientation. Data warehouses must put data
from disparate sources into a consistent format. They must resolve such problems as
naming conflicts and inconsistencies among units of measure. When they achieve this,
they are said to be integrated.

Nonvolatile
Nonvolatile means that, once entered into the data warehouse, data should not
change. This is logical because the purpose of a data warehouse is to enable you to
analyze what has occurred.

Time Varient
A data warehouse's focus on change over time is what is meant by the term time
variant. In order to discover trends and identify hidden patterns and relationships in
business, analysts need large amounts of data. This is very much in contrast to online
transaction processing (OLTP) systems, where performance requirements demand
that historical data be moved to an archive.

Key Characteristics of a Data Warehouse
The key characteristics of a data warehouse are as follows:

■ Data is structured for simplicity of access and high-speed query performance.

■ End users are time-sensitive and desire speed-of-thought response times.

■ Large amounts of historical data are used.

■ Queries often retrieve large amounts of data, perhaps many thousands of rows.

■ Both predefined and ad hoc queries are common.

■ The data load involves multiple sources and transformations.

In general, fast query performance with high data throughput is the key to a successful
data warehouse.

Contrasting OLTP and Data Warehousing Environments
There are important differences between an OLTP system and a data warehouse. One
major difference between the types of system is that data warehouses are not
exclusively in third normal form (3NF), a type of data normalization common in
OLTP environments.

Data warehouses and OLTP systems have very different requirements. Here are some
examples of differences between typical data warehouses and OLTP systems:

■ Workload

Data warehouses are designed to accommodate ad hoc queries and data analysis.
You might not know the workload of your data warehouse in advance, so a data

Common Data Warehouse Tasks

1-4 Oracle Database Data Warehousing Guide

warehouse should be optimized to perform well for a wide variety of possible
query and analytical operations.

OLTP systems support only predefined operations. Your applications might be
specifically tuned or designed to support only these operations.

■ Data modifications

A data warehouse is updated on a regular basis by the ETL process (run nightly or
weekly) using bulk data modification techniques. The end users of a data
warehouse do not directly update the data warehouse except when using
analytical tools, such as data mining, to make predictions with associated
probabilities, assign customers to market segments, and develop customer
profiles.

In OLTP systems, end users routinely issue individual data modification
statements to the database. The OLTP database is always up to date, and reflects
the current state of each business transaction.

■ Schema design

Data warehouses often use partially denormalized schemas to optimize query and
analytical performance.

OLTP systems often use fully normalized schemas to optimize
update/insert/delete performance, and to guarantee data consistency.

■ Typical operations

A typical data warehouse query scans thousands or millions of rows. For example,
"Find the total sales for all customers last month."

A typical OLTP operation accesses only a handful of records. For example,
"Retrieve the current order for this customer."

■ Historical data

Data warehouses usually store many months or years of data. This is to support
historical analysis and reporting.

OLTP systems usually store data from only a few weeks or months. The OLTP
system stores only historical data as needed to successfully meet the requirements
of the current transaction.

Common Data Warehouse Tasks
As an Oracle data warehousing administrator or designer, you can expect to be
involved in the following tasks:

■ Configuring an Oracle database for use as a data warehouse

■ Designing data warehouses

■ Performing upgrades of the database and data warehousing software to new
releases

■ Managing schema objects, such as tables, indexes, and materialized views

■ Managing users and security

■ Developing routines used for the extraction, transformation, and loading (ETL)
processes

■ Creating reports based on the data in the data warehouse

Data Warehouse Architectures

Introduction to Data Warehousing Concepts 1-5

■ Backing up the data warehouse and performing recovery when necessary

■ Monitoring the data warehouse's performance and taking preventive or corrective
action as required

In a small-to-midsize data warehouse environment, you might be the sole person
performing these tasks. In large, enterprise environments, the job is often divided
among several DBAs and designers, each with their own specialty, such as database
security or database tuning.

These tasks are illustrated in the following:

■ For more information regarding partitioning, see Oracle Database VLDB and
Partitioning Guide.

■ For more information regarding database security, see Oracle Database Security
Guide.

■ For more information regarding database performance, see Oracle Database
Performance Tuning Guide and Oracle Database SQL Tuning Guide.

■ For more information regarding backup and recovery, see Oracle Database Backup
and Recovery User's Guide.

■ For more information regarding ODI, see Oracle Fusion Middleware Developer's
Guide for Oracle Data Integrator.

Data Warehouse Architectures
Data warehouses and their architectures vary depending upon the specifics of an
organization's situation. Three common architectures are:

■ Data Warehouse Architecture: Basic

■ Data Warehouse Architecture: with a Staging Area

■ Data Warehouse Architecture: with a Staging Area and Data Marts

Data Warehouse Architecture: Basic
Figure 1–1 shows a simple architecture for a data warehouse. End users directly access
data derived from several source systems through the data warehouse.

Data Warehouse Architectures

1-6 Oracle Database Data Warehousing Guide

Figure 1–1 Architecture of a Data Warehouse

In Figure 1–1, the metadata and raw data of a traditional OLTP system is present, as is
an additional type of data, summary data. Summaries are a mechanism to
pre-compute common expensive, long-running operations for sub-second data
retrieval. For example, a typical data warehouse query is to retrieve something such as
August sales. A summary in an Oracle database is called a materialized view.

The consolidated storage of the raw data as the center of your data warehousing
architecture is often referred to as an Enterprise Data Warehouse (EDW). An EDW
provides a 360-degree view into the business of an organization by holding all relevant
business information in the most detailed format.

Data Warehouse Architecture: with a Staging Area
You must clean and process your operational data before putting it into the
warehouse, as shown in Figure 1–2. You can do this programmatically, although most
data warehouses use a staging area instead. A staging area simplifies data cleansing
and consolidation for operational data coming from multiple source systems,
especially for enterprise data warehouses where all relevant information of an
enterprise is consolidated. Figure 1–2 illustrates this typical architecture.

WarehouseData Sources

Summary
Data

Raw Data

Metadata

Operational
System

Operational
System

Flat Files

Users

Analysis

Reporting

Mining

Data Warehouse Architectures

Introduction to Data Warehousing Concepts 1-7

Figure 1–2 Architecture of a Data Warehouse with a Staging Area

Data Warehouse Architecture: with a Staging Area and Data Marts
Although the architecture in Figure 1–2 is quite common, you may want to customize
your warehouse's architecture for different groups within your organization. You can
do this by adding data marts, which are systems designed for a particular line of
business. Figure 1–3 illustrates an example where purchasing, sales, and inventories
are separated. In this example, a financial analyst might want to analyze historical data
for purchases and sales or mine historical data to make predictions about customer
behavior.

Figure 1–3 Architecture of a Data Warehouse with a Staging Area and Data Marts

Operational
System

Data
Sources

Staging
Area Warehouse Users

Operational
System

Flat Files

Analysis

Reporting

Mining

Summary
Data

Raw Data

Metadata

Operational
System

Data
Sources

Staging
Area Warehouse

Data
Marts Users

Operational
System

Flat Files

Sales

Purchasing

Inventory

Analysis

Reporting

Mining

Summary
Data

Raw Data

Metadata

Data Warehouse Architectures

1-8 Oracle Database Data Warehousing Guide

Note: Data marts can be physically instantiated or implemented
purely logically though views. Furthermore, data marts can be
co-located with the enterprise data warehouse or built as separate
systems. Building an end-to-end data warehousing architecture
with an enterprise data warehouse and surrounding data marts is
not the focus of this book.

2

Data Warehousing Logical Design 2-1

2 Data Warehousing Logical Design

This chapter explains how to create a logical design for a data warehousing
environment and includes the following topics:

■ Logical Versus Physical Design in Data Warehouses

■ Creating a Logical Design

■ About Third Normal Form Schemas

■ About Star Schemas

■ About the Oracle In-Memory Column Store

■ Automatic Big Table Caching to Improve the Performance of In-Memory Parallel
Queries

■ About In-Memory Aggregation

Logical Versus Physical Design in Data Warehouses
Your organization has decided to build an enterprise data warehouse. You have
defined the business requirements and agreed upon the scope of your business goals,
and created a conceptual design. Now you need to translate your requirements into a
system deliverable. To do so, you create the logical and physical design for the data
warehouse. You then define:

■ The specific data content

■ Relationships within and between groups of data

■ The system environment supporting your data warehouse

■ The data transformations required

■ The frequency with which data is refreshed

The logical design is more conceptual and abstract than the physical design. In the
logical design, you look at the logical relationships among the objects. In the physical
design, you look at the most effective way of storing and retrieving the objects as well
as handling them from a transportation and backup/recovery perspective.

Orient your design toward the needs of the end users. End users typically want to
perform analysis and look at aggregated data, rather than at individual transactions.
However, end users might not know what they need until they see it. In addition, a
well-planned design allows for growth and changes as the needs of users change and
evolve.

By beginning with the logical design, you focus on the information requirements and
save the implementation details for later.

Creating a Logical Design

2-2 Oracle Database Data Warehousing Guide

Creating a Logical Design
A logical design is conceptual and abstract. You do not deal with the physical
implementation details yet. You deal only with defining the types of information that
you need.

One technique you can use to model your organization's logical information
requirements is entity-relationship modeling. Entity-relationship modeling involves
identifying the things of importance (entities), the properties of these things
(attributes), and how they are related to one another (relationships).

The process of logical design involves arranging data into a series of logical
relationships called entities and attributes. An entity represents a chunk of
information. In relational databases, an entity often maps to a table. An attribute is a
component of an entity that helps define the uniqueness of the entity. In relational
databases, an attribute maps to a column.

To ensure that your data is consistent, you must use unique identifiers. A unique
identifier is something you add to tables so that you can differentiate between the
same item when it appears in different places. In a physical design, this is usually a
primary key.

Entity-relationship modeling is purely logical and applies to both OLTP and data
warehousing systems. It is also applicable to the various common physical schema
modeling techniques found in data warehousing environments, namely normalized
(3NF) schemas in Enterprise Data Warehousing environments, star or snowflake
schemas in data marts, or hybrid schemas with components of both of these classical
modeling techniques.

What is a Schema?
A schema is a collection of database objects, including tables, views, indexes, and
synonyms. You can arrange schema objects in the schema models designed for data
warehousing in a variety of ways. Most data warehouses use a dimensional model.

The model of your source data and the requirements of your users help you design the
data warehouse schema. You can sometimes get the source model from your
company's enterprise data model and reverse-engineer the logical data model for the
data warehouse from this. The physical implementation of the logical data warehouse
model may require some changes to adapt it to your system parameters—size of
computer, number of users, storage capacity, type of network, and software. A key
part of designing the schema is whether to use a third normal form, star, or snowflake
schema, and these are discussed later.

About Third Normal Form Schemas
Third Normal Form design seeks to minimize data redundancy and avoid anomalies
in data insertion, updates and deletion. 3NF design has a long heritage in online
transaction processing (OLTP) systems. OLTP systems must maximize performance
and accuracy when inserting, updating and deleting data. Transactions must be
handled as quickly as possible or the business may be unable to handle the flow of
events, perhaps losing sales or incurring other costs. Therefore, 3NF designs avoid
redundant data manipulation and minimize table locks, both of which can slow

See Also:

■ Oracle Fusion Middleware Developer's Guide for Oracle Data
Integrator for more details regarding ODI

About Third Normal Form Schemas

Data Warehousing Logical Design 2-3

inserts, updates and deletes. 3NF designs also works well to abstract the data from
specific application needs. If new types of data are added to the environment, you can
extend the data model with relative ease and minimal impact to existing applications.
Likewise, if you have completely new types of analyses to perform in your data
warehouse, a well-designed 3NF schema will be able to handle them without
requiring redesigned data structures.

3NF designs have great flexibility, but it comes at a cost. 3NF databases use very many
tables and this requires complex queries with many joins. For full scale enterprise
models built in 3NF form, over one thousand tables are commonly encountered in the
schema. With the kinds of queries involved in data warehousing, which will often
need access to many rows from many tables, this design imposes understanding and
performance penalties. It can be complex for query builders, whether they are humans
or business intelligence tools and applications, to choose and join the tables needed for
a given piece of data when there are very large numbers of tables available. Even when
the tables are readily chosen by the query generator, the 3NF schema often requires
that a large number of tables be used in a single query. More tables in a query mean
more potential data access paths, which makes the database query optimizer's job
harder. The end result can be slow query performance.

The issue of slow query performance in a 3NF system is not necessarily limited to the
core queries used to create reports and analyses. It can also show up in the simpler
task of users browsing subsets of data to understand the contents. Similarly, the
complexity of a 3NF schema may impact generating the pick-lists of data used to
constrain queries and reports. Although these may seem relatively minor issues,
speedy response time for such processes makes a big impact on user satisfaction.

Figure 2–1 presents a tiny fragment of a 3NF Schema. Note how order information is
broken into order and order items to avoid redundant data storage. The "crow's feet"
markings on the relationship between tables indicate one-to-many relationships
among the entities. Thus, one order may have multiple order items, a single customer
may have many orders, and a single product may be found in many order items.
Although this diagram shows a very small case, you can see that minimizing data
redundancy can lead to many tables in the schema.

Figure 2–1 Fragment of a Third Normal Form Schema

This section contains the following topics:

■ About Normalization

■ Design Concepts for 3NF Schemas

About Normalization
Normalization is a data design process that has a high level goal of keeping each fact
in just one place to avoid data redundancy and insert, update, and delete anomalies.
There are multiple levels of normalization, and this section describes the first three of

About Third Normal Form Schemas

2-4 Oracle Database Data Warehousing Guide

them. Considering how fundamental the term third normal form (3NF) term is, it only
makes sense to see how 3NF is reached.

Consider a situation where you are tracking sales. The core entity you track is sales
orders, where each sales order contains details about each item purchased (referred to
as a line item): its name, price, quantity, and so on. The order also holds the name and
address of the customer and more. Some orders have many different line items, and
some orders have just one.

In first normal form (1NF), there are no repeating groups of data and no duplicate
rows. Every intersection of a row and column (a field) contains just one value, and
there are no groups of columns that contain the same facts. To avoid duplicate rows,
there is a primary key. For sales orders, in first normal form, multiple line items of
each sales order in a single field of the table are not displayed. Also, there will not be
multiple columns showing line items.

Then comes second normal form (2NF), where the design is in first normal form and
every non-key column is dependent on the complete primary key. Thus, the line items
are broken out into a table of sales order line items where each row represents one line
item of one order. You can look at the line item table and see that the names of the
items sold are not dependent on the primary key of the line items table: the sales item
is its own entity. Therefore, you move the sales item to its own table showing the item
name. Prices charged for each item can vary by order (for instance, due to discounts)
so these remain in the line items table. In the case of sales order, the name and address
of the customer is not dependent on the primary key of the sales order: customer is its
own entity. Thus, you move the customer name and address columns out into their
own table of customer information.

Next is third normal form, where the goal is to ensure that there are no dependencies
on non-key attributes. So the goal is to take columns that do not directly relate to the
subject of the row (the primary key), and put them in their own table. So details about
customers, such as customer name or customer city, should be put in a separate table,
and then a customer foreign key added into the orders table.

Another example of how a 2NF table differs from a 3NF table would be a table of the
winners of tennis tournaments that contained columns of tournament, year, winner,
and winner’s date of birth. In this case, the winner’s date of birth is vulnerable to
inconsistencies, as the same person could be shown with different dates of birth in
different records. The way to avoid this potential problem is to break the table into one
for tournament winners, and another for the player dates of birth.

Design Concepts for 3NF Schemas
The following section discusses some basic concepts when modeling for a data
warehousing environment using a 3NF schema approach. The intent is not to discuss
the theoretical foundation for 3NF modeling (or even higher levels of normalization),
but to highlight some key components relevant for data warehousing.

This section contains the following topics:

■ Identifying Candidate Primary Keys

■ Foreign Key Relationships and Referential Integrity Constraints

■ Denormalization

Identifying Candidate Primary Keys
A primary key is an attribute that uniquely identifies a specific record in a table.
Primary keys can be identified through single or multiple columns. It is normally

About Star Schemas

Data Warehousing Logical Design 2-5

preferred to achieve unique identification through as little columns as possible -
ideally one or two - and to either use a column that is most likely not going to be
updated or even changed in bulk. If your data model does not lead to a simple unique
identification through its attributes, you would require too many attributes to
uniquely identify a single records, or the data is prone to changes, the usage of a
surrogate key is highly recommended.

Specifically, 3NF schemas rely on proper and simple unique identification since
queries tend to have many table joins and all columns necessary to uniquely identify a
record are needed as join condition to avoid row duplication through the join.

Foreign Key Relationships and Referential Integrity Constraints
3NF schemas in data warehousing environments often resemble the data model of its
OLTP source systems, in which the logical consistency between data entities is
expressed and enforced through primary key - foreign key relationships, also known
as parent-child relationship. A foreign key resolves a 1-to-many relationship in
relational system and ensures logical consistency: for example, you cannot have an
order line item without an order header, or an employee working for a non-existent
department.

While such referential are always enforced in OLTP system, data warehousing systems
often implement them as declarative, non-enforced conditions, relying on the ETL
process to ensure data consistency. Whenever possible, foreign keys and referential
integrity constraints should be defined as non-enforced conditions, since it enables
better query optimization and cardinality estimates.

Denormalization
Proper normalized modelling tends to decompose logical entities - such as a customer.
a product, or an order - into many physical tables, making even the retrieval of
perceived simple information requiring to join many tables. While this is not a
problem from a query processing perspective, it can put some unnecessary burden on
both the application developer (for writing code) as well as the database (for joining
information that is always used together). It is not uncommon to see some sensible
level of denormalization in 3NF data warehousing models, in a logical form as views
or in a physical form through slightly denormalized tables.

Care has to be taken with the physical denormalization to preserve the subject-neutral
shape and therefore the flexibility of the physical implementation of the 3NF schema.

About Star Schemas
Star schemas are often found in data warehousing systems with embedded logical or
physical data marts. The term star schema is another way of referring to a
"dimensional modeling" approach to defining your data model. Most descriptions of
dimensional modeling use terminology drawn from the work of Ralph Kimball, the
pioneering consultant and writer in this field. Dimensional modeling creates multiple
star schemas, each based on a business process such as sales tracking or shipments.
Each star schema can be considered a data mart, and perhaps as few as 20 data marts
can cover the business intelligence needs of an enterprise. Compared to 3NF designs,
the number of tables involved in dimensional modeling is a tiny fraction. Many star
schemas will have under a dozen tables. The star schemas are knit together through
conformed dimensions and conformed facts. Thus, users are able to get data from
multiple star schemas with minimal effort.

The goal for star schemas is structural simplicity and high performance data retrieval.
Because most queries in the modern era are generated by reporting tools and

About Star Schemas

2-6 Oracle Database Data Warehousing Guide

applications, it's vital to make the query generation convenient and reliable for the
tools and application. In fact, many business intelligence tools and applications are
designed with the expectation that a star schema representation will be available to
them.

Discussions of star schemas are less abstracted from the physical database than 3NF
descriptions. This is due to the pragmatic emphasis of dimensional modeling on the
needs of business intelligence users.

Note how different the dimensional modeling style is from the 3NF approach that
minimizes data redundancy and the risks of update/inset/delete anomalies. The star
schema accepts data redundancy (denormalization) in its dimension tables for the sake
of easy user understanding and better data retrieval performance. A common criticism
of star schemas is that they limit analysis flexibility compared to 3NF designs.
However, a well designed dimensional model can be extended to enable new types of
analysis, and star schemas have been successful for many years at the largest
enterprises.

As noted earlier, the modern approach to data warehousing does not pit star schemas
and 3NF against each other. Rather, both techniques are used, with a foundation layer
of 3NF - the Enterprise Data Warehouse of 3NF, acting as the bedrock data, and star
schemas as a central part of an access and performance optimization layer.

This section contains the following topics:

■ Facts and Dimensions

■ Design Concepts in Star Schemas

■ About Snowflake Schemas

Facts and Dimensions
Star schemas divide data into facts and dimensions. Facts are the measurements of
some event such as a sale and are typically numbers. Dimensions are the categories
you use to identify facts, such as date, location, and product.

The name "star schema" comes from the fact that the diagrams of the schemas typically
show a central fact table with lines joining it to the dimension tables, so the graphic
impression is similar to a star. Figure 2–2 is a simple example with sales as the fact
table and products, times, customers, and channels as the dimension table.

Figure 2–2 Star Schema

This section contains the following topics:

■ Fact Tables

■ Dimension Tables

About Star Schemas

Data Warehousing Logical Design 2-7

Fact Tables
Fact tables have measurement data. They have many rows but typically not many
columns. Fact tables for a large enterprise can easily hold billions of rows. For many
star schemas, the fact table will represent well over 90 percent of the total storage
space. A fact table has a composite key made up of the primary keys of the dimension
tables of the schema.

A fact table contains either detail-level facts or facts that have been aggregated. Fact
tables that contain aggregated facts are often called summary tables. A fact table
usually contains facts with the same level of aggregation. Though most facts are
additive, they can also be semi-additive or non-additive. Additive facts can be
aggregated by simple arithmetical addition. A common example of this is sales.
Non-additive facts cannot be added at all. An example of this is averages.
Semi-additive facts can be aggregated along some of the dimensions and not along
others. An example of this is inventory levels stored in physical warehouses, where
you may be able to add across a dimension of warehouse sites, but you cannot
aggregate across time.

In terms of adding rows to data in a fact table, there are three main approaches:

■ Transaction-based

Shows a row for the finest level detail in a transaction. A row is entered only if a
transaction has occurred for a given combination of dimension values. This is the
most common type of fact table.

■ Periodic Snapshot

Shows data as of the end of a regular time interval, such as daily or weekly. If a
row for the snapshot exists in a prior period, a row is entered for it in the new
period even if no activity related to it has occurred in the latest interval. This type
of fact table is useful in complex business processes where it is difficult to compute
snapshot values from individual transaction rows.

■ Accumulating Snapshot

Shows one row for each occurrence of a short-lived process. The rows contain
multiple dates tracking major milestones of a short-lived process. Unlike the other
two types of fact tables, rows in an accumulating snapshot are updated multiple
times as the tracked process moves forward.

Dimension Tables
Dimension tables provide category data to give context to the fact data. For instance, a
star schema for sales data will have dimension tables for product, date, sales location,
promotion and more. Dimension tables act as lookup or reference tables because their
information lets you choose the values used to constrain your queries. The values in
many dimension tables may change infrequently. As an example, a dimension of
geographies showing cities may be fairly static. But when dimension values do
change, it is vital to update them fast and reliably. Of course, there are situations where
data warehouse dimension values change frequently. The customer dimension for an
enterprise will certainly be subject to a frequent stream of updates and deletions.

A key aspect of dimension tables is the hierarchy information they provide. Dimension
data typically has rows for the lowest level of detail plus rows for aggregated
dimension values. These natural rollups or aggregations within a dimension table are
called hierarchies and add great value for analyses. For instance, if you want to
calculate the share of sales that a specific product represents within its specific product
category, it is far easier and more reliable to have a predefined hierarchy for product
aggregation than to specify all the elements of the product category in each query.

About Star Schemas

2-8 Oracle Database Data Warehousing Guide

Because hierarchy information is so valuable, it is common to find multiple hierarchies
reflected in a dimension table.

Dimension tables are usually textual and descriptive, and you will use their values as
the row headers, column headers and page headers of the reports generated by your
queries. While dimension tables have far fewer rows than fact tables, they can be quite
wide, with dozens of columns. A location dimension table might have columns
indicating every level of its rollup hierarchy, and may show multiple hierarchies
reflected in the table. The location dimension table could have columns for its
geographic rollup, such as street address, postal code, city, state/province, and
country. The same table could include a rollup hierarchy set up for the sales
organization, with columns for sales district, sales territory, sales region, and
characteristics.

Design Concepts in Star Schemas
Here we touch on some of the key terms used in star schemas. This is by no means a
full set, but is intended to highlight some of the areas worth your consideration.

This section contains the following topics:

■ Data Grain

■ Working with Multiple Star Schemas

■ Conformed Dimensions

■ Conformed Facts

■ Surrogate Keys

■ Degenerate Dimensions

■ Junk Dimensions

■ Embedded Hierarchy

■ Factless Fact Tables

■ Slowly Changing Dimensions

Data Grain
One of the most important tasks when designing your model is to consider the level of
detail it will provide, referred to as the grain of the data. Consider a sales schema: will
the grain be very fine, storing every single item purchased by each customer? Or will it
be a coarse grain, storing only the daily totals of sales for each product at each store? In
modern data warehousing there is a strong emphasis on providing the finest grain
data possible, because this allows for maximum analytic power. Dimensional
modeling experts generally recommend that each fact table store just one grain level.
Presenting fact data in single-grain tables supports more reliable querying and table
maintenance, because there is no ambiguity about the scope of any row in a fact table.

Working with Multiple Star Schemas
Because the star schema design approach is intended to chunk data into distinct
processes, you need reliable and performant ways to traverse the schemas when
queries span multiple schemas. One term for this ability is a data warehouse bus

See Also: Chapter 9, "Dimensions" for further information
regarding dimensions

About Star Schemas

Data Warehousing Logical Design 2-9

architecture. A data warehouse bus architecture can be achieved with conformed
dimensions and conformed facts.

Conformed Dimensions
Conformed dimensions means that dimensions are designed identically across the
various star schemas. Conformed dimensions use the same values, column names and
data types consistently across multiple stars. The conformed dimensions do not have
to contain the same number of rows in each schema's copy of the dimension table, as
long as the rows in the shorter tables are a true subset of the larger tables.

Conformed Facts
If the fact columns in multiple fact tables have exactly the same meaning, then they are
considered conformed facts. Such facts can be used together reliably in calculations
even though they are from different tables. Conformed facts should have the same
column names to indicate their conformed status. Facts that are not conformed should
always have different names to highlight their different meanings.

Surrogate Keys
Surrogate or artificial keys, usually sequential integers, are recommended for
dimension tables. By using surrogate keys, the data is insulated from operational
changes. Also, compact integer keys may allow for better performance than large and
complex alphanumeric keys.

Degenerate Dimensions
Degenerate dimensions are dimension columns in fact tables that do not join to a
dimension table. They are typically items such as order numbers and invoice numbers.
You will see them when the grain of a fact table is at the level of an order line-item or a
single transaction.

Junk Dimensions
Junk dimensions are abstract dimension tables used to hold text lookup values for
flags and codes in fact tables. These dimensions are referred to as junk, not because
they have low value, but because they hold an assortment of columns for convenience,
analogous to the idea of a "junk drawer" in your home. The number of distinct values
(cardinality) of each column in a junk dimension table is typically small.

Embedded Hierarchy
Classic dimensional modeling with star schemas advocates that each table contain
data at a single grain. However, there are situations where designers choose to have
multiple grains in a table, and these commonly represent a rollup hierarchy. A single
sales fact table, for instance, might contain both transaction-level data, then a day-level
rollup by product, then a month-level rollup by product. In such cases, the fact table
will need to contain a level column indicating the hierarchy level applying to each row,
and queries against the table will need to include a level predicate.

Factless Fact Tables
Factless fact tables do not contain measures such as sales price or quantity sold.
Instead, the rows of a factless fact table are used to show events not represented by
other fact tables. Another use for factless tables is as a "coverage table" which holds all
the possible events that could have occurred in a given situation, such as all the

About Star Schemas

2-10 Oracle Database Data Warehousing Guide

products that were part of a sales promotion and might have been sold at the
promotional price.

Slowly Changing Dimensions
One of the certainties of data warehousing is that the way data is categorized will
change. Product names and category names will change. Characteristics of a store will
change. The areas included in sales territories will change. The timing and extent of
these changes will not always be predictable. How can these slowly changing
dimensions be handled? Star schemas treat these in three main ways:

■ Type 1

The dimension values that change are simply overwritten, with no history kept.
This creates a problem for time-based analyses. Also, it invalidates any existing
aggregates that depended on the old value of the dimension.

■ Type 2

When a dimension value changes, a new dimension row showing the new value
and having a new surrogate key is created. You may choose to include date
columns in our dimension showing when the new row is valid and when it is
expired. No changes need be made to the fact table.

■ Type 3

When a dimension value is changed, the prior value is stored in a different column
of the same row. This enables easy query generation if you want to compare
results using the current and prior value of the column.

In practice, Type 2 is the most common treatment for slowly changing dimensions.

About Snowflake Schemas
The snowflake schema is a more complex data warehouse model than a star schema,
and is a type of star schema. It is called a snowflake schema because the diagram of
the schema resembles a snowflake.

Snowflake schemas normalize dimensions to eliminate redundancy. That is, the
dimension data has been grouped into multiple tables instead of one large table. For
example, a product dimension table in a star schema might be normalized into a
products table, a product_category table, and a product_manufacturer table in a
snowflake schema. While this saves space, it increases the number of dimension tables
and requires more foreign key joins. The result is more complex queries and reduced
query performance. Figure 2–3 presents a graphical representation of a snowflake
schema.

About the Oracle In-Memory Column Store

Data Warehousing Logical Design 2-11

Figure 2–3 Snowflake Schema

About the Oracle In-Memory Column Store

Traditional analytics has certain limitations or requirements that need to be managed
to obtain good performance for analytic queries. You need to know user access
patterns and then customize your data structures to provide optimal performance for
these access patterns. Existing indexes, materialized views, and OLAP cubes need to
be tuned. Certain data marts and reporting databases have complex ETL and thus
need specialized tuning. Additionally, you need to strike a balance between
performing analytics on stale data and slowing down OLTP operations on the
production databases.

The Oracle In-Memory Column Store (IM column store) within the Oracle Database
provides improved performance for both ad-hoc queries and analytics on live data.
The live transactional database is used to provide instant answers to queries, thus
enabling you to seamlessly use the same database for OLTP transactions and data
warehouse analytics.

The IM column store is an optional area in the SGA that stores copies of tables, table
partitions, and individual columns in a compressed columnar format that is optimized
for rapid scans. Columnar format lends itself to easily to vector processing thus
making aggregations, joins, and certain types of data retrieval faster than the
traditional on-disk formats. The columnar format exists only in memory and does not
replace the on-disk or buffer cache format. Instead, it supplements the buffer cache
and provides an additional, transaction-consistent, copy of the table that is
independent of the disk format.

Note: This feature is available starting with Oracle Database 12c
Release 1 (12.1.0.2).

See Also:

■ Benefits of Using the Oracle In-Memory Column Store

■ Oracle Database Concepts for conceptual information the about IM
column store

About the Oracle In-Memory Column Store

2-12 Oracle Database Data Warehousing Guide

Configuring the Oracle In-Memory Column Store
Configuring the IM column store is simple. You set the INMEMORY_SIZE initialization
parameter, and then use DDL to specify the tablespaces, tables, partitions, or columns
to be populated into the IM column store.

Populating the Oracle In-Memory Column Store
You can specify that the database populates data into the IM column store from row
storage either at database instance startup or when the data is accessed for the first
time.

In-Memory Columnar Compression
The Oracle Databases uses special compression formats that are optimized for access
speeds rather than storage reductions to store data in the IM column store. You can
select different compression options for each table, partition, or column.

Benefits of Using the Oracle In-Memory Column Store
The IM column store enables the Oracle Database to perform scans, joins, and
aggregates much faster than when it uses the on-disk format exclusively. Business
applications, ad-hoc analytic queries, and data warehouse workloads benefit most.
Pure OLTP databases that perform short transactions using index lookups benefit less.

The IM column store seamlessly integrates with the Oracle Database. All existing
database features, including High Availability features, are supported with no
application changes required. Therefore, by configuring the IM column store, you can
instantly improve the performance of existing analytic workloads and ad-hoc queries.

The Oracle Optimizer is aware of the IM column store making it possible for the
Oracle Database to seamlessly send analytic queries to the IM column store while
OLTP queries and DML are sent to the row store.

The advantages offered by the IM column store for data warehousing environments
are:

■ Faster scanning of large number of rows and applying filters that use operators
such as =,<,>, and IN.

■ Faster querying of a subset of columns in a table, for example, selecting 5 of 100
columns. See "Faster Performance for Analytic Queries" on page 2-13.

■ Enhanced performance for joins by converting predicates on small dimension
tables to filters on a large fact table. See "Enhanced Join Performance Using Vector
Joins" on page 2-13.

■ Efficient aggregation by using VECTOR GROUP BY transformation and vector array
processing. See "Enhanced Aggregation Using VECTOR GROUP BY
Transformations" on page 2-13.

See Also: Oracle Database Administrator's Guide for information
about configuring the IM column store

See Also: Oracle Database Concepts for detailed information about
how the IM column store is populated

See Also:

■ Oracle Database Concepts

■ Oracle Database Administrator's Guide

About the Oracle In-Memory Column Store

Data Warehousing Logical Design 2-13

■ Reduced storage space and significantly less processing overhead because fewer
indexes, materialized views, and OLAP cubes are required when IM column store
is used.

Faster Performance for Analytic Queries
Storing data in memory using columnar format provides fast throughput for analyzing
large amounts of data. This is useful for ad-hoc queries with unanticipated access
patterns. Columnar format uses fixed-width columns for most numeric and short
string data types. This enables very fast vector processing that answers queries faster.
Only the columns necessary for the specific data analysis task are scanned instead of
entire rows of data.

Data can be analyzed in real-time, thus enabling you to explore different possibilities
and perform iteration. Using the IM column store requires fewer OLAP cubes to be
created to obtain query results.

For example, you need to find the number of sales in the state of California this year.
This data is stored in the SALES table. When this table is stored in the IM column store,
the database needs to just scan the State column and count the number of occurrences
of state California.

Enhanced Join Performance Using Vector Joins
IM column store takes advantage of vector joins. Vector joins speed up joins by
converting predicates on small dimension tables to filters on large fact tables. This is
useful when performing a join of multiple dimensions with one large fact table. The
dimension keys on fact tables have lots of repeat values. The scan performance and
repeat value optimization speeds up joins.

Enhanced Aggregation Using VECTOR GROUP BY Transformations
An important aspect of analytics is to determine patterns and trends by aggregating
data. Aggregations and complex SQL queries run faster when data is stored in the IM
column store.

VECTOR GROUP BY transformations enable efficient in-memory array-based
aggregation. During a fact table scan, aggregate values are accumulated into
in-memory arrays and efficient algorithms are used perform aggregation. Performing
joins based on the primary key and foreign key relationships are optimized for both
star schemas and snowflake schemas.

Using the Oracle In-Memory Column Store
You can store data using columnar format in the IM column store for existing
databases or for new database that you plan to create. IM column store is simple to
configure and does not impact existing applications. Depending on the requirement,
you can configure one or more tablespaces, tables, materialized views, or partitions to
be stored in memory.

See Also: Oracle Database Concepts for information about the other
advantages of using IM column store

See Also: "Using Vector Joins to Enhance Join Performance" on
page 2-14

See Also: "In-Memory Aggregation" on page 19-22

About the Oracle In-Memory Column Store

2-14 Oracle Database Data Warehousing Guide

To store data in the IM column store:
1. Configure the INMEMORY_SIZE initialization parameter to specify the amount of

memory that must be assigned to the IM column store.

INMEMORY_SIZE = 100 GB

2. Specify the database objects that must be stored in memory. Objects can include
tablespaces, tables, materialized views, or partitions. Any queries on these objects
will run faster than when the objects are stored on disk.

For existing tablespaces, tables, or table partitions, use the ALTER command to
store them in memory.

ALTER TABLESPACE tbs1 INMEMORY;
ALTER TABLE my_table MODIFY PARTITION p1 INMEMORY;

While creating new tablespaces or tables, use the INMEMORY clause to specify that
these objects must be stored in memory.

CREATE TABLE my_table (id NUMBER, tname VARCHAR2(45)) INMEMORY;

3. Drop the indexes that were created to aid OLTP application workloads. Replace
these with in-memory indexes. OLTP operations run faster because the objects that
need to be accessed are now stored in memory.

Using Vector Joins to Enhance Join Performance
Joins are an integral part of data warehousing workloads. IM column store enhances
the performance of joins when the tables being joined are stored in memory. Simple
joins that use bloom filters and complex joins between multiple tables benefit by using
the IM column store. In a data warehousing environment, the most frequently-used
joins are ones in which one or more dimension tables are joined with a fact table.

The following types of joins run faster when the tables being joined are stored in the
IM column store:

■ Joins that are amenable to using bloom filters

■ Joins of multiple small dimension tables with one fact table

■ Joins between two tables that have a PK-FK relationship

The IM column store runs queries that contain joins more efficiently and quickly by
using vector joins. Vector joins allow the Oracle Database to take advantage of the fast
scanning and vector processing capability of the IM column store. A vector join
transforms a join between a dimension and fact table to filter that can be applied as
part of the scan of the fact table. This join conversion is performed with the use of

See Also: Oracle Database Administrator's Guide for information
about configuring the IM column store

See Also: Oracle Database Reference for more information about the
INMEMORY_SIZE parameter

See Also: Oracle Database Administrator's Guide for information
about enabling objects to be stored in memory

See Also: Oracle Database Administrator's Guide

Automatic Big Table Caching to Improve the Performance of In-Memory Parallel Queries

Data Warehousing Logical Design 2-15

bloom filters, which enhance hash join performance in the Oracle Database. Although
bloom filters are independent of IM column store, they can be applied very efficiently
to data stored in memory through SIMD vector processing.

Consider the following query that performs a join of the CUSTOMERS dimension table
with the SALES fact table:

SELECT c.customer_id, s.quantity_sold, s.amount_sold
FROM CUSTOMERS c, SALES s
WHERE c.customer_id = s.customer_id AND c.country_id = 'FR';

When both these tables are stored in the IM column store, SIMD vector processing is
used to quickly scan the data and apply filters. Figure 2–4 displays a graphical
representation of the how vector joins are used to implement the query. The predicate
on the CUSTOMERS table, c.country_id='FR' is converted into a filter on the SALES fact
table. The filter is country_id='FR'. Because the SALES table is stored in memory using
columnar format, just one column needs to be scanned to determine the result of this
query.

Figure 2–4 Vector Joins Using Oracle In-Memory Column Store

Automatic Big Table Caching to Improve the Performance of In-Memory
Parallel Queries

Automatic big table caching enhances the in-memory query capabilities of Oracle
Database. When a table does not fit in memory, the database decides which buffers to
cache based on access patterns. This provides efficient caching for large tables, even if
they do not fully fit in the buffer cache.

An optional section of the buffer cache, called the big table cache, is used to store data
for table scans. The big table cache is integrated with the buffer cache and uses a
temperature-based, object-level replacement algorithm to manage the big table cache
contents. This is different from the access-based, block level LRU algorithm used by
the buffer cache.

Note: The automatic big table caching feature is available starting
with Oracle Database 12c Release 1 (12.1.0.2).

About In-Memory Aggregation

2-16 Oracle Database Data Warehousing Guide

Typical data warehousing workloads scan multiple tables. Performance may be
impacted if the combined size of these tables is greater than the combined size of the
buffer cache. With automatic big table caching, the scanned tables are stored in the big
table cache instead of the buffer cache. The temperature-based, object-level
replacement algorithm used by the big table cache can provide enhanced performance
for data warehousing workloads by:

■ Selectively caching the "hot" objects

Each time an object is accessed, Oracle Database increments the temperature of
that object. An object in the big table cache can be replaced only by another object
whose temperature is higher than its own temperature.

■ Avoiding thrashing

Partial objects are cached when objects cannot be fully cached.

In Oracle Real Application Clusters (Oracle RAC) environments, automatic big table
caching is supported only for parallel queries. In single instance environments, this
functionality is supported for both serial and parallel queries.

To use automatic big table caching, you must enable the big table cache. To use
automatic big table caching for serial queries, you must set the DB_BIG_TABLE_CACHE_
PERCENT_TARGET initialization parameter to a nonzero value. To use automatic big table
caching for parallel queries, you must set PARALLEL_DEGREE_POLICY to AUTO or
ADAPTIVE and DB_BIG_TABLE_CACHE_PERCENT_TARGET to a nonzero value.

About In-Memory Aggregation
In-memory aggregation uses the VECTOR GROUP BY operation to enhance the
performance of queries that aggregate data and join one or more relatively small tables
to a larger table, as often occurs in a star query. VECTOR GROUP BY will be chosen by the
SQL optimizer based on cost estimates. This will occur more often when the query
selects from in-memory columnar tables and the tables include unique or numeric join
keys (regardless of whether the uniqueness is forced by a primary key, unique
constraint or schema design).

VECTOR GROUP BY aggregation will only by chosen for GROUP BY. It will not be chosen
for GROUP BY ROLLUP, GROUPING SETS or CUBE.

This section contains the following topics:

■ VECTOR GROUP BY Aggregation and the Oracle In-Memory Column Store

■ When to Use VECTOR GROUP BY Aggregation

■ When Is VECTOR GROUP BY Aggregation Used to Process Analytic Queries?

See Also: Oracle Database VLDB and Partitioning Guide for more
information about the big table cache and how it can be used

See Also: Oracle Database SQL Tuning Guide for details about how
In-memory aggregation works

Note: This feature is available starting with Oracle Database 12c
Release 1 (12.1.0.2).

About In-Memory Aggregation

Data Warehousing Logical Design 2-17

VECTOR GROUP BY Aggregation and the Oracle In-Memory Column Store
Although using the IM column store is not a requirement for using VECTOR GROUP BY
aggregation, it is strongly recommended that you use both features together. Storing
tables in memory using columnar format provides the foundation storage that VECTOR
GROUP BY aggregation leverages to provide transactionally consistent results
immediately after a schema is updated without the need to wait until the data marts
are populated.

When to Use VECTOR GROUP BY Aggregation
Not all queries and scenarios benefit from the use of VECTOR GROUP BY aggregation.
The following sections provide guidelines about the situations in which using this
aggregation can be beneficial:

■ Situations Where VECTOR GROUP BY Aggregation Is Useful

■ Situations Where VECTOR GROUP BY Aggregation Is Not Advantageous

Situations Where VECTOR GROUP BY Aggregation Is Useful
VECTOR GROUP BY aggregation provides benefits in the following scenarios:

■ The schema contains "mostly" unique keys or numeric keys for the columns that
are used to join the fact and dimensions. The uniqueness can be enforced using a
primary key, unique constraint or by schema design.

■ The fact table is at least 10 times larger than the dimensions.

■ The IM column store is used to store the dimensions and fact table in memory.

Situations Where VECTOR GROUP BY Aggregation Is Not Advantageous
Using VECTOR GROUP BY aggregation does not provide substantial performance
benefits in the following scenarios:

■ Joins are performed between two very large tables

By default, the VECTOR GROUP BY transformation is used only if the fact table is at
least 10 times larger than the dimensions.

■ Dimensions contain more than 2 billion rows

The VECTOR GROUP BY transformation is not used if a dimension contains more
than 2 billion rows.

■ The system does not have sufficient memory resources

Most systems that use the IM column store will be able to benefit from using the
VECTOR GROUP BY transformation.

When Is VECTOR GROUP BY Aggregation Used to Process Analytic Queries?
VECTOR GROUP BY aggregation is integrated with the Oracle Optimizer and no new
SQL or initialization parameters are required to enable the use of this transformation.
It also does not need additional indexes, foreign keys, or dimensions.

By default, Oracle Database decides whether or not to use VECTOR GROUP BY
aggregation for a query based on the cost, relative to other execution plans that are
determined for this query. However, you can direct the database to use VECTOR GROUP
BY aggregation for a query by using query block hints or table hints.

About In-Memory Aggregation

2-18 Oracle Database Data Warehousing Guide

VECTOR GROUP BY aggregation can be used to process a query that uses a fact view that
is derived from multiple fact tables.

Oracle Database uses VECTOR GROUP BY aggregation to perform data aggregation when
the following conditions are met:

■ The queries or subqueries aggregate data from a fact table and join the fact table to
one or more dimensions.

Multiple fact tables joined to the same dimensions are also supported assuming
that these fact tables are connected only through joins to the dimension. In this
case, VECTOR GROUP BY aggregates fact table separately and then joins the results
on the grouping keys.

■ The dimensions and fact table are connected to each other only through join
columns.

Specifically, the query must not have any other predicates that refer to columns
across multiple dimensions or from both a dimension and the fact table. If a query
performs a join between two or more tables and then joins the result to the fact,
then VECTOR GROUP BY aggregation treats the multiple dimensions as a single
dimension.

The best performance for VECTOR GROUP BY aggregation is obtained when the tables
being joined are stored in the IM column store.

VECTOR GROUP BY aggregation does not support the following:

■ Semi- and anti-joins across multiple dimensions or between a dimension and the
fact table

■ Equi-joins across multiple dimensions.

■ Aggregations performed using DISTINCT

■ Bloom filters

VECTOR GROUP BY aggregation and bloom filters are mutually exclusive.

If bloom filters are used to perform joins for a query, then VECTOR GROUP BY
aggregation is not applicable to the processing of this query.

3

Data Warehousing Physical Design 3-1

3 Data Warehousing Physical Design

This chapter describes the physical design of a data warehousing environment, and
includes the following topics:

■ Moving from Logical to Physical Design

■ About Physical Design

Moving from Logical to Physical Design
Logical design is what you draw with a pen and paper or design with a tool such as
Oracle Designer before building your data warehouse. Physical design is the creation
of the database with SQL statements.

During the physical design process, you convert the data gathered during the logical
design phase into a description of the physical database structure. Physical design
decisions are mainly driven by query performance and database maintenance aspects.
For example, choosing a partitioning strategy that meets common query requirements
enables Oracle Database to take advantage of partition pruning, a way of narrowing a
search before performing it.

About Physical Design
During the logical design phase, you defined a model for your data warehouse
consisting of entities, attributes, and relationships. The entities are linked together
using relationships. Attributes are used to describe the entities. The unique identifier
(UID) distinguishes between one instance of an entity and another.

Figure 3–1 illustrates a graphical way of distinguishing between logical and physical
designs.

See Also:

■ Oracle Database VLDB and Partitioning Guide for further
information regarding partitioning

■ Oracle Database Concepts for further conceptual material
regarding design matters.

About Physical Design

3-2 Oracle Database Data Warehousing Guide

Figure 3–1 Logical Design Compared with Physical Design

During the physical design process, you translate the expected schemas into actual
database structures. At this time, you must map:

■ Entities to tables

■ Relationships to foreign key constraints

■ Attributes to columns

■ Primary unique identifiers to primary key constraints

■ Unique identifiers to unique key constraints

This section contains the following topics:

■ Physical Design Structures

■ Views

■ Integrity Constraints

■ Indexes and Partitioned Indexes

■ Materialized Views

■ Dimensions

Physical Design Structures
You must create some or all of the following structures as part of its physical design:

■ Tablespaces

■ About Partitioning

■ Index Partitioning

■ Partitioning for Manageability

■ Partitioning for Performance

■ Partitioning for Availability

Entities

Unique
Identifiers

Attributes

Relationships

Tables

Physical (as Tablespaces)

Columns

Integrity
Constraints

Indexes

Logical

Materialized
Views

Dimensions

- Primary Key
- Foreign Key
- Not Null

About Physical Design

Data Warehousing Physical Design 3-3

Tablespaces
A tablespace consists of one or more datafiles, which are physical structures within the
operating system you are using. A datafile is associated with only one tablespace.
From a design perspective, tablespaces are containers for physical design structures.

Tablespaces need to be separated by differences. For example, tables should be
separated from their indexes and small tables should be separated from large tables.
Tablespaces should also represent logical business units if possible. Because a
tablespace is the coarsest granularity for backup and recovery or the transportable
tablespaces mechanism, the logical business design affects availability and
maintenance operations.

You can now use ultralarge data files, a significant improvement in very large
databases.

About Partitioning
Oracle partitioning is an extremely important functionality for data warehousing,
improving manageability, performance and availability. This section presents the key
concepts and benefits of partitioning noting special value for data warehousing.

Partitioning allows tables, indexes or index-organized tables to be subdivided into
smaller pieces. Each piece of the database object is called a partition. Each partition has
its own name, and may optionally have its own storage characteristics. From the
perspective of a database administrator, a partitioned object has multiple pieces that
can be managed either collectively or individually. This gives the administrator
considerable flexibility in managing a partitioned object. However, from the
perspective of the user, a partitioned table is identical to a non-partitioned table; no
modifications are necessary when accessing a partitioned table using SQL DML
commands.

Database objects - tables, indexes, and index-organized tables - are partitioned using a
partitioning key, a set of columns that determine in which partition a given row will
reside. For example a sales table partitioned on sales date, using a monthly
partitioning strategy; the table appears to any application as a single, normal table.
However, the DBA can manage and store each monthly partition individually,
potentially using different storage tiers, applying table compression to the older data,
or store complete ranges of older data in read only tablespaces.

Basic Partitioning Strategies Oracle partitioning offers three fundamental data
distribution methods that control how the data is actually placed into the various
individual partitions, namely:

■ Range

The data is distributed based on a range of values of the partitioning key (for a
date column as the partitioning key, the 'January-2012' partition contains rows
with the partitioning key values between '01-JAN-2012' and '31-JAN-2012'). The
data distribution is a continuum without any holes and the lower boundary of a
range is automatically defined by the upper boundary of the preceding range.

■ List

The data distribution is defined by a list of values of the partitioning key (for a
region column as the partitioning key, the North_America partition may contain
values Canada, USA, and Mexico). A special DEFAULT partition can be defined to
catch all values for a partition key that are not explicitly defined by any of the lists.

■ Hash

About Physical Design

3-4 Oracle Database Data Warehousing Guide

A hash algorithm is applied to the partitioning key to determine the partition for a
given row. Unlike the other two data distribution methods, hash does not provide
any logical mapping between the data and any partition.

Along with these fundamental approaches Oracle Database provides several more:

■ Interval Partitioning

An extension to range partitioning that enhances manageability. Partitions are
defined by an interval, providing equi-width ranges. With the exception of the first
partition all partitions are automatically created on-demand when matching data
arrives.

■ Partitioning by Reference

Partitioning for a child table is inherited from the parent table through a primary
key - foreign key relationship. Partition maintenance is simplified and
partition-wise joins enabled.

■ Virtual column based Partitioning

Defined by one of the above mentioned partition techniques and the partitioning
key is based on a virtual column. Virtual columns are not stored on disk and only
exist as metadata. This approach enables a more flexible and comprehensive
match of the business requirements.

Using the above-mentioned data distribution methods, a table can be partitioned
either as single or composite partitioned table:

■ Single (one-level) Partitioning

A table is defined by specifying one of the data distribution methodologies, using
one or more columns as the partitioning key. For example consider a table with a
number column as the partitioning key and two partitions less_than_five_
hundred and less_than_thousand, the less_than_thousand partition contains
rows where the following condition is true: 500 <= Partitioning key <1000.

You can specify range, list, and hash partitioned tables.

■ Composite Partitioning

■ Combinations of two data distribution methods are used to define a composite
partitioned table. First, the table is partitioned by data distribution method one
and then each partition is further subdivided into subpartitions using a second
data distribution method. All sub-partitions for a given partition together
represent a logical subset of the data. For example, a range-hash composite
partitioned table is first range-partitioned, and then each individual
range-partition is further subpartitioned using the hash partitioning technique.

Index Partitioning
Irrespective of the chosen index partitioning strategy, an index is either coupled or
uncoupled with the partitioning strategy of the underlying table. The appropriate
index partitioning strategy is chosen based on the business requirements, making
partitioning well suited to support any kind of application. Oracle Database 12c
differentiates between three types of partitioned indexes.

See Also:

■ Oracle Database VLDB and Partitioning Guide

■ Oracle Database Concepts for more information about Hybrid
Columnar Compression

About Physical Design

Data Warehousing Physical Design 3-5

■ Local Indexes

A local index is an index on a partitioned table that is coupled with the underlying
partitioned table, 'inheriting' the partitioning strategy from the table.
Consequently, each partition of a local index corresponds to one - and only one -
partition of the underlying table. The coupling enables optimized partition
maintenance; for example, when a table partition is dropped, Oracle Database
simply has to drop the corresponding index partition as well. No costly index
maintenance is required. Local indexes are most common in data warehousing
environments.

■ Global Partitioned Indexes

A global partitioned index is an index on a partitioned or nonpartitioned table that
is partitioned using a different partitioning-key or partitioning strategy than the
table. Global-partitioned indexes can be partitioned using range or hash
partitioning and are uncoupled from the underlying table. For example, a table
could be range-partitioned by month and have twelve partitions, while an index
on that table could be hash-partitioned using a different partitioning key and have
a different number of partitions. Global partitioned indexes are more common for
OLTP than for data warehousing environments.

■ Global Non-Partitioned Indexes

A global non-partitioned index is essentially identical to an index on a
non-partitioned table. The index structure is not partitioned and uncoupled from
the underlying table. In data warehousing environments, the most common usage
of global non-partitioned indexes is to enforce primary key constraints.

Partitioning for Manageability
A typical usage of partitioning for manageability is to support a 'rolling window' load
process in a data warehouse. Suppose that a DBA loads new data into a table on a
daily basis. That table could be range partitioned so that each partition contains one
day of data. The load process is simply the addition of a new partition. Adding a
single partition is much more efficient than modifying the entire table, because the
DBA does not need to modify any other partitions. Another advantage of using
partitioning is when it is time to remove data. In this situation, an entire partition can
be dropped, which is very efficient and fast, compared to deleting each row
individually.

Partitioning for Performance
By limiting the amount of data to be examined or operated on, partitioning provides a
number of performance benefits. Two features specially worth noting are:

■ Partitioning pruning: Partitioning pruning is the simplest and also the most
substantial means to improve performance using partitioning. Partition pruning
can often improve query performance by several orders of magnitude. For
example, suppose an application contains an ORDERS table containing an historical
record of orders, and that this table has been partitioned by day. A query
requesting orders for a single week would only access seven partitions of the
ORDERS table. If the table had two years of historical data, this query would access
seven partitions instead of 730 partitions. This query could potentially execute
100x faster simply because of partition pruning. Partition pruning works with all
of Oracle's other performance features. Oracle Database will utilize partition
pruning in conjunction with any indexing technique, join technique, or parallel
access method.

About Physical Design

3-6 Oracle Database Data Warehousing Guide

■ Partition-wise joins: Partitioning can also improve the performance of multi-table
joins, by using a technique known as partition-wise joins. Partition-wise joins can
be applied when two tables are being joined together, and at least one of these
tables is partitioned on the join key. Partition-wise joins break a large join into
smaller joins of 'identical' data sets for the joined tables. 'Identical' here is defined
as covering exactly the same set of partitioning key values on both sides of the
join, thus ensuring that only a join of these 'identical' data sets will produce a
result and that other data sets do not have to be considered. Oracle Database is
using either the fact of already (physical) equi-partitioned tables for the join or is
transparently redistributing ("repartitioning") one table at runtime to create
equipartitioned data sets matching the partitioning of the other table, completing
the overall join in less time. This offers significant performance benefits both for
serial and parallel execution.

Partitioning for Availability
Partitioned database objects provide partition independence. This characteristic of
partition independence can be an important part of a high-availability strategy. For
example, if one partition of a partitioned table is unavailable, all of the other partitions
of the table remain online and available. The application can continue to execute
queries and transactions against this partitioned table, and these database operations
will run successfully if they do not need to access the unavailable partition. The
database administrator can specify that each partition be stored in a separate
tablespace; this would allow the administrator to do backup and recovery operations
on an individual partition or sets of partitions (by virtue of the partition-to-tablespace
mapping), independent of the other partitions in the table. Therefore in the event of a
disaster, the database could be recovered with just the partitions comprising the active
data, and then the inactive data in the other partitions could be recovered at a
convenient time, thus decreasing the system down-time.

In light of the manageability, performance and availability benefits, it should be part of
every data warehouse.

Views
A view is a tailored presentation of the data contained in one or more tables or other
views. A view takes the output of a query and treats it as a table. Views do not require
any space in the database.

Integrity Constraints
Integrity constraints are used to enforce business rules associated with your database
and to prevent having invalid information in the tables. Integrity constraints in data
warehousing differ from constraints in OLTP environments. In OLTP environments,
they primarily prevent the insertion of invalid data into a record, which is not a big
problem in data warehousing environments because accuracy has already been
guaranteed. In data warehousing environments, constraints are only used for query
rewrite. NOT NULL constraints are particularly common in data warehouses. Under
some specific circumstances, constraints need space in the database. These constraints
are in the form of the underlying unique index.

See Also: Oracle Database VLDB and Partitioning Guide

See Also: Oracle Database Concepts

See Also: Oracle Database Concepts

About Physical Design

Data Warehousing Physical Design 3-7

Indexes and Partitioned Indexes
Indexes are optional structures associated with tables or clusters. In addition to the
classical B-tree indexes, bitmap indexes are very common in data warehousing
environments. Bitmap indexes are optimized index structures for set-oriented
operations. Additionally, they are necessary for some optimized data access methods
such as star transformations.

Indexes are just like tables in that you can partition them, although the partitioning
strategy is not dependent upon the table structure. Partitioning indexes makes it easier
to manage the data warehouse during refresh and improves query performance.

Materialized Views
Materialized views are query results that have been stored in advance so long-running
calculations are not necessary when you actually execute your SQL statements. From a
physical design point of view, materialized views resemble tables or partitioned tables
and behave like indexes in that they are used transparently and improve performance.

Dimensions
A dimension is a structure, often composed of one or more hierarchies, that
categorizes data. Dimensional attributes help to describe the dimensional value. They
are normally descriptive, textual values. Several distinct dimensions, combined with
facts, enable you to answer business questions. Commonly used dimensions are
customers, products, and time.

A dimension schema object defines hierarchical relationships between columns or
column sets. A hierarchical relationship is a functional dependency from one level of a
hierarchy to the next one. A dimension object is a container of logical relationships and
does not require any space in the database. A typical dimension is city, state (or
province), region, and country.

Dimension data is typically collected at the lowest level of detail and then aggregated
into higher level totals that are more useful for analysis. These natural rollups or
aggregations within a dimension table are called hierarchies.

This section contains the following topics:

■ Hierarchies

■ Typical Dimension Hierarchy

Hierarchies
Hierarchies are logical structures that use ordered levels to organize data. A hierarchy
can be used to define data aggregation. For example, in a time dimension, a hierarchy
might aggregate data from the month level to the quarter level to the year level. A
hierarchy can also be used to define a navigational drill path and to establish a family
structure.

Within a hierarchy, each level is logically connected to the levels above and below it.
Data values at lower levels aggregate into the data values at higher levels. A
dimension can be composed of more than one hierarchy. For example, in the product
dimension, there might be two hierarchies—one for product categories and one for
product suppliers.

See Also: Oracle Database Concepts

See Also: Chapter 5, "Basic Materialized Views"

About Physical Design

3-8 Oracle Database Data Warehousing Guide

Dimension hierarchies also group levels from general to granular. Query tools use
hierarchies to enable you to drill down into your data to view different levels of
granularity. This is one of the key benefits of a data warehouse.

When designing hierarchies, you must consider the relationships in business
structures. For example, a divisional multilevel sales organization can have
complicated structures.

Hierarchies impose a family structure on dimension values. For a particular level
value, a value at the next higher level is its parent, and values at the next lower level
are its children. These familial relationships enable analysts to access data quickly.

Levels A level represents a position in a hierarchy. For example, a time dimension
might have a hierarchy that represents data at the month, quarter, and year levels.
Levels range from general to specific, with the root level as the highest or most general
level. The levels in a dimension are organized into one or more hierarchies.

Level Relationships Level relationships specify top-to-bottom ordering of levels from
most general (the root) to most specific information. They define the parent-child
relationship between the levels in a hierarchy.

Hierarchies are also essential components in enabling more complex rewrites. For
example, the database can aggregate an existing sales revenue on a quarterly base to a
yearly aggregation when the dimensional dependencies between quarter and year are
known.

Typical Dimension Hierarchy
Figure 3–2 illustrates a dimension hierarchy based on customers.

Figure 3–2 Typical Levels in a Dimension Hierarchy

region

customer

country_name

subregion

4

Data Warehousing Optimizations and Techniques 4-1

4 Data Warehousing Optimizations and
Techniques

The following topics provide information about schemas in a data warehouse:

■ Using Indexes in Data Warehouses

■ Using Integrity Constraints in a Data Warehouse

■ About Parallel Execution in Data Warehouses

■ Optimizing Storage Requirements

■ Optimizing Star Queries and 3NF Schemas

Using Indexes in Data Warehouses
This section discusses the following aspects of using indexes in data warehouses:

■ Using Bitmap Indexes in Data Warehouses

■ Benefits for Data Warehousing Applications

■ Using B-Tree Indexes in Data Warehouses

■ Using Index Compression

■ Choosing Between Local Indexes and Global Indexes

Using Bitmap Indexes in Data Warehouses
Bitmap indexes are widely used in data warehousing environments. The environments
typically have large amounts of data and ad hoc queries, but a low level of concurrent
DML transactions. For such applications, bitmap indexing provides:

■ Reduced response time for large classes of ad hoc queries.

■ Reduced storage requirements compared to other indexing techniques.

■ Dramatic performance gains even on hardware with a relatively small number of
CPUs or a small amount of memory.

Fully indexing a large table with a traditional B-tree index can be prohibitively
expensive in terms of disk space because the indexes can be several times larger than
the data in the table. Bitmap indexes are typically only a fraction of the size of the
indexed data in the table.

An index provides pointers to the rows in a table that contain a given key value. A
regular index stores a list of rowids for each key corresponding to the rows with that
key value. In a bitmap index, a bitmap for each key value replaces a list of rowids.

Using Indexes in Data Warehouses

4-2 Oracle Database Data Warehousing Guide

Each bit in the bitmap corresponds to a possible rowid, and if the bit is set, it means
that the row with the corresponding rowid contains the key value. A mapping
function converts the bit position to an actual rowid, so that the bitmap index provides
the same functionality as a regular index. Bitmap indexes store the bitmaps in a
compressed way. If the number of distinct key values is small, bitmap indexes
compress better and the space saving benefit compared to a B-tree index becomes even
better.

Bitmap indexes are most effective for queries that contain multiple conditions in the
WHERE clause. Rows that satisfy some, but not all, conditions are filtered out before the
table itself is accessed. This improves response time, often dramatically. If you are
unsure of which indexes to create, the SQL Access Advisor can generate
recommendations on what to create. As the bitmaps from bitmap indexes can be
combined quickly, it is usually best to use single-column bitmap indexes.

When creating bitmap indexes, you should use NOLOGGING and COMPUTE STATISTICS. In
addition, you should keep in mind that bitmap indexes are usually easier to destroy
and re-create than to maintain.

Benefits for Data Warehousing Applications
Bitmap indexes are primarily intended for data warehousing applications where users
query the data rather than update it. They are not suitable for OLTP applications with
large numbers of concurrent transactions modifying the data.

Parallel query and parallel DML work with bitmap indexes. Bitmap indexing also
supports parallel create indexes and concatenated indexes.

This section contains the following topics:

■ Cardinality

■ Using Bitmap Join Indexes in Data Warehouses

Cardinality
The advantages of using bitmap indexes are greatest for columns in which the ratio of
the number of distinct values to the number of rows in the table is small. This ratio is
referred to as the degree of cardinality. A gender column, which has only two distinct
values (male and female), is optimal for a bitmap index. However, data warehouse
administrators also build bitmap indexes on columns with higher cardinalities.

For example, on a table with one million rows, a column with 10,000 distinct values is
a candidate for a bitmap index. A bitmap index on this column can outperform a
B-tree index, particularly when this column is often queried in conjunction with other
indexed columns. In fact, in a typical data warehouse environments, a bitmap index
can be considered for any non-unique column.

B-tree indexes are most effective for high-cardinality data: that is, for data with many
possible values, such as customer_name or phone_number. In a data warehouse, B-tree
indexes should be used only for unique columns or other columns with very high
cardinalities (that is, columns that are almost unique). The majority of indexes in a
data warehouse should be bitmap indexes.

In ad hoc queries and similar situations, bitmap indexes can dramatically improve
query performance. AND and OR conditions in the WHERE clause of a query can be
resolved quickly by performing the corresponding Boolean operations directly on the
bitmaps before converting the resulting bitmap to rowids. If the resulting number of
rows is small, the query can be answered quickly without resorting to a full table scan.

Using Indexes in Data Warehouses

Data Warehousing Optimizations and Techniques 4-3

Example 4–1 Bitmap Index

The following shows a portion of a company's customers table.

SELECT cust_id, cust_gender, cust_marital_status, cust_income_level
FROM customers;

CUST_ID C CUST_MARITAL_STATUS CUST_INCOME_LEVEL
---------- - -------------------- ---------------------
...
 70 F D: 70,000 - 89,999
 80 F married H: 150,000 - 169,999
 90 M single H: 150,000 - 169,999
 100 F I: 170,000 - 189,999
 110 F married C: 50,000 - 69,999
 120 M single F: 110,000 - 129,999
 130 M J: 190,000 - 249,999
 140 M married G: 130,000 - 149,999
...

Because cust_gender, cust_marital_status, and cust_income_level are all
low-cardinality columns (there are only three possible values for marital status, two
possible values for gender, and 12 for income level), bitmap indexes are ideal for these
columns. Do not create a bitmap index on cust_id because this is a unique column.
Instead, a unique B-tree index on this column provides the most efficient
representation and retrieval.

Table 4–1 illustrates the bitmap index for the cust_gender column in this example. It
consists of two separate bitmaps, one for gender.

Each entry (or bit) in the bitmap corresponds to a single row of the customers table.
The value of each bit depends upon the values of the corresponding row in the table.
For example, the bitmap cust_gender='F' contains a one as its first bit because the
gender is F in the first row of the customers table. The bitmap cust_gender='F' has a
zero for its third bit because the gender of the third row is not F.

An analyst investigating demographic trends of the company's customers might ask,
"How many of our married customers have an income level of G or H?" This
corresponds to the following query:

SELECT COUNT(*) FROM customers
WHERE cust_marital_status = 'married'
AND cust_income_level IN ('H: 150,000 - 169,999', 'G: 130,000 - 149,999');

Table 4–1 Sample Bitmap Index

gender='M' gender='F'

cust_id 70 0 1

cust_id 80 0 1

cust_id 90 1 0

cust_id 100 0 1

cust_id 110 0 1

cust_id 120 1 0

cust_id 130 1 0

cust_id 140 1 0

Using Indexes in Data Warehouses

4-4 Oracle Database Data Warehousing Guide

Bitmap indexes can efficiently process this query by merely counting the number of
ones in the bitmap illustrated in Figure 4–1. The result set will be found by using
bitmap OR merge operations without the necessity of a conversion to rowids. To
identify additional specific customer attributes that satisfy the criteria, use the
resulting bitmap to access the table after a bitmap to rowid conversion.

Figure 4–1 Executing a Query Using Bitmap Indexes

How to Determine Candidates for Using a Bitmap Index Bitmap indexes should help when
either the fact table is queried alone, and there are predicates on the indexed column,
or when the fact table is joined with two or more dimension tables, and there are
indexes on foreign key columns in the fact table, and predicates on dimension table
columns.

A fact table column is a candidate for a bitmap index when the following conditions
are met:

■ There are 100 or more rows for each distinct value in the indexed column. When
this limit is met, the bitmap index will be much smaller than a regular index, and
you will be able to create the index much faster than a regular index. An example
would be one million distinct values in a multi-billion row table.

And either of the following are true:

■ The indexed column will be restricted in queries (referenced in the WHERE clause).

or

■ The indexed column is a foreign key for a dimension table. In this case, such an
index will make star transformation more likely.

Bitmap Indexes and Nulls Unlike most other types of indexes, bitmap indexes include
rows that have NULL values. Indexing of nulls can be useful for some types of SQL
statements, such as queries with the aggregate function COUNT.

Example 4–2 Bitmap Index

SELECT COUNT(*) FROM customers WHERE cust_marital_status IS NULL;

This query uses a bitmap index on cust_marital_status. Note that this query would
not be able to use a B-tree index, because B-tree indexes do not store the NULL values.

SELECT COUNT(*) FROM customers;

Any bitmap index can be used for this query because all table rows are indexed,
including those that have NULL data. If nulls were not indexed, the optimizer would be
able to use indexes only on columns with NOT NULL constraints.

AND OR = AND =

0

1

1

0

0

1

0

1

0

0

1

1

0

0

1

1

0

0

0

1

1

0

0

1

0

1

1

1

1

1

0

1

1

0

0

1

status =
'married'

region =
'central'

region =
'west'

Using Indexes in Data Warehouses

Data Warehousing Optimizations and Techniques 4-5

Bitmap Indexes on Partitioned Tables You can create bitmap indexes on partitioned tables
but they must be local to the partitioned table—they cannot be global indexes. A
partitioned table can only have global B-tree indexes, partitioned or nonpartitioned.

Using Bitmap Join Indexes in Data Warehouses
In addition to a bitmap index on a single table, you can create a bitmap join index,
which is a bitmap index for the join of two or more tables. In a bitmap join index, the
bitmap for the table to be indexed is built for values coming from the joined tables. In a
data warehousing environment, the join condition is an equi-inner join between the
primary key column or columns of the dimension tables and the foreign key column
or columns in the fact table.

A bitmap join index can improve the performance by an order of magnitude. By
storing the result of a join, the join can be avoided completely for SQL statements
using a bitmap join index. Furthermore, because it is most likely to have a much
smaller number of distinct values for a bitmap join index compared to a regular
bitmap index on the join column, the bitmaps compress better, yielding to less space
consumption than a regular bitmap index on the join column.

Bitmap join indexes are much more efficient in storage than materialized join views, an
alternative for materializing joins in advance. This is because the materialized join
views do not compress the rowids of the fact tables.

B-tree and bitmap indexes have different maximum column limitations.

Four Join Models for Bitmap Join Indexes The most common usage of a bitmap join index
is in star model environments, where a large table is indexed on columns joined by one
or several smaller tables. The large table is referred to as the fact table and the smaller
tables as dimension tables. The following section describes the four different join
models supported by bitmap join indexes.

Example 4–3 Bitmap Join Index: One Dimension Table Columns Joins One Fact Table

Unlike the example in "Bitmap Index" on page 4-3, where a bitmap index on the cust_
gender column on the customers table was built, you now create a bitmap join index
on the fact table sales for the joined column customers(cust_gender). Table sales
stores cust_id values only:

SELECT time_id, cust_id, amount_sold FROM sales;

TIME_ID CUST_ID AMOUNT_SOLD
--------- ---------- -----------
01-JAN-98 29700 2291
01-JAN-98 3380 114
01-JAN-98 67830 553
01-JAN-98 179330 0
01-JAN-98 127520 195
01-JAN-98 33030 280
...

See Also:

■ Oracle Database SQL Language Reference

■ Oracle Database VLDB and Partitioning Guide

See Also:

■ Oracle Database SQL Language Reference for details regarding these
limitations

Using Indexes in Data Warehouses

4-6 Oracle Database Data Warehousing Guide

To create such a bitmap join index, column customers(cust_gender) has to be joined
with table sales. The join condition is specified as part of the CREATE statement for the
bitmap join index as follows:

CREATE BITMAP INDEX sales_cust_gender_bjix
ON sales(customers.cust_gender)
FROM sales, customers
WHERE sales.cust_id = customers.cust_id
LOCAL NOLOGGING COMPUTE STATISTICS;

The following query shows illustrates the join result that is used to create the bitmaps
that are stored in the bitmap join index:

SELECT sales.time_id, customers.cust_gender, sales.amount_sold
FROM sales, customers
WHERE sales.cust_id = customers.cust_id;

TIME_ID C AMOUNT_SOLD
--------- - -----------
01-JAN-98 M 2291
01-JAN-98 F 114
01-JAN-98 M 553
01-JAN-98 M 0
01-JAN-98 M 195
01-JAN-98 M 280
01-JAN-98 M 32
...

Table 4–2 illustrates the bitmap representation for the bitmap join index in this
example.

You can create other bitmap join indexes using more than one column or more than
one table, as shown in these examples.

Example 4–4 Bitmap Join Index: Multiple Dimension Columns Join One Fact Table

You can create a bitmap join index on more than one column from a single dimension
table, as in the following example, which uses customers(cust_gender, cust_
marital_status) from the sh schema:

CREATE BITMAP INDEX sales_cust_gender_ms_bjix
ON sales(customers.cust_gender, customers.cust_marital_status)
FROM sales, customers
WHERE sales.cust_id = customers.cust_id
LOCAL NOLOGGING COMPUTE STATISTICS;

Table 4–2 Sample Bitmap Join Index

cust_gender='M' cust_gender='F'

sales record 1 1 0

sales record 2 0 1

sales record 3 1 0

sales record 4 1 0

sales record 5 1 0

sales record 6 1 0

sales record 7 1 0

Using Indexes in Data Warehouses

Data Warehousing Optimizations and Techniques 4-7

Example 4–5 Bitmap Join Index: Multiple Dimension Tables Join One Fact Table

You can create a bitmap join index on multiple dimension tables, as in the following,
which uses customers(gender) and products(category):

CREATE BITMAP INDEX sales_c_gender_p_cat_bjix
ON sales(customers.cust_gender, products.prod_category)
FROM sales, customers, products
WHERE sales.cust_id = customers.cust_id
AND sales.prod_id = products.prod_id
LOCAL NOLOGGING COMPUTE STATISTICS;

Example 4–6 Bitmap Join Index: Snowflake Schema

You can create a bitmap join index on more than one table, in which the indexed
column is joined to the indexed table by using another table. For example, you can
build an index on countries.country_name, even though the countries table is not
joined directly to the sales table. Instead, the countries table is joined to the
customers table, which is joined to the sales table. This type of schema is commonly
called a snowflake schema.

CREATE BITMAP INDEX sales_co_country_name_bjix
ON sales(countries.country_name)
FROM sales, customers, countries
WHERE sales.cust_id = customers.cust_id
 AND customers.country_id = countries.country_id
LOCAL NOLOGGING COMPUTE STATISTICS;

Bitmap Join Index Restrictions and Requirements Join results must be stored, therefore,
bitmap join indexes have the following restrictions:

■ Parallel DML is only supported on the fact table. Parallel DML on one of the
participating dimension tables will mark the index as unusable.

■ Only one table can be updated concurrently by different transactions when using
the bitmap join index.

■ No table can appear twice in the join.

■ You cannot create a bitmap join index on a temporary table.

■ The columns in the index must all be columns of the dimension tables.

■ The dimension table join columns must be either primary key columns or have
unique constraints.

■ The dimension table column(s) participating the join with the fact table must be
either the primary key column(s) or with the unique constraint.

■ If a dimension table has composite primary key, each column in the primary key
must be part of the join.

■ The restrictions for creating a regular bitmap index also apply to a bitmap join
index. For example, you cannot create a bitmap index with the UNIQUE attribute.
See Oracle Database SQL Language Reference for other restrictions.

Using B-Tree Indexes in Data Warehouses
A B-tree index is organized like an upside-down tree. The bottom level of the index
holds the actual data values and pointers to the corresponding rows, much as the
index in a book has a page number associated with each index entry.

Using Indexes in Data Warehouses

4-8 Oracle Database Data Warehousing Guide

In general, use B-tree indexes when you know that your typical query refers to the
indexed column and retrieves a few rows. In these queries, it is faster to find the rows
by looking at the index. However, using the book index analogy, if you plan to look at
every single topic in a book, you might not want to look in the index for the topic and
then look up the page. It might be faster to read through every chapter in the book.
Similarly, if you are retrieving most of the rows in a table, it might not make sense to
look up the index to find the table rows. Instead, you might want to read or scan the
table.

B-tree indexes are most commonly used in a data warehouse to enforce unique keys. In
many cases, it may not even be necessary to index these columns in a data warehouse,
because the uniqueness was enforced as part of the preceding ETL processing, and
because typical data warehouse queries may not work better with such indexes. B-tree
indexes are more common in environments using third normal form schemas. In
general, bitmap indexes should be more common than B-tree indexes in most data
warehouse environments.

B-tree and bitmap indexes have different maximum column limitations. See Oracle
Database SQL Language Reference for these limitations.

Using Index Compression
Bitmap indexes are always stored in a patented, compressed manner without the need
of any user intervention. B-tree indexes, however, can be stored specifically in a
compressed manner to enable huge space savings, storing more keys in each index
block, which also leads to less I/O and better performance.

Key compression lets you compress a B-tree index, which reduces the storage
overhead of repeated values. In the case of a nonunique index, all index columns can
be stored in a compressed format, whereas in the case of a unique index, at least one
index column has to be stored uncompressed. In addition to key compression, OLTP
index compression may provide a higher degree of compression, but is more
appropriate for OLTP applications than data warehousing environments.

Generally, keys in an index have two pieces, a grouping piece and a unique piece. If
the key is not defined to have a unique piece, Oracle Database provides one in the
form of a rowid appended to the grouping piece. Key compression is a method of
breaking off the grouping piece and storing it so it can be shared by multiple unique
pieces. The cardinality of the chosen columns to be compressed determines the
compression ratio that can be achieved. So, for example, if a unique index that consists
of five columns provides the uniqueness mostly by the last two columns, it is most
optimal to choose the three leading columns to be stored compressed. If you choose to
compress four columns, the repetitiveness will be almost gone, and the compression
ratio will be worse.

Although key compression reduces the storage requirements of an index, it can
increase the CPU time required to reconstruct the key column values during an index
scan. It also incurs some additional storage overhead, because every prefix entry has
an overhead of four bytes associated with it.

See Also:

■ Oracle Database Administrator's Guide for more information
regarding key compression

■ Oracle Database Administrator's Guide for more information
regarding OLTP index compression

Using Integrity Constraints in a Data Warehouse

Data Warehousing Optimizations and Techniques 4-9

Choosing Between Local Indexes and Global Indexes
B-tree indexes on partitioned tables can be global or local. With Oracle8i and earlier
releases, Oracle recommended that global indexes not be used in data warehouse
environments because a partition DDL statement (for example, ALTER TABLE ... DROP
PARTITION) would invalidate the entire index, and rebuilding the index is expensive.
Global indexes can be maintained without Oracle marking them as unusable after
DDL, which makes global indexes effective for data warehouse environments.

However, local indexes will be more common than global indexes. Global indexes
should be used when there is a specific requirement which cannot be met by local
indexes (for example, a unique index on a non-partitioning key, or a performance
requirement).

Bitmap indexes on partitioned tables are always local.

Using Integrity Constraints in a Data Warehouse
Integrity constraints provide a mechanism for ensuring that data conforms to
guidelines specified by the database administrator. The most common types of
constraints include:

■ UNIQUE constraints

To ensure that a given column is unique

■ NOT NULL constraints

To ensure that no null values are allowed

■ FOREIGN KEY constraints

To ensure that two keys share a primary key to foreign key relationship

Constraints can be used for these purposes in a data warehouse:

■ Data cleanliness

Constraints verify that the data in the data warehouse conforms to a basic level of
data consistency and correctness, preventing the introduction of dirty data.

■ Query optimization

The Oracle Database utilizes constraints when optimizing SQL queries. Although
constraints can be useful in many aspects of query optimization, constraints are
particularly important for query rewrite of materialized views.

Unlike data in many relational database environments, data in a data warehouse is
typically added or modified under controlled circumstances during the extraction,
transformation, and loading (ETL) process. Multiple users normally do not update the
data warehouse directly, as they do in an OLTP system.

This section contains the following topics:

■ Overview of Constraint States

■ Typical Data Warehouse Integrity Constraints

See Also:

■ Chapter 14, "Data Movement/ETL Overview"

Using Integrity Constraints in a Data Warehouse

4-10 Oracle Database Data Warehousing Guide

Overview of Constraint States
To understand how best to use constraints in a data warehouse, you should first
understand the basic purposes of constraints. Some of these purposes are:

■ Enforcement

In order to use a constraint for enforcement, the constraint must be in the ENABLE
state. An enabled constraint ensures that all data modifications upon a given table
(or tables) satisfy the conditions of the constraints. Data modification operations
which produce data that violates the constraint fail with a constraint violation
error.

■ Validation

To use a constraint for validation, the constraint must be in the VALIDATE state. If
the constraint is validated, then all data that currently resides in the table satisfies
the constraint.

Note that validation is independent of enforcement. Although the typical
constraint in an operational system is both enabled and validated, any constraint
could be validated but not enabled or vice versa (enabled but not validated). These
latter two cases are useful for data warehouses.

■ Belief

In some cases, you will know that the conditions for a given constraint are true, so
you do not need to validate or enforce the constraint. However, you may wish for
the constraint to be present anyway to improve query optimization and
performance. When you use a constraint in this way, it is called a belief or RELY
constraint, and the constraint must be in the RELY state. The RELY state provides
you with a mechanism for telling Oracle that a given constraint is believed to be
true.

Note that the RELY state only affects constraints that have not been validated.

Typical Data Warehouse Integrity Constraints
This section assumes that you are familiar with the typical use of constraints. That is,
constraints that are both enabled and validated. For data warehousing, many users
have discovered that such constraints may be prohibitively costly to build and
maintain. The topics discussed are:

■ UNIQUE Constraints in a Data Warehouse

■ FOREIGN KEY Constraints in a Data Warehouse

■ RELY Constraints

■ NOT NULL Constraints

■ Integrity Constraints and Parallelism

■ Integrity Constraints and Partitioning

■ View Constraints

UNIQUE Constraints in a Data Warehouse
A UNIQUE constraint is typically enforced using a UNIQUE index. However, in a data
warehouse whose tables can be extremely large, creating a unique index can be costly
both in processing time and in disk space.

Using Integrity Constraints in a Data Warehouse

Data Warehousing Optimizations and Techniques 4-11

Suppose that a data warehouse contains a table sales, which includes a column
sales_id. sales_id uniquely identifies a single sales transaction, and the data
warehouse administrator must ensure that this column is unique within the data
warehouse.

One way to create the constraint is as follows:

ALTER TABLE sales ADD CONSTRAINT sales_uk
UNIQUE (prod_id, cust_id, promo_id, channel_id, time_id);

By default, this constraint is both enabled and validated. Oracle implicitly creates a
unique index on sales_id to support this constraint. However, this index can be
problematic in a data warehouse for three reasons:

■ The unique index can be very large, because the sales table can easily have
millions or even billions of rows.

■ The unique index is rarely used for query execution. Most data warehousing
queries do not have predicates on unique keys, so creating this index will probably
not improve performance.

■ If sales is partitioned along a column other than sales_id, the unique index must
be global. This can detrimentally affect all maintenance operations on the sales
table.

A unique index is required for unique constraints to ensure that each individual row
modified in the sales table satisfies the UNIQUE constraint.

For data warehousing tables, an alternative mechanism for unique constraints is
illustrated in the following statement:

ALTER TABLE sales ADD CONSTRAINT sales_uk
UNIQUE (prod_id, cust_id, promo_id, channel_id, time_id) DISABLE VALIDATE;

This statement creates a unique constraint, but, because the constraint is disabled, a
unique index is not required. This approach can be advantageous for many data
warehousing environments because the constraint now ensures uniqueness without
the cost of a unique index.

However, there are trade-offs for the data warehouse administrator to consider with
DISABLE VALIDATE constraints. Because this constraint is disabled, no DML statements
that modify the unique column are permitted against the sales table. You can use one
of two strategies for modifying this table in the presence of a constraint:

■ Use DDL to add data to this table (such as exchanging partitions). See the example
in Chapter 7, "Refreshing Materialized Views".

■ Before modifying this table, drop the constraint. Then, make all necessary data
modifications. Finally, re-create the disabled constraint. Re-creating the constraint
is more efficient than re-creating an enabled constraint. However, this approach
does not guarantee that data added to the sales table while the constraint has
been dropped is unique.

FOREIGN KEY Constraints in a Data Warehouse
In a star schema data warehouse, FOREIGN KEY constraints validate the relationship
between the fact table and the dimension tables. A sample constraint might be:

ALTER TABLE sales ADD CONSTRAINT sales_time_fk
FOREIGN KEY (time_id) REFERENCES times (time_id)
ENABLE VALIDATE;

Using Integrity Constraints in a Data Warehouse

4-12 Oracle Database Data Warehousing Guide

However, in some situations, you may choose to use a different state for the FOREIGN
KEY constraints, in particular, the ENABLE NOVALIDATE state. A data warehouse
administrator might use an ENABLE NOVALIDATE constraint when either:

■ The tables contain data that currently disobeys the constraint, but the data
warehouse administrator wishes to create a constraint for future enforcement.

■ An enforced constraint is required immediately.

Suppose that the data warehouse loaded new data into the fact tables every day, but
refreshed the dimension tables only on the weekend. During the week, the dimension
tables and fact tables may in fact disobey the FOREIGN KEY constraints. Nevertheless,
the data warehouse administrator might wish to maintain the enforcement of this
constraint to prevent any changes that might affect the FOREIGN KEY constraint outside
of the ETL process. Thus, you can create the FOREIGN KEY constraints every night, after
performing the ETL process, as shown in the following:

ALTER TABLE sales ADD CONSTRAINT sales_time_fk
FOREIGN KEY (time_id) REFERENCES times (time_id)
ENABLE NOVALIDATE;

ENABLE NOVALIDATE can quickly create an enforced constraint, even when the constraint
is believed to be true. Suppose that the ETL process verifies that a FOREIGN KEY
constraint is true. Rather than have the database re-verify this FOREIGN KEY constraint,
which would require time and database resources, the data warehouse administrator
could instead create a FOREIGN KEY constraint using ENABLE NOVALIDATE.

RELY Constraints
The ETL process commonly verifies that certain constraints are true. For example, it
can validate all of the foreign keys in the data coming into the fact table. This means
that you can trust it to provide clean data, instead of implementing constraints in the
data warehouse. You create a RELY constraint as follows:

ALTER TABLE sales ADD CONSTRAINT sales_time_fk
FOREIGN KEY (time_id) REFERENCES times (time_id)
RELY DISABLE NOVALIDATE;

This statement assumes that the primary key is in the RELY state. RELY constraints, even
though they are not used for data validation, can:

■ Enable more sophisticated query rewrites for materialized views. See Chapter 10,
"Basic Query Rewrite for Materialized Views" for further details.

■ Enable other data warehousing tools to retrieve information regarding constraints
directly from the Oracle data dictionary.

Creating a RELY constraint is inexpensive and does not impose any overhead during
DML or load. Because the constraint is not being validated, no data processing is
necessary to create it.

NOT NULL Constraints
When using query rewrite, you should consider whether NOT NULL constraints are
required. The primary situation where you will need to use them is for join back query
rewrite.

About Parallel Execution in Data Warehouses

Data Warehousing Optimizations and Techniques 4-13

Integrity Constraints and Parallelism
All constraints can be validated in parallel. When validating constraints on very large
tables, parallelism is often necessary to meet performance goals. The degree of
parallelism for a given constraint operation is determined by the default degree of
parallelism of the underlying table.

Integrity Constraints and Partitioning
You can create and maintain constraints before you partition the data. Later chapters
discuss the significance of partitioning for data warehousing. Partitioning can improve
constraint management just as it does to management of many other operations. For
example, Chapter 7, "Refreshing Materialized Views" provides a scenario creating
UNIQUE and FOREIGN KEY constraints on a separate staging table, and these constraints
are maintained during the EXCHANGE PARTITION statement.

View Constraints
You can create constraints on views. The only type of constraint supported on a view is
a RELY constraint.

This type of constraint is useful when queries typically access views instead of base
tables, and the database administrator thus needs to define the data relationships
between views rather than tables.

About Parallel Execution in Data Warehouses
Databases today, irrespective of whether they are data warehouses, operational data
stores, or OLTP systems, contain a large amount of information. However, finding and
presenting the right information in a timely fashion can be a challenge because of the
vast quantity of data involved.

Parallel execution is the capability that addresses this challenge. Using parallel
execution (also called parallelism), terabytes of data can be processed in minutes, not
hours or days, simply by using multiple processes to accomplish a single task. This
dramatically reduces response time for data-intensive operations on large databases
typically associated with decision support systems (DSS) and data warehouses. You
can also implement parallel execution on OLTP system for batch processing or schema
maintenance operations such as index creation. Parallelism is the idea of breaking
down a task so that, instead of one process doing all of the work in a query, many
processes do part of the work at the same time. An example of this is when four
processes combine to calculate the total sales for a year, each process handles one
quarter of the year instead of a single processing handling all four quarters by itself.
The improvement in performance can be quite significant.

Parallel execution improves processing for:

■ Queries requiring large table scans, joins, or partitioned index scans

See Also:

■ Chapter 11, "Advanced Query Rewrite for Materialized Views"
for further information regarding NOT NULL constraints when
using query rewrite

See Also:

■ Chapter 5, "Basic Materialized Views"

■ Chapter 10, "Basic Query Rewrite for Materialized Views"

About Parallel Execution in Data Warehouses

4-14 Oracle Database Data Warehousing Guide

■ Creations of large indexes

■ Creation of large tables (including materialized views)

■ Bulk inserts, updates, merges, and deletes

You can also use parallel execution to access object types within an Oracle database.
For example, you can use parallel execution to access large objects (LOBs).

Large data warehouses should always use parallel execution to achieve good
performance. Specific operations in OLTP applications, such as batch operations, can
also significantly benefit from parallel execution.

This section contains the following topics:

■ Why Use Parallel Execution?

■ Automatic Degree of Parallelism and Statement Queuing

■ In-Memory Parallel Execution

Why Use Parallel Execution?
Imagine that your task is to count the number of cars in a street. There are two ways to
do this. One, you can go through the street by yourself and count the number of cars
or you can enlist a friend and then the two of you can start on opposite ends of the
street, count cars until you meet each other and add the results of both counts to
complete the task.

Assuming your friend counts equally fast as you do, you expect to complete the task
of counting all cars in a street in roughly half the time compared to when you perform
the job all by yourself. If this is the case, then your operations scales linearly. That is,
twice the number of resources halves the total processing time.

A database is not very different from the counting cars example. If you allocate twice
the number of resources and achieve a processing time that is half of what it was with
the original amount of resources, then the operation scales linearly. Scaling linearly is
the ultimate goal of parallel processing, both in counting cars as well as in delivering
answers from a database query.

This section contains the following topics:

■ When to Implement Parallel Execution

■ When Not to Implement Parallel Execution

When to Implement Parallel Execution
Parallel execution benefits systems with all of the following characteristics:

■ Symmetric multiprocessors (SMPs), clusters, or massively parallel systems

■ Sufficient I/O bandwidth

■ Underutilized or intermittently used CPUs (for example, systems where CPU
usage is typically less than 30%)

■ Sufficient memory to support additional memory-intensive processes, such as
sorts, hashing, and I/O buffers

See Also:

■ Oracle Database VLDB and Partitioning Guide for more information
about using parallel execution

About Parallel Execution in Data Warehouses

Data Warehousing Optimizations and Techniques 4-15

If your system lacks any of these characteristics, parallel execution might not
significantly improve performance. In fact, parallel execution may reduce system
performance on overutilized systems or systems with small I/O bandwidth.

The benefits of parallel execution can be seen in DSS and data warehousing
environments. OLTP systems can also benefit from parallel execution during batch
processing and during schema maintenance operations such as creation of indexes.
The average simple DML or SELECT statements, accessing or manipulating small sets
of records or even single records, that characterize OLTP applications would not see
any benefit from being executed in parallel.

When Not to Implement Parallel Execution
Parallel execution is not normally useful for:

■ Environments in which the typical query or transaction is very short (a few
seconds or less). This includes most online transaction systems. Parallel execution
is not useful in these environments because there is a cost associated with
coordinating the parallel execution servers; for short transactions, the cost of this
coordination may outweigh the benefits of parallelism.

■ Environments in which the CPU, memory, or I/O resources are heavily utilized,
even with parallel execution. Parallel execution is designed to exploit additional
available hardware resources; if no such resources are available, then parallel
execution does not yield any benefits and indeed may be detrimental to
performance.

Automatic Degree of Parallelism and Statement Queuing
As the name implies, automatic degree of parallelism is where Oracle Database
determines the degree of parallelism (DOP) with which to run a statement (DML,
DDL, and queries) based on the execution cost - the resource consumption of CPU,
I/O, and memory - as determined by the Optimizer. That means that the database
parses a query, calculates the cost and then determines a DOP to run with. The
cheapest plan may be to run serially, which is also an option. Figure 4–2, "Optimizer
Calculation: Serial or Parallel?" illustrates this decision making process.

About Parallel Execution in Data Warehouses

4-16 Oracle Database Data Warehousing Guide

Figure 4–2 Optimizer Calculation: Serial or Parallel?

Should you choose to use automatic DOP, you may potentially see many more
statements running in parallel, especially if the threshold is relatively low, where low
is relative to the system and not an absolute quantifier.

Because of this expected behavior of more statements running in parallel with
automatic DOP, it becomes more important to manage the utilization of the parallel
processes available. That means that the system must be intelligent about when to run
a statement and verify whether the requested numbers of parallel processes are
available. The requested number of processes in this is the DOP for that statement.

The answer to this workload management question is parallel statement queuing with
the Database Resource Manager. Parallel statement queuing runs a statement when its
requested DOP is available. For example, when a statement requests a DOP of 64, it
will not run if there are only 32 processes currently free to assist this customer, so the
statement will be placed into a queue.

With Database Resource Manager, you can classify statements into workloads through
consumer groups. Each consumer group can then be given the appropriate priority
and the appropriate levels of parallel processes. Each consumer group also has its own
queue to queue parallel statements based on the system load.

In-Memory Parallel Execution
Traditionally, parallel processing by-passed the database buffer cache for most
operations, reading data directly from disk (through direct path I/O) into the parallel
execution server’s private working space. Only objects smaller than about 2% of DB_
CACHE_SIZE would be cached in the database buffer cache of an instance, and most

See Also:

■ Oracle Database VLDB and Partitioning Guide for more information
about using automatic DOP with parallel execution

■ Oracle Database Administrator's Guide for more information about
using the Database Resource Manager

Optimizing Storage Requirements

Data Warehousing Optimizations and Techniques 4-17

objects accessed in parallel are larger than this limit. This behavior meant that parallel
processing rarely took advantage of the available memory other than for its private
processing. However, over the last decade, hardware systems have evolved quite
dramatically; the memory capacity on a typical database server is now in the double or
triple digit gigabyte range. This, together with Oracle’s compression technologies and
the capability of Oracle Database to exploit the aggregated database buffer cache of an
Oracle Real Application Clusters environment, enables caching of objects in the
terabyte range.

In-memory parallel execution takes advantage of this large aggregated database buffer
cache. Having parallel execution servers accessing objects using the buffer cache
enables full parallel in-memory processing of large volumes of data, leading to
performance improvements in orders of magnitudes.

With in-memory parallel execution, when a SQL statement is issued in parallel, a
check is conducted to determine if the objects accessed by the statement should be
cached in the aggregated buffer cache of the system. In this context, an object can
either be a table, index, or, in the case of partitioned objects, one or multiple partitions.

Optimizing Storage Requirements
You can reduce your storage requirements by compressing data, which is achieved by
eliminating duplicate values in a database block. "Using Data Compression to Improve
Storage" on page 4-17 describes how you can use compress data.

Database objects that can be compressed include tables and materialized views. For
partitioned tables, you can compress some or all partitions. Compression attributes
can be declared for a tablespace, a table, or a partition of a table. If declared at the
tablespace level, then all tables created in that tablespace are compressed by default.
You can alter the compression attribute for a table (or a partition or tablespace), and
the change applies only to new data going into that table. As a result, a single table or
partition may contain some compressed blocks and some regular blocks. This
guarantees that data size will not increase as a result of compression. In cases where
compression could increase the size of a block, it is not applied to that block.

Using Data Compression to Improve Storage
You can compress several partitions or a complete partitioned heap-organized table.
You do this either by defining a complete partitioned table as being compressed, or by
defining it on a per-partition level. Partitions without a specific declaration inherit the
attribute from the table definition or, if nothing is specified on the table level, from the
tablespace definition.

The decision about whether or not a partition should be compressed is based on the
same rules as a nonpartitioned table. Because of the ability of range and composite
partitioning to separate data logically into distinct partitions, a partitioned table is an
ideal candidate for compressing parts of the data (partitions) that are mainly read-only.
It is, for example, beneficial in all rolling window operations as a kind of intermediate
stage before aging out old data. With data compression, you can keep more old data
online, minimizing the burden of additional storage use.

You can also change any existing uncompressed table partition later, add new
compressed and uncompressed partitions, or change the compression attribute as part

See Also:

■ Oracle Database VLDB and Partitioning Guide for more information
about using in-memory parallel execution

Optimizing Star Queries and 3NF Schemas

4-18 Oracle Database Data Warehousing Guide

of any partition maintenance operation that requires data movement, such as MERGE
PARTITION, SPLIT PARTITION, or MOVE PARTITION. The partitions can contain data, or
they can be empty.

The access and maintenance of a partially or fully compressed partitioned table are the
same as for a fully uncompressed partitioned table. All rules that apply to fully
uncompressed partitioned tables are also valid for partially or fully compressed
partitioned tables.

To use data compression:
The following example creates a range-partitioned table with one compressed
partition costs_old. The compression attribute for the table and all other partitions is
inherited from the tablespace level.

CREATE TABLE costs_demo (
 prod_id NUMBER(6), time_id DATE,
 unit_cost NUMBER(10,2), unit_price NUMBER(10,2))
PARTITION BY RANGE (time_id)
 (PARTITION costs_old
 VALUES LESS THAN (TO_DATE('01-JAN-2003', 'DD-MON-YYYY')) COMPRESS,
 PARTITION costs_q1_2003
 VALUES LESS THAN (TO_DATE('01-APR-2003', 'DD-MON-YYYY')),
 PARTITION costs_q2_2003
 VALUES LESS THAN (TO_DATE('01-JUN-2003', 'DD-MON-YYYY')),
 PARTITION costs_recent VALUES LESS THAN (MAXVALUE));

Optimizing Star Queries and 3NF Schemas
Oracle data warehouses can work well with star schemas and third normal form
schemas. This section presents important techniques for optimizing performance in
both types of schema. For conceptual background on star and 3NF schemas, see
"About Third Normal Form Schemas" on page 2-2. and "About Star Schemas" on
page 2-5.

You should consider the following when using star queries:

■ Optimizing Star Queries

■ Using Star Transformation

■ Optimizing Third Normal Form Schemas

Optimizing Star Queries
A star query is a join between a fact table and a number of dimension tables. Each
dimension table is joined to the fact table using a primary key to foreign key join, but
the dimension tables are not joined to each other. The optimizer recognizes star queries
and generates efficient execution plans for them. "Tuning Star Queries" on page 4-18
describes how to improve the performance of star queries.

Tuning Star Queries
To get the best possible performance for star queries, it is important to follow some
basic guidelines:

■ A bitmap index should be built on each of the foreign key columns of the fact table
or tables.

Optimizing Star Queries and 3NF Schemas

Data Warehousing Optimizations and Techniques 4-19

■ The initialization parameter STAR_TRANSFORMATION_ENABLED should be set to TRUE.
This enables an important optimizer feature for star-queries. It is set to FALSE by
default for backward-compatibility.

When a data warehouse satisfies these conditions, the majority of the star queries
running in the data warehouse uses a query execution strategy known as the star
transformation. The star transformation provides very efficient query performance for
star queries.

Using Star Transformation
The star transformation is a powerful optimization technique that relies upon
implicitly rewriting (or transforming) the SQL of the original star query. The end user
never needs to know any of the details about the star transformation. Oracle
Database's query optimizer automatically chooses the star transformation where
appropriate.

The star transformation is a query transformation aimed at executing star queries
efficiently. Oracle Database processes a star query using two basic phases. The first
phase retrieves exactly the necessary rows from the fact table (the result set). Because
this retrieval utilizes bitmap indexes, it is very efficient. The second phase joins this
result set to the dimension tables. An example of an end user query is: "What were the
sales and profits for the grocery department of stores in the west and southwest sales
districts over the last three quarters?" This is a simple star query.

This section contains the following topics:

■ Star Transformation with a Bitmap Index

■ Execution Plan for a Star Transformation with a Bitmap Index

■ Star Transformation with a Bitmap Join Index

■ Execution Plan for a Star Transformation with a Bitmap Join Index

■ How Oracle Chooses to Use Star Transformation

■ Star Transformation Restrictions

Star Transformation with a Bitmap Index
A prerequisite of the star transformation is that there be a single-column bitmap index
on every join column of the fact table. These join columns include all foreign key
columns.

For example, the sales table of the sh sample schema has bitmap indexes on the time_
id, channel_id, cust_id, prod_id, and promo_id columns.

Consider the following star query:

SELECT ch.channel_class, c.cust_city, t.calendar_quarter_desc,
 SUM(s.amount_sold) sales_amount
FROM sales s, times t, customers c, channels ch
WHERE s.time_id = t.time_id
AND s.cust_id = c.cust_id
AND s.channel_id = ch.channel_id
AND c.cust_state_province = 'CA'
AND ch.channel_desc in ('Internet','Catalog')
AND t.calendar_quarter_desc IN ('1999-Q1','1999-Q2')
GROUP BY ch.channel_class, c.cust_city, t.calendar_quarter_desc;

This query is processed in two phases. In the first phase, Oracle Database uses the
bitmap indexes on the foreign key columns of the fact table to identify and retrieve

Optimizing Star Queries and 3NF Schemas

4-20 Oracle Database Data Warehousing Guide

only the necessary rows from the fact table. That is, Oracle Database retrieves the
result set from the fact table using essentially the following query:

SELECT ... FROM sales
WHERE time_id IN
 (SELECT time_id FROM times
 WHERE calendar_quarter_desc IN('1999-Q1','1999-Q2'))
 AND cust_id IN
 (SELECT cust_id FROM customers WHERE cust_state_province='CA')
 AND channel_id IN
 (SELECT channel_id FROM channels WHERE channel_desc IN('Internet','Catalog'));

This is the transformation step of the algorithm, because the original star query has
been transformed into this subquery representation. This method of accessing the fact
table leverages the strengths of bitmap indexes. Intuitively, bitmap indexes provide a
set-based processing scheme within a relational database. Oracle has implemented
very fast methods for doing set operations such as AND (an intersection in standard
set-based terminology), OR (a set-based union), MINUS, and COUNT.

In this star query, a bitmap index on time_id is used to identify the set of all rows in
the fact table corresponding to sales in 1999-Q1. This set is represented as a bitmap (a
string of 1's and 0's that indicates which rows of the fact table are members of the set).

A similar bitmap is retrieved for the fact table rows corresponding to the sale from
1999-Q2. The bitmap OR operation is used to combine this set of Q1 sales with the set of
Q2 sales.

Additional set operations will be done for the customer dimension and the product
dimension. At this point in the star query processing, there are three bitmaps. Each
bitmap corresponds to a separate dimension table, and each bitmap represents the set
of rows of the fact table that satisfy that individual dimension's constraints.

These three bitmaps are combined into a single bitmap using the bitmap AND
operation. This final bitmap represents the set of rows in the fact table that satisfy all of
the constraints on the dimension table. This is the result set, the exact set of rows from
the fact table needed to evaluate the query. Note that none of the actual data in the fact
table has been accessed. All of these operations rely solely on the bitmap indexes and
the dimension tables. Because of the bitmap indexes' compressed data representations,
the bitmap set-based operations are extremely efficient.

Once the result set is identified, the bitmap is used to access the actual data from the
sales table. Only those rows that are required for the end user's query are retrieved
from the fact table. At this point, Oracle Database has effectively joined all of the
dimension tables to the fact table using bitmap indexes. This technique provides
excellent performance because Oracle Database is joining all of the dimension tables to
the fact table with one logical join operation, rather than joining each dimension table
to the fact table independently.

The second phase of this query is to join these rows from the fact table (the result set)
to the dimension tables. Oracle uses the most efficient method for accessing and
joining the dimension tables. Many dimension are very small, and table scans are
typically the most efficient access method for these dimension tables. For large
dimension tables, table scans may not be the most efficient access method. In the
previous example, a bitmap index on product.department can be used to quickly
identify all of those products in the grocery department. Oracle Database's optimizer
automatically determines which access method is most appropriate for a given
dimension table, based upon the optimizer's knowledge about the sizes and data
distributions of each dimension table.

Optimizing Star Queries and 3NF Schemas

Data Warehousing Optimizations and Techniques 4-21

The specific join method (as well as indexing method) for each dimension table will
likewise be intelligently determined by the optimizer. A hash join is often the most
efficient algorithm for joining the dimension tables. The final answer is returned to the
user once all of the dimension tables have been joined. The query technique of
retrieving only the matching rows from one table and then joining to another table is
commonly known as a semijoin.

Execution Plan for a Star Transformation with a Bitmap Index
The following typical execution plan might result from "Star Transformation with a
Bitmap Index" on page 4-19:

SELECT STATEMENT
 SORT GROUP BY
 HASH JOIN
 TABLE ACCESS FULL CHANNELS
 HASH JOIN
 TABLE ACCESS FULL CUSTOMERS
 HASH JOIN
 TABLE ACCESS FULL TIMES
 PARTITION RANGE ITERATOR
 TABLE ACCESS BY LOCAL INDEX ROWID SALES
 BITMAP CONVERSION TO ROWIDS
 BITMAP AND
 BITMAP MERGE
 BITMAP KEY ITERATION
 BUFFER SORT
 TABLE ACCESS FULL CUSTOMERS
 BITMAP INDEX RANGE SCAN SALES_CUST_BIX
 BITMAP MERGE
 BITMAP KEY ITERATION
 BUFFER SORT
 TABLE ACCESS FULL CHANNELS
 BITMAP INDEX RANGE SCAN SALES_CHANNEL_BIX
 BITMAP MERGE
 BITMAP KEY ITERATION
 BUFFER SORT
 TABLE ACCESS FULL TIMES
 BITMAP INDEX RANGE SCAN SALES_TIME_BIX

In this plan, the fact table is accessed through a bitmap access path based on a bitmap
AND, of three merged bitmaps. The three bitmaps are generated by the BITMAP MERGE
row source being fed bitmaps from row source trees underneath it. Each such row
source tree consists of a BITMAP KEY ITERATION row source which fetches values from
the subquery row source tree, which in this example is a full table access. For each
such value, the BITMAP KEY ITERATION row source retrieves the bitmap from the bitmap
index. After the relevant fact table rows have been retrieved using this access path,
they are joined with the dimension tables and temporary tables to produce the answer
to the query.

Star Transformation with a Bitmap Join Index
In addition to bitmap indexes, you can use a bitmap join index during star
transformations. Assume you have the following additional index structure:

CREATE BITMAP INDEX sales_c_state_bjix
ON sales(customers.cust_state_province)
FROM sales, customers
WHERE sales.cust_id = customers.cust_id
LOCAL NOLOGGING COMPUTE STATISTICS;

Optimizing Star Queries and 3NF Schemas

4-22 Oracle Database Data Warehousing Guide

The processing of the same star query using the bitmap join index is similar to the
previous example. The only difference is that Oracle utilizes the join index, instead of a
single-table bitmap index, to access the customer data in the first phase of the star
query.

Execution Plan for a Star Transformation with a Bitmap Join Index
The following typical execution plan might result from "Execution Plan for a Star
Transformation with a Bitmap Join Index" on page 4-22:

SELECT STATEMENT
 SORT GROUP BY
 HASH JOIN
 TABLE ACCESS FULL CHANNELS
 HASH JOIN
 TABLE ACCESS FULL CUSTOMERS
 HASH JOIN
 TABLE ACCESS FULL TIMES
 PARTITION RANGE ALL
 TABLE ACCESS BY LOCAL INDEX ROWID SALES
 BITMAP CONVERSION TO ROWIDS
 BITMAP AND
 BITMAP INDEX SINGLE VALUE SALES_C_STATE_BJIX
 BITMAP MERGE
 BITMAP KEY ITERATION
 BUFFER SORT
 TABLE ACCESS FULL CHANNELS
 BITMAP INDEX RANGE SCAN SALES_CHANNEL_BIX
 BITMAP MERGE
 BITMAP KEY ITERATION
 BUFFER SORT
 TABLE ACCESS FULL TIMES
 BITMAP INDEX RANGE SCAN SALES_TIME_BIX

The difference between this plan as compared to the previous one is that the inner part
of the bitmap index scan for the customer dimension has no subselect. This is because
the join predicate information on customer.cust_state_province can be satisfied
with the bitmap join index sales_c_state_bjix.

How Oracle Chooses to Use Star Transformation
The optimizer generates and saves the best plan it can produce without the
transformation. If the transformation is enabled, the optimizer then tries to apply it to
the query and, if applicable, generates the best plan using the transformed query.
Based on a comparison of the cost estimates between the best plans for the two
versions of the query, the optimizer then decides whether to use the best plan for the
transformed or untransformed version.

If the query requires accessing a large percentage of the rows in the fact table, it might
be better to use a full table scan and not use the transformations. However, if the
constraining predicates on the dimension tables are sufficiently selective that only a
small portion of the fact table must be retrieved, the plan based on the transformation
will probably be superior.

Note that the optimizer generates a subquery for a dimension table only if it decides
that it is reasonable to do so based on a number of criteria. There is no guarantee that
subqueries will be generated for all dimension tables. The optimizer may also decide,
based on the properties of the tables and the query, that the transformation does not

Optimizing Star Queries and 3NF Schemas

Data Warehousing Optimizations and Techniques 4-23

merit being applied to a particular query. In this case, the best regular plan will be
used.

Star Transformation Restrictions
Star transformation is not supported for tables with any of the following
characteristics:

■ Queries with a table hint that is incompatible with a bitmap access path

■ Queries that contain bind variables

■ Tables with too few bitmap indexes. There must be a bitmap index on a fact table
column for the optimizer to generate a subquery for it.

■ Remote fact tables. However, remote dimension tables are allowed in the
subqueries that are generated.

■ Anti-joined tables

■ Tables that are already used as a dimension table in a subquery

■ Tables that are really unmerged views, which are not view partitions

■ Tables where the fact table is an unmerged view

■ Tables where a partitioned view is used as a fact table

The star transformation may not be chosen by the optimizer for the following cases:

■ Tables that have a good single-table access path

■ Tables that are too small for the transformation to be worthwhile

In addition, temporary tables will not be used by star transformation under the
following conditions:

■ The database is in read-only mode

■ The star query is part of a transaction that is in serializable mode

Optimizing Third Normal Form Schemas
Optimizing a third normal form (3NF) schema requires the following:

■ Power

Power means that the hardware configuration must be balanced. Many data
warehouse operations are based upon large table scans and other IO-intensive
operations, which perform vast quantities of random IOs. In order to achieve
optimal performance the hardware configuration must be sized end to end to
sustain this level of throughput. This type of hardware configuration is called a
balanced system. In a balanced system, all components - from the CPU to the disks
- are orchestrated to work together to guarantee the maximum possible IO
throughput.

■ Partitioning

The larger tables should be partitioned using composite partitioning (range-hash
or list-hash). There are three reasons for this:

– Easier manageability of terabytes of data

– Faster accessibility to the necessary data

– Efficient and performant table joins

Optimizing Star Queries and 3NF Schemas

4-24 Oracle Database Data Warehousing Guide

■ Parallel Execution

Parallel Execution enables a database task to be parallelized or divided into
smaller units of work, thus allowing multiple processes to work concurrently. By
using parallelism, a terabyte of data can be scanned and processed in minutes or
less, not hours or days.

The rest of this section on 3NF optimization discusses partitioning, with special
attention to partition-wise joins, followed by parallel query execution.

This section contains the following topics:

■ 3NF Schemas: Partitioning

■ 3NF Schemas: Parallel Query Execution

3NF Schemas: Partitioning
Partitioning allows a table, index or index-organized table to be subdivided into
smaller pieces. Each piece of the database object is called a partition. Each partition has
its own name, and may optionally have its own storage characteristics. From the
perspective of a database administrator, a partitioned object has multiple pieces that
can be managed either collectively or individually.

This gives the administrator considerable flexibility in managing partitioned objects.
However, from the perspective of the application, a partitioned table is identical to a
non-partitioned table; no modifications are necessary when accessing a partitioned
table using SQL DML commands. Partitioning can provide tremendous benefits to a
wide variety of applications by improving manageability, availability, and
performance.

Partitioning for Manageability Range partitioning will help improve the manageability
and availability of large volumes of data. Consider the case where two year's worth of
sales data or 100 terabytes (TB) is stored in a table. At the end of each day a new batch
of data needs to be to loaded into the table and the oldest days worth of data needs to
be removed. If the Sales table is ranged partitioned by day the new data can be loaded
using a partition exchange load. This is a sub-second operation and should have little
or no impact to end user queries. In order to remove the oldest day of data simply
issue the following command:

SH@DBM1 > ALTER TABLE SALES DROP PARTITION Sales_Q4_2009;

Partitioning for Easier Data Access Range partitioning will also help ensure only the
necessary data to answer a query will be scanned. Let's assume that the business users
predominately accesses the sales data on a weekly basis, e.g. total sales per week then
range partitioning this table by day will ensure that the data is accessed in the most
efficient manner, as only 4 partitions need to be scanned to answer the business users
query instead of the entire table. The ability to avoid scanning irrelevant partitions is
known as partition pruning.

Optimizing Star Queries and 3NF Schemas

Data Warehousing Optimizations and Techniques 4-25

Figure 4–3 Partition Pruning

Partitioning for Join Performance Sub-partitioning by hash is used predominately for
performance reasons. Oracle uses a linear hashing algorithm to create sub-partitions.
In order to ensure that the data gets evenly distributed among the hash partitions it is
highly recommended that the number of hash partitions is a power of 2 (for example,
2, 4, 8, and so on). Each hash partition should be at least 16MB in size. Any smaller and
they will not have efficient scan rates with parallel query.

One of the main performance benefits of hash partitioning is partition-wise joins.
Partition-wise joins reduce query response time by minimizing the amount of data
exchanged among parallel execution servers when joins execute in parallel. This
significantly reduces response time and improves both CPU and memory resource
usage. In a clustered data warehouse, this significantly reduces response times by
limiting the data traffic over the interconnect (IPC), which is the key to achieving good
scalability for massive join operations. Partition-wise joins can be full or partial,
depending on the partitioning scheme of the tables to be joined.

A full partition-wise join divides a join between two large tables into multiple smaller
joins. Each smaller join performs a joins on a pair of partitions, one for each of the
tables being joined. For the optimizer to choose the full partition-wise join method,
both tables must be equi-partitioned on their join keys. That is, they have to be
partitioned on the same column with the same partitioning method. Parallel execution
of a full partition-wise join is similar to its serial execution, except that instead of
joining one partition pair at a time, multiple partition pairs are joined in parallel by
multiple parallel query servers. The number of partitions joined in parallel is
determined by the Degree of Parallelism (DOP).

Optimizing Star Queries and 3NF Schemas

4-26 Oracle Database Data Warehousing Guide

Figure 4–4 Full Partition-Wise Join

Figure 4–4 illustrates the parallel execution of a full partition-wise join between two
tables, Sales and Customers. Both tables have the same degree of parallelism and the
same number of partitions. They are range partitioned on a date field and sub
partitioned by hash on the cust_id field. As illustrated in the picture, each partition
pair is read from the database and joined directly. There is no data redistribution
necessary, thus minimizing IPC communication, especially across nodes. Figure 4–5
below shows the execution plan you would see for this join.

To ensure that you get optimal performance when executing a partition-wise join in
parallel, the number of partitions in each of the tables should be larger than the degree
of parallelism used for the join. If there are more partitions than parallel servers, each
parallel server will be given one pair of partitions to join, when the parallel server
completes that join, it will requests another pair of partitions to join. This process
repeats until all pairs have been processed. This method enables the load to be
balanced dynamically (for example, 128 partitions with a degree of parallelism of 32).

What happens if only one of the tables you are joining is partitioned? In this case the
optimizer could pick a partial partition-wise join. Unlike full partition-wise joins,
partial partition-wise joins can be applied if only one table is partitioned on the join
key. Hence, partial partition-wise joins are more common than full partition-wise joins.
To execute a partial partition-wise join, Oracle dynamically repartitions the other table
based on the partitioning strategy of the partitioned table. Once the other table is
repartitioned, the execution is similar to a full partition-wise join. The redistribution
operation involves exchanging rows between parallel execution servers. This
operation leads to interconnect traffic in Oracle RAC environments, because data
needs to be repartitioned across node boundaries.

Optimizing Star Queries and 3NF Schemas

Data Warehousing Optimizations and Techniques 4-27

Figure 4–5 Partial Partition-Wise Join

Figure 4–5 illustrates a partial partition-wise join. It uses the same example as in
Figure 4–4, except that the customer table is not partitioned. Before the join operation
is executed, the rows from the customers table are dynamically redistributed on the
join key.

3NF Schemas: Parallel Query Execution
3NF schemas can leverage parallelism in multiple ways, but here the focus is on one
facet of parallelism that is specially significant to 3NF: SQL parallel execution for large
queries. SQL parallel execution in the Oracle Database is based on the principles of a
coordinator (often called the Query Coordinator or QC) and parallel servers. The QC is
the session that initiates the parallel SQL statement and the parallel servers are the
individual sessions that perform work in parallel. The QC distributes the work to the
parallel servers and may have to perform a minimal mostly logistical - portion of the
work that cannot be executed in parallel. For example a parallel query with a SUM()
operation requires adding the individual sub-totals calculated by each parallel server.

The QC is easily identified in the parallel execution in Figure 4–5 as PX
COORDINATOR. The process acting as the QC of a parallel SQL operation is the
actual user session process itself. The parallel servers are taken from a pool of globally
available parallel server processes and assigned to a given operation. The parallel
servers do all the work shown in a parallel plan BELOW the QC.

By default, the Oracle Database is configured to support parallel execution
out-of-the-box and is controlled by two initialization parameters parallel_max_
servers and parallel_min_servers. While parallel execution provides a very
powerful and scalable framework to speed up SQL operations, you should not forget
to use some common sense rules; while parallel execution might buy you an
additional incremental performance boost, it requires more resources and might also
have side effects on other users or operations on the same system. Small
tables/indexes (up to thousands of records; up to 10s of data blocks) should never be
enabled for parallel execution. Operations that only hit small tables will not benefit
much from executing in parallel, but they will use parallel servers that you will want
to be available for operations accessing large tables. Remember also that once an
operation starts at a certain degree of parallelism (DOP), there is no way to reduce its

Optimizing Star Queries and 3NF Schemas

4-28 Oracle Database Data Warehousing Guide

DOP during the execution. The general rules of thumb for determining the
appropriate DOP for an object are:

■ Objects smaller than 200 MB should not use any parallelism

■ Objects between 200 MB and 5GB should use a DOP of 4

■ Objects beyond 5GB use a DOP of 32

Needless to say the optimal settings may vary on your system- either in size range or
DOP - and highly depend on your target workload, the business requirements, and
your hardware configuration.

Whether or Not to Use Cross Instance Parallel Execution in Oracle RAC By default, Oracle
Database enables inter-node parallel execution (parallel execution of a single statement
involving more than one node). As mentioned earlier, the interconnect in an Oracle
RAC environment must be sized appropriately as inter-node parallel execution may
result in a lot of interconnect traffic. If you are using a relatively weak interconnect in
comparison to the I/O bandwidth from the server to the storage subsystem, you may
be better off restricting parallel execution to a single node or to a limited number of
nodes. Inter-node parallel execution will not scale with an undersized interconnect.
From Oracle Database 11g onwards, it is recommended to use Oracle RAC services to
control parallel execution on a cluster.

Optimizing Star Queries Using VECTOR GROUP BY Aggregation
VECTOR GROUP BY aggregation optimizes queries that aggregate data and join one or
more relatively small tables to a larger table. This transformation can be chosen by the
SQL optimizer based on cost estimates. In the context of data warehousing, VECTOR
GROUP BY will often be chosen for star queries that select data from in-memory
columnar tables.

VECTOR GROUP BY aggregation is similar to a bloom filter in that it transforms the join
condition between a small table and a large table into a filter on the larger table.
VECTOR GROUP BY aggregation further enhances query performance by aggregating
data during the scan of the fact table rather than as a separate step following the scan.

See Also:

■ "About In-Memory Aggregation" on page 2-16

■ Oracle Database SQL Tuning Guide for a detailed VECTOR GROUP BY
scenario

Part II
Part II Optimizing Data Warehouses

This section deals with the physical design of a data warehouse.

It contains the following chapters:

■ Chapter 5, "Basic Materialized Views"

■ Chapter 6, "Advanced Materialized Views"

■ Chapter 7, "Refreshing Materialized Views"

■ Chapter 8, "Synchronous Refresh"

■ Chapter 9, "Dimensions"

■ Chapter 10, "Basic Query Rewrite for Materialized Views"

■ Chapter 11, "Advanced Query Rewrite for Materialized Views"

■ Chapter 12, "Attribute Clustering"

■ Chapter 13, "Using Zone Maps"

5

Basic Materialized Views 5-1

5 Basic Materialized Views

This chapter describes the use of materialized views. It contains the following topics:

■ Overview of Data Warehousing with Materialized Views

■ Types of Materialized Views

■ Creating Materialized Views

■ Creating Materialized View Logs

■ Registering Existing Materialized Views

■ Choosing Indexes for Materialized Views

■ Dropping Materialized Views

■ Analyzing Materialized View Capabilities

Overview of Data Warehousing with Materialized Views
Typically, data flows from one or more online transaction processing (OLTP) database
into a data warehouse on a monthly, weekly, or daily basis. The data is normally
processed in a staging file before being added to the data warehouse. Data
warehouses commonly range in size from hundreds of gigabytes to a few terabytes.
Usually, the vast majority of the data is stored in a few very large fact tables.

One technique employed in data warehouses to improve performance is the creation
of summaries. Summaries are special types of aggregate views that improve query
execution times by precalculating expensive joins and aggregation operations prior to
execution and storing the results in a table in the database. For example, you can create
a summary table to contain the sums of sales by region and by product.

The summaries or aggregates that are referred to in this book and in literature on data
warehousing are created in Oracle Database using a schema object called a
materialized view. Materialized views can perform a number of roles, such as
improving query performance or providing replicated data.

The database administrator creates one or more materialized views, which are the
equivalent of a summary. The end user queries the tables and views at the detail data
level. The query rewrite mechanism in the Oracle server automatically rewrites the
SQL query to use the summary tables. This mechanism reduces response time for
returning results from the query. Materialized views within the data warehouse are
transparent to the end user or to the database application.

Although materialized views are usually accessed through the query rewrite
mechanism, an end user or database application can construct queries that directly
access the materialized views. However, serious consideration should be given to

Overview of Data Warehousing with Materialized Views

5-2 Oracle Database Data Warehousing Guide

whether users should be allowed to do this because any change to the materialized
views affects the queries that reference them.

This section contains the following topics:

■ Materialized Views for Data Warehouses

■ Materialized Views for Distributed Computing

■ Materialized Views for Mobile Computing

■ The Need for Materialized Views

■ Components of Summary Management

■ Data Warehousing Terminology

■ Materialized View Schema Design

■ Loading Data into Data Warehouses

■ Overview of Materialized View Management Tasks

Materialized Views for Data Warehouses
In data warehouses, you can use materialized views to precompute and store
aggregated data such as the sum of sales. Materialized views in these environments
are often referred to as summaries, because they store summarized data. They can also
be used to precompute joins with or without aggregations. A materialized view
eliminates the overhead associated with expensive joins and aggregations for a large
or important class of queries.

Materialized Views for Distributed Computing
In distributed environments, you can use materialized views to replicate data at
distributed sites and to synchronize updates done at those sites with conflict
resolution methods. These replica materialized views provide local access to data that
otherwise would have to be accessed from remote sites. Materialized views are also
useful in remote data marts.

Materialized Views for Mobile Computing
You can also use materialized views to download a subset of data from central servers
to mobile clients, with periodic refreshes and updates between clients and the central
servers. This chapter focuses on the use of materialized views in data warehouses.

The Need for Materialized Views
You can use materialized views to increase the speed of queries on very large
databases. Queries to large databases often involve joins between tables, aggregations
such as SUM, or both. These operations are expensive in terms of time and processing

See Also:

■ Oracle Database Heterogeneous Connectivity User's Guide

■ Oracle Database Advanced Replication

See Also:

■ Oracle Database Heterogeneous Connectivity User's Guide

■ Oracle Database Advanced Replication

Overview of Data Warehousing with Materialized Views

Basic Materialized Views 5-3

power. The type of materialized view you create determines how the materialized
view is refreshed and used by query rewrite.

Materialized views improve query performance by precalculating expensive join and
aggregation operations on the database prior to execution and storing the results in the
database. The query optimizer automatically recognizes when an existing materialized
view can and should be used to satisfy a request. It then transparently rewrites the
request to use the materialized view. Queries go directly to the materialized view and
not to the underlying detail tables. In general, rewriting queries to use materialized
views rather than detail tables improves response time. Figure 5–1 illustrates how
query rewrite works.

Figure 5–1 Transparent Query Rewrite

When using query rewrite, create materialized views that satisfy the largest number of
queries. For example, if you identify 20 queries that are commonly applied to the
detail or fact tables, then you might be able to satisfy them with five or six well-written
materialized views. A materialized view definition can include any number of
aggregations (SUM, COUNT(x), COUNT(*), COUNT(DISTINCT x), AVG, VARIANCE, STDDEV,
MIN, and MAX). It can also include any number of joins. If you are unsure of which
materialized views to create, Oracle Database provides the SQL Access Advisor, which
is a set of advisory procedures in the DBMS_ADVISOR package to help in designing and
evaluating materialized views for query rewrite.

If a materialized view is to be used by query rewrite, it must be stored in the same
database as the detail tables on which it depends. A materialized view can be
partitioned, and you can define a materialized view on a partitioned table. You can
also define one or more indexes on the materialized view.

Unlike indexes, materialized views can be accessed directly using a SELECT statement.
However, it is recommended that you try to avoid writing SQL statements that directly
reference the materialized view, because then it is difficult to change them without
affecting the application. Instead, let query rewrite transparently rewrite your query to
use the materialized view.

Note that the techniques shown in this chapter illustrate how to use materialized
views in data warehouses. Materialized views can also be used by Oracle Replication.

Overview of Data Warehousing with Materialized Views

5-4 Oracle Database Data Warehousing Guide

Components of Summary Management
Summary management consists of:

■ Mechanisms to define materialized views and dimensions.

■ A refresh mechanism to ensure that all materialized views contain the latest data.

■ A query rewrite capability to transparently rewrite a query to use a materialized
view.

■ The SQL Access Advisor, which recommends materialized views, partitions, and
indexes to create.

■ The TUNE_MVIEW package, which shows you how to make your materialized view
fast refreshable and use general query rewrite.

The use of summary management features imposes no schema restrictions, and can
enable some existing DSS database applications to improve performance without the
need to redesign the database or the application.

Figure 5–2 illustrates the use of summary management in the warehousing cycle. After
the data has been transformed, staged, and loaded into the detail data in the
warehouse, you can invoke the summary management process. First, use the SQL
Access Advisor to plan how you will use materialized views. Then, create materialized
views and design how queries will be rewritten. If you are having problems trying to
get your materialized views to work then use TUNE_MVIEW to obtain an optimized
materialized view.

See Also: Oracle Database Advanced Replication

Overview of Data Warehousing with Materialized Views

Basic Materialized Views 5-5

Figure 5–2 Overview of Summary Management

Understanding the summary management process during the earliest stages of data
warehouse design can yield large dividends later in the form of higher performance,
lower summary administration costs, and reduced storage requirements.

Data Warehousing Terminology
Some basic data warehousing terms are defined as follows:

■ Dimension tables describe the business entities of an enterprise, represented as
hierarchical, categorical information such as time, departments, locations, and
products. Dimension tables are sometimes called lookup or reference tables.

Dimension tables usually change slowly over time and are not modified on a
periodic schedule. They are used in long-running decision support queries to
aggregate the data returned from the query into appropriate levels of the
dimension hierarchy.

■ Hierarchies describe the business relationships and common access patterns in the
database. An analysis of the dimensions, combined with an understanding of the
typical work load, can be used to create materialized views. See Chapter 9,
"Dimensions" for more information.

■ Fact tables describe the business transactions of an enterprise.

Operational
Databases

Extraction of
Incremental
Detail Data

Incremental
Load and Refresh

Data
Transformations

Staging
file

Detail

Data Warehouse

Summary

Query
Rewrite

Extract
Program

Summary Mgmt
Administration

Summary Mgmt
Analysis & Tuning

Multidimensional
Analysis Tools

Workload
Statistics

MDDB
Data Mart

Summary
Management

Overview of Data Warehousing with Materialized Views

5-6 Oracle Database Data Warehousing Guide

The vast majority of data in a data warehouse is stored in a few very large fact
tables that are updated periodically with data from one or more operational OLTP
databases.

Fact tables include facts (also called measures) such as sales, units, and inventory.

– A simple measure is a numeric or character column of one table such as
fact.sales.

– A computed measure is an expression involving measures of one table, for
example, fact.revenues - fact.expenses.

– A multitable measure is a computed measure defined on multiple tables, for
example, fact_a.revenues - fact_b.expenses.

Fact tables also contain one or more foreign keys that organize the business
transactions by the relevant business entities such as time, product, and market. In
most cases, these foreign keys are non-null, form a unique compound key of the
fact table, and each foreign key joins with exactly one row of a dimension table.

■ A materialized view is a precomputed table comprising aggregated and joined
data from fact and possibly from dimension tables.

Materialized View Schema Design
Summary management can perform many useful functions, including query rewrite
and materialized view refresh, even if your data warehouse design does not follow
these guidelines. However, you realize significantly greater query execution
performance and materialized view refresh performance benefits and you require
fewer materialized views if your schema design complies with these guidelines.

A materialized view definition includes any number of aggregates, as well as any
number of joins. In several ways, a materialized view behaves like an index:

■ The purpose of a materialized view is to increase query execution performance.

■ The existence of a materialized view is transparent to SQL applications, so that a
database administrator can create or drop materialized views at any time without
affecting the validity of SQL applications.

■ A materialized view consumes storage space.

■ The contents of the materialized view must be updated when the underlying
detail tables are modified.

This section contains the following topics:

■ Schemas and Dimension Tables

■ Guidelines for Materialized View Schema Design

Schemas and Dimension Tables
In the case of normalized or partially normalized dimension tables (a dimension that is
stored in multiple tables), identify how these tables are joined. Note whether the joins
between the dimension tables can guarantee that each child-side row joins with one
and only one parent-side row. In the case of denormalized dimensions, determine
whether the child-side columns uniquely determine the parent-side (or attribute)
columns. These relationships can be enabled with constraints, using the NOVALIDATE
and RELY options if the relationships represented by the constraints are guaranteed by
other means. Note that if the joins between fact and dimension tables do not support
the parent-child relationship described previously, you still gain significant
performance advantages from defining the dimension with the CREATE DIMENSION

Overview of Data Warehousing with Materialized Views

Basic Materialized Views 5-7

statement. Another alternative, subject to some restrictions, is to use outer joins in the
materialized view definition (that is, in the CREATE MATERIALIZED VIEW statement).

You must not create dimensions in any schema that does not satisfy these
relationships. Incorrect results can be returned from queries otherwise.

Guidelines for Materialized View Schema Design
Before starting to define and use the various components of summary management,
you should review your schema design to abide by the following guidelines wherever
possible. Guidelines 1 and 2 are more important than guideline 3. If your schema
design does not follow guidelines 1 and 2, it does not then matter whether it follows
guideline 3. Guidelines 1, 2, and 3 affect both query rewrite performance and
materialized view refresh performance.

Dimensions Guideline 1 Dimensions should either be denormalized (each dimension
contained in one table) or the joins between tables in a normalized or partially
normalized dimension should guarantee that each child-side row joins with exactly
one parent-side row.

You can enforce this condition by adding FOREIGN KEY and NOT NULL constraints on the
child-side join keys and PRIMARY KEY constraints on the parent-side join keys.

Dimensions Guideline 2 If dimensions are denormalized or partially denormalized,
hierarchical integrity must be maintained between the key columns of the dimension
table. Each child key value must uniquely identify its parent key value, even if the
dimension table is denormalized. Hierarchical integrity in a denormalized dimension
can be verified by calling the VALIDATE_DIMENSION procedure of the DBMS_DIMENSION
package.

Dimensions Guideline 3 Fact and dimension tables should similarly guarantee that each
fact table row joins with exactly one dimension table row. This condition must be
declared, and optionally enforced, by adding FOREIGN KEY and NOT NULL constraints on
the fact key column(s) and PRIMARY KEY constraints on the dimension key column(s), or
by using outer joins. In a data warehouse, constraints are typically enabled with the
NOVALIDATE and RELY clauses to avoid constraint enforcement performance overhead.

Dimensions Guideline 4 After each load and before refreshing your materialized view,
use the VALIDATE_DIMENSION procedure of the DBMS_DIMENSION package to
incrementally verify dimensional integrity.

Incremental Loads Guideline Incremental loads of your detail data should be done using
the SQL*Loader direct-path option, or any bulk loader utility that uses Oracle's
direct-path interface. This includes INSERT ... AS SELECT with the APPEND or PARALLEL
hints, where the hints cause the direct loader log to be used during the insert.

Partitions Guideline Range/composite partition your tables by a monotonically
increasing time column if possible (preferably of type DATE).

Time Dimensions Guideline If a time dimension appears in the materialized view as a
time column, partition and index the materialized view in the same manner as you
have the fact tables.

If you are concerned with the time required to enable constraints and whether any
constraints might be violated, then use the ENABLE NOVALIDATE with the RELY clause to
turn on constraint checking without validating any of the existing constraints. The risk
with this approach is that incorrect query results could occur if any constraints are

Overview of Data Warehousing with Materialized Views

5-8 Oracle Database Data Warehousing Guide

broken. Therefore, as the designer, you must determine how clean the data is and
whether the risk of incorrect results is too great.

Loading Data into Data Warehouses
A popular and efficient way to load data into a data warehouse or data mart is to use
SQL*Loader with the DIRECT or PARALLEL option, Data Pump, or to use another loader
tool that uses the Oracle direct-path API. See Oracle Database Utilities for the
restrictions and considerations when using SQL*Loader with the DIRECT or PARALLEL
keywords.

Loading strategies can be classified as one-phase or two-phase. In one-phase loading,
data is loaded directly into the target table, quality assurance tests are performed, and
errors are resolved by performing DML operations prior to refreshing materialized
views. If a large number of deletions are possible, then storage utilization can be
adversely affected, but temporary space requirements and load time are minimized.

In a two-phase loading process:

■ Data is first loaded into a temporary table in the warehouse.

■ Quality assurance procedures are applied to the data.

■ Referential integrity constraints on the target table are disabled, and the local
index in the target partition is marked unusable.

■ The data is copied from the temporary area into the appropriate partition of the
target table using INSERT AS SELECT with the PARALLEL or APPEND hint. The
temporary table is then dropped. Alternatively, if the target table is partitioned,
you can create a new (empty) partition in the target table and use ALTER TABLE
... EXCHANGE PARTITION to incorporate the temporary table into the target table.
See Oracle Database SQL Language Reference for more information.

■ The constraints are enabled, usually with the NOVALIDATE option.

Immediately after loading the detail data and updating the indexes on the detail data,
the database can be opened for operation, if desired. You can disable query rewrite at
the system level by issuing an ALTER SYSTEM SET QUERY_REWRITE_ENABLED = FALSE
statement until all the materialized views are refreshed.

If QUERY_REWRITE_INTEGRITY is set to STALE_TOLERATED, access to the materialized
view can be allowed at the session level to any users who do not require the
materialized views to reflect the data from the latest load by issuing an ALTER SESSION
SET QUERY_REWRITE_ENABLED = TRUE statement. This scenario does not apply when
QUERY_REWRITE_INTEGRITY is either ENFORCED or TRUSTED because the system ensures
in these modes that only materialized views with updated data participate in a query
rewrite.

Overview of Materialized View Management Tasks
The motivation for using materialized views is to improve performance, but the
overhead associated with materialized view management can become a significant

See Also:

■ "Types of Materialized Views" on page 5-9

■ "Creating Dimensions" on page 9-3 for details on the benefits of
maintaining a child-side row join with a parent-side row

■ Oracle Database SQL Language Reference

Types of Materialized Views

Basic Materialized Views 5-9

system management problem. When reviewing or evaluating some of the necessary
materialized view management activities, consider some of the following:

■ Identifying what materialized views to create initially.

■ Indexing the materialized views.

■ Ensuring that all materialized views and materialized view indexes are refreshed
properly each time the database is updated.

■ Checking which materialized views have been used.

■ Determining how effective each materialized view has been on workload
performance.

■ Measuring the space being used by materialized views.

■ Determining which new materialized views should be created.

■ Determining which existing materialized views should be dropped.

■ Archiving old detail and materialized view data that is no longer useful.

After the initial effort of creating and populating the data warehouse or data mart, the
major administration overhead is the update process, which involves:

■ Periodic extraction of incremental changes from the operational systems.

■ Transforming the data.

■ Verifying that the incremental changes are correct, consistent, and complete.

■ Bulk-loading the data into the warehouse.

■ Refreshing indexes and materialized views so that they are consistent with the
detail data.

The update process must generally be performed within a limited period of time
known as the update window. The update window depends on the update frequency
(such as daily or weekly) and the nature of the business. For a daily update frequency,
an update window of two to six hours might be typical.

You need to know your update window for the following activities:

■ Loading the detail data

■ Updating or rebuilding the indexes on the detail data

■ Performing quality assurance tests on the data

■ Refreshing the materialized views

■ Updating the indexes on the materialized views

Types of Materialized Views
The SELECT clause in the materialized view creation statement defines the data that the
materialized view is to contain. Only a few restrictions limit what can be specified.
Any number of tables can be joined together. Besides tables, other elements such as
views, inline views (subqueries in the FROM clause of a SELECT statement), subqueries,
and materialized views can all be joined or referenced in the SELECT clause. You
cannot, however, define a materialized view with a subquery in the SELECT list of the
defining query. You can, however, include subqueries elsewhere in the defining query,
such as in the WHERE clause.

The types of materialized views are:

Types of Materialized Views

5-10 Oracle Database Data Warehousing Guide

■ Materialized Views with Aggregates

■ Materialized Views Containing Only Joins

■ Nested Materialized Views

Materialized Views with Aggregates
In data warehouses, materialized views normally contain aggregates as shown in
Example 5–1. For fast refresh to be possible, the SELECT list must contain all of the
GROUP BY columns (if present), and there must be a COUNT(*) and a COUNT(column) on
any aggregated columns. Also, materialized view logs must be present on all tables
referenced in the query that defines the materialized view. The valid aggregate
functions are: SUM, COUNT(x), COUNT(*), AVG, VARIANCE, STDDEV, MIN, and MAX, and the
expression to be aggregated can be any SQL value expression. See "Restrictions on Fast
Refresh on Materialized Views with Aggregates" on page 5-23.

Fast refresh for a materialized view containing joins and aggregates is possible after
any type of DML to the base tables (direct load or conventional INSERT, UPDATE, or
DELETE). It can be defined to be refreshed ON COMMIT or ON DEMAND. A REFRESH ON
COMMIT materialized view is refreshed automatically when a transaction that does
DML to one of the materialized view's detail tables commits. The time taken to
complete the commit may be slightly longer than usual when this method is chosen.
This is because the refresh operation is performed as part of the commit process.
Therefore, this method may not be suitable if many users are concurrently changing
the tables upon which the materialized view is based.

Here are some examples of materialized views with aggregates. Note that materialized
view logs are only created because this materialized view is fast refreshed.

Example 5–1 Creating a Materialized View (Total Number and Value of Sales)

CREATE MATERIALIZED VIEW LOG ON products WITH SEQUENCE, ROWID
(prod_id, prod_name, prod_desc, prod_subcategory, prod_subcategory_desc,
prod_category, prod_category_desc, prod_weight_class, prod_unit_of_measure,
 prod_pack_size, supplier_id, prod_status, prod_list_price, prod_min_price)
INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW LOG ON sales
WITH SEQUENCE, ROWID
(prod_id, cust_id, time_id, channel_id, promo_id, quantity_sold, amount_sold)
INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW product_sales_mv
PCTFREE 0 TABLESPACE demo
STORAGE (INITIAL 8M)
BUILD IMMEDIATE
REFRESH FAST
ENABLE QUERY REWRITE
AS SELECT p.prod_name, SUM(s.amount_sold) AS dollar_sales,
COUNT(*) AS cnt, COUNT(s.amount_sold) AS cnt_amt
FROM sales s, products p
WHERE s.prod_id = p.prod_id GROUP BY p.prod_name;

This example creates a materialized view product_sales_mv that computes total
number and value of sales for a product. It is derived by joining the tables sales and

See Also: "Requirements for Using Materialized Views with
Aggregates" on page 5-12

Types of Materialized Views

Basic Materialized Views 5-11

products on the column prod_id. The materialized view is populated with data
immediately because the build method is immediate and it is available for use by
query rewrite. In this example, the default refresh method is FAST, which is allowed
because the appropriate materialized view logs have been created on tables products
and sales.

You can achieve better fast refresh performance for local materialized views if you use
a materialized view log that contains a WITH COMMIT SCN clause. An example is the
following:

CREATE MATERIALIZED VIEW LOG ON sales WITH ROWID(prod_id, cust_id, time_id),
 COMMIT SCN INCLUDING NEW VALUES;

Example 5–2 Creating a Materialized View (Computed Sum of Sales)

CREATE MATERIALIZED VIEW product_sales_mv
PCTFREE 0 TABLESPACE demo
STORAGE (INITIAL 8M)
BUILD DEFERRED
REFRESH COMPLETE ON DEMAND
ENABLE QUERY REWRITE AS
SELECT p.prod_name, SUM(s.amount_sold) AS dollar_sales
FROM sales s, products p WHERE s.prod_id = p.prod_id
GROUP BY p.prod_name;

This example creates a materialized view product_sales_mv that computes the sum of
sales by prod_name. It is derived by joining the tables sales and products on the
column prod_id. The materialized view does not initially contain any data, because
the build method is DEFERRED. A complete refresh is required for the first refresh of a
build deferred materialized view. When it is refreshed and once populated, this
materialized view can be used by query rewrite.

Example 5–3 Creating a Materialized View (Aggregates on a Single Table)

CREATE MATERIALIZED VIEW LOG ON sales WITH SEQUENCE, ROWID
(prod_id, cust_id, time_id, channel_id, promo_id, quantity_sold, amount_sold)
INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW sum_sales
PARALLEL
BUILD IMMEDIATE
REFRESH FAST ON COMMIT AS
SELECT s.prod_id, s.time_id, COUNT(*) AS count_grp,
 SUM(s.amount_sold) AS sum_dollar_sales,
 COUNT(s.amount_sold) AS count_dollar_sales,
 SUM(s.quantity_sold) AS sum_quantity_sales,
 COUNT(s.quantity_sold) AS count_quantity_sales
FROM sales s
GROUP BY s.prod_id, s.time_id;

This example creates a materialized view that contains aggregates on a single table.
Because the materialized view log has been created with all referenced columns in the
materialized view's defining query, the materialized view is fast refreshable. If DML is
applied against the sales table, then the changes are reflected in the materialized view
when the commit is issued.

See Also: Oracle Database SQL Language Reference for syntax of the
CREATE MATERIALIZED VIEW and CREATE MATERIALIZED VIEW LOG
statements

Types of Materialized Views

5-12 Oracle Database Data Warehousing Guide

Requirements for Using Materialized Views with Aggregates
Table 5–1 illustrates the aggregate requirements for materialized views. If aggregate X
is present, aggregate Y is required and aggregate Z is optional.

Note that COUNT(*) must always be present to guarantee all types of fast refresh.
Otherwise, you may be limited to fast refresh after inserts only. Oracle recommends
that you include the optional aggregates in column Z in the materialized view in order
to obtain the most efficient and accurate fast refresh of the aggregates.

Materialized Views Containing Only Joins
Some materialized views contain only joins and no aggregates, such as in Example 5–4
on page 5-13, where a materialized view is created that joins the sales table to the
times and customers tables. The advantage of creating this type of materialized view
is that expensive joins are precalculated.

Fast refresh for a materialized view containing only joins is possible after any type of
DML to the base tables (direct-path or conventional INSERT, UPDATE, or DELETE).

A materialized view containing only joins can be defined to be refreshed ON COMMIT or
ON DEMAND. If it is ON COMMIT, the refresh is performed at commit time of the transaction
that does DML on the materialized view's detail table.

If you specify REFRESH FAST, Oracle Database performs further verification of the
query definition to ensure that fast refresh can be performed if any of the detail tables
change. These additional checks are:

■ A materialized view log must be present for each detail table unless the table
supports partition change tracking (PCT). Also, when a materialized view log is
required, the ROWID column must be present in each materialized view log.

■ The rowids of all the detail tables must appear in the SELECT list of the
materialized view query definition.

If some of these restrictions are not met, you can create the materialized view as
REFRESH FORCE to take advantage of fast refresh when it is possible. If one of the tables

Table 5–1 Requirements for Materialized Views with Aggregates

X Y Z

COUNT(expr) - -

MIN(expr)

MAX(expr)

SUM(expr) COUNT(expr) -

SUM(col), col has NOT
NULL constraint

-

AVG(expr) COUNT(expr) SUM(expr)

STDDEV(expr) COUNT(expr)
SUM(expr)

SUM(expr * expr)

VARIANCE(expr) COUNT(expr)
SUM(expr)

SUM(expr * expr)

See Also: "Materialized Join Views FROM Clause Considerations"
on page 5-13

Types of Materialized Views

Basic Materialized Views 5-13

did not meet all of the criteria, but the other tables did, the materialized view would
still be fast refreshable with respect to the other tables for which all the criteria are met.

To achieve an optimally efficient refresh, you should ensure that the defining query
does not use an outer join that behaves like an inner join. If the defining query contains
such a join, consider rewriting the defining query to contain an inner join.

Materialized Join Views FROM Clause Considerations
If the materialized view contains only joins, the ROWID columns for each table (and
each instance of a table that occurs multiple times in the FROM list) must be present in
the SELECT list of the materialized view.

If the materialized view has remote tables in the FROM clause, all tables in the FROM
clause must be located on that same site. Further, ON COMMIT refresh is not supported
for materialized view with remote tables. Except for SCN-based materialized view
logs, materialized view logs must be present on the remote site for each detail table of
the materialized view and ROWID columns must be present in the SELECT list of the
materialized view, as shown in the following example.

Example 5–4 Materialized View Containing Only Joins

CREATE MATERIALIZED VIEW LOG ON sales WITH ROWID;
CREATE MATERIALIZED VIEW LOG ON times WITH ROWID;
CREATE MATERIALIZED VIEW LOG ON customers WITH ROWID;
CREATE MATERIALIZED VIEW detail_sales_mv
PARALLEL BUILD IMMEDIATE
REFRESH FAST AS
SELECT s.rowid "sales_rid", t.rowid "times_rid", c.rowid "customers_rid",
 c.cust_id, c.cust_last_name, s.amount_sold, s.quantity_sold, s.time_id
FROM sales s, times t, customers c
WHERE s.cust_id = c.cust_id(+) AND s.time_id = t.time_id(+);

Alternatively, if the previous example did not include the columns times_rid and
customers_rid, and if the refresh method was REFRESH FORCE, then this materialized
view would be fast refreshable only if the sales table was updated but not if the tables
times or customers were updated.

CREATE MATERIALIZED VIEW detail_sales_mv
PARALLEL
BUILD IMMEDIATE
REFRESH FORCE AS
SELECT s.rowid "sales_rid", c.cust_id, c.cust_last_name, s.amount_sold,
 s.quantity_sold, s.time_id
FROM sales s, times t, customers c
WHERE s.cust_id = c.cust_id(+) AND s.time_id = t.time_id(+);

Nested Materialized Views
A nested materialized view is a materialized view whose definition is based on
another materialized view. A nested materialized view can reference other relations in
the database in addition to referencing materialized views.

See Also:

■ "Restrictions on Fast Refresh on Materialized Views with Joins
Only" on page 5-23 for more information regarding the conditions
that cause refresh performance to degrade.

■ "Partition Change Tracking (PCT) Refresh" on page 7-4

Types of Materialized Views

5-14 Oracle Database Data Warehousing Guide

This section contains the following topics:

■ Why Use Nested Materialized Views?

■ Nesting Materialized Views with Joins and Aggregates

■ Nested Materialized View Usage Guidelines

■ Restrictions When Using Nested Materialized Views

Why Use Nested Materialized Views?
In a data warehouse, you typically create many aggregate views on a single join (for
example, rollups along different dimensions). Incrementally maintaining these distinct
materialized aggregate views can take a long time, because the underlying join has to
be performed many times.

Using nested materialized views, you can create multiple single-table materialized
views based on a joins-only materialized view and the join is performed just once. In
addition, optimizations can be performed for this class of single-table aggregate
materialized view and thus refresh is very efficient.

Example 5–5 Nested Materialized View

You can create a nested materialized view on materialized views, but all parent and
base materialized views must contain joins or aggregates. If the defining queries for a
materialized view do not contain joins or aggregates, it cannot be nested. All the
underlying objects (materialized views or tables) on which the materialized view is
defined must have a materialized view log. All the underlying objects are treated as if
they were tables. In addition, you can use all the existing options for materialized
views.

Using the tables and their columns from the sh sample schema, the following
materialized views illustrate how nested materialized views can be created.

CREATE MATERIALIZED VIEW LOG ON sales WITH ROWID;
CREATE MATERIALIZED VIEW LOG ON customers WITH ROWID;
CREATE MATERIALIZED VIEW LOG ON times WITH ROWID;

/*create materialized view join_sales_cust_time as fast refreshable at
 COMMIT time */
CREATE MATERIALIZED VIEW join_sales_cust_time
REFRESH FAST ON COMMIT AS
SELECT c.cust_id, c.cust_last_name, s.amount_sold, t.time_id,
 t.day_number_in_week, s.rowid srid, t.rowid trid, c.rowid crid
FROM sales s, customers c, times t
WHERE s.time_id = t.time_id AND s.cust_id = c.cust_id;

To create a nested materialized view on the table join_sales_cust_time, you would
have to create a materialized view log on the table. Because this will be a single-table
aggregate materialized view on join_sales_cust_time, you must log all the necessary
columns and use the INCLUDING NEW VALUES clause.

/* create materialized view log on join_sales_cust_time */
CREATE MATERIALIZED VIEW LOG ON join_sales_cust_time
WITH ROWID (cust_last_name, day_number_in_week, amount_sold),
INCLUDING NEW VALUES;

/* create the single-table aggregate materialized view sum_sales_cust_time
on join_sales_cust_time as fast refreshable at COMMIT time */
CREATE MATERIALIZED VIEW sum_sales_cust_time
REFRESH FAST ON COMMIT AS

Types of Materialized Views

Basic Materialized Views 5-15

SELECT COUNT(*) cnt_all, SUM(amount_sold) sum_sales, COUNT(amount_sold)
 cnt_sales, cust_last_name, day_number_in_week
FROM join_sales_cust_time
GROUP BY cust_last_name, day_number_in_week;

Nesting Materialized Views with Joins and Aggregates
Some types of nested materialized views cannot be fast refreshed. Use EXPLAIN_MVIEW
to identify those types of materialized views. You can refresh a tree of nested
materialized views in the appropriate dependency order by specifying the nested =
TRUE parameter with the DBMS_MVIEW.REFRESH parameter. For example, if you call
DBMS_MVIEW.REFRESH ('SUM_SALES_CUST_TIME', nested => TRUE), the REFRESH
procedure will first refresh the join_sales_cust_time materialized view, and then
refresh the sum_sales_cust_time materialized view.

Nested Materialized View Usage Guidelines
You should keep the following in mind when deciding whether to use nested
materialized views:

■ If you want to use fast refresh, you should fast refresh all the materialized views
along any chain.

■ If you want the highest level materialized view to be fresh with respect to the
detail tables, you must ensure that all materialized views in a tree are refreshed in
the correct dependency order before refreshing the highest-level. You can
automatically refresh intermediate materialized views in a nested hierarchy using
the nested = TRUE parameter, as described in "Nesting Materialized Views with
Joins and Aggregates" on page 5-15. If you do not specify nested = TRUE and the
materialized views under the highest-level materialized view are stale, refreshing
only the highest-level will succeed, but makes it fresh only with respect to its
underlying materialized view, not the detail tables at the base of the tree.

■ When refreshing materialized views, you must ensure that all materialized views
in a tree are refreshed. If you only refresh the highest-level materialized view, the
materialized views under it will be stale and you must explicitly refresh them. If
you use the REFRESH procedure with the nested parameter value set to TRUE, only
specified materialized views and their child materialized views in the tree are
refreshed, and not their top-level materialized views. Use the REFRESH_DEPENDENT
procedure with the nested parameter value set to TRUE if you want to ensure that
all materialized views in a tree are refreshed.

■ Freshness of a materialized view is calculated relative to the objects directly
referenced by the materialized view. When a materialized view references another
materialized view, the freshness of the topmost materialized view is calculated
relative to changes in the materialized view it directly references, not relative to
changes in the tables referenced by the materialized view it references.

Restrictions When Using Nested Materialized Views
You cannot create both a materialized view and a prebuilt materialized view on the
same table. For example, If you have a table costs with a materialized view cost_mv
based on it, you cannot then create a prebuilt materialized view on table costs. The
result would make cost_mv a nested materialized view and this method of conversion
is not supported.

Creating Materialized Views

5-16 Oracle Database Data Warehousing Guide

Creating Materialized Views
A materialized view can be created with the CREATE MATERIALIZED VIEW statement or
using Enterprise Manager. Example 5–6 illustrates creating a materialized view called
cust_sales_mv.

Example 5–6 Example 4: Creating a Materialized View

CREATE MATERIALIZED VIEW cust_sales_mv
PCTFREE 0 TABLESPACE demo
STORAGE (INITIAL 8M)
PARALLEL
BUILD IMMEDIATE
REFRESH COMPLETE
ENABLE QUERY REWRITE AS
SELECT c.cust_last_name, SUM(amount_sold) AS sum_amount_sold
FROM customers c, sales s WHERE s.cust_id = c.cust_id
GROUP BY c.cust_last_name;

It is not uncommon in a data warehouse to have already created summary or
aggregation tables, and you might not wish to repeat this work by building a new
materialized view. In this case, the table that already exists in the database can be
registered as a prebuilt materialized view. This technique is described in "Registering
Existing Materialized Views" on page 5-29.

Once you have selected the materialized views you want to create, follow these steps
for each materialized view.

1. Design the materialized view. Existing user-defined materialized views do not
require this step. If the materialized view contains many rows, then, if appropriate,
the materialized view should be partitioned (if possible) and should match the
partitioning of the largest or most frequently updated detail or fact table (if
possible). Refresh performance benefits from partitioning, because it can take
advantage of parallel DML capabilities and possible PCT-based refresh.

2. Use the CREATE MATERIALIZED VIEW statement to create and, optionally, populate
the materialized view. If a user-defined materialized view already exists, then use
the ON PREBUILT TABLE clause in the CREATE MATERIALIZED VIEW statement.
Otherwise, use the BUILD IMMEDIATE clause to populate the materialized view
immediately, or the BUILD DEFERRED clause to populate the materialized view later.
A BUILD DEFERRED materialized view is disabled for use by query rewrite until the
first COMPLETE REFRESH, after which it is automatically enabled, provided the
ENABLE QUERY REWRITE clause has been specified.

This section contains the following topics:

■ Creating Materialized Views with Column Alias Lists

■ Materialized Views Names

■ Storage And Table CompressionRefresh Options

■ Build Methods

■ Enabling Query Rewrite

■ Query Rewrite Restrictions

See Also: Oracle Database SQL Language Reference for descriptions
of the SQL statements CREATE MATERIALIZED VIEW, ALTER
MATERIALIZED VIEW, and DROP MATERIALIZED VIEW

Creating Materialized Views

Basic Materialized Views 5-17

■ ORDER BY Clause

■ Using Oracle Enterprise Manager

■ Using Materialized Views with NLS Parameters

■ Adding Comments to Materialized Views

■ Using the FORCE Option With Materialized View Logs

Creating Materialized Views with Column Alias Lists
Currently, when a materialized view is created, if its defining query contains
same-name columns in the SELECT list, the name conflicts need to be resolved by
specifying unique aliases for those columns. Otherwise, the CREATE MATERIALIZED VIEW
statement fails with the error messages of columns ambiguously defined. However,
the standard method of attaching aliases in the SELECT clause for name resolution
restricts the use of the full text match query rewrite and it will occur only when the
text of the materialized view's defining query and the text of user input query are
identical. Thus, if the user specifies select aliases in the materialized view's defining
query while there is no alias in the query, the full text match comparison fails. This is
particularly a problem for queries from Discoverer, which makes extensive use of
column aliases.

The following is an example of the problem. sales_mv is created with column aliases
in the SELECT clause but the input query Q1 does not have the aliases. The full text
match rewrite fails. The materialized view is as follows:

CREATE MATERIALIZED VIEW sales_mv
ENABLE QUERY REWRITE AS
SELECT s.time_id sales_tid, c.time_id costs_tid
FROM sales s, products p, costs c
WHERE s.prod_id = p.prod_id AND c.prod_id = p.prod_id AND
 p.prod_name IN (SELECT prod_name FROM products);

Input query statement Q1 is as follows:

SELECT s.time_id, c1.time_id
FROM sales s, products p, costs c1
WHERE s.prod_id = p.prod_id AND c1.prod_id = p.prod_id AND
 p.prod_name IN (SELECT prod_name FROM products);

Even though the materialized view's defining query is almost identical and logically
equivalent to the user's input query, query rewrite does not happen because of the
failure of full text match that is the only rewrite possibility for some queries (for
example, a subquery in the WHERE clause).

You can add a column alias list to a CREATE MATERIALIZED VIEW statement. The column
alias list explicitly resolves any column name conflict without attaching aliases in the
SELECT clause of the materialized view. The syntax of the materialized view column
alias list is illustrated in the following example:

CREATE MATERIALIZED VIEW sales_mv (sales_tid, costs_tid)
ENABLE QUERY REWRITE AS
SELECT s.time_id, c.time_id
FROM sales s, products p, costs c
WHERE s.prod_id = p.prod_id AND c.prod_id = p.prod_id AND
 p.prod_name IN (SELECT prod_name FROM products);

In this example, the defining query of sales_mv now matches exactly with the user
query Q1, so full text match rewrite takes place.

Creating Materialized Views

5-18 Oracle Database Data Warehousing Guide

Note that when aliases are specified in both the SELECT clause and the new alias list
clause, the alias list clause supersedes the ones in the SELECT clause.

Materialized Views Names
The name of a materialized view must conform to standard Oracle naming
conventions. However, if the materialized view is based on a user-defined prebuilt
table, then the name of the materialized view must exactly match that table name.

If you already have a naming convention for tables and indexes, you might consider
extending this naming scheme to the materialized views so that they are easily
identifiable. For example, instead of naming the materialized view sum_of_sales, it
could be called sum_of_sales_mv to denote that this is a materialized view and not a
table or view.

Storage And Table Compression
Unless the materialized view is based on a user-defined prebuilt table, it requires and
occupies storage space inside the database. Therefore, the storage needs for the
materialized view should be specified in terms of the tablespace where it is to reside
and the size of the extents.

If you do not know how much space the materialized view requires, then the DBMS_
MVIEW.ESTIMATE_MVIEW_SIZE package can estimate the number of bytes required to
store this uncompressed materialized view. This information can then assist the design
team in determining the tablespace in which the materialized view should reside.

You should use table compression with highly redundant data, such as tables with
many foreign keys. This is particularly useful for materialized views created with the
ROLLUP clause. Table compression reduces disk use and memory use (specifically, the
buffer cache), often leading to a better scaleup for read-only operations. Table
compression can also speed up query execution at the expense of update cost.

Build Methods
Two build methods are available for creating the materialized view, as shown in
Table 5–2. If you select BUILD IMMEDIATE, the materialized view definition is added to
the schema objects in the data dictionary, and then the fact or detail tables are scanned
according to the SELECT expression and the results are stored in the materialized view.
Depending on the size of the tables to be scanned, this build process can take a
considerable amount of time.

An alternative approach is to use the BUILD DEFERRED clause, which creates the
materialized view without data, thereby enabling it to be populated at a later date
using the DBMS_MVIEW.REFRESH package.

See Also:

■ Oracle Database VLDB and Partitioning Guide for more
information about table compression

■ Oracle Database Administrator's Guide for more information
about table compression

■ Oracle Database SQL Language Reference for a complete
description of STORAGE semantics

See Also: Chapter 7, "Refreshing Materialized Views"

Creating Materialized Views

Basic Materialized Views 5-19

Enabling Query Rewrite
Before creating a materialized view, you can verify what types of query rewrite are
possible by calling the procedure DBMS_MVIEW.EXPLAIN_MVIEW, or use DBMS_
ADVISOR.TUNE_MVIEW to optimize the materialized view so that many types of query
rewrite are possible. Once the materialized view has been created, you can use DBMS_
MVIEW.EXPLAIN_REWRITE to find out if (or why not) it will rewrite a specific query.

Even though a materialized view is defined, it will not automatically be used by the
query rewrite facility. Even though query rewrite is enabled by default, you also must
specify the ENABLE QUERY REWRITE clause if the materialized view is to be considered
available for rewriting queries.

If this clause is omitted or specified as DISABLE QUERY REWRITE when the materialized
view is created, the materialized view can subsequently be enabled for query rewrite
with the ALTER MATERIALIZED VIEW statement.

If you define a materialized view as BUILD DEFERRED, it is not eligible for query rewrite
until it is populated with data through a complete refresh.

Query Rewrite Restrictions
Query rewrite is not possible with all materialized views. If query rewrite is not
occurring when expected, DBMS_MVIEW.EXPLAIN_REWRITE can help provide reasons
why a specific query is not eligible for rewrite. If this shows that not all types of query
rewrite are possible, use the procedure DBMS_ADVISOR.TUNE_MVIEW to see if the
materialized view can be defined differently so that query rewrite is possible. Also,
check to see if your materialized view satisfies all of the following conditions:

■ Materialized View Restrictions

■ General Query Rewrite Restrictions

Materialized View Restrictions
You should keep in mind the following restrictions:

■ The defining query of the materialized view cannot contain any non-repeatable
expressions (ROWNUM, SYSDATE, non-repeatable PL/SQL functions, and so on).

■ The query cannot contain any references to LONG or LONG RAW data types or object
REFs.

■ If the materialized view was registered as PREBUILT, the precision of the columns
must agree with the precision of the corresponding SELECT expressions unless
overridden by the WITH REDUCED PRECISION clause.

■ The defining query cannot contain any references to objects or XMLTYPEs.

■ A materialized view is a noneditioned object and cannot depend on editioned
objects unless it mentions an evaluation edition in which names of editioned
objects are to be resolved.

■ A materialized view may only be eligible for query rewrite in a specific range of
editions. The query_rewrite_clause in the CREATE or ALTER MATERIALIZED VIEW

Table 5–2 Build Methods

Build Method Description

BUILD IMMEDIATE Create the materialized view and then populate it with data.

BUILD DEFERRED Create the materialized view definition but do not populate it with data.

Creating Materialized Views

5-20 Oracle Database Data Warehousing Guide

statement lets you specify the range of editions in which a materialized view is
eligible for query rewrite.

General Query Rewrite Restrictions
You should keep in mind the following restrictions:

■ A query can reference both local and remote tables. Such a query can be rewritten
as long as an eligible materialized view referencing the same tables is available
locally.

■ Neither the detail tables nor the materialized view can be owned by SYS.

■ If a column or expression is present in the GROUP BY clause of the materialized
view, it must also be present in the SELECT list.

■ Aggregate functions must occur only as the outermost part of the expression. That
is, aggregates such as AVG(AVG(x)) or AVG(x)+ AVG(x) are not allowed.

■ CONNECT BY clauses are not allowed.

Refresh Options
When you define a materialized view, you can specify three refresh options: how to
refresh, what type of refresh, and can trusted constraints be used. If unspecified, the
defaults are assumed as ON DEMAND, FORCE, and ENFORCED constraints respectively.

The two refresh execution modes are ON COMMIT and ON DEMAND. Depending on the
materialized view you create, some options may not be available. Table 5–3 describes
the refresh modes.

When a materialized view is maintained using the ON COMMIT method, the time
required to complete the commit may be slightly longer than usual. This is because the
refresh operation is performed as part of the commit process. Therefore, this method
may not be suitable if many users are concurrently changing the tables upon which the
materialized view is based.

If you anticipate performing insert, update or delete operations on tables referenced by
a materialized view concurrently with the refresh of that materialized view, and that
materialized view includes joins and aggregation, Oracle recommends you use ON
COMMIT fast refresh rather than ON DEMAND fast refresh.

See Also:

■ Chapter 11, "Advanced Query Rewrite for Materialized Views"

■ Oracle Database SQL Language Reference

See Also:

■ Chapter 11, "Advanced Query Rewrite for Materialized Views"

■ Oracle Database SQL Language Reference

Table 5–3 Refresh Modes

Refresh Mode Description

ON COMMIT Refresh occurs automatically when a transaction that modified one of the materialized view's detail tables
commits. This can be specified as long as the materialized view is fast refreshable (in other words, not
complex). The ON COMMIT privilege is necessary to use this mode.

ON DEMAND Refresh occurs when a user manually executes one of the available refresh procedures contained in the
DBMS_MVIEW package (REFRESH, REFRESH_ALL_MVIEWS, REFRESH_DEPENDENT).

Creating Materialized Views

Basic Materialized Views 5-21

If you think the materialized view did not refresh, check the alert log or trace file.

If a materialized view fails during refresh at COMMIT time, you must explicitly invoke
the refresh procedure using the DBMS_MVIEW package after addressing the errors
specified in the trace files. Until this is done, the materialized view will no longer be
refreshed automatically at commit time.

You can specify how you want your materialized views to be refreshed from the detail
tables by selecting one of four options: COMPLETE, FAST, FORCE, and NEVER. Table 5–4
describes the refresh options.

Whether the fast refresh option is available depends upon the type of materialized
view. You can call the procedure DBMS_MVIEW.EXPLAIN_MVIEW to determine whether
fast refresh is possible.

You can also specify if it is acceptable to use trusted constraints and QUERY_REWRITE_
INTEGRITY = TRUSTED during refresh. Any nonvalidated RELY constraint is a trusted
constraint. For example, nonvalidated foreign key/primary key relationships,
functional dependencies defined in dimensions or a materialized view in the UNKNOWN
state. If query rewrite is enabled during refresh, these can improve the performance of
refresh by enabling more performant query rewrites. Any materialized view that can
use TRUSTED constraints for refresh is left in a state of trusted freshness (the UNKNOWN
state) after refresh.

This is reflected in the column STALENESS in the view USER_MVIEWS. The column
UNKNOWN_TRUSTED_FD in the same view is also set to Y, which means yes.

You can define this property of the materialized view either during create time by
specifying REFRESH USING TRUSTED [ENFORCED] CONSTRAINTS or by using ALTER
MATERIALIZED VIEW DDL.

The fast refresh of a materialized view is optimized using the available primary and
foreign key constraints on the join columns. This foreign key/primary key
optimization can significantly improve refresh performance. For example, for a

Table 5–4 Refresh Options

Refresh Option Description

COMPLETE Refreshes by recalculating the materialized view's defining query.

FAST Applies incremental changes to refresh the materialized view using the information logged in the
materialized view logs, or from a SQL*Loader direct-path or a partition maintenance operation.

FORCE Applies FAST refresh if possible; otherwise, it applies COMPLETE refresh.

NEVER Indicates that the materialized view will not be refreshed with refresh mechanisms.

Table 5–5 Constraints

Constraints to Use Description

TRUSTED CONSTRAINTS Refresh can use trusted constraints and QUERY_REWRITE_INTEGRITY = TRUSTED during refresh.

This allows use of non-validated RELY constraints and rewrite against materialized views in UNKNOWN
or FRESH state during refresh.

The USING TRUSTED CONSTRAINTS clause enables you to create a materialized view on top of a table
that has a non-NULL Virtual Private Database (VPD) policy on it. In this case, ensure that the
materialized view behaves correctly. Materialized view results are computed based on the rows and
columns filtered by VPD policy. Therefore, you must coordinate the materialized view definition
with the VPD policy to ensure the correct results. Without the USING TRUSTED CONSTRAINTS clause,
any VPD policy on a base table will prevent a materialized view from being created.

ENFORCED CONSTRAINTS Refresh can use validated constraints and QUERY_REWRITE_INTEGRITY = ENFORCED during refresh.
This allows use of only validated, enforced constraints and rewrite against materialized views in
FRESH state during refresh.

Creating Materialized Views

5-22 Oracle Database Data Warehousing Guide

materialized view that contains a join between a fact table and a dimension table, if
only new rows were inserted into the dimension table with no change to the fact table
since the last refresh, then there will be nothing to refresh for this materialized view.
The reason is that, because of the primary key constraint on the join column(s) of the
dimension table and foreign key constraint on the join column(s) of the fact table, the
new rows inserted into the dimension table will not join with any fact table rows, thus
there is nothing to refresh. Another example of this refresh optimization is when both
the fact and dimension tables have inserts since the last refresh. In this case, Oracle
Database will only perform a join of delta fact table with the dimension table. Without
the foreign key/primary key optimization, two joins during the refresh would be
required, a join of delta fact with the dimension table, plus a join of delta dimension
with an image of the fact table from before the inserts.

Note that this optimized fast refresh using primary and foreign key constraints on the
join columns is available with and without constraint enforcement. In the first case,
primary and foreign key constraints are enforced by the Oracle Database. This,
however, incurs the cost of constraint maintenance. In the second case, the application
guarantees primary and foreign key relationships so the constraints are declared RELY
NOVALIDATE and the materialized view is defined with the REFRESH FAST USING TRUSTED
CONSTRAINTS option.

This section contains the following topics:

■ General Restrictions on Fast Refresh

■ Restrictions on Fast Refresh on Materialized Views with Joins Only

■ Restrictions on Fast Refresh on Materialized Views with Aggregates

■ Restrictions on Fast Refresh on Materialized Views with UNION ALL

■ Achieving Refresh Goals

■ Refreshing Nested Materialized Views

General Restrictions on Fast Refresh
The defining query of the materialized view is restricted as follows:

■ The materialized view must not contain references to non-repeating expressions
like SYSDATE and ROWNUM.

■ The materialized view must not contain references to RAW or LONG RAW data types.

■ It cannot contain a SELECT list subquery.

■ It cannot contain analytic functions (for example, RANK) in the SELECT clause.

■ It cannot contain a MODEL clause.

■ It cannot contain a HAVING clause with a subquery.

■ It cannot contain nested queries that have ANY, ALL, or NOT EXISTS.

■ It cannot contain a [START WITH …] CONNECT BY clause.

■ It cannot contain multiple detail tables at different sites.

■ ON COMMIT materialized views cannot have remote detail tables.

■ Nested materialized views must have a join or aggregate.

■ Materialized join views and materialized aggregate views with a GROUP BY clause
cannot select from an index-organized table.

Creating Materialized Views

Basic Materialized Views 5-23

Restrictions on Fast Refresh on Materialized Views with Joins Only
Defining queries for materialized views with joins only and no aggregates have the
following restrictions on fast refresh:

■ All restrictions from "General Restrictions on Fast Refresh" on page 5-22.

■ They cannot have GROUP BY clauses or aggregates.

■ Rowids of all the tables in the FROM list must appear in the SELECT list of the query.

■ Materialized view logs must exist with rowids for all the base tables in the FROM
list of the query.

■ You cannot create a fast refreshable materialized view from multiple tables with
simple joins that include an object type column in the SELECT statement.

Also, the refresh method you choose will not be optimally efficient if:

■ The defining query uses an outer join that behaves like an inner join. If the
defining query contains such a join, consider rewriting the defining query to
contain an inner join.

■ The SELECT list of the materialized view contains expressions on columns from
multiple tables.

Restrictions on Fast Refresh on Materialized Views with Aggregates
Defining queries for materialized views with aggregates or joins have the following
restrictions on fast refresh:

■ All restrictions from "General Restrictions on Fast Refresh" on page 5-22.

Fast refresh is supported for both ON COMMIT and ON DEMAND materialized views,
however the following restrictions apply:

■ All tables in the materialized view must have materialized view logs, and the
materialized view logs must:

■ Contain all columns from the table referenced in the materialized view.
However, none of these columns in the base table can be encrypted.

■ Specify with ROWID and INCLUDING NEW VALUES.

■ Specify the SEQUENCE clause if the table is expected to have a mix of
inserts/direct-loads, deletes, and updates.

■ Only SUM, COUNT, AVG, STDDEV, VARIANCE, MIN and MAX are supported for fast refresh.

■ COUNT(*) must be specified.

■ Aggregate functions must occur only as the outermost part of the expression. That
is, aggregates such as AVG(AVG(x)) or AVG(x)+ AVG(x) are not allowed.

■ For each aggregate such as AVG(expr), the corresponding COUNT(expr) must be
present. Oracle recommends that SUM(expr) be specified. See Table 5–1 on
page 5-12 for further details.

■ If VARIANCE(expr) or STDDEV(expr) is specified, COUNT(expr) and SUM(expr) must
be specified. Oracle recommends that SUM(expr *expr) be specified. See Table 5–1
on page 5-12 for further details.

■ The SELECT column in the defining query cannot be a complex expression with
columns from multiple base tables. A possible workaround to this is to use a
nested materialized view.

■ The SELECT list must contain all GROUP BY columns.

Creating Materialized Views

5-24 Oracle Database Data Warehousing Guide

■ If you use a CHAR data type in the filter columns of a materialized view log, the
character sets of the master site and the materialized view must be the same.

■ If the materialized view has one of the following, then fast refresh is supported
only on conventional DML inserts and direct loads.

■ Materialized views with MIN or MAX aggregates

■ Materialized views which have SUM(expr) but no COUNT(expr)

■ Materialized views without COUNT(*)

Such a materialized view is called an insert-only materialized view.

■ A materialized view with MAX or MIN is fast refreshable after delete or mixed DML
statements if it does not have a WHERE clause.

The max/min fast refresh after delete or mixed DML does not have the same
behavior as the insert-only case. It deletes and recomputes the max/min values for
the affected groups. You need to be aware of its performance impact.

■ Materialized views with named views or subqueries in the FROM clause can be fast
refreshed provided the views can be completely merged. For information on
which views will merge, see Oracle Database SQL Tuning Guide.

■ If there are no outer joins, you may have arbitrary selections and joins in the WHERE
clause.

■ Materialized aggregate views with outer joins are fast refreshable after
conventional DML and direct loads, provided only the outer table has been
modified. Also, unique constraints must exist on the join columns of the inner join
table. If there are outer joins, all the joins must be connected by ANDs and must use
the equality (=) operator.

■ For materialized views with CUBE, ROLLUP, grouping sets, or concatenation of them,
the following restrictions apply:

■ The SELECT list should contain grouping distinguisher that can either be a
GROUPING_ID function on all GROUP BY expressions or GROUPING functions one
for each GROUP BY expression. For example, if the GROUP BY clause of the
materialized view is "GROUP BY CUBE(a, b)", then the SELECT list should
contain either "GROUPING_ID(a, b)" or "GROUPING(a) AND GROUPING(b)" for the
materialized view to be fast refreshable.

■ GROUP BY should not result in any duplicate groupings. For example, "GROUP BY
a, ROLLUP(a, b)" is not fast refreshable because it results in duplicate
groupings "(a), (a, b), AND (a)".

Restrictions on Fast Refresh on Materialized Views with UNION ALL
Materialized views with the UNION ALL set operator support the REFRESH FAST option if
the following conditions are satisfied:

■ The defining query must have the UNION ALL operator at the top level.

The UNION ALL operator cannot be embedded inside a subquery, with one
exception: The UNION ALL can be in a subquery in the FROM clause provided the
defining query is of the form SELECT * FROM (view or subquery with UNION ALL) as
in the following example:

CREATE VIEW view_with_unionall AS
(SELECT c.rowid crid, c.cust_id, 2 umarker
 FROM customers c WHERE c.cust_last_name = 'Smith'
 UNION ALL

Creating Materialized Views

Basic Materialized Views 5-25

 SELECT c.rowid crid, c.cust_id, 3 umarker
 FROM customers c WHERE c.cust_last_name = 'Jones');

CREATE MATERIALIZED VIEW unionall_inside_view_mv
REFRESH FAST ON DEMAND AS
SELECT * FROM view_with_unionall;

Note that the view view_with_unionall satisfies the requirements for fast refresh.

■ Each query block in the UNION ALL query must satisfy the requirements of a fast
refreshable materialized view with aggregates or a fast refreshable materialized
view with joins.

The appropriate materialized view logs must be created on the tables as required
for the corresponding type of fast refreshable materialized view.

Note that the Oracle Database also allows the special case of a single table
materialized view with joins only provided the ROWID column has been included in
the SELECT list and in the materialized view log. This is shown in the defining
query of the view view_with_unionall.

■ The SELECT list of each query must include a UNION ALL marker, and the UNION ALL
column must have a distinct constant numeric or string value in each UNION ALL
branch. Further, the marker column must appear in the same ordinal position in
the SELECT list of each query block. See "UNION ALL Marker" on page 11-46 for
more information regarding UNION ALL markers.

■ Some features such as outer joins, insert-only aggregate materialized view queries
and remote tables are not supported for materialized views with UNION ALL. Note,
however, that materialized views used in replication, which do not contain joins or
aggregates, can be fast refreshed when UNION ALL or remote tables are used.

■ The compatibility initialization parameter must be set to 9.2.0 or higher to create a
fast refreshable materialized view with UNION ALL.

Achieving Refresh Goals
In addition to the EXPLAIN_MVIEW procedure, which is discussed throughout this
chapter, you can use the DBMS_ADVISOR.TUNE_MVIEW procedure to optimize a CREATE
MATERIALIZED VIEW statement to achieve REFRESH FAST and ENABLE QUERY REWRITE
goals.

Refreshing Materialized Views on Prebuilt Tables For materialized views created with the
prebuilt option, the index I_snap$ is not created by default. This index helps fast
refresh performance, and a description of how to create this index is illustrated in
"Choosing Indexes for Materialized Views" on page 5-30.

Refreshing Nested Materialized Views
A nested materialized view is considered to be fresh as long as its data is synchronized
with the data in its detail tables, even if some of its detail tables could be stale
materialized views.

You can refresh nested materialized views in two ways: DBMS_MVIEW.REFRESH with the
nested flag set to TRUE and REFRESH_DEPENDENT with the nested flag set to TRUE on the
base tables. If you use DBMS_MVIEW.REFRESH, the entire materialized view chain is
refreshed and the coverage starting from the specified materialized view in top-down
fashion. That is, the specified materialized view and all its child materialized views in
the dependency hierarchy are refreshed in order. With DBMS_MVIEW.REFRESH_
DEPENDENT, the entire chain is refreshed from the bottom up. That is, all the parent

Creating Materialized Views

5-26 Oracle Database Data Warehousing Guide

materialized views in the dependency hierarchy starting from the specified table are
refreshed in order.

Example 5–7 Example of Refreshing a Nested Materialized View

The following statement shows an example of refreshing a nested materialized view:

DBMS_MVIEW.REFRESH('SALES_MV,COST_MV', nested => TRUE);

This statement will first refresh all child materialized views of sales_mv and cost_mv
based on the dependency analysis and then refresh the two specified materialized
views.

You can query the STALE_SINCE column in the *_MVIEWS views to find out when a
materialized view became stale.

ORDER BY Clause
An ORDER BY clause is allowed in the CREATE MATERIALIZED VIEW statement. It is used
only during the initial creation of the materialized view. It is not used during a full
refresh or a fast refresh.

To improve the performance of queries against large materialized views, store the
rows in the materialized view in the order specified in the ORDER BY clause. This initial
ordering provides physical clustering of the data. If indexes are built on the columns
by which the materialized view is ordered, accessing the rows of the materialized view
using the index often reduces the time for disk I/O due to the physical clustering.

The ORDER BY clause is not considered part of the materialized view definition. As a
result, there is no difference in the manner in which Oracle Database detects the
various types of materialized views (for example, materialized join views with no
aggregates). For the same reason, query rewrite is not affected by the ORDER BY clause.
This feature is similar to the CREATE TABLE ... ORDER BY capability.

Using Oracle Enterprise Manager
A materialized view can also be created using Enterprise Manager by selecting the
materialized view object type. There is no difference in the information required if this
approach is used.

Using Materialized Views with NLS Parameters
When using certain materialized views, you must ensure that your NLS parameters
are the same as when you created the materialized view. Materialized views with this
restriction are as follows:

■ Expressions that may return different values, depending on NLS parameter
settings. For example, (date > "01/02/03") or (rate <= "2.150") are NLS
parameter dependent expressions.

■ Equijoins where one side of the join is character data. The result of this equijoin
depends on collation and this can change on a session basis, giving an incorrect
result in the case of query rewrite or an inconsistent materialized view after a
refresh operation.

■ Expressions that generate internal conversion to character data in the SELECT list of
a materialized view, or inside an aggregate of a materialized aggregate view. This
restriction does not apply to expressions that involve only numeric data, for
example, a+b where a and b are numeric fields.

Creating Materialized View Logs

Basic Materialized Views 5-27

Adding Comments to Materialized Views
You can add comments to materialized views.

Example: Adding Comments to a Materialized View
The following statement adds a comment to data dictionary views for an existing
materialized view:

COMMENT ON MATERIALIZED VIEW sales_mv IS 'sales materialized view';

To view the comment after the preceding statement execution, you can query the
catalog views, {USER, DBA} ALL_MVIEW_COMMENTS. For example, consider the following
example:

SELECT MVIEW_NAME, COMMENTS
FROM USER_MVIEW_COMMENTS WHERE MVIEW_NAME = 'SALES_MV';

The output will resemble the following:

MVIEW_NAME COMMENTS
----------- -----------------------
SALES_MV sales materialized view

Note: If the compatibility is set to 10.0.1 or higher, COMMENT ON TABLE will not be
allowed for the materialized view container table. The following error message will be
thrown if it is issued.

ORA-12098: cannot comment on the materialized view.

In the case of a prebuilt table, if it has an existing comment, the comment will be
inherited by the materialized view after it has been created. The existing comment will
be prefixed with '(from table)'. For example, table sales_summary was created to
contain sales summary information. An existing comment 'Sales summary data' was
associated with the table. A materialized view of the same name is created to use the
prebuilt table as its container table. After the materialized view creation, the comment
becomes '(from table) Sales summary data'.

However, if the prebuilt table, sales_summary, does not have any comment, the
following comment is added: 'Sales summary data'. Then, if you drop the
materialized view, the comment will be passed to the prebuilt table with the comment:
'(from materialized view) Sales summary data'.

Creating Materialized View Logs
Materialized view logs are required if you want to use fast refresh, with the exception
of partition change tracking refresh. That is, if a detail table supports partition change
tracking for a materialized view, the materialized view log on that detail table is not
required in order to do fast refresh on that materialized view. As a general rule,
though, you should create materialized view logs if you want to use fast refresh.
Materialized view logs are defined using a CREATE MATERIALIZED VIEW LOG statement
on the base table that is to be changed. They are not created on the materialized view
unless there is another materialized view on top of that materialized view, which is the
case with nested materialized views. For fast refresh of materialized views, the
definition of the materialized view logs must normally specify the ROWID clause. In
addition, for aggregate materialized views, it must also contain every column in the
table referenced in the materialized view, the INCLUDING NEW VALUES clause and the
SEQUENCE clause. You can typically achieve better fast refresh performance of local
materialized views containing aggregates or joins by using a WITH COMMIT SCN clause.

Creating Materialized View Logs

5-28 Oracle Database Data Warehousing Guide

An example of a materialized view log is shown as follows where one is created on the
table sales:

CREATE MATERIALIZED VIEW LOG ON sales WITH ROWID
(prod_id, cust_id, time_id, channel_id, promo_id, quantity_sold, amount_sold)
INCLUDING NEW VALUES;

Alternatively, you could create a commit SCN-based materialized view log as follows:

CREATE MATERIALIZED VIEW LOG ON sales WITH ROWID
 (prod_id, cust_id, time_id, channel_id, promo_id, quantity_sold, amount_sold),
COMMIT SCN INCLUDING NEW VALUES;

Oracle recommends that the keyword SEQUENCE be included in your materialized view
log statement unless you are sure that you will never perform a mixed DML operation
(a combination of INSERT, UPDATE, or DELETE operations on multiple tables). The
SEQUENCE column is required in the materialized view log to support fast refresh with a
combination of INSERT, UPDATE, or DELETE statements on multiple tables. You can,
however, add the SEQUENCE number to the materialized view log after it has been
created.

The boundary of a mixed DML operation is determined by whether the materialized
view is ON COMMIT or ON DEMAND.

■ For ON COMMIT, the mixed DML statements occur within the same transaction
because the refresh of the materialized view will occur upon commit of this
transaction.

■ For ON DEMAND, the mixed DML statements occur between refreshes. The following
example of a materialized view log illustrates where one is created on the table
sales that includes the SEQUENCE keyword:

CREATE MATERIALIZED VIEW LOG ON sales WITH SEQUENCE, ROWID
(prod_id, cust_id, time_id, channel_id, promo_id,
 quantity_sold, amount_sold) INCLUDING NEW VALUES;

This section contains the following topics:

■ Using the FORCE Option With Materialized View Logs

■ Materialized View Log Purging

Using the FORCE Option With Materialized View Logs
If you specify FORCE and any items specified with the ADD clause have already been
specified for the materialized view log, Oracle does not return an error, but silently
ignores the existing elements and adds to the materialized view log any items that do
not already exist in the log. For example, if you used a filter column such as cust_id
and this column already existed, Oracle Database ignores the redundancy and does
not return an error.

Materialized View Log Purging
Purging materialized view logs can be done during the materialized view refresh
process or deferred until later, thus improving refresh performance time. You can
choose different options for when the purge will occur, using a PURGE clause, as in the
following:

CREATE MATERIALIZED VIEW LOG ON sales
PURGE START WITH sysdate NEXT sysdate+1
WITH ROWID

Registering Existing Materialized Views

Basic Materialized Views 5-29

 (prod_id, cust_id, time_id, channel_id, promo_id, quantity_sold, amount_sold)
INCLUDING NEW VALUES;

You can also query USER_MVIEW_LOGS for purge information, as in the following:

SELECT PURGE_DEFERRED, PURGE_INTERVAL, LAST_PURGE_DATE, LAST_PURGE_STATUS
FROM USER_MVIEW_LOGS
WHERE LOG_OWNER "SH" AND MASTER = 'SALES';

In addition to setting the purge when creating a materialized view log, you can also
modify an existing materialized view log by issuing a statement resembling the
following:

ALTER MATERIALIZED VIEW LOG ON sales PURGE IMMEDIATE;

Registering Existing Materialized Views
Some data warehouses have implemented materialized views in ordinary user tables.
Although this solution provides the performance benefits of materialized views, it
does not:

■ Provide query rewrite to all SQL applications.

■ Enable materialized views defined in one application to be transparently accessed
in another application.

■ Generally support fast parallel or fast materialized view refresh.

Because of these limitations, and because existing materialized views can be extremely
large and expensive to rebuild, you should register your existing materialized view
tables whenever possible. You can register a user-defined materialized view with the
CREATE MATERIALIZED VIEW ... ON PREBUILT TABLE statement. Once registered, the
materialized view can be used for query rewrites or maintained by one of the refresh
methods, or both.

The contents of the table must reflect the materialization of the defining query at the
time you register it as a materialized view, and each column in the defining query
must correspond to a column in the table that has a matching data type. However, you
can specify WITH REDUCED PRECISION to allow the precision of columns in the defining
query to be different from that of the table columns.

The table and the materialized view must have the same name, but the table retains its
identity as a table and can contain columns that are not referenced in the defining
query of the materialized view. These extra columns are known as unmanaged
columns. If rows are inserted during a refresh operation, each unmanaged column of
the row is set to its default value. Therefore, the unmanaged columns cannot have NOT
NULL constraints unless they also have default values.

Materialized views based on prebuilt tables are eligible for selection by query rewrite
provided the parameter QUERY_REWRITE_INTEGRITY is set to STALE_TOLERATED or
TRUSTED.

See Also: Oracle Database SQL Language Reference for more
information regarding materialized view log syntax

See Also: Chapter 10, "Basic Query Rewrite for Materialized Views"
for details about integrity levels

Choosing Indexes for Materialized Views

5-30 Oracle Database Data Warehousing Guide

When you drop a materialized view that was created on a prebuilt table, the table still
exists—only the materialized view is dropped.

The following example illustrates the two steps required to register a user-defined
table. First, the table is created, then the materialized view is defined using exactly the
same name as the table. This materialized view sum_sales_tab_mv is eligible for use in
query rewrite.

CREATE TABLE sum_sales_tab
PCTFREE 0 TABLESPACE demo
STORAGE (INITIAL 8M) AS
SELECT s.prod_id, SUM(amount_sold) AS dollar_sales,
 SUM(quantity_sold) AS unit_sales
FROM sales s GROUP BY s.prod_id;

CREATE MATERIALIZED VIEW sum_sales_tab_mv
ON PREBUILT TABLE WITHOUT REDUCED PRECISION
ENABLE QUERY REWRITE AS
SELECT s.prod_id, SUM(amount_sold) AS dollar_sales,
 SUM(quantity_sold) AS unit_sales
FROM sales s GROUP BY s.prod_id;

You could have compressed this table to save space.

In some cases, user-defined materialized views are refreshed on a schedule that is
longer than the update cycle. For example, a monthly materialized view might be
updated only at the end of each month, and the materialized view values always refer
to complete time periods. Reports written directly against these materialized views
implicitly select only data that is not in the current (incomplete) time period. If a
user-defined materialized view already contains a time dimension:

■ It should be registered and then fast refreshed each update cycle.

■ You can create a view that selects the complete time period of interest.

■ The reports should be modified to refer to the view instead of referring directly to
the user-defined materialized view.

If the user-defined materialized view does not contain a time dimension, then you
should create a new materialized view that does include the time dimension (if
possible). Also, in this case, the view should aggregate over the time column in the
new materialized view.

Choosing Indexes for Materialized Views
The two most common operations on a materialized view are query execution and fast
refresh, and each operation has different performance requirements. Query execution
might need to access any subset of the materialized view key columns, and might need
to join and aggregate over a subset of those columns. Consequently, query execution
usually performs best if a single-column bitmap index is defined on each materialized
view key column.

In the case of materialized views containing only joins using fast refresh, Oracle
recommends that indexes be created on the columns that contain the rowids to
improve the performance of the refresh operation.

If a materialized view using aggregates is fast refreshable, then an index appropriate
for the fast refresh procedure is created unless USING NO INDEX is specified in the
CREATE MATERIALIZED VIEW statement.

Analyzing Materialized View Capabilities

Basic Materialized Views 5-31

If the materialized view is partitioned, then, after doing a partition maintenance
operation on the materialized view, the indexes become unusable, and they need to be
rebuilt for fast refresh to work.

If you create a materialized view with the prebuilt option, the I_snap$ index is not
automatically created. This index significantly improves fast refresh performance, and
you can create it manually by issuing a statement such as the following:

CREATE UNIQUE INDEX <OWNER>."I_SNAP$_<MVIEW_NAME>" ON <OWNER>.<MVIEW_NAME>
 (SYS_OP_MAP_NONNULL("LOG_DATE"))
 PCTFREE 10 INITRANS 2 MAXTRANS 255 COMPUTE STATISTICS
 STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT FLASH_CACHE DE
FAULT CELL_FLASH_CACHE DEFAULT)
 TABLESPACE <TABLESPACE_NAME>;

Dropping Materialized Views
Use the DROP MATERIALIZED VIEW statement to drop a materialized view. For example,
consider the following statement:

DROP MATERIALIZED VIEW sales_sum_mv;

This statement drops the materialized view sales_sum_mv. If the materialized view
was prebuilt on a table, then the table is not dropped, but it can no longer be
maintained with the refresh mechanism or used by query rewrite. Alternatively, you
can drop a materialized view using Oracle Enterprise Manager.

Analyzing Materialized View Capabilities
You can use the DBMS_MVIEW.EXPLAIN_MVIEW procedure to learn what is possible with a
materialized view or potential materialized view. In particular, this procedure enables
you to determine:

■ If a materialized view is fast refreshable

■ What types of query rewrite you can perform with this materialized view

■ Whether partition change tracking refresh is possible

Using this procedure is straightforward and described in "Using the DBMS_
MVIEW.EXPLAIN_MVIEW Procedure" on page 5-32. You simply call DBMS_
MVIEW.EXPLAIN_MVIEW, passing in as a single parameter the schema and materialized
view name for an existing materialized view. Alternatively, you can specify the SELECT
string for a potential materialized view or the complete CREATE MATERIALIZED VIEW
statement. The materialized view or potential materialized view is then analyzed and
the results are written into either a table called MV_CAPABILITIES_TABLE, which is the
default, or to an array called MSG_ARRAY.

Note that you must run the utlxmv.sql script prior to calling EXPLAIN_MVIEW except
when you are placing the results in MSG_ARRAY. The script is found in the admin
directory. It is to create the MV_CAPABILITIES_TABLE in the current schema. An
explanation of the various capabilities is in Table 5–6 on page 5-35, and all the possible
messages are listed in Table 5–7 on page 5-36.

See Also: Oracle Database SQL Tuning Guide for information on using
the SQL Access Advisor to determine what indexes are appropriate
for your materialized view

Analyzing Materialized View Capabilities

5-32 Oracle Database Data Warehousing Guide

Using the DBMS_MVIEW.EXPLAIN_MVIEW Procedure
The EXPLAIN_MVIEW procedure has the following parameters:

■ stmt_id

An optional parameter. A client-supplied unique identifier to associate output
rows with specific invocations of EXPLAIN_MVIEW.

■ mv

The name of an existing materialized view or the query definition or the entire
CREATE MATERIALIZED VIEW statement of a potential materialized view you want to
analyze.

■ msg-array

The PL/SQL VARRAY that receives the output.

EXPLAIN_MVIEW analyzes the specified materialized view in terms of its refresh and
rewrite capabilities and inserts its results (in the form of multiple rows) into MV_
CAPABILITIES_TABLE or MSG_ARRAY.

This section contains the following topics:

■ DBMS_MVIEW.EXPLAIN_MVIEW Declarations

■ Using MV_CAPABILITIES_TABLE

■ MV_CAPABILITIES_TABLE.CAPABILITY_NAME Details

■ MV_CAPABILITIES_TABLE Column Details

DBMS_MVIEW.EXPLAIN_MVIEW Declarations
The following PL/SQL declarations that are made for you in the DBMS_MVIEW package
show the order and data types of these parameters for explaining an existing
materialized view and a potential materialized view with output to a table and to a
VARRAY.

Explain an existing or potential materialized view with output to MV_CAPABILITIES_
TABLE:

DBMS_MVIEW.EXPLAIN_MVIEW (mv IN VARCHAR2,
 stmt_id IN VARCHAR2:= NULL);

Explain an existing or potential materialized view with output to a VARRAY:

DBMS_MVIEW.EXPLAIN_MVIEW (mv IN VARCHAR2,
 msg_array OUT SYS.ExplainMVArrayType);

Using MV_CAPABILITIES_TABLE
One of the simplest ways to use DBMS_MVIEW.EXPLAIN_MVIEW is with the MV_
CAPABILITIES_TABLE, which has the following structure:

CREATE TABLE MV_CAPABILITIES_TABLE
(STATEMENT_ID VARCHAR(30), -- Client-supplied unique statement identifier
 MVOWNER VARCHAR(30), -- NULL for SELECT based EXPLAIN_MVIEW
 MVNAME VARCHAR(30), -- NULL for SELECT based EXPLAIN_MVIEW
 CAPABILITY_NAME VARCHAR(30), -- A descriptive name of the particular
 -- capability:

See Also: Oracle Database PL/SQL Packages and Types Reference for
further information about the DBMS_MVIEW package

Analyzing Materialized View Capabilities

Basic Materialized Views 5-33

 -- REWRITE
 -- Can do at least full text match
 -- rewrite
 -- REWRITE_PARTIAL_TEXT_MATCH
 -- Can do at leat full and partial
 -- text match rewrite
 -- REWRITE_GENERAL
 -- Can do all forms of rewrite
 -- REFRESH
 -- Can do at least complete refresh
 -- REFRESH_FROM_LOG_AFTER_INSERT
 -- Can do fast refresh from an mv log
 -- or change capture table at least
 -- when update operations are
 -- restricted to INSERT
 -- REFRESH_FROM_LOG_AFTER_ANY
 -- can do fast refresh from an mv log
 -- or change capture table after any
 -- combination of updates
 -- PCT
 -- Can do Enhanced Update Tracking on
 -- the table named in the RELATED_NAME
 -- column. EUT is needed for fast
 -- refresh after partitioned
 -- maintenance operations on the table
 -- named in the RELATED_NAME column
 -- and to do non-stale tolerated
 -- rewrite when the mv is partially
 -- stale with respect to the table
 -- named in the RELATED_NAME column.
 -- EUT can also sometimes enable fast
 -- refresh of updates to the table
 -- named in the RELATED_NAME column
 -- when fast refresh from an mv log
 -- or change capture table is not
 -- possible.
 -- See Table 5–6
 POSSIBLE CHARACTER(1), -- T = capability is possible
 -- F = capability is not possible
 RELATED_TEXT VARCHAR(2000), -- Owner.table.column, alias name, and so on
 -- related to this message. The specific
 -- meaning of this column depends on the
 -- NSGNO column. See the documentation for
 -- DBMS_MVIEW.EXPLAIN_MVIEW() for details.
 RELATED_NUM NUMBER, -- When there is a numeric value
 -- associated with a row, it goes here.
 MSGNO INTEGER, -- When available, QSM message # explaining
 -- why disabled or more details when
 -- enabled.
 MSGTXT VARCHAR(2000), -- Text associated with MSGNO.
 SEQ NUMBER); -- Useful in ORDER BY clause when
 -- selecting from this table.

You can use the utlxmv.sql script found in the admin directory to create MV_
CAPABILITIES_TABLE.

Analyzing Materialized View Capabilities

5-34 Oracle Database Data Warehousing Guide

Example 5–8 DBMS_MVIEW.EXPLAIN_MVIEW

First, create the materialized view. Alternatively, you can use EXPLAIN_MVIEW on a
potential materialized view using its SELECT statement or the complete CREATE
MATERIALIZED VIEW statement.

CREATE MATERIALIZED VIEW cal_month_sales_mv
BUILD IMMEDIATE
REFRESH FORCE
ENABLE QUERY REWRITE AS
SELECT t.calendar_month_desc, SUM(s.amount_sold) AS dollars
FROM sales s, times t WHERE s.time_id = t.time_id
GROUP BY t.calendar_month_desc;

Then, you invoke EXPLAIN_MVIEW with the materialized view to explain. You need to
use the SEQ column in an ORDER BY clause so the rows will display in a logical order. If a
capability is not possible, N will appear in the P column and an explanation in the
MSGTXT column. If a capability is not possible for multiple reasons, a row is displayed
for each reason.

EXECUTE DBMS_MVIEW.EXPLAIN_MVIEW ('SH.CAL_MONTH_SALES_MV');

SELECT capability_name, possible, SUBSTR(related_text,1,8)
 AS rel_text, SUBSTR(msgtxt,1,60) AS msgtxt
FROM MV_CAPABILITIES_TABLE
ORDER BY seq;

CAPABILITY_NAME P REL_TEXT MSGTXT
--------------- - -------- ------
PCT N
REFRESH_COMPLETE Y
REFRESH_FAST N
REWRITE Y
PCT_TABLE N SALES no partition key or PMARKER in select list
PCT_TABLE N TIMES relation is not a partitioned table
REFRESH_FAST_AFTER_INSERT N SH.TIMES mv log must have new values
REFRESH_FAST_AFTER_INSERT N SH.TIMES mv log must have ROWID
REFRESH_FAST_AFTER_INSERT N SH.TIMES mv log does not have all necessary columns
REFRESH_FAST_AFTER_INSERT N SH.SALES mv log must have new values
REFRESH_FAST_AFTER_INSERT N SH.SALES mv log must have ROWID
REFRESH_FAST_AFTER_INSERT N SH.SALES mv log does not have all necessary columns
REFRESH_FAST_AFTER_ONETAB_DML N DOLLARS SUM(expr) without COUNT(expr)
REFRESH_FAST_AFTER_ONETAB_DML N see the reason why
 REFRESH_FAST_AFTER_INSERT is disabled
REFRESH_FAST_AFTER_ONETAB_DML N COUNT(*) is not present in the select list
REFRESH_FAST_AFTER_ONETAB_DML N SUM(expr) without COUNT(expr)
REFRESH_FAST_AFTER_ANY_DML N see the reason why
 REFRESH_FAST_AFTER_ONETAB_DML is disabled
REFRESH_FAST_AFTER_ANY_DML N SH.TIMES mv log must have sequence
REFRESH_FAST_AFTER_ANY_DML N SH.SALES mv log must have sequence
REFRESH_PCT N PCT is not possible on any of the detail
 tables in the materialized view
REWRITE_FULL_TEXT_MATCH Y
REWRITE_PARTIAL_TEXT_MATCH Y
REWRITE_GENERAL Y
REWRITE_PCT N PCT is not possible on any detail tables

Analyzing Materialized View Capabilities

Basic Materialized Views 5-35

MV_CAPABILITIES_TABLE.CAPABILITY_NAME Details
Table 5–6 lists explanations for values in the CAPABILITY_NAME column.

See Also:

■ Chapter 7, "Refreshing Materialized Views" for further details
about partition change tracking

■ Chapter 11, "Advanced Query Rewrite for Materialized Views"
for further details about partition change tracking

Table 5–6 CAPABILITY_NAME Column Details

CAPABILITY_NAME Description

PCT If this capability is possible, partition change tracking is possible on at least one detail
relation. If this capability is not possible, partition change tracking is not possible with any
detail relation referenced by the materialized view.

REFRESH_COMPLETE If this capability is possible, complete refresh of the materialized view is possible.

REFRESH_FAST If this capability is possible, fast refresh is possible at least under certain circumstances.

REWRITE If this capability is possible, at least full text match query rewrite is possible. If this
capability is not possible, no form of query rewrite is possible.

PCT_TABLE If this capability is possible, it is possible with respect to a particular partitioned table in
the top level FROM list. When possible, partition change tracking (PCT) applies to the
partitioned table named in the RELATED_TEXT column.

PCT is needed to support fast refresh after partition maintenance operations on the table
named in the RELATED_TEXT column.

PCT may also support fast refresh with regard to updates to the table named in the
RELATED_TEXT column when fast refresh from a materialized view log is not possible.

PCT is also needed to support query rewrite in the presence of partial staleness of the
materialized view with regard to the table named in the RELATED_TEXT column.

When disabled, PCT does not apply to the table named in the RELATED_TEXT column. In
this case, fast refresh is not possible after partition maintenance operations on the table
named in the RELATED_TEXT column. In addition, PCT-based refresh of updates to the table
named in the RELATED_TEXT column is not possible. Finally, query rewrite cannot be
supported in the presence of partial staleness of the materialized view with regard to the
table named in the RELATED_TEXT column.

PCT_TABLE_REWRITE If this capability is possible, it is possible with respect to a particular partitioned table in
the top level FROM list. When possible, PCT applies to the partitioned table named in the
RELATED_TEXT column.

This capability is needed to support query rewrite against this materialized view in partial
stale state with regard to the table named in the RELATED_TEXT column.

When disabled, query rewrite cannot be supported if this materialized view is in partial
stale state with regard to the table named in the RELATED_TEXT column.

REFRESH_FAST_AFTER_
INSERT

If this capability is possible, fast refresh from a materialized view log is possible at least in
the case where the updates are restricted to INSERT operations; complete refresh is also
possible. If this capability is not possible, no form of fast refresh from a materialized view
log is possible.

REFRESH_FAST_AFTER_
ONETAB_DML

If this capability is possible, fast refresh from a materialized view log is possible regardless
of the type of update operation, provided all update operations are performed on a single
table. If this capability is not possible, fast refresh from a materialized view log may not be
possible when the update operations are performed on multiple tables.

REFRESH_FAST_AFTER_
ANY_DML

If this capability is possible, fast refresh from a materialized view log is possible regardless
of the type of update operation or the number of tables updated. If this capability is not
possible, fast refresh from a materialized view log may not be possible when the update
operations (other than INSERT) affect multiple tables.

Analyzing Materialized View Capabilities

5-36 Oracle Database Data Warehousing Guide

MV_CAPABILITIES_TABLE Column Details
Table 5–7 lists the semantics for RELATED_TEXT and RELATED_NUM columns.

REFRESH_FAST_PCT If this capability is possible, fast refresh using PCT is possible. Generally, this means that
refresh is possible after partition maintenance operations on those detail tables where PCT
is indicated as possible.

REWRITE_FULL_TEXT_
MATCH

If this capability is possible, full text match query rewrite is possible. If this capability is
not possible, full text match query rewrite is not possible.

REWRITE_PARTIAL_
TEXT_MATCH

If this capability is possible, at least full and partial text match query rewrite are possible.
If this capability is not possible, at least partial text match query rewrite and general query
rewrite are not possible.

REWRITE_GENERAL If this capability is possible, all query rewrite capabilities are possible, including general
query rewrite and full and partial text match query rewrite. If this capability is not
possible, at least general query rewrite is not possible.

REWRITE_PCT If this capability is possible, query rewrite can use a partially stale materialized view even
in QUERY_REWRITE_INTEGRITY = ENFORCED or TRUSTED modes. When this capability is not
possible, query rewrite can use a partially stale materialized view only in QUERY_REWRITE_
INTEGRITY = STALE_TOLERATED mode.

Table 5–7 MV_CAPABILITIES_TABLE Column Details

MSGNO MSGTXT RELATED_NUM RELATED_TEXT

NULL NULL For PCT capability only: [owner.]name
of the table upon which PCT is enabled

2066 This statement resulted in an Oracle
error

Oracle error number
that occurred

2067 No partition key or PMARKER or join
dependent expression in SELECT list

[owner.]name of relation for which PCT
is not supported

2068 Relation is not partitioned [owner.]name of relation for which PCT
is not supported

2069 PCT not supported with
multicolumn partition key

[owner.]name of relation for which PCT
is not supported

2070 PCT not supported with this type of
partitioning

[owner.]name of relation for which PCT
is not supported

2071 Internal error: undefined PCT
failure code

The unrecognized
numeric PCT failure
code

[owner.]name of relation for which PCT
is not supported

2072 Requirements not satisfied for fast
refresh of nested materialized view

2077 Materialized view log is newer than
last full refresh

[owner.]table_name of table upon
which the materialized view log is
needed

2078 Materialized view log must have
new values

[owner.]table_name of table upon
which the materialized view log is
needed

2079 Materialized view log must have
ROWID

[owner.]table_name of table upon
which the materialized view log is
needed

Table 5–6 (Cont.) CAPABILITY_NAME Column Details

CAPABILITY_NAME Description

Analyzing Materialized View Capabilities

Basic Materialized Views 5-37

2080 Materialized view log must have
primary key

[owner.]table_name of table upon
which the materialized view log is
needed

2081 Materialized view log does not have
all necessary columns

[owner.]table_name of table upon
which the materialized view log is
needed

2082 Problem with materialized view log [owner.]table_name of table upon
which the materialized view log is
needed

2099 Materialized view references a
remote table or view in the FROM list

Offset from the
SELECT keyword to
the table or view in
question

[owner.]name of the table or view in
question

2126 Multiple master sites Name of the first different node, or NULL
if the first different node is local

2129 Join or filter condition(s) are
complex

[owner.]name of the table involved with
the join or filter condition (or NULL when
not available)

2130 Expression not supported for fast
refresh

Offset from the
SELECT keyword to
the expression in
question

The alias name in the SELECT list of the
expression in question

2150 SELECT lists must be identical across
the UNION operator

Offset from the
SELECT keyword to
the first different
select item in the
SELECT list

The alias name of the first different
select item in the SELECT list

2182 PCT is enabled through a join
dependency

[owner.]name of relation for which PCT_
TABLE_REWRITE is not enabled

2183 Expression to enable PCT not in
PARTITION BY of analytic function or
model

The unrecognized
numeric PCT failure
code

[owner.]name of relation for which PCT
is not enabled

2184 Expression to enable PCT cannot be
rolled up

[owner.]name of relation for which PCT
is not enabled

2185 No partition key or PMARKER in the
SELECT list

[owner.]name of relation for which PCT_
TABLE_REWRITE is not enabled

2186 GROUP OUTER JOIN is present

2187 Materialized view on external table

Table 5–7 (Cont.) MV_CAPABILITIES_TABLE Column Details

MSGNO MSGTXT RELATED_NUM RELATED_TEXT

Analyzing Materialized View Capabilities

5-38 Oracle Database Data Warehousing Guide

6

Advanced Materialized Views 6-1

6 Advanced Materialized Views

This chapter discusses advanced topics in using materialized views. It contains the
following topics:

■ Partitioning and Materialized Views

■ Materialized Views in Analytic Processing Environments

■ Materialized Views and Models

■ Invalidating Materialized Views

■ Security Issues with Materialized Views

■ Altering Materialized Views

Partitioning and Materialized Views
Because of the large volume of data held in a data warehouse, partitioning is an
extremely useful option when designing a database. Partitioning the fact tables
improves scalability, simplifies system administration, and makes it possible to define
local indexes that can be efficiently rebuilt. Partitioning the fact tables also improves
the opportunity of fast refreshing the materialized view because this may enable
partition change tracking (PCT) refresh on the materialized view. Partitioning a
materialized view also has benefits for refresh, because the refresh procedure can then
use parallel DML in more scenarios and PCT-based refresh can use truncate partition
to efficiently maintain the materialized view.

This section contains the following topics:

■ About Partition Change Tracking

■ Partitioning a Materialized View

■ Partitioning a Prebuilt Table

■ Rolling Materialized Views

About Partition Change Tracking
It is possible and advantageous to track freshness to a finer grain than the entire
materialized view. You can achieve this through partition change tracking (PCT),
which is a method to identify which rows in a materialized view are affected by a
certain detail table partition. When one or more of the detail tables are partitioned, it

See Also: Oracle Database VLDB and Partitioning Guide for further
details about partitioning

Partitioning and Materialized Views

6-2 Oracle Database Data Warehousing Guide

may be possible to identify the specific rows in the materialized view that correspond
to a modified detail partition(s); those rows become stale when a partition is modified
while all other rows remain fresh.

You can use PCT to identify which materialized view rows correspond to a particular
partition. PCT is also used to support fast refresh after partition maintenance
operations on detail tables. For instance, if a detail table partition is truncated or
dropped, the affected rows in the materialized view are identified and deleted.

Identifying which materialized view rows are fresh or stale, rather than considering
the entire materialized view as stale, allows query rewrite to use those rows that are
fresh while in QUERY_REWRITE_INTEGRITY = ENFORCED or TRUSTED modes. Several
views, such as DBA_MVIEW_DETAIL_PARTITION, detail which partitions are stale or fresh.
Oracle does not rewrite against partial stale materialized views if partition change
tracking on the changed table is enabled by the presence of join dependent expressions
in the materialized view.

Note that, while partition change tracking tracks the staleness on a partition and
subpartition level (for composite partitioned tables), the level of granularity for PCT
refresh is only the top-level partitioning strategy. Consequently, any change to data in
one of the subpartitions of a composite partitioned-table will only mark the single
impacted subpartition as stale and have the rest of the table available for rewrite, but
the PCT refresh will refresh the whole partition that contains the impacted
subpartition.

To support PCT, a materialized view must satisfy the following requirements:

■ At least one of the detail tables referenced by the materialized view must be
partitioned.

■ Partitioned tables must use either range, list or composite partitioning with range
or list as the top-level partitioning strategy.

■ The top level partition key must consist of only a single column.

■ The materialized view must contain either the partition key column or a partition
marker or ROWID or join dependent expression of the detail table.

■ If you use a GROUP BY clause, the partition key column or the partition marker or
ROWID or join dependent expression must be present in the GROUP BY clause.

■ If you use an analytic window function or the MODEL clause, the partition key
column or the partition marker or ROWID or join dependent expression must be
present in their respective PARTITION BY subclauses.

■ Data modifications can only occur on the partitioned table. If PCT refresh is being
done for a table which has join dependent expression in the materialized view,
then data modifications should not have occurred in any of the join dependent
tables.

■ The COMPATIBILITY initialization parameter must be a minimum of 9.0.0.0.0.

PCT is not supported for a materialized view that refers to views, remote tables, or
outer joins.

See Also: "Join Dependent Expression" on page 6-3 for more
information

See Also: Oracle Database PL/SQL Packages and Types Reference for
details regarding the DBMS_MVIEW.PMARKER function and partition
markers

Partitioning and Materialized Views

Advanced Materialized Views 6-3

This section contains the following topics:

■ Partition Key

■ Join Dependent Expression

■ Partition Marker

■ Partial Rewrite

Partition Key
Partition change tracking requires sufficient information in the materialized view to be
able to correlate a detail row in the source partitioned detail table to the corresponding
materialized view row. This can be accomplished by including the detail table
partition key columns in the SELECT list and, if GROUP BY is used, in the GROUP BY list.

Consider an example of a materialized view storing daily customer sales. The
following example uses the sh sample schema and the three detail tables sales,
products, and times to create the materialized view. sales table is partitioned by
time_id column and products is partitioned by the prod_id column. times is not a
partitioned table.

Example 6–1 Materialized View with Partition Key

CREATE MATERIALIZED VIEW LOG ON SALES WITH ROWID
 (prod_id, time_id, quantity_sold, amount_sold) INCLUDING NEW VALUES;
CREATE MATERIALIZED VIEW LOG ON PRODUCTS WITH ROWID
 (prod_id, prod_name, prod_desc) INCLUDING NEW VALUES;
CREATE MATERIALIZED VIEW LOG ON TIMES WITH ROWID
 (time_id, calendar_month_name, calendar_year) INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW cust_dly_sales_mv
BUILD DEFERRED REFRESH FAST ON DEMAND
ENABLE QUERY REWRITE AS
SELECT s.time_id, p.prod_id, p.prod_name, COUNT(*),
 SUM(s.quantity_sold), SUM(s.amount_sold),
 COUNT(s.quantity_sold), COUNT(s.amount_sold)
FROM sales s, products p, times t
WHERE s.time_id = t.time_id AND s.prod_id = p.prod_id
GROUP BY s.time_id, p.prod_id, p.prod_name;

For cust_dly_sales_mv, PCT is enabled on both the sales table and products table
because their respective partitioning key columns time_id and prod_id are in the
materialized view.

Join Dependent Expression
An expression consisting of columns from tables directly or indirectly joined through
equijoins to the partitioned detail table on the partitioning key and which is either a
dimensional attribute or a dimension hierarchical parent of the joining key is called a
join dependent expression. The set of tables in the path to detail table are called join
dependent tables. Consider the following:

SELECT s.time_id, t.calendar_month_name
FROM sales s, times t WHERE s.time_id = t.time_id;

In this query, times table is a join dependent table because it is joined to sales table on
the partitioning key column time_id. Moreover, calendar_month_name is a dimension
hierarchical attribute of times.time_id, because calendar_month_name is an attribute
of times.mon_id and times.mon_id is a dimension hierarchical parent of times.time_

Partitioning and Materialized Views

6-4 Oracle Database Data Warehousing Guide

id. Hence, the expression calendar_month_name from times tables is a join dependent
expression. Let's consider another example:

SELECT s.time_id, y.calendar_year_name
FROM sales s, times_d d, times_m m, times_y y
WHERE s.time_id = d.time_id AND d.day_id = m.day_id AND m.mon_id = y.mon_id;

Here, times table is denormalized into times_d, times_m and times_y tables. The
expression calendar_year_name from times_y table is a join dependent expression
and the tables times_d, times_m and times_y are join dependent tables. This is because
times_y table is joined indirectly through times_m and times_d tables to sales table on
its partitioning key column time_id.

This lets users create materialized views containing aggregates on some level higher
than the partitioning key of the detail table. Consider the following example of
materialized view storing monthly customer sales.

Example 6–2 Creating a Materialized View: Join Dependent Expression

Assuming the presence of materialized view logs defined earlier, the materialized
view can be created using the following DDL:

CREATE MATERIALIZED VIEW cust_mth_sales_mv
BUILD DEFERRED REFRESH FAST ON DEMAND
ENABLE QUERY REWRITE AS
SELECT t.calendar_month_name, p.prod_id, p.prod_name, COUNT(*),
 SUM(s.quantity_sold), SUM(s.amount_sold),
 COUNT(s.quantity_sold), COUNT(s.amount_sold)
FROM sales s, products p, times t
WHERE s.time_id = t.time_id AND s.prod_id = p.prod_id
GROUP BY t.calendar_month_name, p.prod_id, p.prod_name;

Here, you can correlate a detail table row to its corresponding materialized view row
using the join dependent table times and the relationship that times.calendar_month_
name is a dimensional attribute determined by times.time_id. This enables partition
change tracking on sales table. In addition to this, PCT is enabled on products table
because of presence of its partitioning key column prod_id in the materialized view.

Partition Marker
The DBMS_MVIEW.PMARKER function is designed to significantly reduce the cardinality
(the ratio of distinct values to the number of table rows) of the materialized view (see
Example 6–3 for an example). The function returns a partition identifier that uniquely
identifies the partition or subpartition for a specified row within a specified
partitioned table. Therefore, the DBMS_MVIEW.PMARKER function is used instead of the
partition key column in the SELECT and GROUP BY clauses.

Unlike the general case of a PL/SQL function in a materialized view, use of the DBMS_
MVIEW.PMARKER does not prevent rewrite with that materialized view even when the
rewrite mode is QUERY_REWRITE_INTEGRITY = ENFORCED.

As an example of using the PMARKER function, consider calculating a typical number,
such as revenue generated by a product category during a given year. If there were
1000 different products sold each month, it would result in 12,000 rows in the
materialized view.

Example 6–3 Using Partition Markers in a Materialized View

Consider an example of a materialized view storing the yearly sales revenue for each
product category. With approximately hundreds of different products in each product

Partitioning and Materialized Views

Advanced Materialized Views 6-5

category, including the partitioning key column prod_id of the products table in the
materialized view would substantially increase the cardinality. Instead, this
materialized view uses the DBMS_MVIEW.PMARKER function, which increases the
cardinality of materialized view by a factor of the number of partitions in the products
table.

CREATE MATERIALIZED VIEW prod_yr_sales_mv
BUILD DEFERRED
REFRESH FAST ON DEMAND
ENABLE QUERY REWRITE AS
SELECT DBMS_MVIEW.PMARKER(p.rowid), p.prod_category, t.calendar_year, COUNT(*),
 SUM(s.amount_sold), SUM(s.quantity_sold),
 COUNT(s.amount_sold), COUNT(s.quantity_sold)
FROM sales s, products p, times t
WHERE s.time_id = t.time_id AND s.prod_id = p.prod_id
GROUP BY DBMS_MVIEW.PMARKER (p.rowid), p.prod_category, t.calendar_year;

prod_yr_sales_mv includes the DBMS_MVIEW.PMARKER function on the products table in
its SELECT list. This enables partition change tracking on products table with
significantly less cardinality impact than grouping by the partition key column prod_
id. In this example, the desired level of aggregation for the prod_yr_sales_mv is to
group by products.prod_category. Using the DBMS_MVIEW.PMARKER function, the
materialized view cardinality is increased only by a factor of the number of partitions
in the products table. This would generally be significantly less than the cardinality
impact of including the partition key columns.

Note that partition change tracking is enabled on sales table because of presence of
join dependent expression calendar_year in the SELECT list.

Partial Rewrite
A subsequent INSERT statement adds a new row to the sales_part3 partition of table
sales. At this point, because cust_dly_sales_mv has PCT available on table sales
using a partition key, Oracle can identify the stale rows in the materialized view cust_
dly_sales_mv corresponding to sales_part3 partition (The other rows are unchanged
in their freshness state). Query rewrite cannot identify the fresh portion of
materialized views cust_mth_sales_mv and prod_yr_sales_mv because PCT is
available on table sales using join dependent expressions. Query rewrite can determine
the fresh portion of a materialized view on changes to a detail table only if PCT is
available on the detail table using a partition key or partition marker.

Partitioning a Materialized View
Partitioning a materialized view involves defining the materialized view with the
standard Oracle partitioning clauses, as illustrated in the following example. This
statement creates a materialized view called part_sales_mv, which uses three
partitions, can be fast refreshed, and is eligible for query rewrite:

CREATE MATERIALIZED VIEW part_sales_mv
PARALLEL PARTITION BY RANGE (time_id)
(PARTITION month1
 VALUES LESS THAN (TO_DATE('31-12-1998', 'DD-MM-YYYY'))
 PCTFREE 0
 STORAGE (INITIAL 8M)
 TABLESPACE sf1,
 PARTITION month2
 VALUES LESS THAN (TO_DATE('31-12-1999', 'DD-MM-YYYY'))
 PCTFREE 0
 STORAGE (INITIAL 8M)

Partitioning and Materialized Views

6-6 Oracle Database Data Warehousing Guide

 TABLESPACE sf2,
 PARTITION month3
 VALUES LESS THAN (TO_DATE('31-12-2000', 'DD-MM-YYYY'))
 PCTFREE 0
 STORAGE (INITIAL 8M)
 TABLESPACE sf3)
BUILD DEFERRED
REFRESH FAST
ENABLE QUERY REWRITE AS
SELECT s.cust_id, s.time_id,
 SUM(s.amount_sold) AS sum_dol_sales, SUM(s.quantity_sold) AS sum_unit_sales
 FROM sales s GROUP BY s.time_id, s.cust_id;

Partitioning a Prebuilt Table
Alternatively, a materialized view can be registered to a partitioned prebuilt table.
"Benefits of Partitioning a Materialized View" on page 6-6 describes the benefits of
partitioning a prebuilt table. The following example illustrates this:

CREATE TABLE part_sales_tab_mv(time_id, cust_id, sum_dollar_sales, sum_unit_sale)
PARALLEL PARTITION BY RANGE (time_id)
(PARTITION month1
 VALUES LESS THAN (TO_DATE('31-12-1998', 'DD-MM-YYYY'))
 PCTFREE 0
 STORAGE (INITIAL 8M)
 TABLESPACE sf1,
 PARTITION month2
 VALUES LESS THAN (TO_DATE('31-12-1999', 'DD-MM-YYYY'))
 PCTFREE 0
 STORAGE (INITIAL 8M)
 TABLESPACE sf2,
PARTITION month3
 VALUES LESS THAN (TO_DATE('31-12-2000', 'DD-MM-YYYY'))
 PCTFREE 0
 STORAGE (INITIAL 8M)
 TABLESPACE sf3) AS
SELECT s.time_id, s.cust_id, SUM(s.amount_sold) AS sum_dollar_sales,
 SUM(s.quantity_sold) AS sum_unit_sales
FROM sales s GROUP BY s.time_id, s.cust_id;

CREATE MATERIALIZED VIEW part_sales_tab_mv
ON PREBUILT TABLE
ENABLE QUERY REWRITE AS
SELECT s.time_id, s.cust_id, SUM(s.amount_sold) AS sum_dollar_sales,
 SUM(s.quantity_sold) AS sum_unit_sales
FROM sales s GROUP BY s.time_id, s.cust_id;

In this example, the table part_sales_tab_mv has been partitioned over three months
and then the materialized view was registered to use the prebuilt table. This
materialized view is eligible for query rewrite because the ENABLE QUERY REWRITE
clause has been included.

Benefits of Partitioning a Materialized View
When a materialized view is partitioned on the partitioning key column or join
dependent expressions of the detail table, it is more efficient to use a TRUNCATE
PARTITION statement to remove one or more partitions of the materialized view during
refresh and then repopulate the partition with new data. Oracle Database uses this
variant of fast refresh (called PCT refresh) with partition truncation if the following
conditions are satisfied in addition to other conditions described in "About Partition

Materialized Views in Analytic Processing Environments

Advanced Materialized Views 6-7

Change Tracking" on page 6-1.

■ The materialized view is partitioned on the partitioning key column or join
dependent expressions of the detail table.

■ If PCT is enabled using either the partitioning key column or join expressions, the
materialized view should be range or list partitioned.

■ PCT refresh is nonatomic.

Rolling Materialized Views
When a data warehouse or data mart contains a time dimension, it is often desirable to
archive the oldest information and then reuse the storage for new information. This is
called the rolling window scenario. If the fact tables or materialized views include a
time dimension and are horizontally partitioned by the time attribute, then
management of rolling materialized views can be reduced to a few fast partition
maintenance operations provided the unit of data that is rolled out equals, or is at least
aligned with, the range partitions.

If you plan to have rolling materialized views in your data warehouse, you should
determine how frequently you plan to perform partition maintenance operations, and
you should plan to partition fact tables and materialized views to reduce the amount
of system administration overhead required when old data is aged out. An additional
consideration is that you might want to use data compression on your infrequently
updated partitions.

You are not restricted to using range partitions. For example, a composite partition
using both a time value and a key value could result in a good partition solution for
your data.

Materialized Views in Analytic Processing Environments
This section discusses the concepts used by analytic SQL and how relational databases
can handle these types of queries. It also illustrates the best approach for creating
materialized views using a common scenario.

This section contains the following topics:

■ Materialized Views and Hierarchical Cubes

■ Benefits of Partitioning Materialized Views

■ Compressing Materialized Views

■ Materialized Views with Set Operators

Materialized Views and Hierarchical Cubes
While data warehouse environments typically view data in the form of a star schema,
for analytical SQL queries, data is held in the form of a hierarchical cube. A
hierarchical cube includes the data aggregated along the rollup hierarchy of each of its
dimensions and these aggregations are combined across dimensions. It includes the
typical set of aggregations needed for business intelligence queries.

See Also: Chapter 7, "Refreshing Materialized Views" for further
details regarding CONSIDER FRESH and for details regarding
compression

Materialized Views in Analytic Processing Environments

6-8 Oracle Database Data Warehousing Guide

Example 6–4 Hierarchical Cube

Consider a sales data set with two dimensions, each of which has a four-level
hierarchy:

■ Time, which contains (all times), year, quarter, and month.

■ Product, which contains (all products), division, brand, and item.

This means there are 16 aggregate groups in the hierarchical cube. This is because the
four levels of time are multiplied by four levels of product to produce the cube.
Table 6–1 shows the four levels of each dimension.

Note that as you increase the number of dimensions and levels, the number of groups
to calculate increases dramatically. This example involves 16 groups, but if you were to
add just two more dimensions with the same number of levels, you would have 4 x 4 x
4 x 4 = 256 different groups. Also, consider that a similar increase in groups occurs if
you have multiple hierarchies in your dimensions. For example, the time dimension
might have an additional hierarchy of fiscal month rolling up to fiscal quarter and then
fiscal year. Handling the explosion of groups has historically been the major challenge
in data storage for online analytical processing systems.

Typical online analytical queries slice and dice different parts of the cube comparing
aggregations from one level to aggregation from another level. For instance, a query
might find sales of the grocery division for the month of January, 2002 and compare
them with total sales of the grocery division for all of 2001.

Benefits of Partitioning Materialized Views
Materialized views with multiple aggregate groups give their best performance for
refresh and query rewrite when partitioned appropriately.

PCT refresh in a rolling window scenario requires partitioning at the top level on some
level from the time dimension. And, partition pruning for queries rewritten against
this materialized view requires partitioning on GROUPING_ID column. Hence, the most
effective partitioning scheme for these materialized views is to use composite
partitioning (range-list on (time, GROUPING_ID) columns). By partitioning the
materialized views this way, you enable:

■ PCT refresh, thereby improving refresh performance.

■ Partition pruning: only relevant aggregate groups are accessed, thereby greatly
reducing the query processing cost.

If you do not want to use PCT refresh, you can just partition by list on GROUPING_ID
column.

Table 6–1 ROLLUP By Time and Product

ROLLUP By Time ROLLUP By Product

year, quarter, month division, brand, item

year, quarter division, brand

year division

all times all products

Materialized Views in Analytic Processing Environments

Advanced Materialized Views 6-9

Compressing Materialized Views
You should consider data compression when using highly redundant data, such as
tables with many foreign keys. In particular, materialized views created with the
ROLLUP clause are likely candidates.

Materialized Views with Set Operators
Oracle Database provides support for materialized views whose defining query
involves set operators. Materialized views with set operators can now be created
enabled for query rewrite. You can refresh the materialized view using either ON
COMMIT or ON DEMAND refresh.

Fast refresh is supported if the defining query has the UNION ALL operator at the top
level and each query block in the UNION ALL, meets the requirements of a materialized
view with aggregates or materialized view with joins only. Further, the materialized
view must include a constant column (known as a UNION ALL marker) that has a
distinct value in each query block, which, in the following example, is columns 1
marker and 2 marker.

Examples of Materialized Views Using UNION ALL
The following examples illustrate creation of fast refreshable materialized views
involving UNION ALL.

Example 6–5 Materialized View Using UNION ALL with Two Join Views

To create a UNION ALL materialized view with two join views, the materialized view
logs must have the rowid column and, in the following example, the UNION ALL marker
is the columns, 1 marker and 2 marker.

CREATE MATERIALIZED VIEW LOG ON sales WITH ROWID;
CREATE MATERIALIZED VIEW LOG ON customers WITH ROWID;

CREATE MATERIALIZED VIEW unionall_sales_cust_joins_mv
REFRESH FAST ON COMMIT
ENABLE QUERY REWRITE AS
(SELECT c.rowid crid, s.rowid srid, c.cust_id, s.amount_sold, 1 marker
FROM sales s, customers c
WHERE s.cust_id = c.cust_id AND c.cust_last_name = 'Smith')
UNION ALL
(SELECT c.rowid crid, s.rowid srid, c.cust_id, s.amount_sold, 2 marker
FROM sales s, customers c
WHERE s.cust_id = c.cust_id AND c.cust_last_name = 'Brown');

Example 6–6 Materialized View Using UNION ALL with Joins and Aggregates

The following example shows a UNION ALL of a materialized view with joins and a
materialized view with aggregates. A couple of things can be noted in this example.

See Also:

■ Oracle Database SQL Language Reference for data compression
syntax and restrictions

■ "Storage And Table Compression" on page 5-18 for details
regarding compression

See Also: "Restrictions on Fast Refresh on Materialized Views with
UNION ALL" on page 5-24 for detailed restrictions on fast refresh for
materialized views with UNION ALL.

Materialized Views and Models

6-10 Oracle Database Data Warehousing Guide

Nulls or constants can be used to ensure that the data types of the corresponding
SELECT list columns match. Also, the UNION ALL marker column can be a string literal,
which is 'Year' umarker, 'Quarter' umarker, or 'Daily' umarker in the following
example:

CREATE MATERIALIZED VIEW LOG ON sales WITH ROWID, SEQUENCE
(amount_sold, time_id)
INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW LOG ON times WITH ROWID, SEQUENCE
 (time_id, fiscal_year, fiscal_quarter_number, day_number_in_week)
INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW unionall_sales_mix_mv
REFRESH FAST ON DEMAND AS
(SELECT 'Year' umarker, NULL, NULL, t.fiscal_year,
 SUM(s.amount_sold) amt, COUNT(s.amount_sold), COUNT(*)
 FROM sales s, times t
 WHERE s.time_id = t.time_id
 GROUP BY t.fiscal_year)
UNION ALL
(SELECT 'Quarter' umarker, NULL, NULL, t.fiscal_quarter_number,
 SUM(s.amount_sold) amt, COUNT(s.amount_sold), COUNT(*)
FROM sales s, times t
WHERE s.time_id = t.time_id and t.fiscal_year = 2001
GROUP BY t.fiscal_quarter_number)
UNION ALL
(SELECT 'Daily' umarker, s.rowid rid, t.rowid rid2, t.day_number_in_week,
 s.amount_sold amt, 1, 1
FROM sales s, times t
WHERE s.time_id = t.time_id
AND t.time_id between '01-Jan-01' AND '01-Dec-31');

Materialized Views and Models
Models, which provide array-based computations in SQL, can be used in materialized
views. Because the MODEL clause calculations can be expensive, you may want to use
two separate materialized views: one for the model calculations and one for the
SELECT ... GROUP BY query. For example, instead of using one, long materialized view,
you could create the following materialized views:

CREATE MATERIALIZED VIEW my_groupby_mv
REFRESH FAST
ENABLE QUERY REWRITE AS
SELECT country_name country, prod_name prod, calendar_year year,
 SUM(amount_sold) sale, COUNT(amount_sold) cnt, COUNT(*) cntstr
FROM sales, times, customers, countries, products
WHERE sales.time_id = times.time_id AND
 sales.prod_id = products.prod_id AND
 sales.cust_id = customers.cust_id AND
 customers.country_id = countries.country_id
GROUP BY country_name, prod_name, calendar_year;

CREATE MATERIALIZED VIEW my_model_mv
ENABLE QUERY REWRITE AS
SELECT country, prod, year, sale, cnt
FROM my_groupby_mv
MODEL PARTITION BY(country) DIMENSION BY(prod, year)
 MEASURES(sale s) IGNORE NAV
(s['Shorts', 2000] = 0.2 * AVG(s)[CV(), year BETWEEN 1996 AND 1999],

Security Issues with Materialized Views

Advanced Materialized Views 6-11

s['Kids Pajama', 2000] = 0.5 * AVG(s)[CV(), year BETWEEN 1995 AND 1999],
s['Boys Pajama', 2000] = 0.6 * AVG(s)[CV(), year BETWEEN 1994 AND 1999],
...
<hundreds of other update rules>);

By using two materialized views, you can incrementally maintain the materialized
view my_groupby_mv. The materialized view my_model_mv is on a much smaller data
set because it is built on my_groupby_mv and can be maintained by a complete refresh.

Materialized views with models can use complete refresh or PCT refresh only, and are
available for partial text query rewrite only.

Invalidating Materialized Views
Dependencies related to materialized views are automatically maintained to ensure
correct operation. When a materialized view is created, the materialized view depends
on the detail tables referenced in its definition. Any DML operation, such as an INSERT,
or DELETE, UPDATE, or DDL operation on any dependency in the materialized view will
cause it to become invalid. To revalidate a materialized view, use the ALTER
MATERIALIZED VIEW COMPILE statement.

A materialized view is automatically revalidated when it is referenced. In many cases,
the materialized view will be successfully and transparently revalidated. However, if a
column has been dropped in a table referenced by a materialized view or the owner of
the materialized view did not have one of the query rewrite privileges and that
privilege has now been granted to the owner, you should use the following statement
to revalidate the materialized view:

ALTER MATERIALIZED VIEW mview_name COMPILE;

The state of a materialized view can be checked by querying the data dictionary views
USER_MVIEWS or ALL_MVIEWS. The column STALENESS will show one of the values FRESH,
STALE, UNUSABLE, UNKNOWN, UNDEFINED, or NEEDS_COMPILE to indicate whether the
materialized view can be used. The state is maintained automatically. However, if the
staleness of a materialized view is marked as NEEDS_COMPILE, you could issue an ALTER
MATERIALIZED VIEW ... COMPILE statement to validate the materialized view and get the
correct staleness state. If the state of a materialized view is UNUSABLE, you must
perform a complete refresh to bring the materialized view back to the FRESH state. If
the materialized view is based on a prebuilt table that you never refresh, you must
drop and re-create the materialized view. The staleness of remote materialized views is
not tracked. Thus, if you use remote materialized views for rewrite, they are
considered to be trusted.

Security Issues with Materialized Views
To create a materialized view in your own schema, you must have the CREATE
MATERIALIZED VIEW privilege and the SELECT or READ privilege to any tables referenced
that are in another schema. To create a materialized view in another schema, you must
have the CREATE ANY MATERIALIZED VIEW privilege and the owner of the materialized
view needs SELECT or READ privileges to the tables referenced if they are from another
schema. Moreover, if you enable query rewrite on a materialized view that references
tables outside your schema, you must have the GLOBAL QUERY REWRITE privilege or the
QUERY REWRITE object privilege on each table outside your schema.

See Also: Chapter 21, "SQL for Modeling" for further details about
model calculations

Security Issues with Materialized Views

6-12 Oracle Database Data Warehousing Guide

If the materialized view is on a prebuilt container, the creator, if different from the
owner, must have the READ WITH GRANT or SELECT WITH GRANT privilege on the
container table.

If you continue to get a privilege error while trying to create a materialized view and
you believe that all the required privileges have been granted, then the problem is
most likely due to a privilege not being granted explicitly and trying to inherit the
privilege from a role instead. The owner of the materialized view must have explicitly
been granted SELECT or READ access to the referenced tables if the tables are in a
different schema.

If the materialized view is being created with ON COMMIT REFRESH specified, then the
owner of the materialized view requires an additional privilege if any of the tables in
the defining query are outside the owner's schema. In that case, the owner requires the
ON COMMIT REFRESH system privilege or the ON COMMIT REFRESH object privilege on each
table outside the owner's schema.

Querying Materialized Views with Virtual Private Database (VPD)
For all security concerns, a materialized view serves as a view that happens to be
materialized when you are directly querying the materialized view. When creating a
view or materialized view, the owner must have the necessary permissions to access
the underlying base relations of the view or materialized view that they are creating.
With these permissions, the owner can publish a view or materialized view that other
users can access, assuming they have been granted access to the view or materialized
view.

Using materialized views with Virtual Private Database is similar. When you create a
materialized view, there must not be any VPD policies in effect against the base
relations of the materialized view for the owner of the materialized view. However, the
owner of the materialized view may establish a VPD policy on the new materialized
view. Users who access the materialized view are subject to the VPD policy on the
materialized view. However, they are not additionally subject to the VPD policies of
the underlying base relations of the materialized view, because security processing of
the underlying base relations is performed against the owner of the materialized view.

This section contains the following topics:

■ Using Query Rewrite with Virtual Private Database

■ Restrictions with Materialized Views and Virtual Private Database

Using Query Rewrite with Virtual Private Database
When you access a materialized view using query rewrite, the materialized view
serves as an access structure much like an index. As such, the security implications for
materialized views accessed in this way are much the same as for indexes: all security
checks are performed against the relations specified in the request query. The index or
materialized view is used to speed the performance of accessing the data, not provide
any additional security checks. Thus, the presence of the index or materialized view
presents no additional security checking.

This holds true when you are accessing a materialized view using query rewrite in the
presence of VPD. The request query is subject to any VPD policies that are present
against the relations specified in the query. Query rewrite may rewrite the query to use
a materialize view instead of accessing the detail relations, but only if it can guarantee
to deliver exactly the same rows as if the rewrite had not occurred. Specifically, query

See Also: Querying Materialized Views with Virtual Private
Database (VPD)

Altering Materialized Views

Advanced Materialized Views 6-13

rewrite must retain and respect any VPD policies against the relations specified in the
request query. However, any VPD policies against the materialized view itself do not
have effect when the materialized view is accessed using query rewrite. This is
because the data is already protected by the VPD policies against the relations in the
request query.

Restrictions with Materialized Views and Virtual Private Database
Query rewrite does not use its full and partial text match modes with request queries
that include relations with active VPD policies, but it does use general rewrite
methods. This is because VPD transparently transforms the request query to affect the
VPD policy. If query rewrite were to perform a text match transformation against a
request query with a VPD policy, the effect would be to negate the VPD policy.

In addition, when you create or refresh a materialized view, the owner of the
materialized view must not have any active VPD policies in effect against the base
relations of the materialized view, or an error is returned. The materialized view
owner must either have no such VPD policies, or any such policy must return NULL.
This is because VPD would transparently modify the defining query of the
materialized view such that the set of rows contained by the materialized view would
not match the set of rows indicated by the materialized view definition.

One way to work around this restriction yet still create a materialized view containing
the desired VPD-specified subset of rows is to create the materialized view in a user
account that has no active VPD policies against the detail relations of the materialized
view. In addition, you can include a predicate in the WHERE clause of the materialized
view that embodies the effect of the VPD policy. When query rewrite attempts to
rewrite a request query that has that VPD policy, it matches up the VPD-generated
predicate on the request query with the predicate you directly specify when you create
the materialized view.

Altering Materialized Views
Six modifications can be made to a materialized view. You can:

■ Change its refresh option (FAST/FORCE/COMPLETE/NEVER).

■ Change its refresh mode (ON COMMIT/ON DEMAND).

■ Recompile it.

■ Enable or disable its use for query rewrite.

■ Consider it fresh.

■ Partition maintenance operations.

All other changes are achieved by dropping and then re-creating the materialized
view.

The COMPILE clause of the ALTER MATERIALIZED VIEW statement can be used when the
materialized view has been invalidated. This compile process is quick, and allows the
materialized view to be used by query rewrite again.

See Also:

■ Oracle Database SQL Language Reference for further information
about the ALTER MATERIALIZED VIEW statement

■ "Invalidating Materialized Views" on page 6-11

Altering Materialized Views

6-14 Oracle Database Data Warehousing Guide

7

Refreshing Materialized Views 7-1

7 Refreshing Materialized Views

This chapter discusses how to refresh materialized views, which is a key element in
maintaining good performance and consistent data when working with materialized
views in a data warehousing environment.

This chapter includes the following sections:

■ Refreshing Materialized Views

■ Using Materialized Views with Partitioned Tables

■ Using Partitioning to Improve Data Warehouse Refresh

■ Optimizing DML Operations During Refresh

Refreshing Materialized Views
The database maintains data in materialized views by refreshing them after changes to
the base tables. The refresh method can be incremental or a complete refresh. There are
two incremental refresh methods, known as log-based refresh and partition change
tracking (PCT) refresh. The incremental refresh is commonly called FAST refresh as it
usually performs faster than the complete refresh.

A complete refresh occurs when the materialized view is initially created when it is
defined as BUILD IMMEDIATE, unless the materialized view references a prebuilt table or
is defined as BUILD DEFERRED. Users can perform a complete refresh at any time after
the materialized view is created. The complete refresh involves executing the query
that defines the materialized view. This process can be slow, especially if the database
must read and process huge amounts of data.

An incremental refresh eliminates the need to rebuild materialized views from scratch.
Thus, processing only the changes can result in a very fast refresh time. Materialized
views can be refreshed either on demand or at regular time intervals. Alternatively,
materialized views in the same database as their base tables can be refreshed
whenever a transaction commits its changes to the base tables.

For materialized views that use the log-based fast refresh method, a materialized view
log and/or a direct loader log keep a record of changes to the base tables. A
materialized view log is a schema object that records changes to a base table so that a
materialized view defined on the base table can be refreshed incrementally. Each
materialized view log is associated with a single base table. The materialized view log
resides in the same database and schema as its base table.

The PCT refresh method can be used if the modified base tables are partitioned and
the modified base table partitions can be used to identify the affected partitions or
portions of data in the materialized view. When there have been some partition
maintenance operations on the base tables, this is the only incremental refresh method

Refreshing Materialized Views

7-2 Oracle Database Data Warehousing Guide

that can be used. The PCT refresh removes all data in the affected materialized view
partitions or affected portions of data and recomputes them from scratch.

For each of these refresh methods, you have two options for how the refresh is
performed, namely in-place refresh and out-of-place refresh. The in-place refresh
executes the refresh statements directly on the materialized view. The out-of-place
refresh creates one or more outside tables and executes the refresh statements on the
outside tables and then switches the materialized view or affected materialized view
partitions with the outside tables. Both in-place refresh and out-of-place refresh
achieve good performance in certain refresh scenarios. However, the out-of-place
refresh enables high materialized view availability during refresh, especially when
refresh statements take a long time to finish.

Also adopting the out-of-place mechanism, a new refresh method called synchronous
refresh is introduced in Oracle Database 12c, Release 1. It targets the common usage
scenario in the data warehouse where both fact tables and their materialized views are
partitioned in the same way or their partitions are related by a functional dependency.

The refresh approach enables you to keep a set of tables and the materialized views
defined on them to be always in sync. In this refresh method, the user does not directly
modify the contents of the base tables but must use the APIs provided by the
synchronous refresh package that will apply these changes to the base tables and
materialized views at the same time to ensure their consistency. The synchronous
refresh method is well-suited for data warehouses, where the loading of incremental
data is tightly controlled and occurs at periodic intervals.

When creating a materialized view, you have the option of specifying whether the
refresh occurs ON DEMAND or ON COMMIT. In the case of ON COMMIT, the materialized view
is changed every time a transaction commits, thus ensuring that the materialized view
always contains the latest data. Alternatively, you can control the time when refresh of
the materialized views occurs by specifying ON DEMAND. In the case of ON DEMAND
materialized views, the refresh can be performed with refresh methods provided in
either the DBMS_SYNC_REFRESH or the DBMS_MVIEW packages:

■ The DBMS_SYNC_REFRESH package contains the APIs for synchronous refresh, a new
refresh method introduced in Oracle Database 12c, Release 1. For details, see
Chapter 8, "Synchronous Refresh".

■ The DBMS_MVIEW package contains the APIs whose usage is described in this
chapter. There are three basic types of refresh operations: complete refresh, fast
refresh, and partition change tracking (PCT) refresh. These basic types have been
enhanced in Oracle Database 12c, Release 1 with a new refresh option called
out-of-place refresh.

The DBMS_MVIEW package contains three APIs for performing refresh operations:

■ DBMS_MVIEW.REFRESH

Refresh one or more materialized views.

■ DBMS_MVIEW.REFRESH_ALL_MVIEWS

Refresh all materialized views.

■ DBMS_MVIEW.REFRESH_DEPENDENT

Refresh all materialized views that depend on a specified master table or
materialized view or list of master tables or materialized views.

See Also: "Manual Refresh Using the DBMS_MVIEW Package"
on page 7-6 for more information

Refreshing Materialized Views

Refreshing Materialized Views 7-3

Performing a refresh operation requires temporary space to rebuild the indexes and
can require additional space for performing the refresh operation itself. Some sites
might prefer not to refresh all of their materialized views at the same time: as soon as
some underlying detail data has been updated, all materialized views using this data
become stale. Therefore, if you defer refreshing your materialized views, you can
either rely on your chosen rewrite integrity level to determine whether or not a stale
materialized view can be used for query rewrite, or you can temporarily disable query
rewrite with an ALTER SYSTEM SET QUERY_REWRITE_ENABLED = FALSE statement. After
refreshing the materialized views, you can re-enable query rewrite as the default for all
sessions in the current database instance by specifying ALTER SYSTEM SET QUERY_
REWRITE_ENABLED as TRUE. Refreshing a materialized view automatically updates all of
its indexes. In the case of full refresh, this requires temporary sort space to rebuild all
indexes during refresh. This is because the full refresh truncates or deletes the table
before inserting the new full data volume. If insufficient temporary space is available
to rebuild the indexes, then you must explicitly drop each index or mark it UNUSABLE
prior to performing the refresh operation.

If you anticipate performing insert, update or delete operations on tables referenced by
a materialized view concurrently with the refresh of that materialized view, and that
materialized view includes joins and aggregation, Oracle recommends you use ON
COMMIT fast refresh rather than ON DEMAND fast refresh.

An additional option when performing refresh is to use out-of-place refresh, where
outside tables are used to improve materialized view availability and refresh
performance in certain situations.

This section contains the following topics:

■ Complete Refresh

■ Fast Refresh

■ Partition Change Tracking (PCT) Refresh

■ The Out-of-Place Refresh Option

■ ON COMMIT Refresh

■ Manual Refresh Using the DBMS_MVIEW Package

■ Refresh Specific Materialized Views with REFRESH

■ Refresh All Materialized Views with REFRESH_ALL_MVIEWS

■ Refresh Dependent Materialized Views with REFRESH_DEPENDENT

■ Using Job Queues for Refresh

■ When Fast Refresh is PossibleRecommended Initialization Parameters for
Parallelism

■ Monitoring a Refresh

■ Checking the Status of a Materialized View

■ Scheduling Refresh

See Also:

■ Oracle OLAP User's Guide for information regarding the refresh of
cube organized materialized views

■ "The Out-of-Place Refresh Option" on page 7-4 for a discussion of
out-of-place refresh

Refreshing Materialized Views

7-4 Oracle Database Data Warehousing Guide

Complete Refresh
A complete refresh occurs when the materialized view is initially defined as BUILD
IMMEDIATE, unless the materialized view references a prebuilt table. For materialized
views using BUILD DEFERRED, a complete refresh must be requested before it can be
used for the first time. A complete refresh may be requested at any time during the life
of any materialized view. The refresh involves reading the detail tables to compute the
results for the materialized view. This can be a very time-consuming process,
especially if there are huge amounts of data to be read and processed. Therefore, you
should always consider the time required to process a complete refresh before
requesting it.

There are, however, cases when the only refresh method available for an already built
materialized view is complete refresh because the materialized view does not satisfy
the conditions specified in the following section for a fast refresh.

Fast Refresh
Most data warehouses have periodic incremental updates to their detail data. As
described in "Materialized View Schema Design" on page 5-6, you can use the
SQL*Loader or any bulk load utility to perform incremental loads of detail data. Fast
refresh of your materialized views is usually efficient, because instead of having to
recompute the entire materialized view, the changes are applied to the existing data.
Thus, processing only the changes can result in a very fast refresh time.

Partition Change Tracking (PCT) Refresh
When there have been some partition maintenance operations on the detail tables, this
is the only method of fast refresh that can be used. PCT-based refresh on a
materialized view is enabled only if all the conditions described in "About Partition
Change Tracking" on page 6-1 are satisfied.

In the absence of partition maintenance operations on detail tables, when you request
a FAST method (method => 'F') of refresh through procedures in DBMS_MVIEW package,
Oracle uses a heuristic rule to try log-based rule fast refresh before choosing PCT
refresh. Similarly, when you request a FORCE method (method => '?'), Oracle chooses
the refresh method based on the following attempt order: log-based fast refresh, PCT
refresh, and complete refresh. Alternatively, you can request the PCT method (method
=> 'P'), and Oracle uses the PCT method provided all PCT requirements are satisfied.

Oracle can use TRUNCATE PARTITION on a materialized view if it satisfies the conditions
in "Benefits of Partitioning a Materialized View" on page 6-6 and hence, make the PCT
refresh process more efficient.

The Out-of-Place Refresh Option
Beginning with Oracle Database 12c Release 1, a new refresh option is available to
improve materialized view refresh performance and availability. This refresh option is
called out-of-place refresh because it uses outside tables during refresh as opposed to
the existing "in-place" refresh that directly applies changes to the materialized view
container table. The out-of-place refresh option works with all existing refresh
methods, such as FAST ('F'), COMPLETE ('C'), PCT ('P'), and FORCE ('?'). Out-of-place
refresh is particularly effective when handling situations with large amounts of data

See Also:

■ "About Partition Change Tracking" on page 6-1 for more
information regarding partition change tracking

Refreshing Materialized Views

Refreshing Materialized Views 7-5

changes, where conventional DML statements do not scale well. It also enables you to
achieve a very high degree of availability because the materialized views that are
being refreshed can be used for direct access and query rewrite during the execution of
refresh statements. In addition, it helps to avoid potential problems such as
materialized view container tables becoming fragmented over time or intermediate
refresh results being seen.

In out-of-place refresh, the entire or affected portions of a materialized view are
computed into one or more outside tables. For partitioned materialized views, if
partition level change tracking is possible, and there are local indexes defined on the
materialized view, the out-of-place method also builds the same local indexes on the
outside tables. This refresh process is completed by either switching between the
materialized view and the outside table or partition exchange between the affected
partitions and the outside tables. During refresh, the outside table is populated by
direct load, which is efficient.

This section contains the following topics:

■ Types of Out-of-Place Refresh

■ Restrictions and Considerations with Out-of-Place Refresh

Types of Out-of-Place Refresh
There are three types of out-of-place refresh:

■ out-of-place fast refresh

This offers better availability than in-place fast refresh. It also offers better
performance when changes affect a large part of the materialized view.

■ out-of-place PCT refresh

This offers better availability than in-place PCT refresh. There are two different
approaches for partitioned and non-partitioned materialized views. If truncation
and direct load are not feasible, you should use out-of-place refresh when the
changes are relatively large. If truncation and direct load are feasible, in-place
refresh is preferable in terms of performance. In terms of availability, out-of-place
refresh is always preferable.

■ out-of-place complete refresh

This offers better availability than in-place complete refresh.

Using the refresh interface in the DBMS_MVIEW package, with method = ? and out_of_
place = true, out-of-place fast refresh are attempted first, then out-of-place PCT
refresh, and finally out-of-place complete refresh. An example is the following:

DBMS_MVIEW.REFRESH('CAL_MONTH_SALES_MV', method => '?',
 atomic_refresh => FALSE, out_of_place => TRUE);

Restrictions and Considerations with Out-of-Place Refresh
Out-of-place refresh has all the restrictions that apply when using the corresponding
in-place refresh. In addition, it has the following restrictions:

■ Only materialized join views and materialized aggregate views are allowed

■ No ON COMMIT refresh is permitted

■ No remote materialized views, cube materialized views, object materialized views
are permitted

■ No LOB columns are permitted

Refreshing Materialized Views

7-6 Oracle Database Data Warehousing Guide

■ Not permitted if materialized view logs, triggers, or constraints (except NOT NULL)
are defined on the materialized view

■ Not permitted if the materialized view contains the CLUSTERING clause

■ Not applied to complete refresh within a CREATE or ALTER MATERIALIZED VIEW
session or an ALTER TABLE session

■ Atomic mode is not permitted. If you specify atomic_refresh as TRUE and out_of_
place as TRUE, an error is displayed

For out-of-place PCT refresh, there is the following restriction:

■ No UNION ALL or grouping sets are permitted

For out-of-place fast refresh, there are the following restrictions:

■ No UNION ALL, grouping sets or outer joins are permitted

■ Not allowed for materialized join views when more than one base table is
modified with mixed DML statements

Out-of-place refresh requires additional storage for the outside table and the indexes
for the duration of the refresh. Thus, you must have enough available tablespace or
auto extend turned on.

The partition exchange in out-of-place PCT refresh impacts the global index on the
materialized view. Therefore, if there are global indexes defined on the materialized
view container table, Oracle disables the global indexes before doing the partition
exchange and rebuild the global indexes after the partition exchange. This rebuilding
is additional overhead.

ON COMMIT Refresh
A materialized view can be refreshed automatically using the ON COMMIT method.
Therefore, whenever a transaction commits which has updated the tables on which a
materialized view is defined, those changes are automatically reflected in the
materialized view. The advantage of using this approach is you never have to
remember to refresh the materialized view. The only disadvantage is the time required
to complete the commit will be slightly longer because of the extra processing
involved. However, in a data warehouse, this should not be an issue because there is
unlikely to be concurrent processes trying to update the same table.

Manual Refresh Using the DBMS_MVIEW Package
When a materialized view is refreshed ON DEMAND, one of four refresh methods can be
specified as shown in the following table. You can define a default option during the
creation of the materialized view. Table 7–1 details the refresh options.

Table 7–1 ON DEMAND Refresh Methods

Refresh Option Parameter Description

COMPLETE C Refreshes by recalculating the defining query of the materialized view.

Refreshing Materialized Views

Refreshing Materialized Views 7-7

Three refresh procedures are available in the DBMS_MVIEW package for performing ON
DEMAND refresh. Each has its own unique set of parameters.

Refresh Specific Materialized Views with REFRESH
Use the DBMS_MVIEW.REFRESH procedure to refresh one or more materialized views.
Some parameters are used only for replication, so they are not mentioned here. The
required parameters to use this procedure are:

■ The comma-delimited list of materialized views to refresh

■ The refresh method: F-Fast, P-Fast_PCT, ?-Force, C-Complete

■ The rollback segment to use

■ Refresh after errors (TRUE or FALSE)

A Boolean parameter. If set to TRUE, the number_of_failures output parameter is
set to the number of refreshes that failed, and a generic error message indicates
that failures occurred. The alert log for the instance gives details of refresh errors.
If set to FALSE, the default, then refresh stops after it encounters the first error, and
any remaining materialized views in the list are not refreshed.

■ The following four parameters are used by the replication process. For warehouse
refresh, set them to FALSE, 0,0,0.

■ Atomic refresh (TRUE or FALSE)

If set to TRUE, then all refreshes are done in one transaction. If set to FALSE, then
each of the materialized views is refreshed non-atomically in separate transactions.
If set to FALSE, Oracle can optimize refresh by using parallel DML and truncate
DDL on a materialized views. When a materialized view is refreshed in atomic
mode, it is eligible for query rewrite if the rewrite integrity mode is set to stale_
tolerated. Atomic refresh cannot be guaranteed when refresh is performed on
nested views.

■ Whether to use out-of-place refresh

This parameter works with all existing refresh methods (F, P, C, ?). So, for example,
if you specify F and out_of_place = true, then an out-of-place fast refresh is
attempted. Similarly, if you specify P and out_of_place = true, then out-of-place
PCT refresh is attempted.

FAST F Refreshes by incrementally applying changes to the materialized view.

For local materialized views, it chooses the refresh method which is estimated by optimizer to
be most efficient. The refresh methods considered are log-based FAST and FAST_PCT.

FAST_PCT P Refreshes by recomputing the rows in the materialized view affected by changed partitions in
the detail tables.

FORCE ? Attempts a fast refresh. If that is not possible, it does a complete refresh.

For local materialized views, it chooses the refresh method which is estimated by optimizer to
be most efficient. The refresh methods considered are log based FAST, FAST_PCT, and COMPLETE.

See Also:

■ Oracle Database Advanced Replication for information showing
how to use it in a replication environment

■ Oracle Database PL/SQL Packages and Types Reference for detailed
information about the DBMS_MVIEW package

Table 7–1 (Cont.) ON DEMAND Refresh Methods

Refresh Option Parameter Description

Refreshing Materialized Views

7-8 Oracle Database Data Warehousing Guide

For example, to perform a fast refresh on the materialized view cal_month_sales_mv,
the DBMS_MVIEW package would be called as follows:

DBMS_MVIEW.REFRESH('CAL_MONTH_SALES_MV', 'F', '', TRUE, FALSE, 0,0,0,
 FALSE, FALSE);

Multiple materialized views can be refreshed at the same time, and they do not all
have to use the same refresh method. To give them different refresh methods, specify
multiple method codes in the same order as the list of materialized views (without
commas). For example, the following specifies that cal_month_sales_mv be completely
refreshed and fweek_pscat_sales_mv receive a fast refresh:

DBMS_MVIEW.REFRESH('CAL_MONTH_SALES_MV, FWEEK_PSCAT_SALES_MV', 'CF', '',
 TRUE, FALSE, 0,0,0, FALSE, FALSE);

If the refresh method is not specified, the default refresh method as specified in the
materialized view definition is used.

Refresh All Materialized Views with REFRESH_ALL_MVIEWS
An alternative to specifying the materialized views to refresh is to use the procedure
DBMS_MVIEW.REFRESH_ALL_MVIEWS. This procedure refreshes all materialized views. If
any of the materialized views fails to refresh, then the number of failures is reported.

The parameters for this procedure are:

■ The number of failures (this is an OUT variable)

■ The refresh method: F-Fast, P-Fast_PCT, ?-Force, C-Complete

■ Refresh after errors (TRUE or FALSE)

A Boolean parameter. If set to TRUE, the number_of_failures output parameter is
set to the number of refreshes that failed, and a generic error message indicates
that failures occurred. The alert log for the instance gives details of refresh errors.
If set to FALSE, the default, then refresh stops after it encounters the first error, and
any remaining materialized views in the list is not refreshed.

■ Atomic refresh (TRUE or FALSE)

If set to TRUE, then all refreshes are done in one transaction. If set to FALSE, then
each of the materialized views is refreshed non-atomically in separate transactions.
If set to FALSE, Oracle can optimize refresh by using parallel DML and truncate
DDL on a materialized views. When a materialized view is refreshed in atomic
mode, it is eligible for query rewrite if the rewrite integrity mode is set to stale_
tolerated. Atomic refresh cannot be guaranteed when refresh is performed on
nested views.

■ Whether to use out-of-place refresh

This parameter works with all existing refresh method (F, P, C, ?). So, for example,
if you specify F and out_of_place = true, then an out-of-place fast refresh is
attempted. Similarly, if you specify P and out_of_place = true, then out-of-place
PCT refresh is attempted.

An example of refreshing all materialized views is the following:

DBMS_MVIEW.REFRESH_ALL_MVIEWS(failures,'C','', TRUE, FALSE, FALSE);

Refreshing Materialized Views

Refreshing Materialized Views 7-9

Refresh Dependent Materialized Views with REFRESH_DEPENDENT
The third procedure, DBMS_MVIEW.REFRESH_DEPENDENT, refreshes only those
materialized views that depend on a specific table or list of tables. For example,
suppose the changes have been received for the orders table but not for customer
payments. The refresh dependent procedure can be called to refresh only those
materialized views that reference the orders table.

The parameters for this procedure are:

■ The number of failures (this is an OUT variable)

■ The dependent table

■ The refresh method: F-Fast, P-Fast_PCT, ?-Force, C-Complete

■ The rollback segment to use

■ Refresh after errors (TRUE or FALSE)

A Boolean parameter. If set to TRUE, the number_of_failures output parameter is
set to the number of refreshes that failed, and a generic error message indicates
that failures occurred. The alert log for the instance gives details of refresh errors.
If set to FALSE, the default, then refresh stops after it encounters the first error, and
any remaining materialized views in the list are not refreshed.

■ Atomic refresh (TRUE or FALSE)

If set to TRUE, then all refreshes are done in one transaction. If set to FALSE, then
each of the materialized views is refreshed non-atomically in separate transactions.
If set to FALSE, Oracle can optimize refresh by using parallel DML and truncate
DDL on a materialized views. When a materialized view is refreshed in atomic
mode, it is eligible for query rewrite if the rewrite integrity mode is set to stale_
tolerated. Atomic refresh cannot be guaranteed when refresh is performed on
nested views.

■ Whether it is nested or not

If set to TRUE, refresh all the dependent materialized views of the specified set of
tables based on a dependency order to ensure the materialized views are truly
fresh with respect to the underlying base tables.

■ Whether to use out-of-place refresh

This parameter works with all existing refresh methods (F, P, C, ?). So, for example,
if you specify F and out_of_place = true, then an out-of-place fast refresh is
attempted. Similarly, if you specify P and out_of_place = true, then out-of-place
PCT refresh is attempted.

To perform a full refresh on all materialized views that reference the customers table,
specify:

DBMS_MVIEW.REFRESH_DEPENDENT(failures, 'CUSTOMERS', 'C', '', FALSE, FALSE, FALSE);

Using Job Queues for Refresh
Job queues can be used to refresh multiple materialized views in parallel. If queues are
not available, fast refresh sequentially refreshes each view in the foreground process.
To make queues available, you must set the JOB_QUEUE_PROCESSES parameter. This
parameter defines the number of background job queue processes and determines
how many materialized views can be refreshed concurrently. Oracle tries to balance
the number of concurrent refreshes with the degree of parallelism of each refresh. The
order in which the materialized views are refreshed is determined by dependencies

Refreshing Materialized Views

7-10 Oracle Database Data Warehousing Guide

imposed by nested materialized views and potential for efficient refresh by using
query rewrite against other materialized views (See "Scheduling Refresh" on page 7-13
for details). This parameter is only effective when atomic_refresh is set to FALSE.

If the process that is executing DBMS_MVIEW.REFRESH is interrupted or the instance is
shut down, any refresh jobs that were executing in job queue processes are requeued
and continue running. To remove these jobs, use the DBMS_JOB.REMOVE procedure.

When Fast Refresh is Possible
Not all materialized views may be fast refreshable. Therefore, use the package DBMS_
MVIEW.EXPLAIN_MVIEW to determine what refresh methods are available for a
materialized view.

If you are not sure how to make a materialized view fast refreshable, you can use the
DBMS_ADVISOR.TUNE_MVIEW procedure, which provides a script containing the
statements required to create a fast refreshable materialized view.

Recommended Initialization Parameters for Parallelism
The following initialization parameters need to be set properly for parallelism to be
effective:

■ PARALLEL_MAX_SERVERS should be set high enough to take care of parallelism. You
must consider the number of slaves needed for the refresh statement. For example,
with a degree of parallelism of eight, you need 16 slave processes.

■ PGA_AGGREGATE_TARGET should be set for the instance to manage the memory
usage for sorts and joins automatically. If the memory parameters are set
manually, SORT_AREA_SIZE should be less than HASH_AREA_SIZE.

■ OPTIMIZER_MODE should equal all_rows.

Remember to analyze all tables and indexes for better optimization.

Monitoring a Refresh
While a job is running, you can query the V$SESSION_LONGOPS view to tell you the
progress of each materialized view being refreshed.

SELECT * FROM V$SESSION_LONGOPS;

To look at the progress of which jobs are on which queue, use:

SELECT * FROM DBA_JOBS_RUNNING;

See Also:

■ Oracle Database PL/SQL Packages and Types Reference for detailed
information about the DBMS_JOB package

See Also:

■ Oracle Database SQL Tuning Guide

■ Chapter 5, "Basic Materialized Views" for further information
about the DBMS_MVIEW package

See Also: Oracle Database VLDB and Partitioning Guide

Refreshing Materialized Views

Refreshing Materialized Views 7-11

Checking the Status of a Materialized View
Three views are provided for checking the status of a materialized view: DBA_MVIEWS,
ALL_MVIEWS, and USER_MVIEWS. To check if a materialized view is fresh or stale, issue
the following statement:

SELECT MVIEW_NAME, STALENESS, LAST_REFRESH_TYPE, COMPILE_STATE
FROM USER_MVIEWS ORDER BY MVIEW_NAME;

MVIEW_NAME STALENESS LAST_REF COMPILE_STATE
---------- --------- -------- -------------
CUST_MTH_SALES_MV NEEDS_COMPILE FAST NEEDS_COMPILE
PROD_YR_SALES_MV FRESH FAST VALID

If the compile_state column shows NEEDS COMPILE, the other displayed column values
cannot be trusted as reflecting the true status. To revalidate the materialized view,
issue the following statement:

ALTER MATERIALIZED VIEW [materialized_view_name] COMPILE;

Then reissue the SELECT statement.

Viewing Partition Freshness
Several views are available that enable you to verify the status of base table partitions
and determine which ranges of materialized view data are fresh and which are stale.
The views are as follows:

■ *_USER_MVIEWS

To determine partition change tracking (PCT) information for the materialized
view.

■ *_USER_MVIEW_DETAIL_RELATIONS

To display partition information for the detail table a materialized view is based
on.

■ *_USER_MVIEW_DETAIL_PARTITION

To determine which partitions are fresh.

■ *_USER_MVIEW_DETAIL_SUBPARTITION

To determine which subpartitions are fresh.

The use of these views is illustrated in the following examples. Figure 7–1 illustrates a
range-list partitioned table and a materialized view based on it. The partitions are P1,
P2, P3, and P4, while the subpartitions are SP1, SP2, and SP3.

Figure 7–1 Determining PCT Freshness

P1

P2

P3

P4

SP1 SP2 SP3

MV1

Refreshing Materialized Views

7-12 Oracle Database Data Warehousing Guide

Examples of Using Views to Determine Freshness This section illustrates examples of
determining the PCT and freshness information for materialized views and their detail
tables.

Example 7–1 Verifying the PCT Status of a Materialized View

Query USER_MVIEWS to access PCT information about the materialized view, as shown
in the following:

SELECT MVIEW_NAME, NUM_PCT_TABLES, NUM_FRESH_PCT_REGIONS,
 NUM_STALE_PCT_REGIONS
FROM USER_MVIEWS
WHERE MVIEW_NAME = MV1;

MVIEW_NAME NUM_PCT_TABLES NUM_FRESH_PCT_REGIONS NUM_STALE_PCT_REGIONS
---------- -------------- --------------------- ---------------------
 MV1 1 9 3

Example 7–2 Verifying the PCT Status in a Materialized View's Detail Table

Query USER_MVIEW_DETAIL_RELATIONS to access PCT detail table information, as
shown in the following:

SELECT MVIEW_NAME, DETAILOBJ_NAME, DETAILOBJ_PCT,
 NUM_FRESH_PCT_PARTITIONS, NUM_STALE_PCT_PARTITIONS
FROM USER_MVIEW_DETAIL_RELATIONS
WHERE MVIEW_NAME = MV1;

MVIEW_NAME DETAILOBJ_NAME DETAIL_OBJ_PCT NUM_FRESH_PCT_PARTITIONS NUM_STALE_PCT_PARTITIONS
---------- -------------- -------------- ------------------------ ------------------------
 MV1 T1 Y 3 1

Example 7–3 Verifying Which Partitions are Fresh

Query USER_MVIEW_DETAIL_PARTITION to access PCT freshness information for
partitions, as shown in the following:

SELECT MVIEW_NAME,DETAILOBJ_NAME,DETAIL_PARTITION_NAME,
 DETAIL_PARTITION_POSITION,FRESHNESS
FROM USER_MVIEW_DETAIL_PARTITION
WHERE MVIEW_NAME = MV1;

MVIEW_NAME DETAILOBJ_NAME DETAIL_PARTITION_NAME DETAIL_PARTITION_POSITION FRESHNESS
---------- -------------- --------------------- ------------------------- ---------
 MV1 T1 P1 1 FRESH
 MV1 T1 P2 2 FRESH
 MV1 T1 P3 3 STALE
 MV1 T1 P4 4 FRESH

Example 7–4 Verifying Which Subpartitions are Fresh

Query USER_MVIEW_DETAIL_SUBPARTITION to access PCT freshness information for
subpartitions, as shown in the following:

SELECT MVIEW_NAME,DETAILOBJ_NAME,DETAIL_PARTITION_NAME, DETAIL_SUBPARTITION_NAME,
 DETAIL_SUBPARTITION_POSITION,FRESHNESS
FROM USER_MVIEW_DETAIL_SUBPARTITION
WHERE MVIEW_NAME = MV1;

MVIEW_NAME DETAILOBJ DETAIL_PARTITION DETAIL_SUBPARTITION_NAME DETAIL_SUBPARTITION_POS FRESHNESS
---------- --------- ---------------- ------------------------ ----------------------- ---------
 MV1 T1 P1 SP1 1 FRESH

Tips for Refreshing Materialized Views

Refreshing Materialized Views 7-13

 MV1 T1 P1 SP2 1 FRESH
 MV1 T1 P1 SP3 1 FRESH
 MV1 T1 P2 SP1 1 FRESH
 MV1 T1 P2 SP2 1 FRESH
 MV1 T1 P2 SP3 1 FRESH
 MV1 T1 P3 SP1 1 STALE
 MV1 T1 P3 SP2 1 STALE
 MV1 T1 P3 SP3 1 STALE
 MV1 T1 P4 SP1 1 FRESH
 MV1 T1 P4 SP2 1 FRESH
 MV1 T1 P4 SP3 1 FRESH

Scheduling Refresh
Very often you have multiple materialized views in the database. Some of these can be
computed by rewriting against others. This is very common in data warehousing
environment where you may have nested materialized views or materialized views at
different levels of some hierarchy.

In such cases, you should create the materialized views as BUILD DEFERRED, and then
issue one of the refresh procedures in DBMS_MVIEW package to refresh all the
materialized views. Oracle Database computes the dependencies and refreshes the
materialized views in the right order. Consider the example of a complete hierarchical
cube described in "Examples of Hierarchical Cube Materialized Views" on page 19-26.
Suppose all the materialized views have been created as BUILD DEFERRED. Creating the
materialized views as BUILD DEFERRED only creates the metadata for all the
materialized views. And, then, you can just call one of the refresh procedures in DBMS_
MVIEW package to refresh all the materialized views in the right order:

DECLARE numerrs PLS_INTEGER;
BEGIN DBMS_MVIEW.REFRESH_DEPENDENT (
 number_of_failures => numerrs, list=>'SALES', method => 'C');
DBMS_OUTPUT.PUT_LINE('There were ' || numerrs || ' errors during refresh');
END;
/

The procedure refreshes the materialized views in the order of their dependencies
(first sales_hierarchical_mon_cube_mv, followed by sales_hierarchical_qtr_cube_
mv, then, sales_hierarchical_yr_cube_mv and finally, sales_hierarchical_all_
cube_mv). Each of these materialized views gets rewritten against the one prior to it in
the list).

The same kind of rewrite can also be used while doing PCT refresh. PCT refresh
recomputes rows in a materialized view corresponding to changed rows in the detail
tables. And, if there are other fresh materialized views available at the time of refresh,
it can go directly against them as opposed to going against the detail tables.

Hence, it is always beneficial to pass a list of materialized views to any of the refresh
procedures in DBMS_MVIEW package (irrespective of the method specified) and let the
procedure figure out the order of doing refresh on materialized views.

Tips for Refreshing Materialized Views
This section contains the following topics with tips on refreshing materialized views:

■ Tips for Refreshing Materialized Views with Aggregates

■ Tips for Refreshing Materialized Views Without Aggregates

■ Tips for Refreshing Nested Materialized Views

Tips for Refreshing Materialized Views

7-14 Oracle Database Data Warehousing Guide

■ Tips for Fast Refresh with UNION ALL

■ Tips for Fast Refresh with Commit SCN-Based Materialized View Logs

■ Tips After Refreshing Materialized Views

Tips for Refreshing Materialized Views with Aggregates
Following are some guidelines for using the refresh mechanism for materialized views
with aggregates.

■ For fast refresh, create materialized view logs on all detail tables involved in a
materialized view with the ROWID, SEQUENCE and INCLUDING NEW VALUES clauses.

Include all columns from the table likely to be used in materialized views in the
materialized view logs.

Fast refresh may be possible even if the SEQUENCE option is omitted from the
materialized view log. If it can be determined that only inserts or deletes will
occur on all the detail tables, then the materialized view log does not require the
SEQUENCE clause. However, if updates to multiple tables are likely or required or if
the specific update scenarios are unknown, make sure the SEQUENCE clause is
included.

■ Use Oracle's bulk loader utility or direct-path INSERT (INSERT with the APPEND hint
for loads). Starting in Oracle Database 12c, the database automatically gathers
table statistics as part of a bulk-load operation (CTAS and IAS) similar to how
statistics are gathered when an index is created. By gathering statistics during the
data load, you avoid additional scan operations and provide the necessary
statistics as soon as the data becomes available to the users. Note that, in the case
of an IAS statement, statistics are only gathered if the table the data is being
inserted into is empty.

This is a lot more efficient than conventional insert. During loading, disable all
constraints and re-enable when finished loading. Note that materialized view logs
are required regardless of whether you use direct load or conventional DML.

Try to optimize the sequence of conventional mixed DML operations, direct-path
INSERT and the fast refresh of materialized views. You can use fast refresh with a
mixture of conventional DML and direct loads. Fast refresh can perform
significant optimizations if it finds that only direct loads have occurred, as
illustrated in the following:

1. Direct-path INSERT (SQL*Loader or INSERT /*+ APPEND */) into the detail
table

2. Refresh materialized view

3. Conventional mixed DML

4. Refresh materialized view

You can use fast refresh with conventional mixed DML (INSERT, UPDATE, and
DELETE) to the detail tables. However, fast refresh is able to perform significant
optimizations in its processing if it detects that only inserts or deletes have been
done to the tables, such as:

■ DML INSERT or DELETE to the detail table

■ Refresh materialized views

■ DML update to the detail table

■ Refresh materialized view

Tips for Refreshing Materialized Views

Refreshing Materialized Views 7-15

Even more optimal is the separation of INSERT and DELETE.

If possible, refresh should be performed after each type of data change (as shown
earlier) rather than issuing only one refresh at the end. If that is not possible,
restrict the conventional DML to the table to inserts only, to get much better
refresh performance. Avoid mixing deletes and direct loads.

Furthermore, for refresh ON COMMIT, Oracle keeps track of the type of DML done in
the committed transaction. Therefore, do not perform direct-path INSERT and DML
to other tables in the same transaction, as Oracle may not be able to optimize the
refresh phase.

For ON COMMIT materialized views, where refreshes automatically occur at the end
of each transaction, it may not be possible to isolate the DML statements, in which
case keeping the transactions short will help. However, if you plan to make
numerous modifications to the detail table, it may be better to perform them in
one transaction, so that refresh of the materialized view is performed just once at
commit time rather than after each update.

■ Oracle recommends partitioning the tables because it enables you to use:

■ Parallel DML

For large loads or refresh, enabling parallel DML helps shorten the length of
time for the operation.

■ Partition change tracking (PCT) fast refresh

You can refresh your materialized views fast after partition maintenance
operations on the detail tables. "About Partition Change Tracking" on page 6-1
for details on enabling PCT for materialized views.

■ Partitioning the materialized view also helps refresh performance as refresh can
update the materialized view using parallel DML. For example, assume that the
detail tables and materialized view are partitioned and have a parallel clause. The
following sequence would enable Oracle to parallelize the refresh of the
materialized view.

1. Bulk load into the detail table.

2. Enable parallel DML with an ALTER SESSION ENABLE PARALLEL DML statement.

3. Refresh the materialized view.

■ For refresh using DBMS_MVIEW.REFRESH, set the parameter atomic_refresh to
FALSE.

■ For COMPLETE refresh, this causes a TRUNCATE to delete existing rows in the
materialized view, which is faster than a delete.

■ For PCT refresh, if the materialized view is partitioned appropriately, this uses
TRUNCATE PARTITION to delete rows in the affected partitions of the
materialized view, which is faster than a delete.

■ For FAST or FORCE refresh, if COMPLETE or PCT refresh is chosen, this is able to
use the TRUNCATE optimizations described earlier.

■ When using DBMS_MVIEW.REFRESH with JOB_QUEUES, remember to set atomic to
FALSE. Otherwise, JOB_QUEUES is not used. Set the number of job queue processes
greater than the number of processors.

If job queues are enabled and there are many materialized views to refresh, it is
faster to refresh all of them in a single command than to call them individually.

Tips for Refreshing Materialized Views

7-16 Oracle Database Data Warehousing Guide

■ Use REFRESH FORCE to ensure refreshing a materialized view so that it can
definitely be used for query rewrite. The best refresh method is chosen. If a fast
refresh cannot be done, a complete refresh is performed.

■ Refresh all the materialized views in a single procedure call. This gives Oracle an
opportunity to schedule refresh of all the materialized views in the right order
taking into account dependencies imposed by nested materialized views and
potential for efficient refresh by using query rewrite against other materialized
views.

Tips for Refreshing Materialized Views Without Aggregates
If a materialized view contains joins but no aggregates, then having an index on each
of the join column rowids in the detail table enhances refresh performance greatly,
because this type of materialized view tends to be much larger than materialized
views containing aggregates. For example, consider the following materialized view:

CREATE MATERIALIZED VIEW detail_fact_mv BUILD IMMEDIATE AS
SELECT s.rowid "sales_rid", t.rowid "times_rid", c.rowid "cust_rid",
 c.cust_state_province, t.week_ending_day, s.amount_sold
FROM sales s, times t, customers c
WHERE s.time_id = t.time_id AND s.cust_id = c.cust_id;

Indexes should be created on columns sales_rid, times_rid and cust_rid.
Partitioning is highly recommended, as is enabling parallel DML in the session before
invoking refresh, because it greatly enhances refresh performance.

This type of materialized view can also be fast refreshed if DML is performed on the
detail table. It is recommended that the same procedure be applied to this type of
materialized view as for a single table aggregate. That is, perform one type of change
(direct-path INSERT or DML) and then refresh the materialized view. This is because
Oracle Database can perform significant optimizations if it detects that only one type
of change has been done.

Also, Oracle recommends that the refresh be invoked after each table is loaded, rather
than load all the tables and then perform the refresh.

For refresh ON COMMIT, Oracle keeps track of the type of DML done in the committed
transaction. Oracle therefore recommends that you do not perform direct-path and
conventional DML to other tables in the same transaction because Oracle may not be
able to optimize the refresh phase. For example, the following is not recommended:

1. Direct load new data into the fact table

2. DML into the store table

3. Commit

Also, try not to mix different types of conventional DML statements if possible. This
would again prevent using various optimizations during fast refresh. For example, try
to avoid the following:

1. Insert into the fact table

2. Delete from the fact table

3. Commit

If many updates are needed, try to group them all into one transaction because refresh
is performed just once at commit time, rather than after each update.

In a data warehousing environment, assuming that the materialized view has a
parallel clause, the following sequence of steps is recommended:

Tips for Refreshing Materialized Views

Refreshing Materialized Views 7-17

1. Bulk load into the fact table

2. Enable parallel DML

3. An ALTER SESSION ENABLE PARALLEL DML statement

4. Refresh the materialized view

Tips for Refreshing Nested Materialized Views
All underlying objects are treated as ordinary tables when refreshing materialized
views. If the ON COMMIT refresh option is specified, then all the materialized views are
refreshed in the appropriate order at commit time. In other words, Oracle builds a
partially ordered set of materialized views and refreshes them such that, after the
successful completion of the refresh, all the materialized views are fresh. The status of
the materialized views can be checked by querying the appropriate USER_, DBA_, or
ALL_MVIEWS view.

If any of the materialized views are defined as ON DEMAND refresh (irrespective of
whether the refresh method is FAST, FORCE, or COMPLETE), you must refresh them in the
correct order (taking into account the dependencies between the materialized views)
because the nested materialized view are refreshed with respect to the current contents
of the other materialized views (whether fresh or not). This can be achieved by
invoking the refresh procedure against the materialized view at the top of the nested
hierarchy and specifying the nested parameter as TRUE.

If a refresh fails during commit time, the list of materialized views that has not been
refreshed is written to the alert log, and you must manually refresh them along with
all their dependent materialized views.

Use the same DBMS_MVIEW procedures on nested materialized views that you use on
regular materialized views.

These procedures have the following behavior when used with nested materialized
views:

■ If REFRESH is applied to a materialized view my_mv that is built on other
materialized views, then my_mv is refreshed with respect to the current contents of
the other materialized views (that is, the other materialized views are not made
fresh first) unless you specify nested => TRUE.

■ If REFRESH_DEPENDENT is applied to materialized view my_mv, then only
materialized views that directly depend on my_mv are refreshed (that is, a
materialized view that depends on a materialized view that depends on my_mv will
not be refreshed) unless you specify nested => TRUE.

■ If REFRESH_ALL_MVIEWS is used, the order in which the materialized views are
refreshed is guaranteed to respect the dependencies between nested materialized
views.

■ GET_MV_DEPENDENCIES provides a list of the immediate (or direct) materialized
view dependencies for an object.

Tips for Fast Refresh with UNION ALL
You can use fast refresh for materialized views that use the UNION ALL operator by
providing a maintenance column in the definition of the materialized view. For
example, a materialized view with a UNION ALL operator can be made fast refreshable
as follows:

CREATE MATERIALIZED VIEW fast_rf_union_all_mv AS

Using Materialized Views with Partitioned Tables

7-18 Oracle Database Data Warehousing Guide

SELECT x.rowid AS r1, y.rowid AS r2, a, b, c, 1 AS marker
FROM x, y WHERE x.a = y.b
UNION ALL
SELECT p.rowid, r.rowid, a, c, d, 2 AS marker
FROM p, r WHERE p.a = r.y;

The form of a maintenance marker column, column MARKER in the example, must be
numeric_or_string_literal AS column_alias, where each UNION ALL member has a
distinct value for numeric_or_string_literal.

Tips for Fast Refresh with Commit SCN-Based Materialized View Logs
You can often improve fast refresh performance by ensuring that your materialized
view logs on the base table contain a WITH COMMIT SCN clause, often significantly. By
optimizing materialized view log processing WITH COMMIT SCN, the fast refresh process
can save time. The following example illustrates how to use this clause:

CREATE MATERIALIZED VIEW LOG ON sales WITH ROWID
 (prod_id, cust_id, time_id, channel_id, promo_id, quantity_sold, amount_sold),
COMMIT SCN INCLUDING NEW VALUES;

The materialized view refresh automatically uses the commit SCN-based materialized
view log to save refresh time.

Note that only new materialized view logs can take advantage of COMMIT SCN. Existing
materialized view logs cannot be altered to add COMMIT SCN unless they are dropped
and recreated.

When a materialized view is created on both base tables with timestamp-based
materialized view logs and base tables with commit SCN-based materialized view
logs, an error (ORA-32414) is raised stating that materialized view logs are not
compatible with each other for fast refresh.

Tips After Refreshing Materialized Views
After you have performed a load or incremental load and rebuilt the detail table
indexes, you must re-enable integrity constraints (if any) and refresh the materialized
views and materialized view indexes that are derived from that detail data. In a data
warehouse environment, referential integrity constraints are normally enabled with
the NOVALIDATE or RELY options. An important decision to make before performing a
refresh operation is whether the refresh needs to be recoverable. Because materialized
view data is redundant and can always be reconstructed from the detail tables, it
might be preferable to disable logging on the materialized view. To disable logging
and run incremental refresh non-recoverably, use the ALTER MATERIALIZED VIEW ...
NOLOGGING statement prior to refreshing.

If the materialized view is being refreshed using the ON COMMIT method, then,
following refresh operations, consult the alert log alert_SID.log and the trace file
ora_SID_number.trc to check that no errors have occurred.

Using Materialized Views with Partitioned Tables
A major maintenance component of a data warehouse is synchronizing (refreshing)
the materialized views when the detail data changes. Partitioning the underlying
detail tables can reduce the amount of time taken to perform the refresh task. This is
possible because partitioning enables refresh to use parallel DML to update the
materialized view. Also, it enables the use of partition change tracking.

Using Materialized Views with Partitioned Tables

Refreshing Materialized Views 7-19

"Fast Refresh with Partition Change Tracking" on page 7-19 provides additional
information about PCT refresh.

Fast Refresh with Partition Change Tracking
In a data warehouse, changes to the detail tables can often entail partition maintenance
operations, such as DROP, EXCHANGE, MERGE, and ADD PARTITION. To maintain the
materialized view after such operations used to require manual maintenance (see also
CONSIDER FRESH) or complete refresh. You now have the option of using an addition to
fast refresh known as partition change tracking (PCT) refresh.

For PCT to be available, the detail tables must be partitioned. The partitioning of the
materialized view itself has no bearing on this feature. If PCT refresh is possible, it
occurs automatically and no user intervention is required in order for it to occur. See
"About Partition Change Tracking" on page 6-1 for PCT requirements.

The following examples illustrate the use of this feature:

■ PCT Fast Refresh Scenario 1

■ PCT Fast Refresh Scenario 2

■ PCT Fast Refresh Scenario 3

PCT Fast Refresh Scenario 1
In this scenario, assume sales is a partitioned table using the time_id column and
products is partitioned by the prod_category column. The table times is not a
partitioned table.

1. Create the materialized view. The following materialized view satisfies
requirements for PCT.

CREATE MATERIALIZED VIEW cust_mth_sales_mv
BUILD IMMEDIATE
REFRESH FAST ON DEMAND
ENABLE QUERY REWRITE AS
SELECT s.time_id, s.prod_id, SUM(s.quantity_sold), SUM(s.amount_sold),
 p.prod_name, t.calendar_month_name, COUNT(*),
 COUNT(s.quantity_sold), COUNT(s.amount_sold)
FROM sales s, products p, times t
WHERE s.time_id = t.time_id AND s.prod_id = p.prod_id
GROUP BY t.calendar_month_name, s.prod_id, p.prod_name, s.time_id;

2. Run the DBMS_MVIEW.EXPLAIN_MVIEW procedure to determine which tables allow
PCT refresh.

MVNAME CAPABILITY_NAME POSSIBLE RELATED_TEXT MSGTXT
----------------- --------------- -------- ------------ ----------------
CUST_MTH_SALES_MV PCT Y SALES
CUST_MTH_SALES_MV PCT_TABLE Y SALES
CUST_MTH_SALES_MV PCT_TABLE N PRODUCTS no partition key
 or PMARKER
 in SELECT list
CUST_MTH_SALES_MV PCT_TABLE N TIMES relation is not
 partitionedtable

As can be seen from the partial sample output from EXPLAIN_MVIEW, any partition
maintenance operation performed on the sales table allows PCT fast refresh.
However, PCT is not possible after partition maintenance operations or updates to
the products table as there is insufficient information contained in cust_mth_

Using Materialized Views with Partitioned Tables

7-20 Oracle Database Data Warehousing Guide

sales_mv for PCT refresh to be possible. Note that the times table is not
partitioned and hence can never allow for PCT refresh. Oracle Database applies
PCT refresh if it can determine that the materialized view has sufficient
information to support PCT for all the updated tables. You can verify which
partitions are fresh and stale with views such as DBA_MVIEWS and DBA_MVIEW_
DETAIL_PARTITION.

See "Analyzing Materialized View Capabilities" on page 5-31 for information on
how to use this procedure and also some details regarding PCT-related views.

3. Suppose at some later point, a SPLIT operation of one partition in the sales table
becomes necessary.

ALTER TABLE SALES
SPLIT PARTITION month3 AT (TO_DATE('05-02-1998', 'DD-MM-YYYY'))
INTO (PARTITION month3_1 TABLESPACE summ,
 PARTITION month3 TABLESPACE summ);

4. Insert some data into the sales table.

5. Fast refresh cust_mth_sales_mv using the DBMS_MVIEW.REFRESH procedure.

EXECUTE DBMS_MVIEW.REFRESH('CUST_MTH_SALES_MV', 'F',
 '',TRUE,FALSE,0,0,0,FALSE);

Fast refresh automatically performs a PCT refresh as it is the only fast refresh possible
in this scenario. However, fast refresh will not occur if a partition maintenance
operation occurs when any update has taken place to a table on which PCT is not
enabled. This is shown in "PCT Fast Refresh Scenario 2".

"PCT Fast Refresh Scenario 1" would also be appropriate if the materialized view was
created using the PMARKER clause as illustrated in the following:

CREATE MATERIALIZED VIEW cust_sales_marker_mv
BUILD IMMEDIATE
REFRESH FAST ON DEMAND
ENABLE QUERY REWRITE AS
SELECT DBMS_MVIEW.PMARKER(s.rowid) s_marker, SUM(s.quantity_sold),
 SUM(s.amount_sold), p.prod_name, t.calendar_month_name, COUNT(*),
 COUNT(s.quantity_sold), COUNT(s.amount_sold)
FROM sales s, products p, times t
WHERE s.time_id = t.time_id AND s.prod_id = p.prod_id
GROUP BY DBMS_MVIEW.PMARKER(s.rowid),
 p.prod_name, t.calendar_month_name;

PCT Fast Refresh Scenario 2
In this scenario, the first three steps are the same as in "PCT Fast Refresh Scenario 1" on
page 7-19. Then, the SPLIT partition operation to the sales table is performed, but
before the materialized view refresh occurs, records are inserted into the times table.

1. The same as in "PCT Fast Refresh Scenario 1".

2. The same as in "PCT Fast Refresh Scenario 1".

3. The same as in "PCT Fast Refresh Scenario 1".

4. After issuing the same SPLIT operation, as shown in "PCT Fast Refresh Scenario 1",
some data is inserted into the times table.

ALTER TABLE SALES
SPLIT PARTITION month3 AT (TO_DATE('05-02-1998', 'DD-MM-YYYY'))
INTO (PARTIITION month3_1 TABLESPACE summ,
 PARTITION month3 TABLESPACE summ);

Using Partitioning to Improve Data Warehouse Refresh

Refreshing Materialized Views 7-21

5. Refresh cust_mth_sales_mv.

EXECUTE DBMS_MVIEW.REFRESH('CUST_MTH_SALES_MV', 'F',
 '', TRUE, FALSE, 0, 0, 0, FALSE, FALSE);
ORA-12052: cannot fast refresh materialized view SH.CUST_MTH_SALES_MV

The materialized view is not fast refreshable because DML has occurred to a table on
which PCT fast refresh is not possible. To avoid this occurring, Oracle recommends
performing a fast refresh immediately after any partition maintenance operation on
detail tables for which partition tracking fast refresh is available.

If the situation in "PCT Fast Refresh Scenario 2" occurs, there are two possibilities;
perform a complete refresh or switch to the CONSIDER FRESH option outlined in the
following, if suitable. However, it should be noted that CONSIDER FRESH and partition
change tracking fast refresh are not compatible. Once the ALTER MATERIALIZED VIEW
cust_mth_sales_mv CONSIDER FRESH statement has been issued, PCT refresh is no
longer be applied to this materialized view, until a complete refresh is done. Moreover,
you should not use CONSIDER FRESH unless you have taken manual action to ensure
that the materialized view is indeed fresh.

A common situation in a data warehouse is the use of rolling windows of data. In this
case, the detail table and the materialized view may contain say the last 12 months of
data. Every month, new data for a month is added to the table and the oldest month is
deleted (or maybe archived). PCT refresh provides a very efficient mechanism to
maintain the materialized view in this case.

PCT Fast Refresh Scenario 3
1. The new data is usually added to the detail table by adding a new partition and

exchanging it with a table containing the new data.

ALTER TABLE sales ADD PARTITION month_new ...
ALTER TABLE sales EXCHANGE PARTITION month_new month_new_table

2. Next, the oldest partition is dropped or truncated.

ALTER TABLE sales DROP PARTITION month_oldest;

3. Now, if the materialized view satisfies all conditions for PCT refresh.

EXECUTE DBMS_MVIEW.REFRESH('CUST_MTH_SALES_MV', 'F', '', TRUE, FALSE, 0, 0, 0,
FALSE, FALSE);

Fast refresh will automatically detect that PCT is available and perform a PCT refresh.

Using Partitioning to Improve Data Warehouse Refresh
ETL (Extraction, Transformation and Loading) is done on a scheduled basis to reflect
changes made to the original source system. During this step, you physically insert the
new, clean data into the production data warehouse schema, and take all of the other
steps necessary (such as building indexes, validating constraints, taking backups) to
make this new data available to the end users. Once all of this data has been loaded
into the data warehouse, the materialized views have to be updated to reflect the latest
data.

The partitioning scheme of the data warehouse is often crucial in determining the
efficiency of refresh operations in the data warehouse load process. In fact, the load
process is often the primary consideration in choosing the partitioning scheme of data
warehouse tables and indexes.

Using Partitioning to Improve Data Warehouse Refresh

7-22 Oracle Database Data Warehousing Guide

The partitioning scheme of the largest data warehouse tables (for example, the fact
table in a star schema) should be based upon the loading paradigm of the data
warehouse.

Most data warehouses are loaded with new data on a regular schedule. For example,
every night, week, or month, new data is brought into the data warehouse. The data
being loaded at the end of the week or month typically corresponds to the transactions
for the week or month. In this very common scenario, the data warehouse is being
loaded by time. This suggests that the data warehouse tables should be partitioned on
a date column. In our data warehouse example, suppose the new data is loaded into
the sales table every month. Furthermore, the sales table has been partitioned by
month. These steps show how the load process proceeds to add the data for a new
month (January 2001) to the table sales.

1. Place the new data into a separate table, sales_01_2001. This data can be directly
loaded into sales_01_2001 from outside the data warehouse, or this data can be
the result of previous data transformation operations that have already occurred in
the data warehouse. sales_01_2001 has the exact same columns, data types, and
so forth, as the sales table. Gather statistics on the sales_01_2001 table.

2. Create indexes and add constraints on sales_01_2001. Again, the indexes and
constraints on sales_01_2001 should be identical to the indexes and constraints
on sales. Indexes can be built in parallel and should use the NOLOGGING and the
COMPUTE STATISTICS options. For example:

CREATE BITMAP INDEX sales_01_2001_customer_id_bix
 ON sales_01_2001(customer_id)
 TABLESPACE sales_idx NOLOGGING PARALLEL 8 COMPUTE STATISTICS;

Apply all constraints to the sales_01_2001 table that are present on the sales
table. This includes referential integrity constraints. A typical constraint would be:

ALTER TABLE sales_01_2001 ADD CONSTRAINT sales_customer_id
 REFERENCES customer(customer_id) ENABLE NOVALIDATE;

If the partitioned table sales has a primary or unique key that is enforced with a
global index structure, ensure that the constraint on sales_pk_jan01 is validated
without the creation of an index structure, as in the following:

ALTER TABLE sales_01_2001 ADD CONSTRAINT sales_pk_jan01
PRIMARY KEY (sales_transaction_id) DISABLE VALIDATE;

The creation of the constraint with ENABLE clause would cause the creation of a
unique index, which does not match a local index structure of the partitioned
table. You must not have any index structure built on the nonpartitioned table to
be exchanged for existing global indexes of the partitioned table. The exchange
command would fail.

3. Add the sales_01_2001 table to the sales table.

In order to add this new data to the sales table, you must do two things. First,
you must add a new partition to the sales table. You use an ALTER TABLE ... ADD
PARTITION statement. This adds an empty partition to the sales table:

ALTER TABLE sales ADD PARTITION sales_01_2001
VALUES LESS THAN (TO_DATE('01-FEB-2001', 'DD-MON-YYYY'));

Then, you can add our newly created table to this partition using the EXCHANGE
PARTITION operation. This exchanges the new, empty partition with the newly
loaded table.

Using Partitioning to Improve Data Warehouse Refresh

Refreshing Materialized Views 7-23

ALTER TABLE sales EXCHANGE PARTITION sales_01_2001 WITH TABLE sales_01_2001
INCLUDING INDEXES WITHOUT VALIDATION UPDATE GLOBAL INDEXES;

The EXCHANGE operation preserves the indexes and constraints that were already
present on the sales_01_2001 table. For unique constraints (such as the unique
constraint on sales_transaction_id), you can use the UPDATE GLOBAL INDEXES
clause, as shown previously. This automatically maintains your global index
structures as part of the partition maintenance operation and keep them accessible
throughout the whole process. If there were only foreign-key constraints, the
exchange operation would be instantaneous.

Note that, if you use synchronous refresh, instead of performing Step 3, you must
register the sales_01_2001 table using the DBMS_SYNC_REFRESH.REGISTER_
PARTITION_OPERATION package. See Chapter 8, "Synchronous Refresh" for more
information.

The benefits of this partitioning technique are significant. First, the new data is loaded
with minimal resource utilization. The new data is loaded into an entirely separate
table, and the index processing and constraint processing are applied only to the new
partition. If the sales table was 50 GB and had 12 partitions, then a new month's
worth of data contains approximately four GB. Only the new month's worth of data
must be indexed. None of the indexes on the remaining 46 GB of data must be
modified at all. This partitioning scheme additionally ensures that the load processing
time is directly proportional to the amount of new data being loaded, not to the total
size of the sales table.

Second, the new data is loaded with minimal impact on concurrent queries. All of the
operations associated with data loading are occurring on a separate sales_01_2001
table. Therefore, none of the existing data or indexes of the sales table is affected
during this data refresh process. The sales table and its indexes remain entirely
untouched throughout this refresh process.

Third, in case of the existence of any global indexes, those are incrementally
maintained as part of the exchange command. This maintenance does not affect the
availability of the existing global index structures.

The exchange operation can be viewed as a publishing mechanism. Until the data
warehouse administrator exchanges the sales_01_2001 table into the sales table, end
users cannot see the new data. Once the exchange has occurred, then any end user
query accessing the sales table is immediately able to see the sales_01_2001 data.

Partitioning is useful not only for adding new data but also for removing and
archiving data. Many data warehouses maintain a rolling window of data. For
example, the data warehouse stores the most recent 36 months of sales data. Just as a
new partition can be added to the sales table (as described earlier), an old partition
can be quickly (and independently) removed from the sales table. These two benefits
(reduced resources utilization and minimal end-user impact) are just as pertinent to
removing a partition as they are to adding a partition.

Removing data from a partitioned table does not necessarily mean that the old data is
physically deleted from the database. There are two alternatives for removing old data
from a partitioned table. First, you can physically delete all data from the database by
dropping the partition containing the old data, thus freeing the allocated space:

ALTER TABLE sales DROP PARTITION sales_01_1998;

Also, you can exchange the old partition with an empty table of the same structure;
this empty table is created equivalent to steps 1 and 2 described in the load process.
Assuming the new empty table stub is named sales_archive_01_1998, the following
SQL statement empties partition sales_01_1998:

Using Partitioning to Improve Data Warehouse Refresh

7-24 Oracle Database Data Warehousing Guide

ALTER TABLE sales EXCHANGE PARTITION sales_01_1998
WITH TABLE sales_archive_01_1998 INCLUDING INDEXES WITHOUT VALIDATION
UPDATE GLOBAL INDEXES;

Note that the old data is still existent as the exchanged, nonpartitioned table sales_
archive_01_1998.

If the partitioned table was setup in a way that every partition is stored in a separate
tablespace, you can archive (or transport) this table using Oracle Database's
transportable tablespace framework before dropping the actual data (the tablespace).
See "Transportation Using Transportable Tablespaces" on page 16-2 for further details
regarding transportable tablespaces.

In some situations, you might not want to drop the old data immediately, but keep it
as part of the partitioned table; although the data is no longer of main interest, there
are still potential queries accessing this old, read-only data. You can use Oracle's data
compression to minimize the space usage of the old data. You also assume that at least
one compressed partition is already part of the partitioned table.

Refresh Scenarios
A typical scenario might not only need to compress old data, but also to merge several
old partitions to reflect the granularity for a later backup of several merged partitions.
Let us assume that a backup (partition) granularity is on a quarterly base for any
quarter, where the oldest month is more than 36 months behind the most recent
month. In this case, you are therefore compressing and merging sales_01_1998,
sales_02_1998, and sales_03_1998 into a new, compressed partition sales_q1_1998.

1. Create the new merged partition in parallel in another tablespace. The partition is
compressed as part of the MERGE operation:

ALTER TABLE sales MERGE PARTITIONS sales_01_1998, sales_02_1998, sales_03_1998
 INTO PARTITION sales_q1_1998 TABLESPACE archive_q1_1998
COMPRESS UPDATE GLOBAL INDEXES PARALLEL 4;

2. The partition MERGE operation invalidates the local indexes for the new merged
partition. You therefore have to rebuild them:

ALTER TABLE sales MODIFY PARTITION sales_q1_1998
REBUILD UNUSABLE LOCAL INDEXES;

Alternatively, you can choose to create the new compressed table outside the
partitioned table and exchange it back. The performance and the temporary space
consumption is identical for both methods:

1. Create an intermediate table to hold the new merged information. The following
statement inherits all NOT NULL constraints from the original table by default:

CREATE TABLE sales_q1_1998_out TABLESPACE archive_q1_1998
NOLOGGING COMPRESS PARALLEL 4 AS SELECT * FROM sales
WHERE time_id >= TO_DATE('01-JAN-1998','dd-mon-yyyy')
 AND time_id < TO_DATE('01-APR-1998','dd-mon-yyyy');

See Also:

■ Oracle Database Administrator's Guide for more information
regarding table compression

■ Oracle Database VLDB and Partitioning Guide for more information
regarding partitioning and table compression

Using Partitioning to Improve Data Warehouse Refresh

Refreshing Materialized Views 7-25

2. Create the equivalent index structure for table sales_q1_1998_out than for the
existing table sales.

3. Prepare the existing table sales for the exchange with the new compressed table
sales_q1_1998_out. Because the table to be exchanged contains data actually
covered in three partitions, you have to create one matching partition, having the
range boundaries you are looking for. You simply have to drop two of the existing
partitions. Note that you have to drop the lower two partitions sales_01_1998 and
sales_02_1998; the lower boundary of a range partition is always defined by the
upper (exclusive) boundary of the previous partition:

ALTER TABLE sales DROP PARTITION sales_01_1998;
ALTER TABLE sales DROP PARTITION sales_02_1998;

4. You can now exchange table sales_q1_1998_out with partition sales_03_1998.
Unlike what the name of the partition suggests, its boundaries cover Q1-1998.

ALTER TABLE sales EXCHANGE PARTITION sales_03_1998
WITH TABLE sales_q1_1998_out INCLUDING INDEXES WITHOUT VALIDATION
UPDATE GLOBAL INDEXES;

Both methods apply to slightly different business scenarios: Using the MERGE
PARTITION approach invalidates the local index structures for the affected partition,
but it keeps all data accessible all the time. Any attempt to access the affected partition
through one of the unusable index structures raises an error. The limited availability
time is approximately the time for re-creating the local bitmap index structures. In
most cases, this can be neglected, because this part of the partitioned table should not
be accessed too often.

The CTAS approach, however, minimizes unavailability of any index structures close
to zero, but there is a specific time window, where the partitioned table does not have
all the data, because you dropped two partitions. The limited availability time is
approximately the time for exchanging the table. Depending on the existence and
number of global indexes, this time window varies. Without any existing global
indexes, this time window is a matter of a fraction to few seconds.

These examples are a simplification of the data warehouse rolling window load
scenario. Real-world data warehouse refresh characteristics are always more complex.
However, the advantages of this rolling window approach are not diminished in more
complex scenarios.

Note that before you add single or multiple compressed partitions to a partitioned
table for the first time, all local bitmap indexes must be either dropped or marked
unusable. After the first compressed partition is added, no additional actions are
necessary for all subsequent operations involving compressed partitions. It is
irrelevant how the compressed partitions are added to the partitioned table.

Scenarios for Using Partitioning for Refreshing Data Warehouses
This section describes the following two typical scenarios where partitioning is used
with refresh:

■ Refresh Scenario 1

See Also:

■ Oracle Database VLDB and Partitioning Guide for more information
regarding partitioning and table compression

■ Oracle Database Administrator's Guide for further details about
partitioning and table compression.

Optimizing DML Operations During Refresh

7-26 Oracle Database Data Warehousing Guide

■ Refresh Scenario 2

Refresh Scenario 1
Data is loaded daily. However, the data warehouse contains two years of data, so that
partitioning by day might not be desired.

The solution is to partition by week or month (as appropriate). Use INSERT to add the
new data to an existing partition. The INSERT operation only affects a single partition,
so the benefits described previously remain intact. The INSERT operation could occur
while the partition remains a part of the table. Inserts into a single partition can be
parallelized:

INSERT /*+ APPEND*/ INTO sales PARTITION (sales_01_2001)
SELECT * FROM new_sales;

The indexes of this sales partition is maintained in parallel as well. An alternative is
to use the EXCHANGE operation. You can do this by exchanging the sales_01_2001
partition of the sales table and then using an INSERT operation. You might prefer this
technique when dropping and rebuilding indexes is more efficient than maintaining
them.

Refresh Scenario 2
New data feeds, although consisting primarily of data for the most recent day, week,
and month, also contain some data from previous time periods.

Solution 1 Use parallel SQL operations (such as CREATE TABLE ... AS SELECT) to separate
the new data from the data in previous time periods. Process the old data separately
using other techniques.

New data feeds are not solely time based. You can also feed new data into a data
warehouse with data from multiple operational systems on a business need basis. For
example, the sales data from direct channels may come into the data warehouse
separately from the data from indirect channels. For business reasons, it may
furthermore make sense to keep the direct and indirect data in separate partitions.

Solution 2 Oracle supports composite range-list partitioning. The primary partitioning
strategy of the sales table could be range partitioning based on time_id as shown in
the example. However, the subpartitioning is a list based on the channel attribute.
Each subpartition can now be loaded independently of each other (for each distinct
channel) and added in a rolling window operation as discussed before. The
partitioning strategy addresses the business needs in the most optimal manner.

Optimizing DML Operations During Refresh
You can optimize DML performance through the following techniques:

■ Implementing an Efficient MERGE Operation

■ Maintaining Referential Integrity

■ Purging Data

Implementing an Efficient MERGE Operation
Commonly, the data that is extracted from a source system is not simply a list of new
records that needs to be inserted into the data warehouse. Instead, this new data set is
a combination of new records as well as modified records. For example, suppose that

Optimizing DML Operations During Refresh

Refreshing Materialized Views 7-27

most of data extracted from the OLTP systems will be new sales transactions. These
records are inserted into the warehouse's sales table, but some records may reflect
modifications of previous transactions, such as returned merchandise or transactions
that were incomplete or incorrect when initially loaded into the data warehouse. These
records require updates to the sales table.

As a typical scenario, suppose that there is a table called new_sales that contains both
inserts and updates that are applied to the sales table. When designing the entire data
warehouse load process, it was determined that the new_sales table would contain
records with the following semantics:

■ If a given sales_transaction_id of a record in new_sales already exists in sales,
then update the sales table by adding the sales_dollar_amount and sales_
quantity_sold values from the new_sales table to the existing row in the sales
table.

■ Otherwise, insert the entire new record from the new_sales table into the sales
table.

This UPDATE-ELSE-INSERT operation is often called a merge. A merge can be executed
using one SQL statement.

Example 7–5 MERGE Operation

MERGE INTO sales s USING new_sales n
ON (s.sales_transaction_id = n.sales_transaction_id)
WHEN MATCHED THEN
UPDATE SET s.sales_quantity_sold = s.sales_quantity_sold + n.sales_quantity_sold,
 s.sales_dollar_amount = s.sales_dollar_amount + n.sales_dollar_amount
WHEN NOT MATCHED THEN INSERT (sales_transaction_id, sales_quantity_sold,
sales_dollar_amount)
VALUES (n.sales_transcation_id, n.sales_quantity_sold, n.sales_dollar_amount);

In addition to using the MERGE statement for unconditional UPDATE ELSE INSERT
functionality into a target table, you can also use it to:

■ Perform an UPDATE only or INSERT only statement.

■ Apply additional WHERE conditions for the UPDATE or INSERT portion of the MERGE
statement.

■ The UPDATE operation can even delete rows if a specific condition yields true.

Example 7–6 Omitting the INSERT Clause

In some data warehouse applications, it is not allowed to add new rows to historical
information, but only to update them. It may also happen that you do not want to
update but only insert new information. The following example demonstrates
INSERT-only with UPDATE-only functionality:

MERGE USING Product_Changes S -- Source/Delta table
INTO Products D1 -- Destination table 1
ON (D1.PROD_ID = S.PROD_ID) -- Search/Join condition
WHEN MATCHED THEN UPDATE -- update if join
SET D1.PROD_STATUS = S.PROD_NEW_STATUS

Example 7–7 Omitting the UPDATE Clause

The following statement illustrates an example of omitting an UPDATE:

MERGE USING New_Product S -- Source/Delta table
INTO Products D2 -- Destination table 2

Optimizing DML Operations During Refresh

7-28 Oracle Database Data Warehousing Guide

ON (D2.PROD_ID = S.PROD_ID) -- Search/Join condition
WHEN NOT MATCHED THEN -- insert if no join
INSERT (PROD_ID, PROD_STATUS) VALUES (S.PROD_ID, S.PROD_NEW_STATUS)

When the INSERT clause is omitted, Oracle Database performs a regular join of the
source and the target tables. When the UPDATE clause is omitted, Oracle Database
performs an antijoin of the source and the target tables. This makes the join between
the source and target table more efficient.

Example 7–8 Skipping the UPDATE Clause

In some situations, you may want to skip the UPDATE operation when merging a given
row into the table. In this case, you can use an optional WHERE clause in the UPDATE
clause of the MERGE. As a result, the UPDATE operation only executes when a given
condition is true. The following statement illustrates an example of skipping the
UPDATE operation:

MERGE
USING Product_Changes S -- Source/Delta table
INTO Products P -- Destination table 1
ON (P.PROD_ID = S.PROD_ID) -- Search/Join condition
WHEN MATCHED THEN
UPDATE -- update if join
SET P.PROD_LIST_PRICE = S.PROD_NEW_PRICE
WHERE P.PROD_STATUS <> "OBSOLETE" -- Conditional UPDATE

This shows how the UPDATE operation would be skipped if the condition P.PROD_
STATUS <> "OBSOLETE" is not true. The condition predicate can refer to both the target
and the source table.

Example 7–9 Conditional Inserts with MERGE Statements

You may want to skip the INSERT operation when merging a given row into the table.
So an optional WHERE clause is added to the INSERT clause of the MERGE. As a result, the
INSERT operation only executes when a given condition is true. The following
statement offers an example:

MERGE USING Product_Changes S -- Source/Delta table
INTO Products P -- Destination table 1
ON (P.PROD_ID = S.PROD_ID) -- Search/Join condition
WHEN MATCHED THEN UPDATE -- update if join
SET P.PROD_LIST_PRICE = S.PROD_NEW_PRICE
WHERE P.PROD_STATUS <> "OBSOLETE" -- Conditional
WHEN NOT MATCHED THEN
INSERT (PROD_ID, PROD_STATUS, PROD_LIST_PRICE) -- insert if not join
VALUES (S.PROD_ID, S.PROD_NEW_STATUS, S.PROD_NEW_PRICE)
WHERE S.PROD_STATUS <> "OBSOLETE"; -- Conditional INSERT

This example shows that the INSERT operation would be skipped if the condition
S.PROD_STATUS <> "OBSOLETE" is not true, and INSERT only occurs if the condition is
true. The condition predicate can refer to the source table only. The condition predicate
can only refer to the source table.

Example 7–10 Using the DELETE Clause with MERGE Statements

You may want to cleanse tables while populating or updating them. To do this, you
may want to consider using the DELETE clause in a MERGE statement, as in the following
example:

MERGE USING Product_Changes S

Optimizing DML Operations During Refresh

Refreshing Materialized Views 7-29

INTO Products D ON (D.PROD_ID = S.PROD_ID)
WHEN MATCHED THEN
UPDATE SET D.PROD_LIST_PRICE =S.PROD_NEW_PRICE, D.PROD_STATUS = S.PROD_NEWSTATUS
DELETE WHERE (D.PROD_STATUS = "OBSOLETE")
WHEN NOT MATCHED THEN
INSERT (PROD_ID, PROD_LIST_PRICE, PROD_STATUS)
VALUES (S.PROD_ID, S.PROD_NEW_PRICE, S.PROD_NEW_STATUS);

Thus when a row is updated in products, Oracle checks the delete condition D.PROD_
STATUS = "OBSOLETE", and deletes the row if the condition yields true.

The DELETE operation is not as same as that of a complete DELETE statement. Only the
rows from the destination of the MERGE can be deleted. The only rows that are affected
by the DELETE are the ones that are updated by this MERGE statement. Thus, although a
given row of the destination table meets the delete condition, if it does not join under
the ON clause condition, it is not deleted.

Example 7–11 Unconditional Inserts with MERGE Statements

You may want to insert all of the source rows into a table. In this case, the join between
the source and target table can be avoided. By identifying special constant join
conditions that always result to FALSE, for example, 1=0, such MERGE statements are
optimized and the join condition are suppressed.

MERGE USING New_Product S -- Source/Delta table
INTO Products P -- Destination table 1
ON (1 = 0) -- Search/Join condition
WHEN NOT MATCHED THEN -- insert if no join
INSERT (PROD_ID, PROD_STATUS) VALUES (S.PROD_ID, S.PROD_NEW_STATUS)

Maintaining Referential Integrity
In some data warehousing environments, you might want to insert new data into
tables in order to guarantee referential integrity. For example, a data warehouse may
derive sales from an operational system that retrieves data directly from cash
registers. sales is refreshed nightly. However, the data for the product dimension
table may be derived from a separate operational system. The product dimension table
may only be refreshed once for each week, because the product table changes
relatively slowly. If a new product was introduced on Monday, then it is possible for
that product's product_id to appear in the sales data of the data warehouse before
that product_id has been inserted into the data warehouses product table.

Although the sales transactions of the new product may be valid, this sales data do not
satisfy the referential integrity constraint between the product dimension table and the
sales fact table. Rather than disallow the new sales transactions, you might choose to
insert the sales transactions into the sales table. However, you might also wish to
maintain the referential integrity relationship between the sales and product tables.
This can be accomplished by inserting new rows into the product table as placeholders
for the unknown products.

As in previous examples, assume that the new data for the sales table is staged in a
separate table, new_sales. Using a single INSERT statement (which can be parallelized),
the product table can be altered to reflect the new products:

INSERT INTO product
 (SELECT sales_product_id, 'Unknown Product Name', NULL, NULL ...
 FROM new_sales WHERE sales_product_id NOT IN
 (SELECT product_id FROM product));

Optimizing DML Operations During Refresh

7-30 Oracle Database Data Warehousing Guide

Purging Data
Occasionally, it is necessary to remove large amounts of data from a data warehouse. A
very common scenario is the rolling window discussed previously, in which older data
is rolled out of the data warehouse to make room for new data.

However, sometimes other data might need to be removed from a data warehouse.
Suppose that a retail company has previously sold products from XYZ Software, and
that XYZ Software has subsequently gone out of business. The business users of the
warehouse may decide that they are no longer interested in seeing any data related to
XYZ Software, so this data should be deleted.

One approach to removing a large volume of data is to use parallel delete as shown in
the following statement:

DELETE FROM sales WHERE sales_product_id IN (SELECT product_id
 FROM product WHERE product_category = 'XYZ Software');

This SQL statement spawns one parallel process for each partition. This approach is
much more efficient than a series of DELETE statements, and none of the data in the
sales table needs to be moved. However, this approach also has some disadvantages.
When removing a large percentage of rows, the DELETE statement leaves many empty
row-slots in the existing partitions. If new data is being loaded using a rolling window
technique (or is being loaded using direct-path INSERT or load), then this storage space
is not reclaimed. Moreover, even though the DELETE statement is parallelized, there
might be more efficient methods. An alternative method is to re-create the entire sales
table, keeping the data for all product categories except XYZ Software.

CREATE TABLE sales2 AS SELECT * FROM sales, product
WHERE sales.sales_product_id = product.product_id
AND product_category <> 'XYZ Software'
NOLOGGING PARALLEL (DEGREE 8)
#PARTITION ... ; #create indexes, constraints, and so on
DROP TABLE SALES;
RENAME SALES2 TO SALES;

This approach may be more efficient than a parallel delete. However, it is also costly in
terms of the amount of disk space, because the sales table must effectively be
instantiated twice.

An alternative method to utilize less space is to re-create the sales table one partition
at a time:

CREATE TABLE sales_temp AS SELECT * FROM sales WHERE 1=0;
INSERT INTO sales_temp
SELECT * FROM sales PARTITION (sales_99jan), product
WHERE sales.sales_product_id = product.product_id
AND product_category <> 'XYZ Software';
<create appropriate indexes and constraints on sales_temp>
ALTER TABLE sales EXCHANGE PARTITION sales_99jan WITH TABLE sales_temp;

Continue this process for each partition in the sales table.

8

Synchronous Refresh 8-1

8 Synchronous Refresh

This chapter describes a method to synchronize changes to the tables and materialized
views in a data warehouse. This method is based on synchronizing updates to tables
and materialized views, and is called synchronous refresh.

This chapter includes the following sections:

■ About Synchronous Refresh

■ Using Synchronous Refresh

■ Using Synchronous Refresh Groups

■ Specifying and Preparing Change Data

■ Troubleshooting Synchronous Refresh Operations

■ Performing Synchronous Refresh Eligibility Analysis

■ Overview of Synchronous Refresh Security Considerations

About Synchronous Refresh
Synchronous refresh is a refresh method introduced in Oracle Database 12c Release 1
that enables you to keep a set of tables and the materialized views defined on them to
be always in sync. It is well-suited for data warehouses, where the loading of
incremental data is tightly controlled and occurs at periodic intervals.

In most data warehouses, the fact tables are partitioned along the time dimension and,
very often, the incremental data load consists mainly of changes to recent time periods.
Synchronous refresh exploits these characteristics to greatly improve refresh
performance and throughput. This results in fast query performance for both planned
and ad hoc queries, which is key to a successful data warehouse.

This section describes the main requirements and basic concepts of synchronous
refresh, and includes the following:

■ What Is Synchronous Refresh?

■ Why Use Synchronous Refresh?

■ Registering Tables and Materialized Views for Synchronous Refresh

■ Specifying Change Data for Refresh

■ Synchronous Refresh Preparation and Execution

■ Materialized View Eligibility Rules and Restrictions for Synchronous Refresh

About Synchronous Refresh

8-2 Oracle Database Data Warehousing Guide

What Is Synchronous Refresh?
Synchronous refresh is a new approach for maintaining tables and materialized views
in a data warehouse where tables and materialized views are refreshed at the same
time. In traditional refresh methods, the changes are applied to the base tables and the
materialized views are refreshed separately with one of the following refresh methods:

■ Log-based incremental (fast) refresh using materialized view logs if such logs are
available

■ PCT refresh if it is applicable

■ Complete refresh

Synchronous refresh combines some elements of log-based incremental (fast) refresh
and PCT refresh methods, but it is applicable only to ON DEMAND materialized views,
unlike the other two methods. There are three major differences between it and the
other refresh methods:

■ Synchronous refresh requires you to register the tables and materialized views.

■ Synchronous refresh requires you to specify changes to the data according to some
formally specified rules.

■ Synchronous refresh works by dividing the refresh operation into two steps:
preparation and execution. This approach provides some important advantages
over the other methods, such as better performance and more control.

Synchronous refresh APIs are defined in a new package called DBMS_SYNC_REFRESH.
For more information about this package, see Oracle Database PL/SQL Packages and
Types Reference.

Why Use Synchronous Refresh?
Synchronous refresh offers the following advantages over traditional types of refresh
methods:

■ It coordinates the loading of the changes into the base tables with the extremely
efficient refresh of the dependent materialized views themselves.

■ It decreases the time materialized views are not available to be used by the
Optimizer to rewrite queries.

■ It is well-suited for a wide class of materialized views (materialized aggregate
views and materialized join views) commonly used in data warehouses. It does
require the materialized views be partitioned as well as the fact tables, and if
materialized views are not currently partitioned, they can be efficiently partitioned
to take advantage of synchronous refresh.

■ It fully exploits partitioning and the nature of the data warehouse load cycle to
guarantee synchronization between the materialized view and the base table
throughout the refresh procedure.

■ In a typical data warehouse, data preparation consists of extracting the data from
one or more sources, cleansing, and formatting it for consistency, and transforming
into the data warehouse schema. The data preparation area is called the staging
area and the base tables in a data warehouse are loaded from the tables in the
staging area. The synchronous refresh method fits into this model because it
allows you to load change data into the staging logs.

■ The staging logs play the same role as materialized view logs in the conventional
fast refresh method. There is, however, an important difference. In the
conventional fast refresh method, the base table is first updated and the changes

About Synchronous Refresh

Synchronous Refresh 8-3

are then applied from the materialized view log to the materialized views. But in
the synchronous refresh method, the changes from the staging log are applied to
refresh the materialized views while also being applied to the base tables.

■ Most materialized views in a data warehouse typically employ a star or snowflake
schema with fact and dimension tables joined in a foreign key to primary key
relationship. The synchronous refresh method can handle both schemas in all
possible change data load scenarios, ranging from rows being added to only the
fact table, to arbitrary changes to the fact and dimension tables.

■ Instead of providing the change load data in the staging logs, you have a choice of
directly providing the change data in the form of outside tables containing the
data to be exchanged with the affected partition in the base table. This capability is
provided by the REGISTER_PARTITION_OPERATION procedure in the DBMS_SYNC_
REFRESH package.

Registering Tables and Materialized Views for Synchronous Refresh
Before actually performing synchronous refresh, you must register the appropriate
tables and materialized views. Synchronous refresh provides these methods to register
tables and materialized views:

■ Tables are registered with synchronous refresh by creating a staging log on them.
A staging log is created with the CREATE MATERIALIZED VIEW LOG statement whose
syntax has been extended in this release to create staging logs as well as the
familiar materialized view logs used for the traditional incremental refresh. After
you create a staging log on a table, it is deemed to be registered with synchronous
refresh and can be modified only by using the synchronous refresh procedures. In
other words, a table with a staging log defined on it is registered with
synchronous refresh and cannot be modified directly by the user.

For more information about the CREATE MATERIALIZED VIEW LOG statement, see
Oracle Database SQL Language Reference.

■ Materialized views are registered with synchronous refresh using the REGISTER_
MVIEWS procedure in the DBMS_SYNC_REFRESH package. The REGISTER_MVIEWS
procedure implicitly creates groups of related objects called sync refresh groups. A
sync refresh group consists of all related materialized views and tables that must
be refreshed together as a single entity because they are dependent on one another.

For more information about the DBMS_SYNC_REFRESH package, see Oracle Database
PL/SQL Packages and Types Reference.

Specifying Change Data for Refresh
In the other refresh methods, you can directly modify the base tables of the
materialized view, and the issue of specifying change data does not arise. But with
synchronous refresh, you are required to specify and prepare the change data
according to certain formally specified rules and using APIs provided by the DBMS_
SYNC_REFRESH package.

There are two ways to specify the change data:

■ Provide the change data in an outside table and register it with the REGISTER_
PARTITION_OPERATION procedure.

See "Working with Partition Operations" on page 8-12 for more details.

■ Provide the change data by in staging logs and process them with the PREPARE_
STAGING_LOG procedure. The format of the staging logs and rules for populating

About Synchronous Refresh

8-4 Oracle Database Data Warehousing Guide

are described in "Working with Staging Logs" on page 8-14. You are required to
run the PREPARE_STAGING_LOG procedure for every table before performing the
refresh operation on that table.

Synchronous Refresh Preparation and Execution
After preparing the change data, you can perform the actual refresh operation.
Synchronous refresh takes a new approach to refresh execution. It works by dividing
the refresh operation into two steps: preparation and execution. This is one of the main
differences between it and the other refresh methods and provides some important
benefits.

The preparation step determines the mapping between the fact table partitions and the
materialized view partitions. This step computes the new tables corresponding only to
the partitions of the fact table that have been changed by the incremental change data
load. After these tables, called outside tables, have been computed, the actual
execution of the refresh operation takes place in the execution step, which consists of
just exchanging the outside tables with the corresponding partitions in the fact table or
materialized view.

By dividing the refresh execution step into two phases and providing separate
procedures for them, synchronous refresh not only provides you control over the
refresh execution process, but also improves overall system performance. It does this
by minimizing the time the materialized views are not available for use by direct
access or the Optimizer because they are modified by the refresh process. During the
preparation phase, the materialized view and its tables are not modified because at
this time all the refresh changes are recorded in the outside table. Consequently, the
materialized view is available to any query that needs to read them. It is only during
execution that the tables and materialized views are modified. Execution performance
is mainly affected by the number of changes to the dimension tables; if this number is
small, then the performance should be very good because the exchange partition
operations are themselves very fast.

The DBMS_SYNC_REFRESH package provides the PREPARE_REFRESH and EXECUTE_REFRESH
procedures to perform these two steps.

Materialized View Eligibility Rules and Restrictions for Synchronous Refresh
The primary requirement for a materialized view to be eligible for synchronous refresh
is that the materialized view must be partitioned with a key that can be derived from
the partition key of its fact table. The following sections describe the other
requirements for eligibility for synchronous refresh.

This section contains the following topics:

■ Synchronous Refresh Restrictions: Partitioning

■ Synchronous Refresh Restrictions: Refresh Options

■ Synchronous Refresh Restrictions: Constraints

■ Synchronous Refresh Restrictions: Tables

■ Synchronous Refresh Restrictions: Materialized Views

■ Synchronous Refresh Restrictions: Materialized Views with Aggregates

See Also:

■ Oracle Database PL/SQL Packages and Types Reference

About Synchronous Refresh

Synchronous Refresh 8-5

Synchronous Refresh Restrictions: Partitioning
There are two key requirements to use synchronous refresh:

■ The materialized view must be partitioned along the same dimension as the fact
table.

■ The partition key of the fact table should functionally determine the partition key
of the materialized view.

The term functionally determine means the partition key of the materialized view can be
derived from the partition key of the fact table based on a foreign key constraint
relationship. This condition is satisfied if the partition key of the materialized view is
the same as that for the fact table or related by joins from the fact table to the
dimension table as in a star or snowflake schema. For example, if the fact table is
partitioned by a date column, such as TIME_KEY, the materialized view can be
partitioned by TIME_KEY, MONTH, or YEAR.

Synchronous refresh supports two types of partitioning on fact tables and materialized
views: range partitioning and composite partitioning, when the top-level partitioning
type is range.

Synchronous Refresh Restrictions: Refresh Options
When you define a materialized view, you can specify three refresh options: how to
refresh; whether trusted constraints can be used; and what type of refresh is to be
performed. If unspecified, the defaults are assumed to be ON DEMAND, ENFORCED
constraints, and FORCE respectively. Synchronous refresh requires that the first two of
these options must have the values ON DEMAND and TRUSTED constraints respectively.
Synchronous refresh does not require the type of refresh to have any specific value, so
it can be FAST, FORCE, or COMPLETE.

Synchronous Refresh Restrictions: Constraints
The relationships between the fact and dimension tables are declared by foreign and
primary key constraints on the tables. Synchronous refresh trusts these constraints to
perform the refresh, and requires that USING TRUSTED CONSTRAINTS must be specified in
the materialized view definition. This allows using nonvalidated RELY constraints and
rewriting against materialized views in an UNKNOWN or FRESH state during refresh.

When a table is registered for synchronous refresh, its constraints might be in a
VALIDATE or NOVALIDATE state. If the table is a dimension table, synchronous refresh
will retain this state during the refresh execution process.

However, if the table is a fact table, synchronous refresh marks the constraints
NOVALIDATE state during refresh execution. This avoids the need for validating the
constraint on existing data during a partition exchange that is the basis of the
synchronous refresh method, and improves the performance of refresh execution.

Because the constraints on the fact table are not enforced by synchronous refresh, it is
you who must verify the integrity and consistently of the data provided.

Synchronous Refresh Restrictions: Tables
To be eligible for synchronous refresh, a table must satisfy the following conditions:

■ The table cannot have VPD or triggers defined on it.

■ The table cannot have any RAW type.

■ The table cannot be remote.

Using Synchronous Refresh

8-6 Oracle Database Data Warehousing Guide

■ The staging log key of each table registered for synchronous refresh should satisfy
the requirements described in "Staging Log Key" on page 8-15.

Synchronous Refresh Restrictions: Materialized Views
There are some other restrictions that are specific to materialized views registered for
synchronous refresh:

■ The ROWID column cannot be used to define the query. It is not relevant because it
uses partition exchange, which replaces the original partition with the outside
table. Hence, the defining query should not include any ROWID columns.

■ Synchronous refresh does not support nested materialized views, UNION ALL
materialized views, subqueries, or complex queries in the materialized view
definition. The defining query must conform to the star or snowflake schema.

■ These SQL constructs are also not supported: analytic window functions (such as
RANK), the MODEL clause, and the CONNECT BY clause.

■ Synchronous refresh is not supported for a materialized view that refers to views,
remote tables, or outer joins.

■ The materialized view must not contain references to nonrepeating expressions
like SYSDATE and ROWNUM.

In general, most restrictions that apply to PCT-refresh, fast refresh, and general query
rewrite also apply to synchronous refresh. Those restrictions are available at:

■ "Materialized View Restrictions" on page 5-19

■ "General Query Rewrite Restrictions" on page 5-20

■ "General Restrictions on Fast Refresh" on page 5-22

Synchronous Refresh Restrictions: Materialized Views with Aggregates
For materialized views with aggregates, synchronous refresh shares these restrictions
with fast refresh:

■ Only SUM, COUNT, AVG, STDDEV, VARIANCE, MIN, and MAX are supported.

■ COUNT(*) must be specified.

■ Aggregate functions must occur only as the outermost part of the expression. That
is, aggregates such as AVG(AVG(x)) or AVG(x)+ AVG(x) are not allowed.

■ For each aggregate, such as AVG(expr), the corresponding COUNT(expr) must be
present. Oracle recommends that SUM(expr) be specified.

■ If VARIANCE(expr) or STDDEV(expr) is specified, COUNT(expr) and SUM(expr) must
be specified. Oracle recommends that SUM(expr *expr) be specified.

Using Synchronous Refresh
Synchronous refresh differs from the other refresh methods in a number of ways. One
is that the API for synchronous refresh is contained in a new package called DBMS_
SYNC_REFRESH, whereas other refresh methods are declared in the DBMS_MVIEW package.
Another difference is that after objects are registered with synchronous refresh, and,
once registered, the other refresh methods cannot be used with them.

The operations associated with synchronous refresh can be divided into the following
three broad phases:

■ The Registration Phase

Using Synchronous Refresh

Synchronous Refresh 8-7

■ The Synchronous Refresh Phase

■ The Unregistration Phase

The Registration Phase
In this phase (Figure 8–1), you register the objects for use with synchronous refresh.
The two steps in this phase are registration of tables first and then materialized views.
You register the tables (by creating staging logs) and materialized views (with the
REGISTER_MVIEWS procedure). The staging logs are created with the CREATE
MATERIALIZED LOG … FOR SYNCHRONOUS REFRESH statement. If a table already has a
regular materialized view log, the ALTER MATERIALIZED LOG … FOR SYNCHRONOUS REFRESH
statement can be used to convert it to a staging log.

Figure 8–1 Registration Phase

You can create a staging log with a statement, as show in Example 8–1.

Example 8–1 Registering Tables

CREATE MATERIALIZED VIEW LOG ON fact
FOR SYNCHRONOUS REFRESH USING st_fact;

If a table has a materialized view log, you can alter it to a staging log with a statement,
such as the following:

ALTER MATERIALIZED VIEW LOG ON fact
FOR SYNCHRONOUS REFRESH USING st_fact;

You can register a materialized view with a statement, as shown in Example 8–2.

Example 8–2 Registering Materialized Views

EXECUTE DBMS_SYNC_REFRESH.REGISTER_MVIEWS('MV1');

You can register multiple materialized views at one time:

EXECUTE DBMS_SYNC_REFRESH.REGISTER_MVIEWS('mv2, mv2_year, mv1_halfmonth');

The Synchronous Refresh Phase
Figure 8–2 shows the synchronous refresh phase. This phase can be used repeatedly to
perform synchronous refresh. The three main steps in this phase are:

1. Prepare the change data for the refresh operation. You can provide the change data
in a table and register it with the REGISTER_PARTITION_OPERATION procedure or
provide the data by populating the staging logs. The staging logs must be

Using Synchronous Refresh

8-8 Oracle Database Data Warehousing Guide

processed with the PREPARE_STAGING_LOG procedure before proceeding to the next
step.

An example is Example 8–12.

2. Perform the first step of the refresh operation (PREPARE_REFRESH). This can
potentially be a long-running operation because it prepares and loads the outside
tables.

An example is Example 8–16.

3. Perform the second and last step of the refresh operation (EXECUTE_REFRESH). This
usually runs very fast because it usually consists of a series of partition-exchange
operations.

An example is Example 8–20.

In Figure 8–2, solid arrows show the standard control flow and dashed arrows are
used for error-handling cases. If either of the refresh operations (PREPARE_REFRESH or
EXECUTE_REFRESH) raises user errors, you use an ABORT_REFRESH procedure to restore
tables and materialized views to the state that existed before the refresh operation, fix
the problem, and retry the refresh operation starting from the beginning.

Figure 8–2 Refresh Phase

The Unregistration Phase
If you choose to stop using synchronous refresh, then you must unregister the
materialized views as shown in Figure 8–3. The materialized views are first
unregistered with the UNREGISTER_MVIEWS procedure. The tables are then unregistered
by either dropping their staging logs or altering the staging logs to ordinary logs. Note
that if the staging logs are converted to be ordinary materialized view logs with an
ALTER MATERIALIZED LOG … FOR FAST REFRESH statement, then the materialized views
can be maintained with standard fast-refresh methods.

Using Synchronous Refresh Groups

Synchronous Refresh 8-9

Figure 8–3 Unregistration Phase

Example 8–3 illustrates how to unregister the single materialized view MV1.

Example 8–3 Unregister Materialized Views

EXECUTE DBMS_SYNC_REFRESH.UNREGISTER_MVIEWS('MV1');

You can unregister multiple materialized views at one time:

EXECUTE DBMS_SYNC_REFRESH.UNREGISTER_MVIEWS('mv2, mv2_year, mv1_halfmonth');

You can verify to see that a materialized view has been unregistered by querying the
DBA_SR_OBJ_ALL view.

Example 8–4 illustrates how to drop the staging log.

Example 8–4 Unregister Tables

DROP MATERIALIZED VIEW LOG ON fact;

Or you can alter the table to a materialized view log:

ALTER MATERIALIZED VIEW LOG ON fact
FOR FAST REFRESH;

You can verify to see that a table has been unregistered by querying the DBA_SR_OBJ_
ALL view.

Using Synchronous Refresh Groups
The distinguishing feature of synchronous refresh is that changes to a table and its
materialized views are loaded and refreshed together, hence the name synchronous
refresh. For tables and materialized views to be maintained by synchronous refresh,
the objects must be registered. Tables are registered for synchronous refresh when
staging logs are created on them, and materialized views are registered using the
REGISTER_MVIEWS procedure.

Synchronous refresh supports the refresh of materialized views built on multiple
tables, with changes in one or more of them. Tables that are related by constraints must
all necessarily be refreshed together to ensure data integrity. Furthermore, it is possible
that some of the tables registered for synchronous refresh have several materialized
views built on top of them, in which case, all those materialized views must also be
refreshed together.

Instead of having you keep track of these dependencies, and issue the refresh
commands on the right set of tables, Oracle Database automatically generates the

Using Synchronous Refresh Groups

8-10 Oracle Database Data Warehousing Guide

minimal sets of tables and materialized views that must necessarily be refreshed
together. These sets are termed synchronous refresh groups or just sync refresh groups.
Each sync refresh group is identified by a GROUP_ID.value.

The three procedures related to performing synchronous refresh (PREPARE_REFRESH,
EXECUTE_REFRESH and ABORT_REFRESH) take as input either a single group ID or a list of
group IDs identifying the sync refresh groups.

Each table or materialized view registered for synchronous refresh is assigned a
GROUP_ID value, which may change over time, if the dependencies among them
change. This happens when you issue the REGISTER_MVIEWS and UNREGISTER_MVIEWS
procedures. The examples that follow show the sync refresh groups in a number of
scenarios.

Because the GROUP_ID value can change with time, Oracle recommends the actual
GROUP_ID value not be used when invoking the synchronous refresh procedures, but
that the function DBMS_SYNC_REFRESH.GET_GROUP_ID be used instead. This function
takes a materialized view name as input and returns the materialized view’s GROUP_ID
value.

This section contains the following topics:

■ Examples of Common Actions with Synchronous Refresh Groups

■ Examples of Working with Multiple Synchronous Refresh Groups

Examples of Common Actions with Synchronous Refresh Groups
The synchronous refresh demo scripts in the rdbms/demo directory enable you to view
typical operations that you are likely to perform. The main script is syncref_run.sql,
and its log is syncref_run.log. Example 8–5, Example 8–6, and Example 8–7 below
illustrate the different contexts in which the GET_GROUP_ID function can be used.

Example 8–5 illustrates how to display the objects registered in a group after
registering them.

Example 8–5 Display the Objects Registered in a Group

EXECUTE DBMS_SYNC_REFRESH.REGISTER_MVIEWS('MV1');
SELECT NAME, TYPE, STAGING_LOG_NAME FROM USER_SR_OBJ
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1')
ORDER BY TYPE, NAME;

NAME TYPE STAGING_LOG_NAME
---------- ---------- ----------------
MV1 MVIEW
FACT TABLE ST_FACT
STORE TABLE ST_STORE
TIME TABLE ST_TIME

Example 8–6 illustrates how to invoke refresh operations.

Example 8–6 Invoke Refresh Operations

EXECUTE DBMS_SYNC_REFRESH.PREPARE_REFRESH(-
 DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1'));

See Also: Oracle Database PL/SQL Packages and Types Reference for
information about how to use the DBMS_SYNC_REFRESH.REGISTER_
MVIEWS procedure

Using Synchronous Refresh Groups

Synchronous Refresh 8-11

EXECUTE DBMS_SYNC_REFRESH.EXECUTE_REFRESH(-
 DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1'));
SELECT NAME, TYPE, STATUS FROM USER_SR_OBJ_STATUS
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1')
ORDER BY TYPE, NAME;

Example 8–7 illustrates how to verify the status of objects registered in a group after an
EXECUTE_REFRESH operation.

Example 8–7 Verify the Status of Objects Registered in a Group

SELECT NAME, TYPE, STATUS FROM USER_SR_OBJ_STATUS
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1')
ORDER BY TYPE, NAME;

NAME TYPE STATUS
---------------- ---------- ----------------
MV1 MVIEW COMPLETE
FACT TABLE COMPLETE
STORE TABLE COMPLETE
TIME TABLE COMPLETE

Examples of Working with Multiple Synchronous Refresh Groups
You can work with multiple refresh groups at one time with the following APIs:

■ GET_GROUP_ID_LIST

Takes a list of materialized views as input and returns their group IDs in a list.

■ GET_ALL_GROUP_IDS

Returns the group IDs of all groups in the system in a list.

■ The prepare refresh procedures (PREPARE_REFRESH, EXECUTE_REFRESH, and ABORT_
REFRESH) can work multiple groups. Their overloaded versions accept lists of
group IDs at a time.

Example 8–8 illustrates how to prepare the sync refresh groups of MV1, MV2, and MV3.

Example 8–8 Prepare Sync Refresh Groups

EXECUTE DBMS_SYNC_REFRESH.PREPARE_REFRESH(
 DBMS_SYNC_REFRESH.GET_GROUP_ID_LIST('MV1, MV2, MV3'));

Note that it is not necessary that these three materialized views be all in different
groups. It is possible that two of the materialized views are in one group, and third in
another; or even that all three materialized views are in the same group. Because
PREPARE_REFRESH is overloaded to accept either a group ID or a list of group IDs, the
above call will work in all cases.

Example 8–9 illustrates how to prepare and execute the refresh of all sync refresh
groups in the system.

Example 8–9 Execute Sync Refresh Groups

EXECUTE DBMS_SYNC_REFRESH.PREPARE_REFRESH(
 DBMS_SYNC_REFRESH.GET_ALL_GROUP_IDS);

EXECUTE DBMS_SYNC_REFRESH.EXECUTE_REFRESH(
 DBMS_SYNC_REFRESH.GET_ALL_GROUP_IDS);

Specifying and Preparing Change Data

8-12 Oracle Database Data Warehousing Guide

Specifying and Preparing Change Data
Synchronous refresh requires you to specify and prepare the change data that serves as
the input to the PREPARE_REFRESH and EXECUTE_REFRESH procedures. There are two
methods for specifying the change data:

■ Provide the change data in an outside table and register it with the REGISTER_
PARTITION_OPERATION procedure.

■ Provide the change data by in staging logs and process them with the PREPARE_
STAGING_LOG procedure.

Some important points about change data are:

■ The two methods are not mutually exclusive and can be employed at the same
time, even on the same table, but there cannot be any conflicts in the changes
specified. For instance, you can use the staging log to specify the change in a
partition with a small number of changes, but if another partition has extensive
changes, you can provide the changes for that partition in an outside table.

■ For dimension tables, you can use only the staging logs to provide changes.

■ Synchronous refresh can handle arbitrary combinations of changes in fact and
dimension tables, but it is optimized for the most common data warehouse usage
scenarios, where the bulk of the changes are made to only a few partitions of the
fact table.

■ Synchronous refresh places no restrictions on the use of nondestructive partition
maintenance operations (PMOPS), such as add partition, used commonly in data
warehouses. The use of such PMOPS is not directly related to the method used to
specify change data.

■ Synchronous refresh requires that all staging logs in the group must be prepared,
even if the staging log has no changes registered in it.

This section contains the following topics:

■ Working with Partition Operations

■ Working with Staging Logs

Working with Partition Operations
Using the REGISTER_PARTITION_OPERATION procedure, you can provide the change
data directly. This method is applicable only to fact tables. For each fact table partition
that is changed, you must provide an outside table containing the data for that
partition. The synchronous refresh demo (syncref_run.sql and syncref_run.log)
contains an example. The steps are:

1. Create an outside table for the partition that it is intended to replace. It must have
the same constraints as the fact table, and can be created in any desired tablespace.

CREATE TABLE fact_ot_fp3(
 time_key DATE NOT NULL REFERENCES time(time_key),
 store_key INTEGER NOT NULL REFERENCES store(store_key),
 dollar_sales NUMBER (6,2),
 unit_sales INTEGER)
 tablespace syncref_fp3_tbs;

2. Insert the data for this partition into the outside table.

3. Register this table for partition exchange.

begin

Specifying and Preparing Change Data

Synchronous Refresh 8-13

 DBMS_SYNC_REFRESH.REGISTER_PARTITION_OPERATION(
 partition_op => 'EXCHANGE',
 schema_name => 'SYNCREF_USER',
 base_table_name => 'FACT',
 partition_name => 'FP3',
 outside_partn_table_schema => 'SYNCREF_USER',
 outside_partn_table_name => 'FACT_OT_FP3');
 end;
 /
\

When you register the outside table and execute the refresh, Oracle Database performs
the following operation at EXECUTE_REFRESH time:

ALTER TABLE FACT EXCHANGE PARTITION fp3 WITH TABLE fact_ot_fp3
INCLUDING INDEXES WITHOUT VALIDATION;

However, you are not allowed to issue the above statement directly on your own. If
you do, Oracle Database will give this error:

ORA-31908: Cannot modify the contents of a table with a staging log.

Besides the EXCHANGE operation, the two other partition operations that can be
registered with the REGISTER_PARTITION_OPERATION procedure are DROP and TRUNCATE.

Example 8–10 illustrates how to specify the drop of the first partition (FP1), by using
the following statement.

Example 8–10 Registering a DROP Operation

begin
 DBMS_SYNC_REFRESH.REGISTER_PARTITION_OPERATION(
 partition_op => 'DROP',
 schema_name => 'SYNCREF_USER',
 base_table_name => 'FACT',
 partition_name => 'FP1');
end;
/

If you wanted to truncate the partition instead, you could specify TRUNCATE instead of
DROP for the partition_op parameter.

The three partition operations (EXCHANGE, DROP, and TRUNCATE) are called destructive
PMOPS because they modify the contents of the table. The following partition
operations are not destructive, and can be performed directly on a table registered
with synchronous refresh:

■ ADD PARTITION

■ SPLIT PARTITION

■ MERGE PARTITIONS

■ MOVE PARTITION

■ RENAME PARTITION

In data warehouses, these partition operations are commonly used to manage the large
volumes of data, and synchronous refresh places no restrictions on their usage. Oracle
Database requires only that these operations be performed before the PREPARE_
REFRESH command is issued. This is because the PREPARE_REFRESH procedure computes
the mapping between the fact table partitions and the materialized view partitions,
and if any partition-maintenance is done between the PREPARE_REFRESH and EXECUTE_

Specifying and Preparing Change Data

8-14 Oracle Database Data Warehousing Guide

REFRESH procedures, Oracle Database will detect this at EXECUTE_REFRESH and show an
error.

You can use the USER_SR_PARTN_OPS catalog view to display the registered partition
operations.

SELECT TABLE_NAME, PARTITION_OP, PARTITION_NAME,
 OUTSIDE_TABLE_SCHEMA ot_schema, OUTSIDE_TABLE_NAME ot_name
FROM USER_SR_PARTN_OPS
ORDER BY TABLE_NAME;

TABLE_NAME PARTITION_ PARTITION_NAME OT_SCHEMA OT_NAME
---------- ---------- --------------- --------------- --------------------
FACT EXCHANGE FP3 SYNCREF_USER FACT_OT_FP3

1 row selected.

These partition operations are consumed by the synchronous refresh operation and are
automatically unregistered by the EXECUTE_REFRESH procedure. So if you query USER_
SR_PARTN_OPS after EXECUTE_REFRESH, it will show no rows.

After registering a partition, if you find you made a mistake or change your mind, you
can undo it with the UNREGISTER_PARTITION_OPERATION command:

begin
 DBMS_SYNC_REFRESH.UNREGISTER_PARTITION_OPERATION(
 partition_op => 'EXCHANGE',
 schema_name => 'SYNCREF_USER',
 base_table_name => 'FACT',
 partition_name => 'FP3');
end;
/

Working with Staging Logs
In synchronous refresh, staging logs play a role similar to materialized view logs in
incremental refresh. They are created with a DDL statement and can be altered to a
materialized view log. Unlike materialized view logs, however, you are responsible for
loading changes into the staging logs in a specified format. Each row in the staging log
must have a key to identify it uniquely; this key is called the staging log key, and is
defined in "Staging Log Key" on page 8-15.

You are responsible for populating the staging log, which will consist of all the
columns in the base table and an additional control column DMLTYPE$$ of type
CHAR(2). This must have the value 'I' to denote the row is being inserted, 'D' for
delete, and 'UN' and 'UO' for the new and old values of the row being updated,
respectively. The last two must occur in pairs.

The staging log is validated by the PREPARE_STAGING_LOG procedure and consumed by
the synchronous refresh operations (PREPARE_REFRESH and EXECUTE_REFRESH). During
validation by PREPARE_STAGING_LOG, if errors are detected, they will be captured in an
exceptions table. You can query the view USER_SR_STLOG_EXCEPTIONS to get details on
the exceptions.

Synchronous refresh requires that, before calling PREPARE_REFRESH for sync refresh
groups, the staging logs of all tables in the group must be processed with PREPARE_
STAGING_LOG. This is necessary even if a table has no change data and its staging log is
empty.

This section contains the following topics:

Specifying and Preparing Change Data

Synchronous Refresh 8-15

■ Staging Log Key

■ Staging Log Rules

■ Columns Being Updated to NULL

■ Examples of Working with Staging Logs

■ Error Handling in Preparing Staging Logs

Staging Log Key
In order to create a staging log on a base table, the base table must have a key. If the
table has a primary key, the primary key is deemed to be staging log key on the table's
staging log. Note that every dimension table has a primary key.

With fact tables, it is less common for them to have a primary key. If a table does not
have a primary key, the columns that are the foreign keys of its dimension tables
constitute its staging log key.

The key of a staging log can be described as:

■ The primary key of the base table. If a fact table has a primary key, it is sometimes
called a surrogate key.

■ The set of foreign keys for a fact table. This applies if the fact table does not have a
primary key. This assumption is common in data warehouses, though it is not
enforced.

The rules for loading staging logs are described in "Staging Log Rules" on page 8-15.

The PREPARE_STAGING_LOG procedure verifies that each key value is specified at most
once. When populating the staging log, it is your responsibility to consolidate the
changes if a row with the same key value is changed more than once. This process is
known as change consolidation. When doing the change consolidation, you must:

■ Consolidate a delete-insert of the same row into an update operation with rows
'UO' and 'UN'.

■ Consolidate multiple updates into a single update.

■ Prevent null changes such as an insert-update-delete of the same row from
appearing in the staging log.

■ Consolidate an insert followed by multiple updates into a single insert.

Staging Log Rules
Every row should contain non-null values for all the columns comprising the primary
key. You are required to consolidate all the changes so that each key in the staging log
can be specified only for one type of operation.

For the rows being inserted (DMLTYPE$$ is 'I'), all columns in the staging log must be
supplied with valid values, conforming to any constraint on the corresponding
columns in the base table. Keys of rows being inserted must not exist in the base table.

For the rows being deleted (DMLTYPE$$ is 'D'), the non-key column values are optional.
Similarly, for the rows specifying the old values of the columns being updated
(DMLTYPE$$ is 'UO'), the non-key column values are optional; an important exception is
the column whose values are being updated to NULL, as explained subsequently.

For the rows specifying the new values of the columns being updated (DMLTYPE$$ is
'UN'), the non-key column values are optional except for the values of the columns
that were changed.

Specifying and Preparing Change Data

8-16 Oracle Database Data Warehousing Guide

Columns Being Updated to NULL
If a column is being updated to NULL, its old value must be specified. Otherwise,
Oracle Database may not be able to distinguish this from a column whose value is
being left unchanged in the update.

For example, let table T1 have three columns c1, c2, and c3. Let there be a row with
(c1, c2, c3) = (1, 5, 10), and you supply the following information in the staging
log:

The result would be that the new row could be (1, 5, 11) or (1, NULL, 11) without
having specified the old value. However, with that specification, it is clear the new row
is (1, 5, 11). If you want to specify NULL for c2, you should specify the old value in
the UO row as follows:

Because the old value of c2 is 5, (the correct previously updated value for the column),
its new value, will be NULL and the new row is (1, NULL, 11).

Examples of Working with Staging Logs
This section illustrates examples of working with staging logs.

The PREPARE_STAGING_LOG procedure has an optional third parameter called PSL_MODE.
This allows you to specify whether any or all of the three types of DML statements
specified in the staging log can be treated as trusted, and not be subject to verification
by the PREPARE_STAGING_LOG procedure, as shown in Example 8–11.

Example 8–11 Specifying Trusted DML Statements

EXECUTE DBMS_SYNC_REFRESH.PREPARE_STAGING_LOG('syncref_user', 'store',
 DBMS_SYNC_REFRESH.INSERT_TRUSTED +
 DBMS_SYNC_REFRESH.DELETE_TRUSTED);

This call will skip verification of INSERT and DELETE DML statements in the staging log
of STORE but will verify UPDATE DML statements.

Example 8–12 is taken from the demo syncref_run.sql. It shows that the user has
provided values for all columns for the delete and update operations. This is
recommended if these values are available.

Example 8–12 Preparing Staging Logs

INSERT INTO st_store (dmltype$$, STORE_KEY, STORE_NUMBER, STORE_NAME, ZIPCODE)
VALUES ('I', 5, 5, 'Store 5', '03060');

INSERT INTO st_store (dmltype$$, STORE_KEY, STORE_NUMBER, STORE_NAME, ZIPCODE)
VALUES ('I', 6, 6, 'Store 6', '03062');

DMLTYPE$$ C1 C2 C3

UO 1 NULL NULL

UN 1 NULL 11

DMLTYPE$$ C1 C2 C3

UO 1 5 NULL

UN 1 NULL 11

Specifying and Preparing Change Data

Synchronous Refresh 8-17

INSERT INTO st_store (dmltype$$, STORE_KEY, STORE_NUMBER, STORE_NAME, ZIPCODE)
VALUES ('UO', 4, 4, 'Store 4', '03062');

INSERT INTO st_store (dmltype$$, STORE_KEY, STORE_NUMBER, STORE_NAME, ZIPCODE)
VALUES ('UN', 4, 4, 'Stor4NewNam', '03062');

INSERT INTO st_store (dmltype$$, STORE_KEY, STORE_NUMBER, STORE_NAME, ZIPCODE)
VALUES ('D', 3, 3, 'Store 3', '03060');

EXECUTE DBMS_SYNC_REFRESH.PREPARE_STAGING_LOG('syncref_user', 'store');

-- display initial contents of st_store

SELECT dmltype$$, STORE_KEY, STORE_NUMBER, STORE_NAME, ZIPCODE
FROM st_store
ORDER BY STORE_KEY ASC, dmltype$$ DESC;

DM STORE_KEY STORE_NUMBER STORE_NAME ZIPCODE
-- --------- ------------ ---------- -------
D 3 3 Store 3 03060
UO 4 4 Store 4 03062
UN 4 4 Stor4NewNam 03062
I 5 5 Store 5 03060
I 5 5 Store 6 03062

5 rows selected.

Example 8–13 shows that if you do not supply all the values for the delete and update
operations, then when you run the PREPARE_STAGING_LOG procedure, Oracle Database
will fill in missing values.

Example 8–13 Filling in Missing Values for Deleting and Updating Records

INSERT INTO st_store (dmltype$$, STORE_KEY, STORE_NUMBER, STORE_NAME, ZIPCODE)
VALUES ('D', 3, NULL, NULL, NULL);

INSERT INTO st_store (dmltype$$, STORE_KEY, STORE_NUMBER, STORE_NAME, ZIPCODE)
VALUES ('UO', 4, NULL, NULL, NULL);

INSERT INTO st_store (dmltype$$, STORE_KEY, STORE_NUMBER, STORE_NAME, ZIPCODE)
VALUES ('UN', 4, NULL, NULL, '03063');

EXECUTE DBMS_SYNC_REFRESH.PREPARE_STAGING_LOG('syncref_user', 'store');

SELECT dmltype$$, STORE_KEY, STORE_NUMBER, STORE_NAME, ZIPCODE
FROM ST_STORE ORDER BY STORE_KEY ASC, dmltype$$ DESC;

DM STORE_KEY STORE_NUMBER STORE_NAME ZIPCODE
-- --------- ------------ ----------- ---------
D 3 3 Store 3 03060
UO 4 4 Store 4 03062
UN 4 4 Store 4 03063

Example 8–14 illustrates how to update a column to NULL. If you want to update a
column value to NULL, then you must provide its old value in the UO record.

Troubleshooting Synchronous Refresh Operations

8-18 Oracle Database Data Warehousing Guide

Example 8–14 Updating a Column to NULL

In this example, your goal is to change the zipcode of store 4 to 03063 and its name to
NULL. You can supply the old zipcode value, but you must supply the old value of
store_name in the 'UO' row, or else store_name will be unchanged.

INSERT INTO st_store (dmltype$$, STORE_KEY, STORE_NUMBER, STORE_NAME, ZIPCODE)
VALUES ('UO', 4, NULL, 'Store 4', NULL);

INSERT INTO st_store (dmltype$$, STORE_KEY, STORE_NUMBER, STORE_NAME, ZIPCODE)
VALUES ('UN', 4, NULL, NULL, '03063');

EXECUTE DBMS_SYNC_REFRESH.PREPARE_STAGING_LOG('syncref_user', 'store');

SELECT dmltype$$, STORE_KEY, STORE_NUMBER, STORE_NAME, ZIPCODE
FROM st_store ORDER BY STORE_KEY ASC, dmltype$$ DESC;

DM STORE_KEY STORE_NUMBER STORE_NAME ZIPCODE
-- --------- ------------ ----------- --------
UO 4 4 Store 4 03062
UN 4 4 03063

Example 8–15 illustrates how to use the USER_SR_STLOG_STATS catalog view to display
the staging log statistics.

Example 8–15 Displaying Staging Log Statistics

SELECT TABLE_NAME, STAGING_LOG_NAME, NUM_INSERTS, NUM_DELETE, NUM_UPDATES
FROM USER_SR_STLOG_STATS
ORDER BY TABLE_NAME;

TABLE_NAME STAGING_LOG_NAME NUM_INSERTS NUM_DELETES NUM_UPDATES
---------- ---------------- ----------- ----------- -----------
FACT ST_FACT 4 1 1
STORE ST_STORE 2 1 1
TIME ST_TIME 1 0 0

3 rows selected.

If you use the same query at the end of the EXECUTE_REFRESH procedure, then you will
get no rows, indicating the change data has all been consumed by synchronous
refresh.

Error Handling in Preparing Staging Logs
When a table is processed by the PREPARE_STAGING_LOG procedure, it will detect and
report errors in the specification of change data that relates only to that table. For
example, it will verify that keys of rows being inserted do not already exist in the base
table and that keys of rows being deleted or updated do exist. However, the PREPARE_
STAGING_LOG procedure cannot detect errors related to the referential integrity
constraints on the table; that is, it cannot detect errors if there are inconsistencies in the
specification of change data that involves more than one table. Such errors will be
detected at the time of the EXECUTE_REFRESH procedure.

Troubleshooting Synchronous Refresh Operations
This section describes how to monitor the status of the two synchronous refresh
procedures, PREPARE_REFRESH and EXECUTE_REFRESH and how to troubleshoot errors

Troubleshooting Synchronous Refresh Operations

Synchronous Refresh 8-19

that may occur. To be successful in using synchronous refresh, you should be aware of
the different types of errors that can arise and how to deal with them.

One of the most likely sources of errors is from incorrect preparation of the change
data. These errors will present themselves as referential constraint violations when the
EXECUTE_REFRESH procedure is run. In such cases, the status of the group is set to
ABORT. It is important to learn to recognize these errors and address them.

The topics covered in this section are:

■ Overview of the Status of Refresh Operations

■ How PREPARE_REFRESH Sets the STATUS Fields

■ Examples of PREPARE_REFRESH

■ How EXECUTE_REFRESH Sets the Status Fields

■ Examples of EXECUTE_REFRESH

■ Example of EXECUTE_REFRESH with Constraint Violations

Overview of the Status of Refresh Operations
The DBMS_SYNC_REFRESH package provides three procedures to control the refresh
execution process. You initiate synchronous refresh with the PREPARE_REFRESH
procedure, which plans the entire refresh operation and does the bulk of the
computational work for refresh, followed by the EXECUTE_REFRESH procedure, which
carries out the refresh. The third procedure provided is ABORT_REFRESH, which is used
to recover from errors if either of these procedures fails.

The USER_SR_GRP_STATUS and USER_SR_OBJ_STATUS catalog views contain all the
information on the status of these refresh operations for current groups:

■ The USER_SR_GRP_STATUS view shows the status of the group as a whole.

– The OPERATION field indicates the current refresh procedure run on the group:
PREPARE or EXECUTE.

– The STATUS field indicates the status of the operation - RUNNING, COMPLETE,
ERROR-SOFT, ERROR-HARD, ABORT, PARTIAL. These are explained in detail later.

– The group is identified by its group ID.

■ The USER_SR_OBJ_STATUS view shows the status of each individual object.

– The object is identified by its owner, name, and type (TABLE or MVIEW) and
group ID.

– The STATUS field, which may be NOT PROCESSED, ABORT, or COMPLETE. These are
explained in detail later.

How PREPARE_REFRESH Sets the STATUS Fields
When you launch a new PREPARE_REFRESH job, the group's STATUS is set to RUNNING
and the STATUS of the objects in the group is set to NOT PROCESSED. When the PREPARE_
REFRESH job finishes, the status of the objects remains unchanged, but the group's
status is changed to one of following three values:

■ COMPLETE if the job completed successfully.

■ ERROR_SOFT if the job encountered the ORA-01536: space quota exceeded for
tablespace '%s' error.

Troubleshooting Synchronous Refresh Operations

8-20 Oracle Database Data Warehousing Guide

■ ERROR_HARD otherwise (that is, if the job encountered any error other than
ORA-01536).

Some points to keep in mind when using the PREPARE_REFRESH procedure:

■ The NOT PROCESSED status of the objects in the group signifies that the data of the
objects has not been modified by the PREPARE_REFRESH job. The data modification
will occur only in the EXECUTE_REFRESH step, at which time the status will be
changed as appropriate. This is described later.

■ If the STATUS is ERROR_SOFT, you can fix the ORA-01536 error by increasing the
space quota for the specified tablespace, and resume PREPARE_REFRESH.
Alternatively, you can choose to abort the refresh with ABORT_REFRESH.

■ If the STATUS value is ERROR_HARD, then your only option is to abort the refresh
with ABORT_REFRESH.

■ If the STATUS value after the PREPARE_REFRESH procedure finishes is RUNNING, then
an error has occurred. Contact Oracle Support Services for assistance.

■ A STATUS value of ERROR_HARD might be related to running out of resources
because the PREPARE_REFRESH procedure can be resource-intensive. If you are not
able to identify the problem, then contact Oracle Support Services for assistance.
But if you can identify the problem and fix it, then you might be able to continue
using synchronous refresh, by first running ABORT_REFRESH and then the PREPARE_
REFRESH procedure.

■ Remember that you can launch a new PREPARE_REFRESH job only when the
previous refresh operation on the group (if any) has either completed execution
successfully or has aborted.

■ If the STATUS value of the PREPARE_REFRESH procedure at the end is not COMPLETE,
you cannot proceed to the EXECUTE_REFRESH step. If you are unable to get
PREPARE_REFRESH to work correctly, then you can proceed to the unregistration
phase, and maintain the objects in the groups with other refresh methods.

Examples of PREPARE_REFRESH
This section offers examples of common cases when preparing a refresh.

Example 8–16 shows a PREPARE_REFRESH procedure completing successfully.

Example 8–16 PREPARE_REFRESH Succeeds with Status COMPLETE

EXECUTE DBMS_SYNC_REFRESH.PREPARE_REFRESH(DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1'));

PL/SQL procedure successfully completed.

SELECT OPERATION, STATUS
FROM USER_SR_GRP_STATUS
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1');

OPERATION STATUS
--------- ------
PREPARE COMPLETE

Example 8–17 shows a PREPARE_REFRESH procedure encountering ORA-01536.

Example 8–17 PREPARE_REFRESH Fails with Status ERROR_SOFT

EXECUTE DBMS_SYNC_REFRESH.PREPARE_REFRESH(DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1'));
BEGIN DBMS_SYNC_REFRESH.PREPARE_REFRESH(DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1'));

Troubleshooting Synchronous Refresh Operations

Synchronous Refresh 8-21

END;

*
ERROR at line 1:
ORA-01536: space quota exceeded for tablespace 'DUMMY_TS'
ORA-06512: at "SYS.DBMS_SYNC_REFRESH", line 63
ORA-06512: at "SYS.DBMS_SYNC_REFRESH", line 411
ORA-06512: at "SYS.DBMS_SYNC_REFRESH", line 429
ORA-06512: at line 1PL/SQL procedure successfully completed.

SELECT OPERATION, STATUS
FROM USER_SR_GRP_STATUS
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1');

OPERATION STATUS
--------- ------
PREPARE ERROR_SOFT

Example 8–18 is a continuation of Example 8–2. After the ORA-01536 error is raised,
increase the tablespace for DUMMY_TS and rerun the PREPARE_REFRESH procedure, which
now completes successfully. Note that the PREPARE_REFRESH procedure will resume
processing from the place where it stopped. Also note the usage of the PREPARE_
REFRESH procedure is no different from normal, and does not require any parameters
or settings to indicate the procedure is being resumed.

Example 8–18 Resume of PREPARE_REFRESH Succeeds

EXECUTE DBMS_SYNC_REFRESH.PREPARE_REFRESH(DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1'));

PL/SQL procedure successfully completed.

SELECT OPERATION, STATUS
FROM USER_SR_GRP_STATUS
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1');

OPERATION STATUS
--------- ------
PREPARE COMPLETE

Example 8–19 assumes the PREPARE_REFRESH procedure has failed and the STATUS
value is ERROR_HARD. You then run the ABORT_REFRESH procedure to abort the prepare
job. Note that the STATUS value has changed from ERROR_HARD to ABORT at the end.

Example 8–19 Abort of PREPARE_REFRESH

SELECT OPERATION, STATUS
FROM USER_SR_GRP_STATUS
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1');

OPERATION STATUS
--------- ------
PREPARE ERROR_HARD

EXECUTE DBMS_SYNC_REFRESH.ABORT_REFRESH(DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1'));

PL/SQL procedure successfully completed.

SELECT OPERATION, STATUS
FROM USER_SR_GRP_STATUS
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1');

Troubleshooting Synchronous Refresh Operations

8-22 Oracle Database Data Warehousing Guide

OPERATION STATUS
--------- ------
PREPARE ABORT

How EXECUTE_REFRESH Sets the Status Fields
The EXECUTE_REFRESH procedure divides the group of objects in the sync refresh group
into subgroups, each of which is refreshed atomically. The first subgroup consists of
the base tables. Each materialized view in the sync refresh group is placed in a
separate subgroup and refreshed atomically.

In the case of the EXECUTE_REFRESH procedure, the possible end states of the STATUS
field are: COMPLETE, PARTIAL, and ABORT:

■ STATUS = COMPLETE

This state is reached if the base tables and all the materialized views refresh
successfully.

■ STATUS = ABORT

This state indicates the refresh of the base tables subgroup has failed; the data in
the tables and materialized views is consistent but unchanged. If this happens,
then there should be an error associated with the failure. If it is a user error, such
as a constraint violation, then you can fix the problem and retry the synchronous
refresh operation from the beginning (that is, PREPARE_STAGING_LOG for each table
in the group PREPARE_REFRESH and EXECUTE_REFRESH.). If it is not a user error, then
you should contact Oracle Support Services.

■ STATUS = PARTIAL

If all the base tables refresh successfully and some, but not all, materialized views
refresh successfully, then this state is reached. The data in the tables and
materialized views that have refreshed successfully are consistent with one
another; the other materialized views are stale and need complete refresh. If this
happens, there should be an error associated with the failure. Most likely this is
not a user error, but an Oracle error that you should report to Oracle Support
Services. You have two choices in this state:

– Retry execution of the EXECUTE_REFRESH procedure. In such a case, EXECUTE_
REFRESH will retry the refresh of the failed materialized views with another
refresh method like PCT-refresh or COMPLETE refresh. If all materialized views
succeed, then the status will be set to COMPLETE. Otherwise, the status will
remain at PARTIAL.

– Invoke the ABORT_REFRESH procedure to abort the materialized views. This will
roll back changes to all materialized views and base tables. They will all have
the same data as in the original state before any of the changes in the staging
logs or registered partition operations has been applied to them.

In the case of errors in the EXECUTE_REFRESH procedure, the following fields in the
USER_SR_GRP_STATUS view are also useful:

■ NUM_MVS_COMPLETED, which contains the number of materialized views that
completed the refresh operation successfully.

■ NUM_MVS_ABORTED, which contains the number of materialized views that aborted.

■ ERROR and ERROR_MESSAGE, which records the error encountered in the operation.

At the end of the EXECUTE_REFRESH, procedure, the statuses of the objects in the group
are marked as follows in the USER_SR_OBJ_STATUS view:

Troubleshooting Synchronous Refresh Operations

Synchronous Refresh 8-23

■ The status of an object is set to COMPLETE if the changes were applied to it
successfully.

■ The status of an object is set to ABORT if the changes were not applied successfully.
In this case, the object will be in the same state as it was before the refresh
operation. The ERROR and ERROR_MESSAGE fields record the error encountered in the
operation.

■ The status of an object remains NOT PROCESSED if no changes were applied to it.

Examples of EXECUTE_REFRESH
This section provides examples of common cases when executing a refresh.

Example 8–20 shows an EXECUTE_REFRESH procedure completing successfully.

Example 8–20 EXECUTE_REFRESH Completes Successfully

EXECUTE DBMS_SYNC_REFRESH.EXECUTE_REFRESH(DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1'));

PL/SQL procedure successfully completed.

SELECT OPERATION, STATUS
FROM USER_SR_GRP_STATUS
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1');

OPERATION STATUS
--------- ------
EXECUTE COMPLETE

Example 8–21 shows an EXECUTE_REFRESH procedure succeeding partially. In this
example, the EXECUTE_REFRESH procedure fails after refreshing the base tables but
before completing the refresh of all the materialized views. The resulting status of the
group is PARTIAL and the QSM-03280 error message is thrown.

Example 8–21 EXECUTE_REFRESH Succeeds Partially

EXECUTE DBMS_SYNC_REFRESH.EXECUTE_REFRESH(DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1'));
BEGIN DBMS_SYNC_REFRESH.EXECUTE_REFRESH(DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1'));
END;

*
ERROR at line 1:
ORA-31928: Synchronous refresh error
QSM-03280: One or more materialized views failed to refresh successfully.
ORA-06512: at "SYS.DBMS_SYNC_REFRESH", line 63
ORA-06512: at "SYS.DBMS_SYNC_REFRESH", line 411
ORA-06512: at "SYS.DBMS_SYNC_REFRESH", line 446
ORA-06512: at line 1

Check the status of the group itself after the EXECUTE_REFRESH.procedure. Note that the
operation field is set to EXECUTE and the status is PARTIAL.

SELECT OPERATION, STATUS FROM USER_SR_GRP_STATUS
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1');

OPERATION STATUS
--------- -------------
EXECUTE PARTIAL

Troubleshooting Synchronous Refresh Operations

8-24 Oracle Database Data Warehousing Guide

By querying the USER_SR_GRP_STATUS view, you find the number of materialized views
that have aborted is 1 and the failed materialized view is MV1.

If you examine the status of objects in the group, because STORE and TIME are
unchanged, then their status is NOT PROCESSED.

SELECT NAME, TYPE, STATUS FROM USER_SR_OBJ_STATUS
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1')
ORDER BY TYPE, NAME;

NAME TYPE STATUS
---------------- ---------- ----------------
MV1 MVIEW ABORT
MV1_HALFMONTH MVIEW COMPLETE
MV2 MVIEW COMPLETE
MV2_YEAR MVIEW COMPLETE
FACT TABLE COMPLETE
STORE TABLE NOT PROCESSED
TIME TABLE NOT PROCESSED

7 rows selected.

SELECT NUM_TBLS, NUM_MVS, NUM_MVS_COMPLETED, NUM_MVS_ABORTED
FROM USER_SR_GRP_STATUS
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1');

NUM_TBLS NUM_MVS NUM_MVS_COMPLETED NUM_MVS_ABORTED
-------- ------- ----------------- ---------------
 3 4 3 1

At this point, you can attempt to run the EXECUTE_REFRESH procedure once more. If the
retry succeeds and the failed materialized views succeed, then the group status will be
set to COMPLETE. Otherwise, the status will remain at PARTIAL. This is shown in
Example 8–22. You can also abort the refresh procedure and return to the original state.
This is shown in Example 8–23.

Example 8–22 illustrates a continuation of Example 8–21. You retry the EXECUTE_
REFRESH procedure and it succeeds:

Example 8–22 Retrying a Refresh After a PARTIAL Status

EXECUTE DBMS_SYNC_REFRESH.EXECUTE_REFRESH(DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1'));

PL/SQL procedure successfully completed.

--Check the status of the group itself after the EXECUTE_REFRESH operation;
--note that the operation field is set to EXECUTE and status is COMPLETE.

SELECT OPERATION, STATUS
FROM USER_SR_GRP_STATUS
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1');

OPERATION STATUS
--------- ---------
EXECUTE COMPLETE

By querying the USER_SR_GRP_STATUS view, you find the number of materialized views
that have aborted is 0 and the status of MV1 is COMPLETE. If you examine the status of
objects in the group, because STORE and TIME are unchanged, then their status is NOT
PROCESSED.

Troubleshooting Synchronous Refresh Operations

Synchronous Refresh 8-25

SELECT NAME, TYPE, STATUS FROM USER_SR_GRP_STATUS
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1')
ORDER BY TYPE, NAME;

NAME TYPE STATUS
---------------- ---------- ----------------
MV1 MVIEW COMPLETE
MV1_HALFMONTH MVIEW COMPLETE
MV2 MVIEW COMPLETE
MV2_YEAR MVIEW COMPLETE
FACT TABLE COMPLETE
STORE TABLE NOT PROCESSED
TIME TABLE NOT PROCESSED

7 rows selected.

SELECT NUM_TBLS, NUM_MVS, NUM_MVS_COMPLETED, NUM_MVS_ABORTED
FROM USER_SR_GRP_STATUS
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1');

NUM_TBLS NUM_MVS NUM_MVS_COMPLETED NUM_MVS_ABORTED
-------- ------- ----------------- ---------------
 3 4 4 0

You can examine the tables and materialized views to verify that the changes in the
change data have been applied to them correctly, and the materialized views and
tables are consistent with one another.

Example 8–23 illustrates aborting a refresh procedure that is in a PARTIAL state.

Example 8–23 Aborting a Refresh with a PARTIAL Status

EXECUTE DBMS_SYNC_REFRESH.ABORT_REFRESH(DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1'));

PL/SQL procedure successfully completed.

Check the status of the group itself after the ABORT_REFRESH procedure; note that the
operation field is set to EXECUTE and status is ABORT.

SELECT OPERATION, STATUS FROM USER_SR_GRP_STATUS
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1');

OPERATION STATUS
---------- -------
EXECUTE ABORT

By querying the USER_SR_GRP_STATUS view, you see that all the materialized views
have aborted, and the fact table as well. Check the status of objects in the group;
because STORE and TIME are unchanged, their status is NOT PROCESSED.

SELECT NAME, TYPE, STATUS FROM USER_SR_GRP_STATUS
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1')
ORDER BY TYPE, NAME;

NAME TYPE STATUS
---------------- ---------- ----------------
MV1 MVIEW ABORT
MV1_HALFMONTH MVIEW ABORT
MV2 MVIEW ABORT
MV2_YEAR MVIEW ABORT
FACT TABLE ABORT

Troubleshooting Synchronous Refresh Operations

8-26 Oracle Database Data Warehousing Guide

STORE TABLE NOT PROCESSED
TIME TABLE NOT PROCESSED

7 rows selected.

SELECT NUM_TBLS, NUM_MVS, NUM_MVS_COMPLETED, NUM_MVS_ABORTED
FROM USER_SR_GRP_STATUS
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1');

NUM_TBLS NUM_MVS NUM_MVS_COMPLETED NUM_MVS_ABORTED
-------- ------- ----------------- ---------------
 3 4 0 4

You can examine the tables and materialized views to verify that they are all in the
original state and no changes from the change data have been applied to them.

Example of EXECUTE_REFRESH with Constraint Violations
In the synchronous refresh method, change data is loaded into the tables and
materialized views at the same time to keep them synchronized. In the other refresh
methods, change data is loaded into tables first, and any constraints that are enabled
are checked at that time. In the synchronous refresh method, the outside table is
prepared using trusted data from the user, and constraint validation is turned off to
save execution time. The following example shows a constraint violation that is caught
by the EXECUTE_REFRESH procedure. In such cases, the final status of the EXECUTE_
REFRESH procedure will be ABORT. You will have to identify and fix the problem in the
change data and begin the synchronous refresh phase all over.

Example 8–24 Child Key Constraint Violation

In Example 8–24, assume the same tables as in the file syncref_run.sql in the
rdbms/demo directory are used and populated with the same data. In particular, the
table STORE has four rows with the primary key STORE_KEY having the values 1
through 4, and the FACT table has rows referencing all four stores, including store 3.

To demonstrate a parent-key constraint violation, populate the staging log of STORE
with the delete of the row having the STORE_KEY of 3. There are no other changes to the
other tables. When the EXECUTE_REFRESH procedure runs, it fails with the ORA-02292
error as shown.

INSERT INTO st_store (dmltype$$, STORE_KEY, STORE_NUMBER, STORE_NAME, ZIPCODE)
VALUES ('D', 3, 3, 'Store 3', '03060');

-- Prepare the staging logs
EXECUTE DBMS_SYNC_REFRESH.PREPARE_STAGING_LOG('syncref_user', 'fact');
EXECUTE DBMS_SYNC_REFRESH.PREPARE_STAGING_LOG('syncref_user', 'time');
EXECUTE DBMS_SYNC_REFRESH.PREPARE_STAGING_LOG('syncref_user', 'store');

-- Prepare the refresh
EXECUTE DBMS_SYNC_REFRESH.PREPARE_REFRESH(DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1'));

-- Execute the refresh
EXECUTE DBMS_SYNC_REFRESH.EXECUTE_REFRESH(-
 DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1'));
BEGIN DBMS_SYNC_REFRESH.EXECUTE_REFRESH(DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1'));
END;

*
ERROR at line 1:

Performing Synchronous Refresh Eligibility Analysis

Synchronous Refresh 8-27

ORA-02292: integrity constraint (SYNCREF_USER.SYS_C0031765) violated - child
record found
ORA-06512: at line 1
ORA-06512: at "SYS.DBMS_SYNC_REFRESH", line 63
ORA-06512: at "SYS.DBMS_SYNC_REFRESH", line 411
ORA-06512: at "SYS.DBMS_SYNC_REFRESH", line 446
ORA-06512: at line 1

Examine the status of the group itself after the EXECUTE_REFRESH procedure. Note that
the operation field is set to EXECUTE and the status is ABORT.

SELECT OPERATION, STATUS
FROM USER_SR_GRP_STATUS
WHERE GROUP_ID = DBMS_SYNC_REFRESH.GET_GROUP_ID('MV1');

OPERATION STATUS
---------- --------------
EXECUTE ABORT

If you check the contents of the base tables and of MV1, then you will find there is no
change, and they all have the original values.

Performing Synchronous Refresh Eligibility Analysis
The CAN_SYNCREF_TABLE function tells you whether a table and its dependent
materialized views are eligible for synchronous refresh. It provides an explanation of
its analysis. If the table and views are not eligible, you can examine the reasons and
take appropriate action if possible. To be eligible for synchronous refresh, a table must
satisfy the various criteria described earlier.

You can invoke CAN_SYNCREF_TABLE function in two ways. The first is to use a table,
while the second is to create a VARRAY. The following shows the basic syntax for using
an output table:

can_syncref_table(schema_name IN VARCHAR2,
 table_name IN VARCHAR2,
 statement_id IN VARCHAR2)

You can create an output table called SYNCREF_TABLE by executing the utlcsrt.sql
script. If you want to direct the output of the CAN_SYNCREF_TABLE function to a VARRAY
instead of a table, then you should call the procedure as follows:

can_syncref_table(schema_name IN VARCHAR2,
 table_name IN VARCHAR2,
 output_array IN OUT Sys.CanSyncRefTypeArray)

Table 8–1 CAN_SYNCREF_TABLE

Parameter Description

schema_name Name of the schema of the base table.

base_table_name Name of the base table.

statement_id A string (VARCHAR2(30) to identify the rows pertaining to a call of the
CAN_SYNCREF_TABLE function when the output is directed to a table
named SYNCREF_TABLE in the user’s schema.

output_array The output array into which CAN_SYNCREF_TABLE records the information
on the eligibility of the base table and its dependent materialized views
for synchronous refresh.

Performing Synchronous Refresh Eligibility Analysis

8-28 Oracle Database Data Warehousing Guide

This section contains the following topics:

■ Using SYNCREF_TABLE

■ Using a VARRAY

■ Demo Scripts

Using SYNCREF_TABLE
The output of the CAN_SYNCREF_TABLE function can be directed to a table named
SYNCREF_TABLE. You are responsible for creating SYNCREF_TABLE; it can be dropped
when it is no longer needed. The format of SYNCREF_TABLE is as follows:

CREATE TABLE SYNCREF_TABLE(
 statement_id VARCHAR2(30),
 schema_name VARCHAR2(30),
 table_name VARCHAR2(30),
 mv_schema_name VARCHAR2(30),
 mv_name VARCHAR2(30),
 eligible VARCHAR2(1), -- 'Y' , 'N'
 seq_num NUMBER,
 msg_number NUMBER,
 message VARCHAR2(4000)
);

You must provide a different statement_id parameter for each invocation of this
procedure on the same table. If not, an error will be thrown. The statement_id,
schema_name, and table_name fields identify the results for a given table and
statement_id.

Each row contains information on the eligibility of either the table or its dependent
materialized view. The CAN_SYNCREF_TABLE function guarantees that each row has
values for both mv_schema_name and mv_name that are either NULL or non-NULL. These
rows have the following semantics:

■ If the mv_schema_name value is NULL and mv_name is NULL, then the ELIGIBLE field
describes whether the table is eligible for synchronous refresh; if the table is not
eligible, the MSG_NUMBER and MESSAGE fields provide the reason for this.

■ If the mv_schema_name value is NOT NULL and mv_name is NOT NULL, then the
ELIGIBLE field describes whether the materialized view is eligible for synchronous
refresh; if the materialized view is not eligible, the MSG_NUMBER and MESSAGE fields
provide the reason for this.

You must provide a different statement_id parameter for each invocation of this
procedure on the same table, or else an error will be thrown. The statement_id,
schema_name, and table_name fields identify the results for a given table and
statement_id.

Using a VARRAY
You can save the output of the CAN_SYNCREF_TABLE function in a PL/SQL VARRAY. The
elements of this array are of type CanSyncRefMessage, which is predefined in the SYS
schema as shown in the following example:

Note: Only one statement_id or output_array parameter need be
provided to the CAN_SYNCREF_TABLE function.

Overview of Synchronous Refresh Security Considerations

Synchronous Refresh 8-29

TYPE CanSyncRefMessage IS OBJECT (
 schema_name VARCHAR2(30),
 table_name VARCHAR2(30),
 mv_schema_name VARCHAR2(30),
 mv_name VARCHAR2(30),
 eligible VARCHAR2(1), -- 'Y' , 'N'
 seq_num NUMBER,
 msg_number NUMBER,
 message VARCHAR2(4000)
);

The array type, CanSyncRefArrayType, which is a VARRAY of CanSyncRefMessage
objects, is predefined in the SYS schema as follows:

TYPE CanSyncRefArrayType AS VARRAY(256) OF CanSyncRefMessage;

Each CanSyncRefMessage record provides a message concerning the eligibility of the
base table or a dependent materialized view for synchronous refresh. The semantics of
the fields is the same as that of the corresponding fields in SYNCREF_TABLE. However,
SYNCREF_TABLE has a statement_id field that is absent in CanSyncRefMessage because
no statement_id is supplied (because it is not required) when the CAN_SYNCREF_TABLE
procedure is called with a VARRAY parameter.

The default size limit for CanSyncRefArrayType is 256 elements. If you need more than
256 elements, then connect as SYS and redefine CanSyncRefArray. The following
commands, when connected as the SYS user, redefine CanSyncRefArray and set the
limit to 2048 elements:

CREATE OR REPLACE TYPE CanSyncRefArrayType AS VARRAY(2048) OF
SYS.CanSyncRefMessage;
/
GRANT EXECUTE ON SYS.CanSyncRefMessage TO PUBLIC;

CREATE OR REPLACE PUBLIC SYNONYM CanSyncRefMessage FOR SYS.CanSyncRefMessage;
/
GRANT EXECUTE ON SYS.CanSyncRefArrayType TO PUBLIC;

CREATE OR REPLACE PUBLIC SYNONYM CanSyncRefArrayType FOR SYS.CanSyncRefArrayType;
/

Demo Scripts
The synchronous refresh demo scripts in the rdbms/demo directory contain examples of
the most common scenarios of the various synchronous refresh operations, including
CAN_SYNCREF_API. The main script is syncref_run.sql and its log is syncref_run.log.
The file syncref_cst.sql defines two procedures DO_CST and DO_CST_ARR, which
simplify the usage of the CAN_SYNCREF_TABLE function and display the information on
the screen in a convenient format. This format is documented in the syncref_cst.sql
file.

Overview of Synchronous Refresh Security Considerations
The execute privilege on the DBMS_SYNC_REFRESH package is granted to PUBLIC, so all
users can execute the procedures in that package to perform synchronous refresh on
objects owned by them. The database administrator can perform synchronous refresh
operation on all tables and materialized views in the database.

Overview of Synchronous Refresh Security Considerations

8-30 Oracle Database Data Warehousing Guide

In general, if a user without the DBA privilege wants to use synchronous refresh on
another user's table, he must have complete privileges to read from and write to that
table; that is, the user must have the SELECT, INSERT, UPDATE, and DELETE privileges on
that table or materialized view. The user can have the READ privilege instead of the
SELECT privilege. A couple of exceptions occur in the following:

■ PURGE_REFRESH_STATS and ALTER_REFRESH_STATS_RETENTION functions

These two functions implement the purge policy and can be used to change the
default retention period. These functions can be executed only by the database
administrator.

■ The CAN_SYNCREF_TABLE function

This is an advisory function that examines the eligibility for synchronous refresh
of all the materialized views associated with a specified table. Hence, this function
requires the READ or SELECT privilege on all materialized views associated with the
specified table.

9

Dimensions 9-1

9 Dimensions

This chapter discusses using dimensions in a data warehouse: It contains the following
topics:

■ What are Dimensions?

■ Creating Dimensions

■ Viewing Dimensions

■ Using Dimensions with Constraints

■ Validating Dimensions

■ Altering Dimensions

■ Deleting Dimensions

What are Dimensions?
A dimension is a structure that categorizes data in order to enable users to answer
business questions. Commonly used dimensions are customers, products, and time.
For example, each sales channel of a clothing retailer might gather and store data
regarding sales and reclamations of their Cloth assortment. The retail chain
management can build a data warehouse to analyze the sales of its products across all
stores over time and help answer questions such as:

■ What is the effect of promoting one product on the sale of a related product that is
not promoted?

■ What are the sales of a product before and after a promotion?

■ How does a promotion affect the various distribution channels?

The data in the retailer's data warehouse system has two important components:
dimensions and facts. The dimensions are products, customers, promotions, channels,
and time. One approach for identifying your dimensions is to review your reference
tables, such as a product table that contains everything about a product, or a
promotion table containing all information about promotions. The facts are sales (units
sold) and profits. A data warehouse contains facts about the sales of each product at
on a daily basis.

A typical relational implementation for such a data warehouse is a star schema. The
fact information is stored in what is called a fact table, whereas the dimensional
information is stored in dimension tables. In our example, each sales transaction
record is uniquely defined as for each customer, for each product, for each sales
channel, for each promotion, and for each day (time).

What are Dimensions?

9-2 Oracle Database Data Warehousing Guide

In Oracle Database, the dimensional information itself is stored in a dimension table.
In addition, the database object dimension helps to organize and group dimensional
information into hierarchies. This represents natural 1:n relationships between
columns or column groups (the levels of a hierarchy) that cannot be represented with
constraint conditions. Going up a level in the hierarchy is called rolling up the data
and going down a level in the hierarchy is called drilling down the data. In the retailer
example:

■ Within the time dimension, months roll up to quarters, quarters roll up to years,
and years roll up to all years.

■ Within the product dimension, products roll up to subcategories, subcategories
roll up to categories, and categories roll up to all products.

■ Within the customer dimension, customers roll up to city. Then cities roll up to
state. Then states roll up to country. Then countries roll up to subregion. Finally,
subregions roll up to region, as shown in Figure 9–1.

Figure 9–1 Sample Rollup for a Customer Dimension

Data analysis typically starts at higher levels in the dimensional hierarchy and
gradually drills down if the situation warrants such analysis.

Dimension schema objects (dimensions) do not have to be defined. However, if your
application uses dimensional modeling, it is worth spending time creating them as it
can yield significant benefits, because they help query rewrite perform more complex
types of rewrite. Dimensions are also beneficial to certain types of materialized view
refresh operations and with the SQL Access Advisor. They are only mandatory if you
use the SQL Access Advisor (a GUI tool for materialized view and index management)
without a workload to recommend which materialized views and indexes to create,
drop, or retain.

In spite of the benefits of dimensions, you must not create dimensions in any schema
that does not fully satisfy the dimensional relationships described in this chapter.
Incorrect results can be returned from queries otherwise.

country

subregion

state

city

customer

region

Creating Dimensions

Dimensions 9-3

Creating Dimensions
Before you can create a dimension object, the dimension tables must exist in the
database possibly containing the dimension data. For example, if you create a
customer dimension, one or more tables must exist that contain the city, state, and
country information. In a star schema data warehouse, these dimension tables already
exist. It is therefore a simple task to identify which ones will be used.

Now you can draw the hierarchies of a dimension as shown in Figure 9–1. For
example, city is a child of state (because you can aggregate city-level data up to
state), and country. This hierarchical information will be stored in the database object
dimension.

In the case of normalized or partially normalized dimension representation (a
dimension that is stored in more than one table), identify how these tables are joined.
Note whether the joins between the dimension tables can guarantee that each
child-side row joins with one and only one parent-side row. In the case of
denormalized dimensions, determine whether the child-side columns uniquely
determine the parent-side (or attribute) columns. If you use constraints to represent
these relationships, they can be enabled with the NOVALIDATE and RELY clauses if the
relationships represented by the constraints are guaranteed by other means.

You may want the capability to skip NULL levels in a dimension. An example of this is
with Puerto Rico. You may want Puerto Rico to be included within a region of North
America, but not include it within the state category. If you want this capability, use
the SKIP WHEN NULL clause. See the sample dimension later in this section for more
information and Oracle Database SQL Language Reference for syntax and restrictions.

You create a dimension using either the CREATE DIMENSION statement or the Dimension
Wizard in Oracle Enterprise Manager. Within the CREATE DIMENSION statement, use the
LEVEL clause to identify the names of the dimension levels.

This customer dimension contains a single hierarchy with a geographical rollup, with
arrows drawn from the child level to the parent level, as shown in Figure 9–1 on
page 9-2.

Each arrow in this graph indicates that for any child there is one and only one parent.
For example, each city must be contained in exactly one state and each state must be
contained in exactly one country. States that belong to more than one country violate
hierarchical integrity. Also, you must use the SKIP WHEN NULL clause if you want to
include cities that do not belong to a state, such as Washington D.C. Hierarchical
integrity is necessary for the correct operation of management functions for
materialized views that include aggregates.

For example, you can declare a dimension products_dim, which contains levels
product, subcategory, and category:

CREATE DIMENSION products_dim
 LEVEL product IS (products.prod_id)
 LEVEL subcategory IS (products.prod_subcategory)

See Also:

■ Chapter 4, "Data Warehousing Optimizations and Techniques"
for further details about schemas

■ Chapter 10, "Basic Query Rewrite for Materialized Views" for
further details regarding query rewrite

■ Oracle Database SQL Tuning Guide for further details regarding
the SQL Access Advisor

Creating Dimensions

9-4 Oracle Database Data Warehousing Guide

 LEVEL category IS (products.prod_category) ...

Each level in the dimension must correspond to one or more columns in a table in the
database. Thus, level product is identified by the column prod_id in the products table
and level subcategory is identified by a column called prod_subcategory in the same
table.

In this example, the database tables are denormalized and all the columns exist in the
same table. However, this is not a prerequisite for creating dimensions. "Using
Normalized Dimension Tables" on page 9-8 shows how to create a dimension
customers_dim that has a normalized schema design using the JOIN KEY clause.

The next step is to declare the relationship between the levels with the HIERARCHY
statement and give that hierarchy a name. A hierarchical relationship is a functional
dependency from one level of a hierarchy to the next level in the hierarchy. Using the
level names defined previously, the CHILD OF relationship denotes that each child's
level value is associated with one and only one parent level value. The following
statement declares a hierarchy prod_rollup and defines the relationship between
products, subcategory, and category:

HIERARCHY prod_rollup
 (product CHILD OF
 subcategory CHILD OF
 category)

In addition to the 1:n hierarchical relationships, dimensions also include 1:1 attribute
relationships between the hierarchy levels and their dependent, determined dimension
attributes. For example, the dimension times_dim, as defined in Oracle Database Sample
Schemas, has columns fiscal_month_desc, fiscal_month_name, and days_in_fiscal_
month. Their relationship is defined as follows:

LEVEL fis_month IS TIMES.FISCAL_MONTH_DESC
...
ATTRIBUTE fis_month DETERMINES
 (fiscal_month_name, days_in_fiscal_month)

The ATTRIBUTE ... DETERMINES clause relates fis_month to fiscal_month_name and
days_in_fiscal_month. Note that this is a unidirectional determination. It is only
guaranteed, that for a specific fiscal_month, for example, 1999-11, you will find
exactly one matching values for fiscal_month_name, for example, November and days_
in_fiscal_month, for example, 28. You cannot determine a specific fiscal_month_
desc based on the fiscal_month_name, which is November for every fiscal year.

In this example, suppose a query were issued that queried by fiscal_month_name
instead of fiscal_month_desc. Because this 1:1 relationship exists between the
attribute and the level, an already aggregated materialized view containing fiscal_
month_desc can be joined back to the dimension information and used to identify the
data.

A sample dimension definition follows:

CREATE DIMENSION products_dim
 LEVEL product IS (products.prod_id)
 LEVEL subcategory IS (products.prod_subcategory) [SKIP WHEN NULL]
 LEVEL category IS (products.prod_category)
 HIERARCHY prod_rollup (
 product CHILD OF
 subcategory CHILD OF
 category)
 ATTRIBUTE product DETERMINES
 (products.prod_name, products.prod_desc,

Creating Dimensions

Dimensions 9-5

 prod_weight_class, prod_unit_of_measure,
 prod_pack_size, prod_status, prod_list_price, prod_min_price)
 ATTRIBUTE subcategory DETERMINES
 (prod_subcategory, prod_subcategory_desc)
 ATTRIBUTE category DETERMINES
 (prod_category, prod_category_desc);

Alternatively, the extended_attribute_clause could have been used instead of the
attribute_clause, as shown in the following example:

CREATE DIMENSION products_dim
 LEVEL product IS (products.prod_id)
 LEVEL subcategory IS (products.prod_subcategory)
 LEVEL category IS (products.prod_category)
 HIERARCHY prod_rollup (
 product CHILD OF
 subcategory CHILD OF
 category
)
 ATTRIBUTE product_info LEVEL product DETERMINES
 (products.prod_name, products.prod_desc,
 prod_weight_class, prod_unit_of_measure,
 prod_pack_size, prod_status, prod_list_price, prod_min_price)
 ATTRIBUTE subcategory DETERMINES
 (prod_subcategory, prod_subcategory_desc)
 ATTRIBUTE category DETERMINES
 (prod_category, prod_category_desc);

The design, creation, and maintenance of dimensions is part of the design, creation,
and maintenance of your data warehouse schema. Once the dimension has been
created, verify that it meets these requirements:

■ There must be a 1:n relationship between a parent and children. A parent can
have one or more children, but a child can have only one parent.

■ There must be a 1:1 attribute relationship between hierarchy levels and their
dependent dimension attributes. For example, if there is a column fiscal_month_
desc, then a possible attribute relationship would be fiscal_month_desc to
fiscal_month_name. For skip NULL levels, if a row of the relation of a skip level has
a NULL value for the level column, then that row must have a NULL value for the
attribute-relationship column, too.

■ If the columns of a parent level and child level are in different relations, then the
connection between them also requires a 1:n join relationship. Each row of the
child table must join with one and only one row of the parent table unless you use
the SKIP WHEN NULL clause. This relationship is stronger than referential integrity
alone, because it requires that the child join key must be non-null, that referential
integrity must be maintained from the child join key to the parent join key, and
that the parent join key must be unique.

■ You must ensure (using database constraints if necessary) that the columns of each
hierarchy level are non-null unless you use the SKIP WHEN NULL clause and that
hierarchical integrity is maintained.

■ An optional join key is a join key that connects the immediate non-skip child (if
such a level exists), CHILDLEV, of a skip level to the nearest non-skip ancestor
(again, if such a level exists), ANCLEV, of the skip level in the hierarchy. Also, this
joinkey is allowed only when CHILDLEV and ANCLEV are defined over different
relations.

Creating Dimensions

9-6 Oracle Database Data Warehousing Guide

■ The hierarchies of a dimension can overlap or be disconnected from each other.
However, the columns of a hierarchy level cannot be associated with more than
one dimension.

■ Join relationships that form cycles in the dimension graph are not supported. For
example, a hierarchy level cannot be joined to itself either directly or indirectly.

This section contains the following topics:

■ Dropping and Creating Attributes with Columns

■ Multiple Hierarchies

■ Using Normalized Dimension Tables

Dropping and Creating Attributes with Columns
You can use the attribute clause in a CREATE DIMENSION statement to specify one or
multiple columns that are uniquely determined by a hierarchy level.

If you use the extended_attribute_clause to create multiple columns determined by
a hierarchy level, you can drop one attribute column without dropping them all.
Alternatively, you can specify an attribute name for each attribute clause CREATE or
ALTER DIMENSION statement so that an attribute name is specified for each attribute
clause where multiple level-to-column relationships can be individually specified.

The following statement illustrates how you can drop a single column without
dropping all columns:

CREATE DIMENSION products_dim
LEVEL product IS (products.prod_id)
LEVEL subcategory IS (products.prod_subcategory)
LEVEL category IS (products.prod_category)
HIERARCHY prod_rollup (
 product CHILD OF
 subcategory CHILD OF category)
ATTRIBUTE product DETERMINES
 (products.prod_name, products.prod_desc,
 prod_weight_class, prod_unit_of_measure,
 prod_pack_size,prod_status, prod_list_price, prod_min_price)
ATTRIBUTE subcategory_att DETERMINES
 (prod_subcategory, prod_subcategory_desc)
ATTRIBUTE category DETERMINES
 (prod_category, prod_category_desc);

Note: The information stored with a dimension objects is only
declarative. The previously discussed relationships are not enforced
with the creation of a dimension object. You should validate any
dimension definition with the DBMS_DIMENSION.VALIDATE_
DIMENSION procedure, as discussed in "Validating Dimensions" on
page 9-10.

See Also:

■ Chapter 10, "Basic Query Rewrite for Materialized Views" for
further details of using dimensional information

■ Oracle Database SQL Language Reference for a complete
description of the CREATE DIMENSION statement

Creating Dimensions

Dimensions 9-7

ALTER DIMENSION products_dim
DROP ATTRIBUTE subcategory_att LEVEL subcategory COLUMN prod_subcategory;

Multiple Hierarchies
A single dimension definition can contain multiple hierarchies. Suppose our retailer
wants to track the sales of certain items over time. The first step is to define the time
dimension over which sales will be tracked. Figure 9–2 illustrates a dimension times_
dim with two time hierarchies.

Figure 9–2 times_dim Dimension with Two Time Hierarchies

From the illustration, you can construct the hierarchy of the denormalized time_dim
dimension's CREATE DIMENSION statement as follows. The complete CREATE DIMENSION
statement as well as the CREATE TABLE statement are shown in Oracle Database Sample
Schemas.

CREATE DIMENSION times_dim
 LEVEL day IS times.time_id
 LEVEL month IS times.calendar_month_desc
 LEVEL quarter IS times.calendar_quarter_desc
 LEVEL year IS times.calendar_year
 LEVEL fis_week IS times.week_ending_day
 LEVEL fis_month IS times.fiscal_month_desc
 LEVEL fis_quarter IS times.fiscal_quarter_desc
 LEVEL fis_year IS times.fiscal_year
 HIERARCHY cal_rollup (
 day CHILD OF
 month CHILD OF
 quarter CHILD OF
 year
)
 HIERARCHY fis_rollup (
 day CHILD OF
 fis_week CHILD OF
 fis_month CHILD OF
 fis_quarter CHILD OF

See Also: Oracle Database SQL Language Reference for a complete
description of the CREATE DIMENSION statement

quarter

year

fis_quarter

fis_year

fis_month

fis_week

day

month

Viewing Dimensions

9-8 Oracle Database Data Warehousing Guide

 fis_year
) <attribute determination clauses>;

Using Normalized Dimension Tables
The tables used to define a dimension may be normalized or denormalized and the
individual hierarchies can be normalized or denormalized. If the levels of a hierarchy
come from the same table, it is called a fully denormalized hierarchy. For example,
cal_rollup in the times_dim dimension is a denormalized hierarchy. If levels of a
hierarchy come from different tables, such a hierarchy is either a fully or partially
normalized hierarchy. This section shows how to define a normalized hierarchy.

Suppose the tracking of a customer's location is done by city, state, and country. This
data is stored in the tables customers and countries. The customer dimension
customers_dim is partially normalized because the data entities cust_id and country_
id are taken from different tables. The clause JOIN KEY within the dimension definition
specifies how to join together the levels in the hierarchy. The dimension statement is
partially shown in the following. The complete CREATE DIMENSION statement as well as
the CREATE TABLE statement are shown in Oracle Database Sample Schemas.

CREATE DIMENSION customers_dim
 LEVEL customer IS (customers.cust_id)
 LEVEL city IS (customers.cust_city)
 LEVEL state IS (customers.cust_state_province)
 LEVEL country IS (countries.country_id)
 LEVEL subregion IS (countries.country_subregion)
 LEVEL region IS (countries.country_region)
 HIERARCHY geog_rollup (
 customer CHILD OF
 city CHILD OF
 state CHILD OF
 country CHILD OF
 subregion CHILD OF
 region
 JOIN KEY (customers.country_id) REFERENCES country);

If you use the SKIP WHEN NULL clause, you can use the JOIN KEY clause to link levels that
have a missing level in their hierarchy. For example, the following statement enables a
state level that has been declared as SKIP WHEN NULL to join city and country:

JOIN KEY (city.country_id) REFERENCES country;

This ensures that the rows at customer and city levels can still be associated with the
rows of country, subregion, and region levels.

Viewing Dimensions
Dimensions can be viewed through one of two methods:

■ Viewing Dimensions With Oracle Enterprise Manager

■ Viewing Dimensions With the DESCRIBE_DIMENSION Procedure

Viewing Dimensions With Oracle Enterprise Manager
All of the dimensions that exist in the data warehouse can be viewed using Oracle
Enterprise Manager. Select the Dimension object from within the Schema icon to
display all of the dimensions. Select a specific dimension to graphically display its
hierarchy, levels, and any attributes that have been defined.

Using Dimensions with Constraints

Dimensions 9-9

Viewing Dimensions With the DESCRIBE_DIMENSION Procedure
To view the definition of a dimension, use the DESCRIBE_DIMENSION procedure in the
DBMS_DIMENSION package. For example, if a dimension is created in the sh sample
schema with the following statements:

CREATE DIMENSION channels_dim
 LEVEL channel IS (channels.channel_id)
 LEVEL channel_class IS (channels.channel_class)
 HIERARCHY channel_rollup (
 channel CHILD OF channel_class)
 ATTRIBUTE channel DETERMINES (channel_desc)
 ATTRIBUTE channel_class DETERMINES (channel_class);

Execute the DESCRIBE_DIMENSION procedure as follows:

SET SERVEROUTPUT ON FORMAT WRAPPED; --to improve the display of info
EXECUTE DBMS_DIMENSION.DESCRIBE_DIMENSION('SH.CHANNELS_DIM');

You then see the following output results:

EXECUTE DBMS_DIMENSION.DESCRIBE_DIMENSION('SH.CHANNELS_DIM');
 DIMENSION SH.CHANNELS_DIM
 LEVEL CHANNEL IS SH.CHANNELS.CHANNEL_ID
 LEVEL CHANNEL_CLASS IS SH.CHANNELS.CHANNEL_CLASS

 HIERARCHY CHANNEL_ROLLUP (
 CHANNEL CHILD OF
 CHANNEL_CLASS)

 ATTRIBUTE CHANNEL LEVEL CHANNEL DETERMINES
SH.CHANNELS.CHANNEL_DESC
 ATTRIBUTE CHANNEL_CLASS LEVEL CHANNEL_CLASS DETERMINES
SH.CHANNELS.CHANNEL_CLASS

Using Dimensions with Constraints
Constraints play an important role with dimensions. Full referential integrity is
sometimes enabled in data warehouses, but not always. This is because operational
databases normally have full referential integrity and you can ensure that the data
flowing into your data warehouse never violates the already established integrity
rules.

It is recommended that constraints be enabled and, if validation time is a concern, then
the NOVALIDATE clause should be used as follows:

ENABLE NOVALIDATE CONSTRAINT pk_time;

Primary and foreign keys should be implemented also. Referential integrity
constraints and NOT NULL constraints on the fact tables provide information that query
rewrite can use to extend the usefulness of materialized views.

In addition, you should use the RELY clause to inform query rewrite that it can rely
upon the constraints being correct as follows:

ALTER TABLE time MODIFY CONSTRAINT pk_time RELY;

This information is also used for query rewrite. See Chapter 10, "Basic Query Rewrite
for Materialized Views" for more information.

If you use the SKIP WHEN NULL clause, at least one of the referenced level columns
should not have NOT NULL constraints.

Validating Dimensions

9-10 Oracle Database Data Warehousing Guide

Validating Dimensions
The information of a dimension object is declarative only and not enforced by the
database. If the relationships described by the dimensions are incorrect, incorrect
results could occur. Therefore, you should verify the relationships specified by CREATE
DIMENSION using the DBMS_DIMENSION.VALIDATE_DIMENSION procedure periodically.

This procedure is easy to use and has only four parameters:

■ dimension: the owner and name.

■ incremental: set to TRUE to check only the new rows for tables of this dimension.

■ check_nulls: set to TRUE to verify that all columns that are not in the levels
containing a SKIP WHEN NULL clause are not null.

■ statement_id: a user-supplied unique identifier to identify the result of each run
of the procedure.

The following example validates the dimension TIME_FN in the sh schema:

@utldim.sql
EXECUTE DBMS_DIMENSION.VALIDATE_DIMENSION ('SH.TIME_FN', FALSE, TRUE,
 'my first example');

Before running the VALIDATE_DIMENSION procedure, you need to create a local table,
DIMENSION_EXCEPTIONS, by running the provided script utldim.sql. If the VALIDATE_
DIMENSION procedure encounters any errors, they are placed in this table. Querying
this table will identify the exceptions that were found. The following illustrates a
sample:

SELECT * FROM dimension_exceptions
WHERE statement_id = 'my first example';

STATEMENT_ID OWNER TABLE_NAME DIMENSION_NAME RELATIONSHIP BAD_ROWID
------------ ----- ---------- -------------- ------------ ---------
my first example SH MONTH TIME_FN FOREIGN KEY AAAAuwAAJAAAARwAAA

However, rather than query this table, it may be better to query the rowid of the
invalid row to retrieve the actual row that has violated the constraint. In this example,
the dimension TIME_FN is checking a table called month. It has found a row that
violates the constraints. Using the rowid, you can see exactly which row in the month
table is causing the problem, as in the following:

SELECT * FROM month
WHERE rowid IN (SELECT bad_rowid
 FROM dimension_exceptions
 WHERE statement_id = 'my first example');

MONTH QUARTER FISCAL_QTR YEAR FULL_MONTH_NAME MONTH_NUMB
------ ------- ---------- ---- --------------- ----------
199903 19981 19981 1998 March 3

Altering Dimensions
You can modify a dimension using the ALTER DIMENSION statement. You can add or
drop a level, hierarchy, or attribute from the dimension using this command.

Referring to the time dimension in Figure 9–2 on page 9-7, you can remove the
attribute fis_year, drop the hierarchy fis_rollup, or remove the level fiscal_year.
In addition, you can add a new level called f_year as in the following:

ALTER DIMENSION times_dim DROP ATTRIBUTE fis_year;

Deleting Dimensions

Dimensions 9-11

ALTER DIMENSION times_dim DROP HIERARCHY fis_rollup;
ALTER DIMENSION times_dim DROP LEVEL fis_year;
ALTER DIMENSION times_dim ADD LEVEL f_year IS times.fiscal_year;

If you used the extended_attribute_clause when creating the dimension, you can
drop one attribute column without dropping all attribute columns. This is illustrated
in "Dropping and Creating Attributes with Columns" on page 9-6, which shows the
following statement:

ALTER DIMENSION product_dim
DROP ATTRIBUTE size LEVEL prod_type COLUMN Prod_TypeSize;

If you try to remove anything with further dependencies inside the dimension, Oracle
Database rejects the altering of the dimension. A dimension becomes invalid if you
change any schema object that the dimension is referencing. For example, if the table
on which the dimension is defined is altered, the dimension becomes invalid.

You can modify a dimension by adding a level containing a SKIP WHEN NULL clause, as
in the following statement:

ALTER DIMENSION times_dim
ADD LEVEL f_year IS times.fiscal_year SKIP WHEN NULL;

You cannot, however, modify a level that contains a SKIP WHEN NULL clause. Instead,
you need to drop the level and re-create it.

To check the status of a dimension, view the contents of the column invalid in the
ALL_DIMENSIONS data dictionary view. To revalidate the dimension, use the COMPILE
option as follows:

ALTER DIMENSION times_dim COMPILE;

Dimensions can also be modified or deleted using Oracle Enterprise Manager.

Deleting Dimensions
A dimension is removed using the DROP DIMENSION statement. For example, you could
issue the following statement:

DROP DIMENSION times_dim;

Deleting Dimensions

9-12 Oracle Database Data Warehousing Guide

10

Basic Query Rewrite for Materialized Views 10-1

10 Basic Query Rewrite for Materialized Views

This chapter discusses query rewrite in Oracle, and contains:

■ Overview of Query Rewrite

■ Ensuring that Query Rewrite Takes Effect

■ Example of Query Rewrite

Overview of Query Rewrite
When base tables contain large amount of data, it is expensive and time-consuming to
compute the required aggregates or to compute joins between these tables. In such
cases, queries can take minutes or even hours. Because materialized views contain
already precomputed aggregates and joins, Oracle Database employs an extremely
powerful process called query rewrite to quickly answer the query using materialized
views.

One of the major benefits of creating and maintaining materialized views is the ability
to take advantage of query rewrite, which transforms a SQL statement expressed in
terms of tables or views into a statement accessing one or more materialized views that
are defined on the detail tables. The transformation is transparent to the end user or
application, requiring no intervention and no reference to the materialized view in the
SQL statement. Because query rewrite is transparent, materialized views can be added
or dropped just like indexes without invalidating the SQL in the application code.
"When Does Oracle Rewrite a Query?" on page 10-2 describes the conditions that must
be met for a query to be rewritten.

A query undergoes several checks to determine whether it is a candidate for query
rewrite. If the query fails any of the checks, then the query is applied to the detail
tables rather than the materialized view. This can be costly in terms of response time
and processing power.

The optimizer uses two different methods to recognize when to rewrite a query in
terms of a materialized view. The first method is based on matching the SQL text of
the query with the SQL text of the materialized view definition. If the first method
fails, the optimizer uses the more general method in which it compares joins,
selections, data columns, grouping columns, and aggregate functions between the
query and materialized views.

Query rewrite operates on queries and subqueries in the following types of SQL
statements:

■ SELECT

■ CREATE TABLE … AS SELECT

Ensuring that Query Rewrite Takes Effect

10-2 Oracle Database Data Warehousing Guide

■ INSERT INTO … SELECT

It also operates on subqueries in the set operators UNION, UNION ALL, INTERSECT, and
MINUS, and subqueries in DML statements such as INSERT, DELETE, and UPDATE.

Dimensions, constraints, and rewrite integrity levels affect whether or not a given
query is rewritten to use one or more materialized views. Additionally, query rewrite
can be enabled or disabled by REWRITE and NOREWRITE hints and the QUERY_REWRITE_
ENABLED session parameter.

The DBMS_MVIEW.EXPLAIN_REWRITE procedure advises whether query rewrite is
possible on a query and, if so, which materialized views are used. It also explains why
a query cannot be rewritten.

When Does Oracle Rewrite a Query?
A query is rewritten only when a certain number of conditions are met:

■ Query rewrite must be enabled for the session.

■ A materialized view must be enabled for query rewrite.

■ The rewrite integrity level should allow the use of the materialized view. For
example, if a materialized view is not fresh and query rewrite integrity is set to
ENFORCED, then the materialized view is not used.

■ Either all or part of the results requested by the query must be obtainable from the
precomputed result stored in the materialized view or views.

To test these conditions, the optimizer may depend on some of the data relationships
declared by the user using constraints and dimensions, among others, hierarchies,
referential integrity, and uniqueness of key data, and so on.

Ensuring that Query Rewrite Takes Effect
You must follow several conditions to enable query rewrite:

1. Individual materialized views must have the ENABLE QUERY REWRITE clause.

2. The session parameter QUERY_REWRITE_ENABLED must be set to TRUE (the default) or
FORCE.

3. Cost-based optimization must be used by setting the initialization parameter
OPTIMIZER_MODE to ALL_ROWS, FIRST_ROWS, or FIRST_ROWS_n.

If step 1 has not been completed, a materialized view is never eligible for query
rewrite. You can specify ENABLE QUERY REWRITE either with the ALTER MATERIALIZED
VIEW statement or when the materialized view is created, as illustrated in the
following:

CREATE MATERIALIZED VIEW join_sales_time_product_mv
ENABLE QUERY REWRITE AS
SELECT p.prod_id, p.prod_name, t.time_id, t.week_ending_day,
 s.channel_id, s.promo_id, s.cust_id, s.amount_sold
FROM sales s, products p, times t
WHERE s.time_id=t.time_id AND s.prod_id = p.prod_id;

The NOREWRITE hint disables query rewrite in a SQL statement, overriding the QUERY_
REWRITE_ENABLED parameter, and the REWRITE hint (when used with mv_name) restricts
the eligible materialized views to those named in the hint.

Ensuring that Query Rewrite Takes Effect

Basic Query Rewrite for Materialized Views 10-3

You can use the DBMS_ADVISOR.TUNE_MVIEW procedure to optimize a CREATE
MATERIALIZED VIEW statement to enable general QUERY REWRITE.

This section contains the following topics:

■ Initialization Parameters for Query Rewrite

■ Controlling Query Rewrite

■ Accuracy of Query Rewrite

■ Privileges for Enabling Query Rewrite

■ Sample Schema and Materialized Views

■ How to Verify Query Rewrite Occurred

Initialization Parameters for Query Rewrite
The following three initialization parameter settings control query rewrite behavior:

■ OPTIMIZER_MODE = ALL_ROWS (default), FIRST_ROWS, or FIRST_ROWS_n

With OPTIMIZER_MODE set to FIRST_ROWS, the optimizer uses a mix of costs and
heuristics to find a best plan for fast delivery of the first few rows. When set to
FIRST_ROWS_n, the optimizer uses a cost-based approach and optimizes with a goal
of best response time to return the first n rows (where n = 1, 10, 100, 1000).

■ QUERY_REWRITE_ENABLED = TRUE (default), FALSE, or FORCE

This option enables the query rewrite feature of the optimizer, enabling the
optimizer to utilize materialized views to enhance performance. If set to FALSE,
this option disables the query rewrite feature of the optimizer and directs the
optimizer not to rewrite queries using materialized views even when the
estimated query cost of the unrewritten query is lower.

If set to FORCE, this option enables the query rewrite feature of the optimizer and
directs the optimizer to rewrite queries using materialized views even when the
estimated query cost of the unrewritten query is lower.

■ QUERY_REWRITE_INTEGRITY

This parameter is optional, but must be set to STALE_TOLERATED, TRUSTED, or
ENFORCED (the default) if it is specified (see "Accuracy of Query Rewrite" on
page 10-4).

By default, the integrity level is set to ENFORCED. In this mode, all constraints must
be validated. Therefore, if you use ENABLE NOVALIDATE RELY, certain types of query
rewrite might not work. To enable query rewrite in this environment (where
constraints have not been validated), you should set the integrity level to a lower
level of granularity such as TRUSTED or STALE_TOLERATED.

Controlling Query Rewrite
A materialized view is only eligible for query rewrite if the ENABLE QUERY REWRITE
clause has been specified, either initially when the materialized view was first created
or subsequently with an ALTER MATERIALIZED VIEW statement.

You can set the session parameters described previously for all sessions using the
ALTER SYSTEM SET statement or in the initialization file. For a given user's session,
ALTER SESSION can be used to disable or enable query rewrite for that session only. An
example is the following:

ALTER SESSION SET QUERY_REWRITE_ENABLED = TRUE;

Ensuring that Query Rewrite Takes Effect

10-4 Oracle Database Data Warehousing Guide

You can set the level of query rewrite for a session, thus allowing different users to
work at different integrity levels. The possible statements are:

ALTER SESSION SET QUERY_REWRITE_INTEGRITY = STALE_TOLERATED;
ALTER SESSION SET QUERY_REWRITE_INTEGRITY = TRUSTED;
ALTER SESSION SET QUERY_REWRITE_INTEGRITY = ENFORCED;

Accuracy of Query Rewrite
Query rewrite offers three levels of rewrite integrity that are controlled by the session
parameter QUERY_REWRITE_INTEGRITY, which can either be set in your parameter file or
controlled using an ALTER SYSTEM or ALTER SESSION statement. The three values are as
follows:

■ ENFORCED

This is the default mode. The optimizer only uses fresh data from the materialized
views and only use those relationships that are based on ENABLED VALIDATED
primary, unique, or foreign key constraints.

■ TRUSTED

In TRUSTED mode, the optimizer trusts that the relationships declared in
dimensions and RELY constraints are correct. In this mode, the optimizer also uses
prebuilt materialized views or materialized views based on views, and it uses
relationships that are not enforced as well as those that are enforced. It also trusts
declared but not ENABLED VALIDATED primary or unique key constraints and data
relationships specified using dimensions. This mode offers greater query rewrite
capabilities but also creates the risk of incorrect results if any of the trusted
relationships you have declared are incorrect.

■ STALE_TOLERATED

In STALE_TOLERATED mode, the optimizer uses materialized views that are valid
but contain stale data as well as those that contain fresh data. This mode offers the
maximum rewrite capability but creates the risk of generating inaccurate results.

If rewrite integrity is set to the safest level, ENFORCED, the optimizer uses only enforced
primary key constraints and referential integrity constraints to ensure that the results
of the query are the same as the results when accessing the detail tables directly. If the
rewrite integrity is set to levels other than ENFORCED, there are several situations where
the output with rewrite can be different from that without it:

■ A materialized view can be out of synchronization with the master copy of the
data. This generally happens because the materialized view refresh procedure is
pending following bulk load or DML operations to one or more detail tables of a
materialized view. At some data warehouse sites, this situation is desirable
because it is not uncommon for some materialized views to be refreshed at certain
time intervals.

■ The relationships implied by the dimension objects are invalid. For example,
values at a certain level in a hierarchy do not roll up to exactly one parent value.

■ The values stored in a prebuilt materialized view table might be incorrect.

■ A wrong answer can occur because of bad data relationships defined by
unenforced table or view constraints.

Ensuring that Query Rewrite Takes Effect

Basic Query Rewrite for Materialized Views 10-5

Privileges for Enabling Query Rewrite
Use of a materialized view is based not on privileges the user has on that materialized
view, but on the privileges the user has on detail tables or views in the query.

The system privilege GRANT QUERY REWRITE lets you enable materialized views in your
own schema for query rewrite only if all tables directly referenced by the materialized
view are in that schema. The GRANT GLOBAL QUERY REWRITE privilege enables you to
enable materialized views for query rewrite even if the materialized view references
objects in other schemas. Alternatively, you can use the QUERY REWRITE object privilege
on tables and views outside your schema.

The privileges for using materialized views for query rewrite are similar to those for
definer's rights procedures.

Sample Schema and Materialized Views
The following sections use the sh sample schema and a few materialized views to
illustrate how the optimizer uses data relationships to rewrite queries.

The query rewrite examples in this chapter mainly refer to the following materialized
views. These materialized views do not necessarily represent the most efficient
implementation for the sh schema. Instead, they are a base for demonstrating rewrite
capabilities. Further examples demonstrating specific functionality can be found
throughout this chapter.

The following materialized views contain joins and aggregates:

CREATE MATERIALIZED VIEW sum_sales_pscat_week_mv
ENABLE QUERY REWRITE AS
SELECT p.prod_subcategory, t.week_ending_day,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, times t
WHERE s.time_id=t.time_id AND s.prod_id=p.prod_id
GROUP BY p.prod_subcategory, t.week_ending_day;

CREATE MATERIALIZED VIEW sum_sales_prod_week_mv
ENABLE QUERY REWRITE AS
SELECT p.prod_id, t.week_ending_day, s.cust_id,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, times t
WHERE s.time_id=t.time_id AND s.prod_id=p.prod_id
GROUP BY p.prod_id, t.week_ending_day, s.cust_id;

CREATE MATERIALIZED VIEW sum_sales_pscat_month_city_mv
ENABLE QUERY REWRITE AS
SELECT p.prod_subcategory, t.calendar_month_desc, c.cust_city,
 SUM(s.amount_sold) AS sum_amount_sold,
 COUNT(s.amount_sold) AS count_amount_sold
FROM sales s, products p, times t, customers c
WHERE s.time_id=t.time_id AND s.prod_id=p.prod_id AND s.cust_id=c.cust_id
GROUP BY p.prod_subcategory, t.calendar_month_desc, c.cust_city;

The following materialized views contain joins only:

CREATE MATERIALIZED VIEW join_sales_time_product_mv
ENABLE QUERY REWRITE AS
SELECT p.prod_id, p.prod_name, t.time_id, t.week_ending_day,
 s.channel_id, s.promo_id, s.cust_id, s.amount_sold
FROM sales s, products p, times t
WHERE s.time_id=t.time_id AND s.prod_id = p.prod_id;

Example of Query Rewrite

10-6 Oracle Database Data Warehousing Guide

CREATE MATERIALIZED VIEW join_sales_time_product_oj_mv
ENABLE QUERY REWRITE AS
SELECT p.prod_id, p.prod_name, t.time_id, t.week_ending_day,
 s.channel_id, s.promo_id, s.cust_id, s.amount_sold
FROM sales s, products p, times t
WHERE s.time_id=t.time_id AND s.prod_id=p.prod_id(+);

Although it is not a strict requirement, it is highly recommended that you collect
statistics on the materialized views so that the optimizer can determine whether to
rewrite the queries. You can do this either on a per-object base or for all newly created
objects without statistics. The following is an example of a per-object base, shown for
join_sales_time_product_mv:

EXECUTE DBMS_STATS.GATHER_TABLE_STATS (-
 'SH','JOIN_SALES_TIME_PRODUCT_MV', estimate_percent => 20, -
 block_sample => TRUE, cascade => TRUE);

The following illustrates a statistics collection for all newly created objects without
statistics:

EXECUTE DBMS_STATS.GATHER_SCHEMA_STATS ('SH', -
 options => 'GATHER EMPTY', -
 estimate_percent => 20, block_sample => TRUE, -
 cascade => TRUE);

How to Verify Query Rewrite Occurred
Because query rewrite occurs transparently, special steps have to be taken to verify
that a query has been rewritten. Of course, if the query runs faster, this should indicate
that rewrite has occurred, but that is not proof. Therefore, to confirm that query
rewrite does occur, use the EXPLAIN PLAN statement or the DBMS_MVIEW.EXPLAIN_
REWRITE procedure. See "Verifying that Query Rewrite has Occurred" on page 11-60 for
further information.

Example of Query Rewrite
Consider the following materialized view, cal_month_sales_mv, which provides an
aggregation of the dollar amount sold in every month:

CREATE MATERIALIZED VIEW cal_month_sales_mv
ENABLE QUERY REWRITE AS
SELECT t.calendar_month_desc, SUM(s.amount_sold) AS dollars
FROM sales s, times t WHERE s.time_id = t.time_id
GROUP BY t.calendar_month_desc;

Let us say that, in a typical month, the number of sales in the store is around one
million. So this materialized aggregate view has the precomputed aggregates for the
dollar amount sold for each month. Now consider the following query, which asks for
the sum of the amount sold at the store for each calendar month:

SELECT t.calendar_month_desc, SUM(s.amount_sold)
FROM sales s, times t WHERE s.time_id = t.time_id
GROUP BY t.calendar_month_desc;

In the absence of the previous materialized view and query rewrite feature, Oracle will
have to access the sales table directly and compute the sum of the amount sold to
return the results. This involves reading many million rows from the sales table
which will invariably increase the query response time due to the disk access. The join

Example of Query Rewrite

Basic Query Rewrite for Materialized Views 10-7

in the query will also further slow down the query response as the join needs to be
computed on many million rows. In the presence of the materialized view cal_month_
sales_mv, query rewrite will transparently rewrite the previous query into the
following query:

SELECT calendar_month, dollars
FROM cal_month_sales_mv;

Because there are only a few dozens rows in the materialized view cal_month_sales_
mv and no joins, Oracle Database returns the results instantly. This simple example
illustrates the power of query rewrite with materialized views.

Example of Query Rewrite

10-8 Oracle Database Data Warehousing Guide

11

Advanced Query Rewrite for Materialized Views 11-1

11 Advanced Query Rewrite for Materialized
Views

This chapter discusses advanced query rewrite topics in Oracle, and contains:

■ How Oracle Rewrites Queries

■ Types of Query Rewrite

■ Other Query Rewrite Considerations

■ Advanced Query Rewrite Using Equivalences

■ Creating Result Cache Materialized Views with Equivalences

■ Verifying that Query Rewrite has Occurred

■ Design Considerations for Improving Query Rewrite Capabilities

How Oracle Rewrites Queries
The optimizer uses a number of different methods to rewrite a query. The first step in
determining whether query rewrite is possible is to see if the query satisfies the
following prerequisites:

■ Joins present in the materialized view are present in the SQL.

■ There is sufficient data in the materialized view(s) to answer the query.

After that, it must determine how it will rewrite the query. The simplest case occurs
when the result stored in a materialized view exactly matches what is requested by a
query. The optimizer makes this type of determination by comparing the text of the
query with the text of the materialized view definition. This text match method is most
straightforward but the number of queries eligible for this type of query rewrite is
minimal.

When the text comparison test fails, the optimizer performs a series of generalized
checks based on the joins, selections, grouping, aggregates, and column data fetched.
This is accomplished by individually comparing various clauses (SELECT, FROM, WHERE,
HAVING, or GROUP BY) of a query with those of a materialized view.

You can use the following types of query rewrite: Text Match Rewrite or General
Query Rewrite Methods.

This section discusses the optimizer in more detail and contains the following sections:

■ Cost-Based Optimization

■ General Query Rewrite Methods

How Oracle Rewrites Queries

11-2 Oracle Database Data Warehousing Guide

■ Checks Made by Query Rewrite

■ Query Rewrite Using Dimensions

Cost-Based Optimization
When a query is rewritten, Oracle's cost-based optimizer compares the cost of the
rewritten query and original query and chooses the cheaper execution plan.

Query rewrite is available with cost-based optimization. Oracle Database optimizes
the input query with and without rewrite and selects the least costly alternative. The
optimizer rewrites a query by rewriting one or more query blocks, one at a time.

If query rewrite has a choice between several materialized views to rewrite a query
block, it selects the ones which can result in reading in the least amount of data. After a
materialized view has been selected for a rewrite, the optimizer then tests whether the
rewritten query can be rewritten further with other materialized views. This process
continues until no further rewrites are possible. Then the rewritten query is optimized
and the original query is optimized. The optimizer compares these two optimizations
and selects the least costly alternative.

Because optimization is based on cost, it is important to collect statistics both on tables
involved in the query and on the tables representing materialized views. Statistics are
fundamental measures, such as the number of rows in a table, that are used to
calculate the cost of a rewritten query. They are created by using the DBMS_STATS
package.

Queries that contain inline or named views are also candidates for query rewrite.
When a query contains a named view, the view name is used to do the matching
between a materialized view and the query. When a query contains an inline view, the
inline view can be merged into the query before matching between a materialized
view and the query occurs.

Figure 11–1 presents a graphical view of the cost-based approach used during the
rewrite process.

How Oracle Rewrites Queries

Advanced Query Rewrite for Materialized Views 11-3

Figure 11–1 The Query Rewrite Process

General Query Rewrite Methods
The optimizer has a number of different types of query rewrite methods that it can
choose from to answer a query. When text match rewrite is not possible, this group of
rewrite methods is known as general query rewrite. The advantage of using these
more advanced techniques is that one or more materialized views can be used to
answer a number of different queries and the query does not always have to match the
materialized view exactly for query rewrite to occur.

When using general query rewrite methods, the optimizer uses data relationships on
which it can depend, such as primary and foreign key constraints and dimension
objects. For example, primary key and foreign key relationships tell the optimizer that
each row in the foreign key table joins with at most one row in the primary key table.
Furthermore, if there is a NOT NULL constraint on the foreign key, it indicates that each
row in the foreign key table must join to exactly one row in the primary key table. A
dimension object describes the relationship between, say, day, months, and year, which
can be used to roll up data from the day to the month level.

Data relationships such as these are very important for query rewrite because they tell
what type of result is produced by joins, grouping, or aggregation of data. Therefore,
to maximize the rewritability of a large set of queries when such data relationships
exist in a database, you should declare constraints and dimensions.

See Also: When are Constraints and Dimensions Needed?

Rewrite

Generate
plan

User's SQL

Generate
plan

Choose
(based on cost)

Execute

Oracle

How Oracle Rewrites Queries

11-4 Oracle Database Data Warehousing Guide

When are Constraints and Dimensions Needed?
Table 11–1 illustrates when dimensions and constraints are required for different types
of query rewrite. These types of query rewrite are described throughout this chapter.

Checks Made by Query Rewrite
For query rewrite to occur, there are a number of checks that the data must pass. These
checks are:

■ Join Compatibility Check

■ Data Sufficiency Check

■ Grouping Compatibility Check

■ Aggregate Computability Check

Join Compatibility Check
In this check, the joins in a query are compared against the joins in a materialized view.
In general, this comparison results in the classification of joins into three categories:

■ Common joins that occur in both the query and the materialized view. These joins
form the common subgraph.

■ Delta joins that occur in the query but not in the materialized view. These joins
form the query delta subgraph.

■ Delta joins that occur in the materialized view but not in the query. These joins
form the materialized view delta subgraph.

These can be visualized as shown in Figure 11–2.

Table 11–1 Dimension and Constraint Requirements for Query Rewrite

Query Rewrite Types Dimensions Primary Key/Foreign Key/Not Null Constraints

Matching SQL Text Not Required Not Required

Join Back Required OR Required

Aggregate Computability Not Required Not Required

Aggregate Rollup Not Required Not Required

Rollup Using a Dimension Required Not Required

Filtering the Data Not Required Not Required

PCT Rewrite Not Required Not Required

Multiple Materialized Views Not Required Not Required

How Oracle Rewrites Queries

Advanced Query Rewrite for Materialized Views 11-5

Figure 11–2 Query Rewrite Subgraphs

Common Joins The common join pairs between the two must be of the same type, or
the join in the query must be derivable from the join in the materialized view. For
example, if a materialized view contains an outer join of table A with table B, and a
query contains an inner join of table A with table B, the result of the inner join can be
derived by filtering the antijoin rows from the result of the outer join. For example,
consider the following query:

SELECT p.prod_name, t.week_ending_day, SUM(s.amount_sold)
FROM sales s, products p, times t
WHERE s.time_id=t.time_id AND s.prod_id = p.prod_id
AND mv.week_ending_day BETWEEN TO_DATE('01-AUG-1999', 'DD-MON-YYYY')
 AND TO_DATE('10-AUG-1999', 'DD-MON-YYYY')
GROUP BY p.prod_name, mv.week_ending_day;

The common joins between this query and the materialized view join_sales_time_
product_mv are:

s.time_id = t.time_id AND s.prod_id = p.prod_id

They match exactly and the query can be rewritten as follows:

SELECT p.prod_name, mv.week_ending_day, SUM(s.amount_sold)
FROM join_sales_time_product_mv
WHERE mv.week_ending_day BETWEEN TO_DATE('01-AUG-1999','DD-MON-YYYY')
 AND TO_DATE('10-AUG-1999','DD-MON-YYYY')
GROUP BY mv.prod_name, mv.week_ending_day;

The query could also be answered using the join_sales_time_product_oj_mv
materialized view where inner joins in the query can be derived from outer joins in the
materialized view. The rewritten version (transparently to the user) filters out the
antijoin rows. The rewritten query has the following structure:

SELECT mv.prod_name, mv.week_ending_day, SUM(mv.amount_sold)
FROM join_sales_time_product_oj_mv mv
WHERE mv.week_ending_day BETWEEN TO_DATE('01-AUG-1999','DD-MON-YYYY')
 AND TO_DATE('10-AUG-1999','DD-MON-YYYY') AND mv.prod_id IS NOT NULL

Query
delta

Common
subgraph

MV
delta

countries

customers products

sales

times

Query join
graph

Materialized
view join
graph

How Oracle Rewrites Queries

11-6 Oracle Database Data Warehousing Guide

GROUP BY mv.prod_name, mv.week_ending_day;

In general, if you use an outer join in a materialized view containing only joins, you
should put in the materialized view either the primary key or the rowid on the right
side of the outer join. For example, in the previous example, join_sales_time_
product_oj_mv, there is a primary key on both sales and products.

Another example of when a materialized view containing only joins is used is the case
of a semijoin rewrites. That is, a query contains either an EXISTS or an IN subquery
with a single table. Consider the following query, which reports the products that had
sales greater than $1,000:

SELECT DISTINCT p.prod_name
FROM products p
WHERE EXISTS (SELECT p.prod_id, SUM(s.amount_sold) FROM sales s
 WHERE p.prod_id=s.prod_id HAVING SUM(s.amount_sold) > 1000)
 GROUP BY p.prod_id);

This query could also be represented as:

SELECT DISTINCT p.prod_name
FROM products p WHERE p.prod_id IN (SELECT s.prod_id FROM sales s
 WHERE s.amount_sold > 1000);

This query contains a semijoin (s.prod_id = p.prod_id) between the products and
the sales table.

This query can be rewritten to use either the join_sales_time_product_mv
materialized view, if foreign key constraints are active or join_sales_time_product_
oj_mv materialized view, if primary keys are active. Observe that both materialized
views contain s.prod_id=p.prod_id, which can be used to derive the semijoin in the
query. The query is rewritten with join_sales_time_product_mv as follows:

SELECT mv.prod_name
FROM (SELECT DISTINCT mv.prod_name FROM join_sales_time_product_mv mv
 WHERE mv.amount_sold > 1000);

If the materialized view join_sales_time_product_mv is partitioned by time_id, then
this query is likely to be more efficient than the original query because the original join
between sales and products has been avoided. The query could be rewritten using
join_sales_time_product_oj_mv as follows.

SELECT mv.prod_name
FROM (SELECT DISTINCT mv.prod_name FROM join_sales_time_product_oj_mv mv
 WHERE mv.amount_sold > 1000 AND mv.prod_id IS NOT NULL);

Rewrites with semi-joins are restricted to materialized views with joins only and are
not possible for materialized views with joins and aggregates.

Query Delta Joins A query delta join is a join that appears in the query but not in the
materialized view. Any number and type of delta joins in a query are allowed and they
are simply retained when the query is rewritten with a materialized view. In order for
the retained join to work, the materialized view must contain the joining key. Upon
rewrite, the materialized view is joined to the appropriate tables in the query delta. For
example, consider the following query:

SELECT p.prod_name, t.week_ending_day, c.cust_city, SUM(s.amount_sold)
FROM sales s, products p, times t, customers c
WHERE s.time_id=t.time_id AND s.prod_id = p.prod_id
AND s.cust_id = c.cust_id
GROUP BY p.prod_name, t.week_ending_day, c.cust_city;

How Oracle Rewrites Queries

Advanced Query Rewrite for Materialized Views 11-7

Using the materialized view join_sales_time_product_mv, common joins are:
s.time_id=t.time_id and s.prod_id=p.prod_id. The delta join in the query is
s.cust_id=c.cust_id. The rewritten form then joins the join_sales_time_product_
mv materialized view with the customers table as follows:

SELECT mv.prod_name, mv.week_ending_day, c.cust_city, SUM(mv.amount_sold)
FROM join_sales_time_product_mv mv, customers c
WHERE mv.cust_id = c.cust_id
GROUP BY mv.prod_name, mv.week_ending_day, c.cust_city;

Materialized View Delta Joins A materialized view delta join is a join that appears in the
materialized view but not the query. All delta joins in a materialized view are required
to be lossless with respect to the result of common joins. A lossless join guarantees that
the result of common joins is not restricted. A lossless join is one where, if two tables
called A and B are joined together, rows in table A will always match with rows in table
B and no data will be lost, hence the term lossless join. For example, every row with
the foreign key matches a row with a primary key provided no nulls are allowed in the
foreign key. Therefore, to guarantee a lossless join, it is necessary to have FOREIGN KEY,
PRIMARY KEY, and NOT NULL constraints on appropriate join keys. Alternatively, if the
join between tables A and B is an outer join (A being the outer table), it is lossless as it
preserves all rows of table A.

All delta joins in a materialized view are required to be non-duplicating with respect
to the result of common joins. A non-duplicating join guarantees that the result of
common joins is not duplicated. For example, a non-duplicating join is one where, if
table A and table B are joined together, rows in table A will match with at most one row
in table B and no duplication occurs. To guarantee a non-duplicating join, the key in
table B must be constrained to unique values by using a primary key or unique
constraint.

Consider the following query that joins sales and times:

SELECT t.week_ending_day, SUM(s.amount_sold)
FROM sales s, times t
WHERE s.time_id = t.time_id AND t.week_ending_day BETWEEN TO_DATE
 ('01-AUG-1999', 'DD-MON-YYYY') AND TO_DATE('10-AUG-1999', 'DD-MON-YYYY')
GROUP BY week_ending_day;

The materialized view join_sales_time_product_mv has an additional join (s.prod_
id=p.prod_id) between sales and products. This is the delta join in join_sales_
time_product_mv. You can rewrite the query if this join is lossless and non-duplicating.
This is the case if s.prod_id is a foreign key to p.prod_id and is not null. The query is
therefore rewritten as:

SELECT week_ending_day, SUM(amount_sold)
FROM join_sales_time_product_mv
WHERE week_ending_day BETWEEN TO_DATE('01-AUG-1999', 'DD-MON-YYYY')
 AND TO_DATE('10-AUG-1999', 'DD-MON-YYYY')
GROUP BY week_ending_day;

The query can also be rewritten with the materialized view join_sales_time_
product_mv_oj where foreign key constraints are not needed. This view contains an
outer join (s.prod_id=p.prod_id(+)) between sales and products. This makes the join
lossless. If p.prod_id is a primary key, then the non-duplicating condition is satisfied
as well and optimizer rewrites the query as follows:

SELECT week_ending_day, SUM(amount_sold)
FROM join_sales_time_product_oj_mv
WHERE week_ending_day BETWEEN TO_DATE('01-AUG-1999', 'DD-MON-YYYY')

How Oracle Rewrites Queries

11-8 Oracle Database Data Warehousing Guide

 AND TO_DATE('10-AUG-1999', 'DD-MON-YYYY')
GROUP BY week_ending_day;

The query can also be rewritten with the materialized view join_sales_time_
product_mv_oj where foreign key constraints are not needed. This view contains an
outer join (s.prod_id=p.prod_id(+)) between sales and products. This makes the join
lossless. If p.prod_id is a primary key, then the non-duplicating condition is satisfied
as well and optimizer rewrites the query as follows:

SELECT week_ending_day, SUM(amount_sold)
FROM join_sales_time_product_oj_mv
WHERE week_ending_day BETWEEN TO_DATE('01-AUG-1999', 'DD-MON-YYYY')
 AND TO_DATE('10-AUG-1999', 'DD-MON-YYYY')
GROUP BY week_ending_day;

Note that the outer join in the definition of join_sales_time_product_mv_oj is not
necessary because the primary key - foreign key relationship between sales and
products in the sh schema is already lossless. It is used for demonstration purposes
only, and would be necessary if sales.prod_id were nullable, thus violating the
losslessness of the join condition sales.prod_id = products.prod_id.

Current limitations restrict most rewrites with outer joins to materialized views with
joins only. There is limited support for rewrites with materialized aggregate views
with outer joins, so those materialized views should rely on foreign key constraints to
assure losslessness of materialized view delta joins.

Join Equivalence Recognition Query rewrite is able to make many transformations based
upon the recognition of equivalent joins. Query rewrite recognizes the following
construct as being equivalent to a join:

WHERE table1.column1 = F(args) /* sub-expression A */
AND table2.column2 = F(args) /* sub-expression B */

If F(args) is a PL/SQL function that is declared to be deterministic and the arguments
to both invocations of F are the same, then the combination of subexpression A with
subexpression B be can be recognized as a join between table1.column1 and
table2.column2. That is, the following expression is equivalent to the previous
expression:

WHERE table1.column1 = F(args) /* sub-expression A */
AND table2.column2 = F(args) /* sub-expression B */
AND table1.column1 = table2.column2 /* join-expression J */

Because join-expression J can be inferred from sub-expression A and subexpression B,
the inferred join can be used to match a corresponding join of table1.column1 =
table2.column2 in a materialized view.

Data Sufficiency Check
In this check, the optimizer determines if the necessary column data requested by a
query can be obtained from a materialized view. For this, the equivalence of one
column with another is used. For example, if an inner join between table A and table B
is based on a join predicate A.X = B.X, then the data in column A.X equals the data in
column B.X in the result of the join. This data property is used to match column A.X in
a query with column B.X in a materialized view or vice versa. For example, consider
the following query:

SELECT p.prod_name, s.time_id, t.week_ending_day, SUM(s.amount_sold)
FROM sales s, products p, times t
WHERE s.time_id=t.time_id AND s.prod_id = p.prod_id

How Oracle Rewrites Queries

Advanced Query Rewrite for Materialized Views 11-9

GROUP BY p.prod_name, s.time_id, t.week_ending_day;

This query can be answered with join_sales_time_product_mv even though the
materialized view does not have s.time_id. Instead, it has t.time_id, which, through
a join condition s.time_id=t.time_id, is equivalent to s.time_id. Thus, the optimizer
might select the following rewrite:

SELECT prod_name, time_id, week_ending_day, SUM(amount_sold)
FROM join_sales_time_product_mv
GROUP BY prod_name, time_id, week_ending_day;

Grouping Compatibility Check
This check is required only if both the materialized view and the query contain a GROUP
BY clause. The optimizer first determines if the grouping of data requested by a query
is exactly the same as the grouping of data stored in a materialized view. In other
words, the level of grouping is the same in both the query and the materialized view. If
the materialized views groups on all the columns and expressions in the query and
also groups on additional columns or expressions, query rewrite can reaggregate the
materialized view over the grouping columns and expressions of the query to derive
the same result requested by the query.

Aggregate Computability Check
This check is required only if both the query and the materialized view contain
aggregates. Here the optimizer determines if the aggregates requested by a query can
be derived or computed from one or more aggregates stored in a materialized view.
For example, if a query requests AVG(X) and a materialized view contains SUM(X) and
COUNT(X), then AVG(X) can be computed as SUM(X)/COUNT(X).

If the grouping compatibility check determined that the rollup of aggregates stored in
a materialized view is required, then the aggregate computability check determines if
it is possible to roll up each aggregate requested by the query using aggregates in the
materialized view.

Query Rewrite Using Dimensions
This section discusses the following aspects of using dimensions in a rewrite
environment:

■ Benefits of Using Dimensions

■ How to Define Dimensions

Benefits of Using Dimensions
A dimension defines a hierarchical (parent/child) relationships between columns,
where all the columns do not have to come from the same table.

Dimension definitions increase the possibility of query rewrite because they help to
establish functional dependencies between the columns. In addition, dimensions can
express intra-table relationships that cannot be expressed by constraints. A dimension
definition does not occupy additional storage. Rather, a dimension definition
establishes metadata that describes the intra- and inter-dimensional relationships
within your schema. Before creating a materialized view, the first step is to review the
schema and define the dimensions as this can significantly improve the chances of
rewriting a query.

How Oracle Rewrites Queries

11-10 Oracle Database Data Warehousing Guide

How to Define Dimensions
For any given schema, use the following steps to create dimensions:

1. Identify all dimensions and dimension tables in the schema

2. Identify the hierarchies within each dimension

3. Identify the attribute dependencies within each level of the hierarchy

4. Identify joins from the fact table in a data warehouse to each dimension

Remember to set the parameter QUERY_REWRITE_INTEGRITY to TRUSTED or STALE_
TOLERATED for query rewrite to take advantage of the relationships declared in
dimensions.

Identify all dimensions and dimension tables in the schema If the dimensions are
normalized, that is, stored in multiple tables, then check that a join between the
dimension tables guarantees that each child-side row joins with one and only one
parent-side row. In the case of denormalized dimensions, check that the child-side
columns uniquely determine the parent-side (or attribute) columns. Failure to abide by
these rules may result in incorrect results being returned from queries.

Identify the hierarchies within each dimension As an example, day is a child of month (you
can aggregate day level data up to month), and quarter is a child of year.

Identify the attribute dependencies within each level of the hierarchy As an example, identify
that calendar_month_name is an attribute of month.

Identify joins from the fact table in a data warehouse to each dimension Then check that each
join can guarantee that each fact row joins with one and only one dimension row. This
condition must be declared, and optionally enforced, by adding FOREIGN KEY and NOT
NULL constraints on the fact key columns and PRIMARY KEY constraints on the
parent-side join keys. If these relationships can be guaranteed by other data handling
procedures (for example, your load process), these constraints can be enabled using
the NOVALIDATE option to avoid the time required to validate that every row in the
table conforms to the constraints. The RELY clause is also required for all nonvalidated
constraints to make them eligible for use in query rewrite.

Example SQL Statement to Create Time Dimensions

CREATE DIMENSION times_dim
LEVEL day IS TIMES.TIME_ID
LEVEL month IS TIMES.CALENDAR_MONTH_DESC
LEVEL quarter IS TIMES.CALENDAR_QUARTER_DESC
LEVEL year IS TIMES.CALENDAR_YEAR
LEVEL fis_week IS TIMES.WEEK_ENDING_DAY
LEVEL fis_month IS TIMES.FISCAL_MONTH_DESC
LEVEL fis_quarter IS TIMES.FISCAL_QUARTER_DESC
LEVEL fis_year IS TIMES.FISCAL_YEAR
 HIERARCHY cal_rollup
 (day CHILD OF month CHILD OF quarter CHILD OF year)
 HIERARCHY fis_rollup
 (day CHILD OF fis_week CHILD OF fis_month CHILD OF fis_quarter
 CHILD OF fis_year)

 ATTRIBUTE day DETERMINES
 (day_number_in_week, day_name, day_number_in_month,
 calendar_week_number)

 ATTRIBUTE month DETERMINES

Types of Query Rewrite

Advanced Query Rewrite for Materialized Views 11-11

 (calendar_month_desc, calendar_month_number, calendar_month_name,
 days_in_cal_month, end_of_cal_month)

 ATTRIBUTE quarter DETERMINES
 (calendar_quarter_desc, calendar_quarter_number,days_in_cal_quarter,
 end_of_cal_quarter)

 ATTRIBUTE year DETERMINES
 (calendar_year, days_in_cal_year, end_of_cal_year)

 ATTRIBUTE fis_week DETERMINES
 (week_ending_day, fiscal_week_number);

Types of Query Rewrite
Queries that have aggregates that require computations over a large number of rows
or joins between very large tables can be expensive and thus can take a long time to
return the results. Query rewrite transparently rewrites such queries using
materialized views that have pre-computed results, so that the queries can be
answered almost instantaneously. These materialized views can be broadly
categorized into two groups, namely materialized aggregate views and materialized
join views. Materialized aggregate views are tables that have pre-computed aggregate
values for columns from original tables. Similarly, materialized join views are tables
that have pre-computed joins between columns from original tables. Query rewrite
transforms an incoming query to fetch the results from materialized view columns.
Because these columns contain already pre-computed results, the incoming query can
be answered almost instantaneously. For considerations regarding query rewrite of
cube organized materialized views, see Oracle OLAP User's Guide.

This section discusses the following methods that can be used to rewrite a query:

■ Text Match Rewrite

■ Join Back

■ Aggregate Computability

■ Aggregate Rollup

■ Rollup Using a Dimension

■ When Materialized Views Have Only a Subset of Data

■ Partition Change Tracking (PCT) Rewrite

■ Multiple Materialized Views

Text Match Rewrite
The query rewrite engine always initially tries to compare the text of incoming query
with the text of the definition of any potential materialized views to rewrite the query.
This is because the overhead of doing a simple text comparison is usually negligible
comparing to the cost of doing a complex analysis required for the general rewrite.

The query rewrite engine uses two text match methods, full text match rewrite and
partial text match rewrite. In full text match the entire text of a query is compared
against the entire text of a materialized view definition (that is, the entire SELECT
expression), ignoring the white space during text comparison. For example, assume
that you have the following materialized view, sum_sales_pscat_month_city_mv:

CREATE MATERIALIZED VIEW sum_sales_pscat_month_city_mv

Types of Query Rewrite

11-12 Oracle Database Data Warehousing Guide

ENABLE QUERY REWRITE AS
 SELECT p.prod_subcategory, t.calendar_month_desc, c.cust_city,
 SUM(s.amount_sold) AS sum_amount_sold,
 COUNT(s.amount_sold) AS count_amount_sold
 FROM sales s, products p, times t, customers c
 WHERE s.time_id=t.time_id
 AND s.prod_id=p.prod_id
 AND s.cust_id=c.cust_id
 GROUP BY p.prod_subcategory, t.calendar_month_desc, c.cust_city;

Consider the following query:

SELECT p.prod_subcategory, t.calendar_month_desc, c.cust_city,
 SUM(s.amount_sold) AS sum_amount_sold,
 COUNT(s.amount_sold) AS count_amount_sold
 FROM sales s, products p, times t, customers c
 WHERE s.time_id=t.time_id
 AND s.prod_id=p.prod_id
 AND s.cust_id=c.cust_id
 GROUP BY p.prod_subcategory, t.calendar_month_desc, c.cust_city;

This query matches sum_sales_pscat_month_city_mv (white space excluded) and is
rewritten as:

SELECT mv.prod_subcategory, mv.calendar_month_desc, mv.cust_city,
 mv.sum_amount_sold, mv.count_amount_sold
FROM sum_sales_pscat_month_city_mv;

When full text match fails, the optimizer then attempts a partial text match. In this
method, the text starting from the FROM clause of a query is compared against the text
starting with the FROM clause of a materialized view definition. Therefore, the
following query can be rewritten:

SELECT p.prod_subcategory, t.calendar_month_desc, c.cust_city,
 AVG(s.amount_sold)
FROM sales s, products p, times t, customers c
WHERE s.time_id=t.time_id AND s.prod_id=p.prod_id
AND s.cust_id=c.cust_id
GROUP BY p.prod_subcategory, t.calendar_month_desc, c.cust_city;

This query is rewritten as:

SELECT mv.prod_subcategory, mv.calendar_month_desc, mv.cust_city,
 mv.sum_amount_sold/mv.count_amount_sold
FROM sum_sales_pscat_month_city_mv mv;

Note that, under the partial text match rewrite method, the average of sales aggregate
required by the query is computed using the sum of sales and count of sales
aggregates stored in the materialized view.

When neither text match succeeds, the optimizer uses a general query rewrite method.

Text match rewrite can distinguish contexts where the difference between uppercase
and lowercase is significant and where it is not. For example, the following statements
are equivalent:

SELECT X, 'aBc' FROM Y

Select x, 'aBc' From y

Types of Query Rewrite

Advanced Query Rewrite for Materialized Views 11-13

Join Back
If some column data requested by a query cannot be obtained from a materialized
view, the optimizer further determines if it can be obtained based on a data
relationship called a functional dependency. When the data in a column can determine
data in another column, such a relationship is called a functional dependency or
functional determinance. For example, if a table contains a primary key column called
prod_id and another column called prod_name, then, given a prod_id value, it is
possible to look up the corresponding prod_name. The opposite is not true, which
means a prod_name value need not relate to a unique prod_id.

When the column data required by a query is not available from a materialized view,
such column data can still be obtained by joining the materialized view back to the
table that contains required column data provided the materialized view contains a
key that functionally determines the required column data. For example, consider the
following query:

SELECT p.prod_category, t.week_ending_day, SUM(s.amount_sold)
FROM sales s, products p, times t
WHERE s.time_id=t.time_id AND s.prod_id=p.prod_id AND p.prod_category='CD'
GROUP BY p.prod_category, t.week_ending_day;

The materialized view sum_sales_prod_week_mv contains p.prod_id, but not p.prod_
category. However, you can join sum_sales_prod_week_mv back to products to
retrieve prod_category because prod_id functionally determines prod_category. The
optimizer rewrites this query using sum_sales_prod_week_mv as follows:

SELECT p.prod_category, mv.week_ending_day, SUM(mv.sum_amount_sold)
FROM sum_sales_prod_week_mv mv, products p
WHERE mv.prod_id=p.prod_id AND p.prod_category='CD'
GROUP BY p.prod_category, mv.week_ending_day;

Here the products table is called a joinback table because it was originally joined in
the materialized view but joined again in the rewritten query.

You can declare functional dependency in two ways:

■ Using the primary key constraint (as shown in the previous example)

■ Using the DETERMINES clause of a dimension

The DETERMINES clause of a dimension definition might be the only way you could
declare functional dependency when the column that determines another column
cannot be a primary key. For example, the products table is a denormalized dimension
table that has columns prod_id, prod_name, and prod_subcategory that functionally
determines prod_subcat_desc and prod_category that determines prod_cat_desc.

The first functional dependency can be established by declaring prod_id as the
primary key, but not the second functional dependency because the prod_subcategory
column contains duplicate values. In this situation, you can use the DETERMINES clause
of a dimension to declare the second functional dependency.

The following dimension definition illustrates how functional dependencies are
declared:

CREATE DIMENSION products_dim
 LEVEL product IS (products.prod_id)
 LEVEL subcategory IS (products.prod_subcategory)
 LEVEL category IS (products.prod_category)
 HIERARCHY prod_rollup (
 product CHILD OF
 subcategory CHILD OF

Types of Query Rewrite

11-14 Oracle Database Data Warehousing Guide

 category
)
 ATTRIBUTE product DETERMINES products.prod_name
 ATTRIBUTE product DETERMINES products.prod_desc
 ATTRIBUTE subcategory DETERMINES products.prod_subcat_desc
 ATTRIBUTE category DETERMINES products.prod_cat_desc;

The hierarchy prod_rollup declares hierarchical relationships that are also 1:n
functional dependencies. The 1:1 functional dependencies are declared using the
DETERMINES clause, as seen when prod_subcategory functionally determines prod_
subcat_desc.

If the following materialized view is created:

CREATE MATERIALIZED VIEW sum_sales_pscat_week_mv
ENABLE QUERY REWRITE AS
SELECT p.prod_subcategory, t.week_ending_day,
 SUM(s.amount_sold) AS sum_amount_sole
FROM sales s, products p, times t
WHERE s.time_id = t.time_id AND s.prod_id = p.prod_id
GROUP BY p.prod_subcategory, t.week_ending_day;

Then consider the following query:

SELECT p.prod_subcategory_desc, t.week_ending_day, SUM(s.amount_sold)
FROM sales s, products p, times t
WHERE s.time_id=t.time_id AND s.prod_id=p.prod_id
AND p.prod_subcat_desc LIKE '%Men'
GROUP BY p.prod_subcat_desc, t.week_ending_day;

This can be rewritten by joining sum_sales_pscat_week_mv to the products table so
that prod_subcat_desc is available to evaluate the predicate. However, the join is
based on the prod_subcategory column, which is not a primary key in the products
table; therefore, it allows duplicates. This is accomplished by using an inline view that
selects distinct values and this view is joined to the materialized view as shown in the
rewritten query.

SELECT iv.prod_subcat_desc, mv.week_ending_day, SUM(mv.sum_amount_sold)
FROM sum_sales_pscat_week_mv mv,
 (SELECT DISTINCT prod_subcategory, prod_subcat_desc
 FROM products) iv
WHERE mv.prod_subcategory=iv.prod_subcategory
AND iv.prod_subcat_desc LIKE '%Men'
GROUP BY iv.prod_subcat_desc, mv.week_ending_day;

This type of rewrite is possible because prod_subcategory functionally determines
prod_subcategory_desc as declared in the dimension.

Aggregate Computability
Query rewrite can also occur when the optimizer determines if the aggregates
requested by a query can be derived or computed from one or more aggregates stored
in a materialized view. For example, if a query requests AVG(X) and a materialized
view contains SUM(X) and COUNT(X), then AVG(X) can be computed as
SUM(X)/COUNT(X).

In addition, if it is determined that the rollup of aggregates stored in a materialized
view is required, then, if it is possible, query rewrite also rolls up each aggregate
requested by the query using aggregates in the materialized view.

Types of Query Rewrite

Advanced Query Rewrite for Materialized Views 11-15

For example, SUM(sales) at the city level can be rolled up to SUM(sales) at the state
level by summing all SUM(sales) aggregates in a group with the same state value.
However, AVG(sales) cannot be rolled up to a coarser level unless COUNT(sales) or
SUM(sales) is also available in the materialized view. Similarly, VARIANCE(sales) or
STDDEV(sales) cannot be rolled up unless both COUNT(sales) and SUM(sales) are also
available in the materialized view. For example, consider the following query:

ALTER TABLE times MODIFY CONSTRAINT time_pk RELY;
ALTER TABLE customers MODIFY CONSTRAINT customers_pk RELY;
ALTER TABLE sales MODIFY CONSTRAINT sales_time_pk RELY;
ALTER TABLE sales MODIFY CONSTRAINT sales_customer_fk RELY;
SELECT p.prod_subcategory, AVG(s.amount_sold) AS avg_sales
FROM sales s, products p WHERE s.prod_id = p.prod_id
GROUP BY p.prod_subcategory;

This statement can be rewritten with materialized view sum_sales_pscat_month_
city_mv provided the join between sales and times and sales and customers are
lossless and non-duplicating. Further, the query groups by prod_subcategory whereas
the materialized view groups by prod_subcategory, calendar_month_desc and cust_
city, which means the aggregates stored in the materialized view have to be rolled up.
The optimizer rewrites the query as the following:

SELECT mv.prod_subcategory, SUM(mv.sum_amount_sold)/COUNT(mv.count_amount_sold)
 AS avg_sales
FROM sum_sales_pscat_month_city_mv mv
GROUP BY mv.prod_subcategory;

The argument of an aggregate such as SUM can be an arithmetic expression such as A+B.
The optimizer tries to match an aggregate SUM(A+B) in a query with an aggregate
SUM(A+B) or SUM(B+A) stored in a materialized view. In other words, expression
equivalence is used when matching the argument of an aggregate in a query with the
argument of a similar aggregate in a materialized view. To accomplish this, Oracle
converts the aggregate argument expression into a canonical form such that two
different but equivalent expressions convert into the same canonical form. For
example, A*(B-C), A*B-C*A, (B-C)*A, and -A*C+A*B all convert into the same canonical
form and, therefore, they are successfully matched.

Aggregate Rollup
If the grouping of data requested by a query is at a coarser level than the grouping of
data stored in a materialized view, the optimizer can still use the materialized view to
rewrite the query. For example, the materialized view sum_sales_pscat_week_mv
groups by prod_subcategory and week_ending_day. This query groups by prod_
subcategory, a coarser grouping granularity:

ALTER TABLE times MODIFY CONSTRAINT time_pk RELY;
ALTER TABLE sales MODIFY CONSTRAINT sales_time_fk RELY;
SELECT p.prod_subcategory, SUM(s.amount_sold) AS sum_amount
FROM sales s, products p
WHERE s.prod_id=p.prod_id
GROUP BY p.prod_subcategory;

Therefore, the optimizer rewrites this query as:

SELECT mv.prod_subcategory, SUM(mv.sum_amount_sold)
FROM sum_sales_pscat_week_mv mv
GROUP BY mv.prod_subcategory;

Types of Query Rewrite

11-16 Oracle Database Data Warehousing Guide

Rollup Using a Dimension
When reporting is required at different levels in a hierarchy, materialized views do not
have to be created at each level in the hierarchy provided dimensions have been
defined. This is because query rewrite can use the relationship information in the
dimension to roll up the data in the materialized view to the required level in the
hierarchy.

In the following example, a query requests data grouped by prod_category while a
materialized view stores data grouped by prod_subcategory. If prod_subcategory is a
CHILD OF prod_category (see the dimension example earlier), the grouped data stored
in the materialized view can be further grouped by prod_category when the query is
rewritten. In other words, aggregates at prod_subcategory level (finer granularity)
stored in a materialized view can be rolled up into aggregates at prod_category level
(coarser granularity).

For example, consider the following query:

SELECT p.prod_category, t.week_ending_day, SUM(s.amount_sold) AS sum_amount
FROM sales s, products p, times t
WHERE s.time_id=t.time_id AND s.prod_id=p.prod_id
GROUP BY p.prod_category, t.week_ending_day;

Because prod_subcategory functionally determines prod_category, sum_sales_
pscat_week_mv can be used with a joinback to products to retrieve prod_category
column data, and then aggregates can be rolled up to prod_category level, as shown
in the following:

SELECT pv.prod_category, mv.week_ending_day, SUM(mv.sum_amount_sold)
FROM sum_sales_pscat_week_mv mv,
 (SELECT DISTINCT prod_subcategory, prod_category
 FROM products) pv
WHERE mv.prod_subcategory= pv.prod_subcategory
GROUP BY pv.prod_category, mv.week_ending_day;

When Materialized Views Have Only a Subset of Data
Oracle supports rewriting of queries so that they will use materialized views in which
the HAVING or WHERE clause of the materialized view contains a selection of a subset of
the data in a table or tables. For example, only those customers who live in New
Hampshire. In other words, the WHERE clause in the materialized view will be WHERE
state = 'New Hampshire'.

To perform this type of query rewrite, Oracle must determine if the data requested in
the query is contained in, or is a subset of, the data stored in the materialized view. The
following sections detail the conditions where Oracle can solve this problem and thus
rewrite a query to use a materialized view that contains a filtered portion of the data in
the detail table.

To determine if query rewrite can occur on filtered data, a selection computability
check is performed when both the query and the materialized view contain selections
(non-joins) and the check is done on the WHERE as well as the HAVING clause. If the
materialized view contains selections and the query does not, then the selection
compatibility check fails because the materialized view is more restrictive than the
query. If the query has selections and the materialized view does not, then the
selection compatibility check is not needed.

A materialized view's WHERE or HAVING clause can contain a join, a selection, or both,
and still be used to rewrite a query. Predicate clauses containing expressions, or

Types of Query Rewrite

Advanced Query Rewrite for Materialized Views 11-17

selecting rows based on the values of particular columns, are examples of non-join
predicates.

This section contains the following topics:

■ Query Rewrite Definitions

■ Selection Categories

■ Examples of Query Rewrite Selection

■ Handling of the HAVING Clause in Query Rewrite

■ Query Rewrite When the Materialized View has an IN-List

Query Rewrite Definitions
Before describing what is possible when query rewrite works with only a subset of the
data, the following definitions are useful:

■ join relop

Is one of the following (=, <, <=, >, >=)

■ selection relop

Is one of the following (=, <, <=, >, >=, !=, [NOT] BETWEEN | IN| LIKE
|NULL)

■ join predicate

Is of the form (column1 join relop column2), where columns are from different
tables within the same FROM clause in the current query block. So, for example, an
outer reference is not possible.

■ selection predicate

Is of the form left-hand-side-expression relop right-hand-side-expression. All non-join
predicates are selection predicates. The left-hand side usually contains a column
and the right-hand side contains the values. For example, color='red' means the
left-hand side is color and the right-hand side is 'red' and the relational operator
is (=).

Selection Categories
Selections are categorized into the following cases:

■ Simple

Simple selections are of the form expression relop constant.

■ Complex

Complex selections are of the form expression relop expression.

■ Range

Range selections are of a form such as WHERE (cust_last_name BETWEEN
'abacrombe' AND 'anakin').

Note that simple selections with relational operators (<,<=,>,>=)are also
considered range selections.

■ IN-lists

Single and multi-column IN-lists such as WHERE(prod_id) IN (102, 233,).

Types of Query Rewrite

11-18 Oracle Database Data Warehousing Guide

Note that selections of the form (column1='v1' OR column1='v2' OR
column1='v3' OR) are treated as a group and classified as an IN-list.

■ IS [NOT] NULL

■ [NOT] LIKE

■ Other

Other selections are when it cannot determine the boundaries for the data. For
example, EXISTS.

When comparing a selection from the query with a selection from the materialized
view, the left-hand side of both selections are compared.

If the left-hand side selections match, then the right-hand side values are checked for
containment. That is, the right-hand side values of the query selection must be
contained by right-hand side values of the materialized view selection.

You can also use expressions in selection predicates. This process resembles the
following:

expression relational operator constant

Where expression can be any arbitrary arithmetic expression allowed by the Oracle
Database. The expression in the materialized view and the query must match. Oracle
attempts to discern expressions that are logically equivalent, such as A+B and B+A, and
always recognizes identical expressions as being equivalent.

You can also use queries with an expression on both sides of the operator or
user-defined functions as operators. Query rewrite occurs when the complex predicate
in the materialized view and the query are logically equivalent. This means that,
unlike exact text match, terms could be in a different order and rewrite can still occur,
as long as the expressions are equivalent.

Examples of Query Rewrite Selection
Here are a number of examples showing how query rewrite can still occur when the
data is being filtered.

Example 11–1 Single Value Selection

If the query contains the following clause:

WHERE prod_id = 102

And, if a materialized view contains the following clause:

WHERE prod_id BETWEEN 0 AND 200

Then, the left-hand side selections match on prod_id and the right-hand side value of
the query 102 is within the range of the materialized view, so query rewrite is possible.

Example 11–2 Bounded Range Selection

A selection can be a bounded range (a range with an upper and lower value). For
example, if the query contains the following clause:

WHERE prod_id > 10 AND prod_id < 50

And if a materialized view contains the following clause:

WHERE prod_id BETWEEN 0 AND 200

Types of Query Rewrite

Advanced Query Rewrite for Materialized Views 11-19

Then, the selections are matched on prod_id and the query range is within the
materialized view range. In this example, notice that both query selections are based
on the same column.

Example 11–3 Selection With Expression

If the query contains the following clause:

WHERE (sales.amount_sold * .07) BETWEEN 1.00 AND 100.00

And if a materialized view contains the following clause:

WHERE (sales.amount_sold * .07) BETWEEN 0.0 AND 200.00

Then, the selections are matched on (sales.amount_sold *.07) and the right-hand
side value of the query is within the range of the materialized view, therefore query
rewrite is possible. Complex selections such as this require that the left-hand side and
the right-hand side be matched within range of the materialized view.

Example 11–4 Exact Match Selections

If the query contains the following clause:

WHERE (cost.unit_price * 0.95) > (cost_unit_cost * 1.25)

And if a materialized view contains the following:

WHERE (cost.unit_price * 0.95) > (cost_unit_cost * 1.25)

If the left-hand side and the right-hand side match the materialized view and the
selection_relop is the same, then the selection can usually be dropped from the rewritten
query. Otherwise, the selection must be kept to filter out extra data from the
materialized view.

If query rewrite can drop the selection from the rewritten query, all columns from the
selection may not have to be in the materialized view so more rewrites can be done.
This ensures that the materialized view data is not more restrictive than the query.

Example 11–5 More Selection in the Query

Selections in the query do not have to be matched by any selections in the materialized
view but, if they are, then the right-hand side values must be contained by the
materialized view. For example, if the query contains the following clause:

WHERE prod_name = 'Shorts' AND prod_category = 'Men'

And if a materialized view contains the following clause:

WHERE prod_category = 'Men'

Then, in this example, only selection with prod_category is matched. The query has
an extra selection that is not matched but this is acceptable because if the materialized
view selects prod_name or selects a column that can be joined back to the detail table to
get prod_name, then query rewrite is possible. The only requirement is that query
rewrite must have a way of applying the prod_name selection to the materialized view.

Example 11–6 No Rewrite Because of Fewer Selections in the Query

If the query contains the following clause:

WHERE prod_category = 'Men'

Types of Query Rewrite

11-20 Oracle Database Data Warehousing Guide

And if a materialized view contains the following clause:

WHERE prod_name = 'Shorts' AND prod_category = 'Men'

Then, the materialized view selection with prod_name is not matched. The materialized
view is more restrictive that the query because it only contains the product Shorts,
therefore, query rewrite does not occur.

Example 11–7 Multi-Column IN-List Selections

Query rewrite also checks for cases where the query has a multi-column IN-list where
the columns are fully matched by individual columns from the materialized view
single column IN-lists. For example, if the query contains the following:

WHERE (prod_id, cust_id) IN ((1022, 1000), (1033, 2000))

And if a materialized view contains the following:

WHERE prod_id IN (1022,1033) AND cust_id IN (1000, 2000)

Then, the materialized view IN-lists are matched by the columns in the query
multi-column IN-list. Furthermore, the right-hand side values of the query selection
are contained by the materialized view so that rewrite occurs.

Example 11–8 Selections Using IN-Lists

Selection compatibility also checks for cases where the materialized view has a
multi-column IN-list where the columns are fully matched by individual columns or
columns from IN-lists in the query. For example, if the query contains the following:

WHERE prod_id = 1022 AND cust_id IN (1000, 2000)

And if a materialized view contains the following:

WHERE (prod_id, cust_id) IN ((1022, 1000), (1022, 2000))

Then, the materialized view IN-list columns are fully matched by the columns in the
query selections. Furthermore, the right-hand side values of the query selection are
contained by the materialized view. So rewrite succeeds.

Example 11–9 Multiple Selections or Expressions

If the query contains the following clause:

WHERE (city_population > 15000 AND city_population < 25000
 AND state_name = 'New Hampshire')

And if a materialized view contains the following clause:

WHERE (city_population < 5000 AND state_name = 'New York') OR
 (city_population BETWEEN 10000 AND 50000 AND state_name = 'New Hampshire')

Then, the query is said to have a single disjunct (group of selections separated by AND)
and the materialized view has two disjuncts separated by OR. The single query disjunct
is contained by the second materialized view disjunct so selection compatibility
succeeds. It is clear that the materialized view contains more data than needed by the
query so the query can be rewritten.

Types of Query Rewrite

Advanced Query Rewrite for Materialized Views 11-21

Handling of the HAVING Clause in Query Rewrite
Query rewrite can also occur when the query specifies a range of values for an
aggregate in the HAVING clause, such as SUM(s.amount_sold) BETWEEN 10000 AND 20000,
as long as the range specified is within the range specified in the materialized view.

CREATE MATERIALIZED VIEW product_sales_mv
BUILD IMMEDIATE
REFRESH FORCE
ENABLE QUERY REWRITE AS
SELECT p.prod_name, SUM(s.amount_sold) AS dollar_sales
FROM products p, sales s
WHERE p.prod_id = s.prod_id
GROUP BY prod_name
HAVING SUM(s.amount_sold) BETWEEN 5000 AND 50000;

Then, a query such as the following could be rewritten:

SELECT p.prod_name, SUM(s.amount_sold) AS dollar_sales
FROM products p, sales s WHERE p.prod_id = s.prod_id
GROUP BY prod_name
HAVING SUM(s.amount_sold) BETWEEN 10000 AND 20000;

This query is rewritten as follows:

SELECT mv.prod_name, mv.dollar_sales FROM product_sales_mv mv
WHERE mv.dollar_sales BETWEEN 10000 AND 20000;

Query Rewrite When the Materialized View has an IN-List
You can use query rewrite when the materialized view contains an IN-list. For
example, given the following materialized view definition:

CREATE MATERIALIZED VIEW popular_promo_sales_mv
BUILD IMMEDIATE
REFRESH FORCE
ENABLE QUERY REWRITE AS
SELECT p.promo_name, SUM(s.amount_sold) AS sum_amount_sold
FROM promotions p, sales s
WHERE s.promo_id = p.promo_id
AND p.promo_name IN ('coupon', 'premium', 'giveaway')
GROUP BY promo_name;

The following query can be rewritten:

SELECT p.promo_name, SUM(s.amount_sold)
FROM promotions p, sales s
WHERE s.promo_id = p.promo_id AND p.promo_name IN ('coupon', 'premium')
GROUP BY p.promo_name;

This query is rewritten as follows:

SELECT * FROM popular_promo_sales_mv mv
WHERE mv.promo_name IN ('coupon', 'premium');

Partition Change Tracking (PCT) Rewrite
PCT rewrite enables the optimizer to accurately rewrite queries with fresh data using
materialized views that are only partially fresh. To do so, Oracle Database keeps track
of which partitions in the detail tables have been updated. Oracle Database then tracks
which rows in the materialized view originate from the affected partitions in the detail
tables. The optimizer is then able to use those portions of the materialized view that

Types of Query Rewrite

11-22 Oracle Database Data Warehousing Guide

are known to be fresh. You can check details about freshness with the DBA_MVIEWS,
DBA_DETAIL_RELATIONS, and DBA_MVIEW_DETAIL_PARTITION views. See "Viewing
Partition Freshness" on page 7-11 for examples of using these views.

The optimizer uses PCT rewrite in QUERY_REWRITE_INTEGRITY = ENFORCED and
TRUSTED modes. The optimizer does not use PCT rewrite in STALE_TOLERATED mode
because data freshness is not considered in that mode. Also, for PCT rewrite to occur, a
WHERE clause is required.

You can use PCT rewrite with partitioning, but hash partitioning is not supported. The
following sections discuss aspects of using PCT:

■ PCT Rewrite Based on Range Partitioned Tables

■ PCT Rewrite Based on Range-List Partitioned Tables

■ PCT Rewrite Based on List Partitioned Tables

■ PCT Rewrite and PMARKER

■ PCT Rewrite Using Rowid as PMARKER

PCT Rewrite Based on Range Partitioned Tables
The following example illustrates a PCT rewrite example where the materialized view
is PCT enabled through partition key and the underlying base table is range
partitioned on the time key.

CREATE TABLE part_sales_by_time (time_id, prod_id, amount_sold,
 quantity_sold)
 PARTITION BY RANGE (time_id)
 (
 PARTITION old_data
 VALUES LESS THAN (TO_DATE('01-01-1999', 'DD-MM-YYYY'))
 PCTFREE 0
 STORAGE (INITIAL 8M),
 PARTITION quarter1
 VALUES LESS THAN (TO_DATE('01-04-1999', 'DD-MM-YYYY'))
 PCTFREE 0
 STORAGE (INITIAL 8M),
 PARTITION quarter2
 VALUES LESS THAN (TO_DATE('01-07-1999', 'DD-MM-YYYY'))
 PCTFREE 0
 STORAGE (INITIAL 8M),
 PARTITION quarter3
 VALUES LESS THAN (TO_DATE('01-10-1999', 'DD-MM-YYYY'))
 PCTFREE 0
 STORAGE (INITIAL 8M),
 PARTITION quarter4
 VALUES LESS THAN (TO_DATE('01-01-2000', 'DD-MM-YYYY'))
 PCTFREE 0
 STORAGE (INITIAL 8M),
 PARTITION max_partition
 VALUES LESS THAN (MAXVALUE)
 PCTFREE 0
 STORAGE (INITIAL 8M)
)
 AS
 SELECT s.time_id, s.prod_id, s.amount_sold, s.quantity_sold
 FROM sales s;

Types of Query Rewrite

Advanced Query Rewrite for Materialized Views 11-23

Then create a materialized view that contains the total number of products sold by
date.

CREATE MATERIALIZED VIEW sales_in_1999_mv
 BUILD IMMEDIATE
 REFRESH FORCE ON DEMAND
 ENABLE QUERY REWRITE
 AS
 SELECT s.time_id, s.prod_id, p.prod_name, SUM(quantity_sold)
 FROM part_sales_by_time s, products p
 WHERE p.prod_id = s.prod_id
 AND s.time_id BETWEEN TO_DATE('01-01-1999', 'DD-MM-YYYY')
 AND TO_DATE('31-12-1999', 'DD-MM-YYYY')
 GROUP BY s.time_id, s.prod_id, p.prod_name;

Note that the following query will be rewritten with materialized view sales_in_
1999_mv:

SELECT s.time_id, p.prod_name, SUM(quantity_sold)
 FROM part_sales_by_time s, products p
 WHERE p.prod_id = s.prod_id
 AND s.time_id < TO_DATE(''01-02-1999'', ''DD-MM-YYYY'')
 AND s.time_id >= TO_DATE(''01-01-1999'', ''DD-MM-YYYY'')
 GROUP BY s.time_id, p.prod_name');

If you add a row to quarter4 in part_sales_by_time as:

INSERT INTO part_sales_by_time
 VALUES (TO_DATE('26-12-1999', 'DD-MM-YYYY'),38920,2500, 20);

commit;

Then the materialized view sales_in_1999_mv becomes stale. With PCT rewrite, you
can rewrite queries that request data from only the fresh portions of the materialized
view. Note that because the materialized view sales_in_1999_mv has the time_id in
its SELECT and GROUP BY clause, it is PCT enabled so the following query will be
rewritten successfully as no data from quarter4 is requested.

SELECT s.time_id, p.prod_name, SUM(quantity_sold)
 FROM part_sales_by_time s, products p
 WHERE p.prod_id = s.prod_id
 AND s.time_id < TO_DATE(''01-07-1999'', ''DD-MM-YYYY'')
 AND s.time_id >= TO_DATE(''01-03-1999'', ''DD-MM-YYYY'')
 GROUP BY s.time_id, p.prod_name');

The following query cannot be rewritten if multiple materialized view rewrite is set to
off. Because multiple materialized view rewrite is on by default, the following query is
rewritten with materialized view and base tables:

SELECT s.time_id, p.prod_name, SUM(quantity_sold)
 FROM part_sales_by_time s, products p
 WHERE p.prod_id = s.prod_id
 AND s.time_id < TO_DATE(''31-10-1999'', ''DD-MM-YYYY'') AND
 s.time_id > TO_DATE(''01-07-1999'', ''DD-MM-YYYY'')
 GROUP BY s.time_id, p.prod_name');

PCT Rewrite Based on Range-List Partitioned Tables
If the detail table is range-list partitioned, a materialized view that depends on this
detail table can support PCT at both the partitioning and subpartitioning levels. If both
the partition and subpartition keys are present in the materialized view, PCT can be

Types of Query Rewrite

11-24 Oracle Database Data Warehousing Guide

done at a finer granularity; materialized view refreshes can be done to smaller portions
of the materialized view and more queries could be rewritten with a stale materialized
view. Alternatively, if only the partition key is present in the materialized view, PCT
can be done with courser granularity.

Consider the following range-list partitioned table:

CREATE TABLE sales_par_range_list
 (calendar_year, calendar_month_number, day_number_in_month,
 country_name, prod_id, prod_name, quantity_sold, amount_sold)
PARTITION BY RANGE (calendar_month_number)
SUBPARTITION BY LIST (country_name)
 (PARTITION q1 VALUES LESS THAN (4)
 (SUBPARTITION q1_America VALUES
 ('United States of America', 'Argentina'),
 SUBPARTITION q1_Asia VALUES ('Japan', 'India'),
 SUBPARTITION q1_Europe VALUES ('France', 'Spain', 'Ireland')),
 PARTITION q2 VALUES LESS THAN (7)
 (SUBPARTITION q2_America VALUES
 ('United States of America', 'Argentina'),
 SUBPARTITION q2_Asia VALUES ('Japan', 'India'),
 SUBPARTITION q2_Europe VALUES ('France', 'Spain', 'Ireland')),
 PARTITION q3 VALUES LESS THAN (10)
 (SUBPARTITION q3_America VALUES
 ('United States of America', 'Argentina'),
 SUBPARTITION q3_Asia VALUES ('Japan', 'India'),
 SUBPARTITION q3_Europe VALUES ('France', 'Spain', 'Ireland')),
 PARTITION q4 VALUES LESS THAN (13)
 (SUBPARTITION q4_America VALUES
 ('United States of America', 'Argentina'),
 SUBPARTITION q4_Asia VALUES ('Japan', 'India'),
 SUBPARTITION q4_Europe VALUES ('France', 'Spain', 'Ireland')))
 AS SELECT t.calendar_year, t.calendar_month_number,
 t.day_number_in_month, c1.country_name, s.prod_id,
 p.prod_name, s.quantity_sold, s.amount_sold
 FROM times t, countries c1, products p, sales s, customers c2
 WHERE s.time_id = t.time_id AND s.prod_id = p.prod_id AND
 s.cust_id = c2.cust_id AND c2.country_id = c1.country_id AND
 c1.country_name IN ('United States of America', 'Argentina',
 'Japan', 'India', 'France', 'Spain', 'Ireland');

Then consider the following materialized view sum_sales_per_year_month_mv, which
has the total amount of products sold each month of each year:

CREATE MATERIALIZED VIEW sum_sales_per_year_month_mv
BUILD IMMEDIATE
REFRESH FORCE ON DEMAND
ENABLE QUERY REWRITE AS
SELECT s.calendar_year, s.calendar_month_number,
 SUM(s.amount_sold) AS sum_sales, COUNT(*) AS cnt
FROM sales_par_range_list s WHERE s.calendar_year > 1990
GROUP BY s.calendar_year, s.calendar_month_number;

sales_per_country_mv supports PCT against sales_par_range_list at the range
partitioning level as its range partition key calendar_month_number is in its SELECT
and GROUP BY list:

INSERT INTO sales_par_range_list
 VALUES (2001, 3, 25, 'Spain', 20, 'PROD20', 300, 20.50);

Types of Query Rewrite

Advanced Query Rewrite for Materialized Views 11-25

This statement inserts a row with calendar_month_number = 3 and country_name =
'Spain'. This row is inserted into partition q1 subpartition Europe. After this INSERT
statement, sum_sales_per_year_month_mv is stale with respect to partition q1 of
sales_par_range_list. So any incoming query that accesses data from this partition
in sales_par_range_list cannot be rewritten, for example, the following statement:

Note that the following query accesses data from partitions q1 and q2. Because q1 was
updated, the materialized view is stale with respect to q1 so PCT rewrite is
unavailable.

SELECT s.calendar_year, SUM(s.amount_sold) AS sum_sales, COUNT(*) AS cnt
FROM sales_par_range_list s
WHERE s.calendar_year = 2000
 AND s.calendar_month_number BETWEEN 2 AND 6
GROUP BY s.calendar_year;

An example of a statement that does rewrite after the INSERT statement is the
following, because it accesses fresh material:

SELECT s.calendar_year, SUM(s.amount_sold) AS sum_sales, COUNT(*) AS cnt
FROM sales_par_range_list s
WHERE s.calendar_year = 2000 AND s.calendar_month_number BETWEEN 5 AND 9
GROUP BY s.calendar_year;

Figure 11–3 offers a graphical illustration of what is stale and what is fresh.

Figure 11–3 PCT Rewrite and Range-List Partitioning

PCT Rewrite Based on List Partitioned Tables
If the LIST partitioning key is present in the materialized view's SELECT and GROUP BY,
then PCT will be supported by the materialized view. Regardless of the supported
partitioning type, if the partition marker or rowid of the detail table is present in the
materialized view then PCT is supported by the materialized view on that specific
detail table.

CREATE TABLE sales_par_list
(calendar_year, calendar_month_number, day_number_in_month,
 country_name, prod_id, quantity_sold, amount_sold)

America

Asia

Europe

Europe

America

Asia

America

Asia

Europe

Europe

America

Asia

q1
(updated)

q2

q3

q4

Fresh

Fresh

calendar_month_number <4
Stale

sales_par_range_list

sum_sales_per_year_month_mv
FRESHNESS regions determined by
calendar_month_number

Types of Query Rewrite

11-26 Oracle Database Data Warehousing Guide

 PARTITION BY LIST (country_name)
 (PARTITION America
 VALUES ('United States of America', 'Argentina'),
 PARTITION Asia
 VALUES ('Japan', 'India'),
 PARTITION Europe
 VALUES ('France', 'Spain', 'Ireland'))
 AS SELECT t.calendar_year, t.calendar_month_number,
 t.day_number_in_month, c1.country_name, s.prod_id,
 s.quantity_sold, s.amount_sold
 FROM times t, countries c1, sales s, customers c2
 WHERE s.time_id = t.time_id and s.cust_id = c2.cust_id and
 c2.country_id = c1.country_id and
 c1.country_name IN ('United States of America', 'Argentina',
 'Japan', 'India', 'France', 'Spain', 'Ireland');

If a materialized view is created on the table sales_par_list, which has a list
partitioning key, PCT rewrite will use that materialized view for potential rewrites.

To illustrate this feature, the following example creates a materialized view that has
the total amounts sold of every product in each country for each year. The view
depends on detail tables sales_par_list and products.

CREATE MATERIALIZED VIEW sales_per_country_mv
BUILD IMMEDIATE
REFRESH FORCE ON DEMAND
ENABLE QUERY REWRITE AS
SELECT s.calendar_year AS calendar_year, s.country_name AS country_name,
 p.prod_name AS prod_name, SUM(s.amount_sold) AS sum_sales, COUNT(*) AS cnt
FROM sales_par_list s, products p
WHERE s.prod_id = p.prod_id AND s.calendar_year <= 2000
GROUP BY s.calendar_year, s.country_name, prod_name;

sales_per_country_mv supports PCT against sales_par_list as its list partition key
country_name is in its SELECT and GROUP BY list. Table products is not partitioned, so
sales_per_country_mv does not support PCT against this table.

A query could be rewritten (in ENFORCED or TRUSTED modes) in terms of sales_per_
country_mv even if sales_per_country_mv is stale if the incoming query accesses only
fresh parts of the materialized view. You can determine which parts of the materialized
view are FRESH only if the updated tables are PCT enabled in the materialized view. If
non-PCT enabled tables have been updated, then the rewrite is not possible with fresh
data from that specific materialized view as you cannot identify the FRESH portions of
the materialized view.

sales_per_country_mv supports PCT on sales_par_list and does not support PCT
on table product. If table products is updated, then PCT rewrite is not possible with
sales_per_country_mv as you cannot tell which portions of the materialized view are
FRESH.

The following updates sales_par_list as follows:

INSERT INTO sales_par_list VALUES (2000, 10, 22, 'France', 900, 20, 200.99);

This statement inserted a row into partition Europe in table sales_par_list. Now
sales_per_country_mv is stale, but PCT rewrite (in ENFORCED and TRUSTED modes) is
possible as this materialized view supports PCT against table sales_par_list. The
fresh and stale areas of the materialized view are identified based on the partitioned
detail table sales_par_list.

Figure 11–4 illustrates what is fresh and what is stale in this example.

Types of Query Rewrite

Advanced Query Rewrite for Materialized Views 11-27

Figure 11–4 PCT Rewrite and List Partitioning

Consider the following query:

SELECT s.country_name, p.prod_name, SUM(s.amount_sold) AS sum_sales,
 COUNT(*) AS cnt
FROM sales_par_list s, products p
WHERE s.prod_id = p.prod_id AND s.calendar_year = 2000
 AND s.country_name IN ('United States of America', 'Japan')
GROUP BY s.country_name, p.prod_name;

This query accesses partitions America and Asia in sales_par_list; these partition
have not been updated so rewrite is possible with stale materialized view sales_per_
country_mv as this query will access only FRESH portions of the materialized view.

The query is rewritten in terms of sales_per_country_mv as follows:

SELECT country_name, prod_name, SUM(sum_sales) AS sum_slaes, SUM(cnt) AS cnt
FROM sales_per_country_mv WHERE calendar_year = 2000
 AND country_name IN ('United States of America', 'Japan')
GROUP BY country_name, prod_name;

Now consider the following query:

SELECT s.country_name, p.prod_name,
 SUM(s.amount_sold) AS sum_sales, COUNT(*) AS cnt
FROM sales_par_list s, products p
WHERE s.prod_id = p.prod_id AND s.calendar_year = 1999
 AND s.country_name IN ('Japan', 'India', 'Spain')
GROUP BY s.country_name, p.prod_name;

This query accesses partitions Europe and Asia in sales_par_list. Partition Europe
has been updated, so this query cannot be rewritten in terms of sales_per_country_
mv as the required data from the materialized view is stale.

You will be able to rewrite after any kinds of updates to sales_par_list, that is
DMLs, direct loads and Partition Maintenance Operations (PMOPs) if the incoming
query accesses FRESH parts of the materialized view.

PCT Rewrite and PMARKER
When a partition marker is provided, the query rewrite capabilities are limited to
rewrite queries that access whole detail table partitions as all rows from a specific

Fresh

Fresh

Fresh

Stale

Fresh

Fresh

StaleUpdated
partion

Table
Products

Partion America
· United States of America
· Argentina

Partion Asia
· Japan
· India

Partion Europe
· France
· Spain
· Ireland

Table
sales_par_list

MV
sales_per_country_mv
FRESHNESS regions
determined by
country_name

Types of Query Rewrite

11-28 Oracle Database Data Warehousing Guide

partition have the same pmarker value. That is, if a query accesses a portion of a detail
table partition, it is not rewritten even if that data corresponds to a FRESH portion of
the materialized view. Now FRESH portions of the materialized view are determined by
the pmarker value. To determine which rows of the materialized view are fresh, you
associate freshness with the marker value, so all rows in the materialized view with a
specific pmarker value are FRESH or are STALE.

The following creates a materialized view has the total amounts sold of every product
in each detail table partition of sales_par_list for each year. This materialized view
will also depend on detail table products as shown in the following:

CREATE MATERIALIZED VIEW sales_per_dt_partition_mv
BUILD IMMEDIATE
REFRESH FORCE ON DEMAND
ENABLE QUERY REWRITE AS
SELECT s.calendar_year AS calendar_year, p.prod_name AS prod_name,
 DBMS_MVIEW.PMARKER(s.rowid) pmarker,
 SUM(s.amount_sold) AS sum_sales, COUNT(*) AS cnt
FROM sales_par_list s, products p
WHERE s.prod_id = p.prod_id AND s.calendar_year > 2000
GROUP BY s.calendar_year, DBMS_MVIEW.PMARKER(s.rowid), p.prod_name;

The materialized view sales_per_dt_partition_mv provides the sum of sales for each
detail table partition. This materialized view supports PCT rewrite against table
sales_par_list because the partition marker is in its SELECT and GROUP BY clauses.
Table 11–2 lists the partition names and their pmarkers for this example.

Then update the table sales_par_list as follows:

DELETE FROM sales_par_list WHERE country_name = 'India';

You have deleted rows from partition Asia in table sales_par_list. Now sales_per_
dt_partition_mv is stale, but PCT rewrite (in ENFORCED and TRUSTED modes) is
possible as this materialized view supports PCT (pmarker based) against table sales_
par_list.

Now consider the following query:

SELECT p.prod_name, SUM(s.amount_sold) AS sum_sales, COUNT(*) AS cnt
FROM sales_par_list s, products p
WHERE s.prod_id = p.prod_id AND s.calendar_year = 2001 AND
 s.country_name IN ('United States of America', 'Argentina')
GROUP BY p.prod_name;

This query can be rewritten in terms of sales_per_dt_partition_mv as all the data
corresponding to a detail table partition is accessed, and the materialized view is FRESH
with respect to this data. This query accesses all data in partition America, which has
not been updated.

The query is rewritten in terms of sales_per_dt_partition_mv as follows:

SELECT prod_name, SUM(sum_sales) AS sum_sales, SUM(cnt) AS cnt

Table 11–2 Partition Names and Their Pmarkers

Partition Name Pmarker

America 1000

Asia 1001

Europe 1002

Types of Query Rewrite

Advanced Query Rewrite for Materialized Views 11-29

FROM sales_per_dt_partition_mv
WHERE calendar_year = 2001 AND pmarker = 1000
GROUP BY prod_name;

PCT Rewrite Using Rowid as PMARKER
A materialized view supports PCT rewrite provided a partition key or a partition
marker is provided in its SELECT and GROUP BY clause, if there is a GROUP BY clause. You
can use the rowids of the partitioned table instead of the pmarker or the partition key.
Note that Oracle converts the rowids into pmarkers internally. Consider the following
table:

CREATE TABLE product_par_list
(prod_id, prod_name, prod_category,
 prod_subcategory, prod_list_price)
 PARTITION BY LIST (prod_category)
 (PARTITION prod_cat1
 VALUES ('Boys', 'Men'),
 PARTITION prod_cat2
 VALUES ('Girls', 'Women'))
 AS
 SELECT prod_id, prod_name, prod_category,
 prod_subcategory, prod_list_price
 FROM products;

Let us create the following materialized view on tables, sales_par_list and product_
par_list:

CREATE MATERIALIZED VIEW sum_sales_per_category_mv
BUILD IMMEDIATE
REFRESH FORCE ON DEMAND
ENABLE QUERY REWRITE AS
SELECT p.rowid prid, p.prod_category,
 SUM (s.amount_sold) sum_sales, COUNT(*) cnt
FROM sales_par_list s, product_par_list p
WHERE s.prod_id = p.prod_id and s.calendar_year <= 2000
GROUP BY p.rowid, p.prod_category;

All the limitations that apply to pmarker rewrite apply here as well. The incoming
query should access a whole partition for the query to be rewritten. The following
pmarker table is used in this case:

product_par_list pmarker value
---------------- -------------
prod_cat1 1000
prod_cat2 1001
prod_cat3 1002

Then update table product_par_list as follows:

DELETE FROM product_par_list WHERE prod_name = 'MEN';

So sum_sales_per_category_mv is stale with respect to partition prod_list1 from
product_par_list.

Now consider the following query:

SELECT p.prod_category, SUM(s.amount_sold) AS sum_sales, COUNT(*) AS cnt
FROM sales_par_list s, product_par_list p
WHERE s.prod_id = p.prod_id AND p.prod_category IN
 ('Girls', 'Women') AND s.calendar_year <= 2000
GROUP BY p.prod_category;

Types of Query Rewrite

11-30 Oracle Database Data Warehousing Guide

This query can be rewritten in terms of sum_sales_per_category_mv as all the data
corresponding to a detail table partition is accessed, and the materialized view is FRESH
with respect to this data. This query accesses all data in partition prod_cat2, which has
not been updated. Following is the rewritten query in terms of sum_sales_per_
category_mv:

SELECT prod_category, sum_sales, cnt
FROM sum_sales_per_category_mv WHERE DBMS_MVIEW.PMARKER(srid) IN (1000)
GROUP BY prod_category;

Multiple Materialized Views
Query rewrite has been extended to enable the rewrite of a query using multiple
materialized views. If query rewrite determines that there is no set of materialized
views that returns all of the data, then query rewrite retrieves the remaining data from
the base tables.

Query rewrite using multiple materialized views can take advantage of many different
types and combinations of rewrite, such as using PCT and IN-lists. The following
examples illustrate some of the queries where query rewrite is now possible.

Consider the following two materialized views, cust_avg_credit_mv1 and cust_avg_
credit_mv2. cust_avg_credit_mv1 asks for all customers average credit limit for each
postal code that were born between the years 1940 and 1950. cust_avg_credit_mv2
asks for customers average credit limit for each postal code that were born after 1950
and before or on 1970.

The materialized views' definitions for this example are as follows:

CREATE MATERIALIZED VIEW cust_avg_credit_mv1
ENABLE QUERY REWRITE
AS SELECT cust_postal_code, cust_year_of_birth,
 SUM(cust_credit_limit) AS sum_credit,
 COUNT(cust_credit_limit) AS count_credit
FROM customers
WHERE cust_year_of_birth BETWEEN 1940 AND 1950
GROUP BY cust_postal_code, cust_year_of_birth;

CREATE MATERIALIZED VIEW cust_avg_credit_mv2
ENABLE QUERY REWRITE
AS SELECT cust_postal_code, cust_year_of_birth,
 SUM(cust_credit_limit) AS sum_credit,
 COUNT(cust_credit_limit) AS count_credit
FROM customers
WHERE cust_year_of_birth > 1950 AND cust_year_of_birth <= 1970
GROUP BY cust_postal_code, cust_year_of_birth;

Query 1: One Matched Interval in Materialized View and Query
Consider a query that asks for all customers average credit limit for each postal code
who were born between 1940 and 1970. This query is matched by the interval BETWEEN
on cust_year_of_birth.

SELECT cust_postal_code, AVG(cust_credit_limit) AS avg_credit
FROM customers c
WHERE cust_year_of_birth BETWEEN 1940 AND 1970
GROUP BY cust_postal_code;

The preceding query can be rewritten in terms of these two materialized views to get
all the data as follows:

Types of Query Rewrite

Advanced Query Rewrite for Materialized Views 11-31

SELECT v1.cust_postal_code,
SUM(v1.sum_credit)/SUM(v1.count_credit) AS avg_credit
FROM (SELECT cust_postal_code, sum_credit, count_credit
 FROM cust_avg_credit_mv1
 GROUP BY cust_postal_code
 UNION ALL
 SELECT cust_postal_code, sum_credit, count_credit
 FROM cust_avg_credit_mv2
 GROUP BY cust_postal_code) v1
 GROUP BY v1.cust_postal_code;

Note that the UNION ALL query is used in an inline view because of the re-aggregation
that needs to take place. Note also how query rewrite was the count aggregate to
perform this rollup.

Query 2: Query Outside of Data Contained in Materialized View
When the materialized view goes beyond the range asked by the query, a filter (also
called selection) is added to the rewritten query to drop out the unneeded rows
returned by the materialized view. This case is illustrated in the following query:

SELECT cust_postal_code, SUM(cust_credit_limit) AS sum_credit
FROM customers c
WHERE cust_year_of_birth BETWEEN 1945 AND 1955
GROUP BY cust_postal_code;

Query 2 is rewritten as:

SELECT v1.cust_postal_code, SUM(v1.sum_credit)
FROM
(SELECT cust_postal_code, SUM(sum_credit) AS sum_credit
FROM cust_avg_credit_mv1
WHERE cust_year_of_birth BETWEEN 1945 AND 1950
GROUP BY cust_postal_code
UNION ALL
SELECT cust_postal_code, SUM(sum_credit) AS sum_credit
FROM cust_birth_mv2
WHERE cust_year_of_birth > 1950 AND cust_year_of_birth <= 1955
GROUP BY cust_postal_code) v1
GROUP BY v1.cust_postal_code;

Query 3: Requesting More Data Than is in the Materialized View
What if a query asks for more data than is contained in the two materialized views? It
still rewrites using both materialized views and the data in the base table. In the
following example, a new set of materialized views without aggregates is defined It
will still rewrite using both materialized views and the data in the base table.

CREATE MATERIALIZED VIEW cust_birth_mv1
ENABLE QUERY REWRITE
AS SELECT cust_last_name, cust_first_name, cust_year_of_birth
FROM customers WHERE cust_year_of_birth BETWEEN 1940 AND 1950;

CREATE MATERIALIZED VIEW cust_avg_credit_mv2
ENABLE QUERY REWRITE
AS SELECT cust_last_name, cust_first_name, cust_year_of_birth
FROM customers
WHERE cust_year_of_birth > 1950 AND cust_year_of_birth <= 1970;

Our queries now require all customers born between 1940 and 1990.

SELECT cust_last_name, cust_first_name

Types of Query Rewrite

11-32 Oracle Database Data Warehousing Guide

FROM customers c WHERE cust_year_of_birth BETWEEN 1940 AND 1990;

Query rewrite needs to access the base table to access the customers that were born
after 1970 and before or on 1990. Therefore, Query 3 is rewritten as the following:

SELECT cust_last_name, cust_first_name
FROM cust_birth_mv1
UNION ALL
SELECT cust_last_name, cust_first_name
FROM cust_birth_mv2
UNION ALL
SELECT cust_last_name, cust_first_name
FROM customers c
WHERE cust_year_of_birth > 1970 AND cust_year_of_birth <= 1990;

Query 4: Requesting Data on Multiple Selection Columns
Consider the following query, which asks for all customers who have a credit limit
between 1,000 and 10,000 and were born between the years 1945 and 1960. This query
is a multi-selection query because it is asking for data on multiple selection columns.

SELECT cust_last_name, cust_first_name
FROM customers WHERE cust_year_of_birth BETWEEN 1945 AND 1960 AND
 cust_credit_limit BETWEEN 1000 AND 10000;

Figure 11–5 shows a two-selection query, which can be rewritten with the
two-selection materialized views described in the following section.

Figure 11–5 Query Rewrite Using Multiple Materialized Views

The graph in Figure 11–5 illustrates the materialized views that can be used to satisfy
this query. credit_mv1 asks for customers that have credit limits between 1,000 and
5,000 and were born between 1945 and 1950. credit_mv2 asks for customers that have
credit limits > 5,000 and <= 10,000 and were born between 1945 and 1960. credit_mv3
asks for customers that have credit limits between 1,000 and 5,000 and were born after
1950 and before or on 1955.

The materialized views' definitions for this case are as follows:

CREATE MATERIALIZED VIEW credit_mv1
ENABLE QUERY REWRITE
AS SELECT cust_last_name, cust_first_name,

0

1,000

5,000

10,000

C
re

d
it

 L
im

it

Year of Birth

1945 1950 1955 1960

CREDIT2_MV

CREDIT1
_MV

CREDIT3
_MV

BASE
TABLES

Types of Query Rewrite

Advanced Query Rewrite for Materialized Views 11-33

 cust_credit_limit, cust_year_of_birth
FROM customers
WHERE cust_credit_limit BETWEEN 1000 AND 5000
AND cust_year_of_birth BETWEEN 1945 AND 1950;

CREATE MATERIALIZED VIEW credit_mv2
ENABLE QUERY REWRITE
AS SELECT cust_last_name, cust_first_name,
 cust_credit_limit, cust_year_of_birth
FROM customers
WHERE cust_credit_limit > 5000
 AND cust_credit_limit <= 10000 AND cust_year_of_birth
 BETWEEN 1945 AND 1960;

CREATE MATERIALIZED VIEW credit_mv3
ENABLE QUERY REWRITE AS
SELECT cust_last_name, cust_first_name,
 cust_credit_limit, cust_year_of_birth
FROM customers
WHERE cust_credit_limit BETWEEN 1000 AND 5000
 AND cust_year_of_birth > 1950 AND cust_year_of_birth <= 1955;

Query 4 can be rewritten by using all three materialized views to access most of the
data. However, because not all the data can be obtained from these three materialized
views, query rewrite also accesses the base tables to retrieve the data for customers
who have credit limits between 1,000 and 5,000 and were born between 1955 and 1960.
It is rewritten as follows:

SELECT cust_last_name, cust_first_name
FROM credit_mv1
UNION ALL
SELECT cust_last_name, cust_first_name
FROM credit_mv2
UNION ALL
SELECT cust_last_name, cust_first_name
FROM credit_mv3
UNION ALL
SELECT cust_last_name, cust_first_name
FROM customers
WHERE cust_credit_limit BETWEEN 1000 AND 5000
 AND cust_year_of_birth > 1955 AND cust_year_of_birth <= 1960;

This example illustrates how a multi-selection query can be rewritten with multiple
materialized views. The example was simplified to show no overlapping data among
the three materialized views. However, query rewrite can perform similar rewrites.

Query 5: Intervals and Constrained Intervals
This example illustrates how a multi-selection query can be rewritten using a single
selection materialized view. In this example, there are two intervals in the query and
one constrained interval in the materialized view. It asks for customers that have credit
limits between 1,000 and 10,000 and were born between 1945 and 1960. But suppose
that credit_mv1 asks for just customers that have credit limits between 1,000 and
5,000. credit_mv1 is not constrained by a selection in cust_year_of_birth, therefore
covering the entire range of birth year values for the query.

Types of Query Rewrite

11-34 Oracle Database Data Warehousing Guide

Figure 11–6 Constrained Materialized View Selections

The area between the lines in Figure 11–6 represents the data credit1_mv.

The new credit_mv1 is defined as follows:

CREATE MATERIALIZED VIEW credit_mv1
ENABLE QUERY REWRITE
AS SELECT cust_last_name, cust_first_name,
 cust_credit_limit, cust_year_of_birth
FROM customers WHERE cust_credit_limit BETWEEN 1000 AND 5000;

The query is as follows:

SELECT cust_last_name, cust_first_name
FROM customers WHERE cust_year_of_birth BETWEEN 1945 AND 1960
 AND cust_credit_limit BETWEEN 1000 AND 10000;

And finally the rewritten query is as follows:

SELECT cust_last_name, cust_first_name
FROM credit_mv1 WHERE cust_year_of_birth BETWEEN 1945 AND 1960
UNION ALL
SELECT cust_last_name, cust_first_name
FROM customers WHERE cust_year_of_brith BETWEEN 1945 AND 1960
 AND cust_credit_limit > 5000 AND cust_credit_limit <= 10000;

Query 6: Query has Single Column IN-List and Materialized Views have
Single Column Intervals
Multiple materialized view query rewrite can process an IN-list in the incoming query
and rewrite the query in terms of materialized views that have intervals on the same
selection column. Given that an IN-list represents discrete values in an interval, this
rewrite capability is a natural extension to the intervals only scenario described earlier.

The following is an example of a one column IN-list selection in the query and one
column interval selection in the materialized views. Consider a query that asks for the
number of customers for each country who were born in any of the following year:
1945, 1950, 1955, 1960, 1965, 1970 or 1975. This query is constrained by an IN-list on
cust_year_of_birth.

SELECT c2.country_name, count(c1.country_id)
FROM customers c1, countries c2

0,0

1,000

5,000

10,000

C
re

d
it

 L
im

it

Year of Birth

1945 5550 60

Query

Intersection of
Query and
credit1_mv

Types of Query Rewrite

Advanced Query Rewrite for Materialized Views 11-35

WHERE c1.country_id = c2.country_id AND
 c1.cust_year_of_birth IN (1945, 1950, 1955, 1960, 1965, 1970, 1975)
GROUP BY c2.country_name;

Consider the following two materialized views. cust_country_birth_mv1 asks for the
number of customers for each country that were born between the years 1940 and
1950. cust_country_birth_mv2 asks for the number of customers for each country that
were born after 1950 and before or on 1970. The preceding query can be rewritten in
terms of these two materialized views to get the total number of customers for each
country born in 1945, 1950, 1955, 1960, 1965 and 1970. The base table access is required
to obtain the number of customers that were born in 1975.

The materialized views' definitions for this example are as follows:

CREATE MATERIALIZED VIEW cust_country_birth_mv1
ENABLE QUERY REWRITE
AS SELECT c2.country_name, c1.cust_year_of_birth,
 COUNT(c1.country_id) AS count_customers
FROM customers c1, countries c2
WHERE c1.country_id = c2.country_id AND
 cust_year_of_birth BETWEEN 1940 AND 1950
GROUP BY c2.country_name, c1.cust_year_of_birth;

CREATE MATERIALIZED VIEW cust_country_birth_mv2
ENABLE QUERY REWRITE
AS SELECT c2.country_name, c1.cust_year_of_birth,
 COUNT(c1.country_id) AS count_customers
FROM customers c1, countries c2
WHERE c1.country_id = c2.country_id AND cust_year_of_birth > 1950
AND cust_year_of_birth <= 1970
GROUP BY c2.country_name, c1.cust_year_of_birth;

So, Query 6 is rewritten as:

SELECT v1.country_name, SUM(v1.count_customers)
FROM (SELECT country_name, SUM(count_customers) AS count_customers
FROM cust_country_birth_mv1
WHERE cust_year_of_birth IN (1945, 1950)
GROUP BY country_name
UNION ALL
SELECT country_name, SUM(count_customers) AS count_customers
FROM cust_country_birth_mv2
WHERE cust_year_of_birth IN (1955, 1960, 1965, 1970)
GROUP BY country_name
UNION ALL
SELECT c2.country_name, COUNT(c1.country_id) AS count_customers
FROM customers c1, countries c2
WHERE c1.country_id = c2.country_id AND cust_year_of_birth IN (1975)
GROUP BY c2.country_name) v1
GROUP BY v1.country_name;

Query 7: PCT Rewrite with Multiple Materialized Views
Rewrite with multiple materialized views can also take advantage of PCT rewrite. PCT
rewrite refers to the capability of rewriting a query with only the fresh portions of a
materialized view when the materialized view is stale. This feature is used in ENFORCED
or TRUSTED integrity modes, and with multiple materialized view rewrite, it can use
the fresh portions of the materialized view to get the fresh data from it, and go to the
base table to get the stale data. So the rewritten query will UNION ALL only the fresh
data from one or more materialized views and obtain the rest of the data from the base

Types of Query Rewrite

11-36 Oracle Database Data Warehousing Guide

tables to answer the query. Therefore, all the PCT rules and conditions apply here as
well. The materialized view should be PCT enabled and the changes made to the base
table should be such that the fresh and stale portions of the materialized view can be
clearly identified.

This example assumes you have a query that asks for customers who have credit limits
between 1,000 and 10,000 and were born between 1945 and 1964. Also, the customer
table is partitioned by cust_date_of_birth and there is a PCT-enabled materialized
view called credit_mv1 that also asks for customers who have a credit limit between
1,000 and 10,000 and were born between 1945 and 1964.

SELECT cust_last_name, cust_first_name
FROM customers WHERE cust_credit_limit BETWEEN 1000 AND 10000;

In Figure 11–7, the diagram illustrates those regions of the materialized view that are
fresh (dark) and stale (light) with respect to the base table partitions p1-p6.

Figure 11–7 PCT and Multiple Materialized View Rewrite

Let us say that you are in ENFORCED mode and that p1, p2, p3, p5, and p6 of the
customer table are fresh and partition p4 is stale. This means that all partitions of
credit_mv1 cannot be used to answer the query. The rewritten query must get the
results for customer partition p4 from some other materialized view or as shown in
this example, from the base table. Below, you can see part of the table definition for the
customers table showing how the table is partitioned:

CREATE TABLE customers
(PARTITION BY RANGE (cust_year_of_birth)
 PARTITION p1 VALUES LESS THAN (1945),
 PARTITION p2 VALUES LESS THAN (1950),
 PARTITION p3 VALUES LESS THAN (1955),
 PARTITION p4 VALUES LESS THAN (1960),
 PARTITION p5 VALUES LESS THAN (1965),
 PARTITION p6 VALUES LESS THAN (1970);

The materialized view definition for the preceding example is as follows:

CREATE MATERIALIZED VIEW credit_mv1
ENABLE QUERY REWRITE
AS SELECT cust_last_name, cust_first_name,
 cust_credit_limit, cust_year_of_birth
FROM customers

0,0

1,000

5,000

10,000

C
re

d
it

 L
im

it

Year of Birth

1945 5550 6560 1970

CREDIT1_MV

p1 p2 p3 p4
stale

p5 p6

Other Query Rewrite Considerations

Advanced Query Rewrite for Materialized Views 11-37

WHERE cust_credit_limit BETWEEN 1000 AND 10000
AND cust_year_of_birth BETWEEN 1945 AND 1964;

Note that this materialized view is PCT enabled with respect to table customers.

The rewritten query is as follows:

SELECT cust_last_name, cust_first_name FROM credit_mv1
WHERE cust_credit_limit BETWEEN 1000 AND 10000 AND
 (cust_year_of_birth >= 1945 AND cust_year_of_birth < 1955 OR
 cust_year_of_birth BETWEEN 1945 AND 1964)
UNION ALL
SELECT cust_last_name, cust_first_name
FROM customers WHERE cust_credit_limit BETWEEN 1000 AND 10000
 AND cust_year_of_birth < 1960 AND cust_year_of_birth >= 1955;

Other Query Rewrite Considerations
The following discusses some of the other cases when query rewrite is possible:

■ Query Rewrite Using Nested Materialized Views

■ Query Rewrite in the Presence of Inline Views

■ Query Rewrite Using Remote Tables

■ Query Rewrite in the Presence of Duplicate Tables

■ Query Rewrite Using Date Folding

■ Query Rewrite Using View Constraints

■ Query Rewrite Using Set Operator Materialized Views

■ Query Rewrite in the Presence of Grouping Sets

■ Query Rewrite in the Presence of Window Functions

■ Query Rewrite and Expression Matching

■ Cursor Sharing and Bind Variables

■ Handling Expressions in Query Rewrite

Query Rewrite Using Nested Materialized Views
Query rewrite attempts to iteratively take advantage of nested materialized views.
Oracle Database first tries to rewrite a query with materialized views having
aggregates and joins, then with a materialized view containing only joins. If any of the
rewrites succeeds, Oracle repeats that process again until no rewrites are found. For
example, assume that you had created materialized views join_sales_time_product_
mv and sum_sales_time_product_mv as in the following:

CREATE MATERIALIZED VIEW join_sales_time_product_mv
ENABLE QUERY REWRITE AS
SELECT p.prod_id, p.prod_name, t.time_id, t.week_ending_day,
 s.channel_id, s.promo_id, s.cust_id, s.amount_sold
FROM sales s, products p, times t
WHERE s.time_id=t.time_id AND s.prod_id = p.prod_id;

CREATE MATERIALIZED VIEW sum_sales_time_product_mv
ENABLE QUERY REWRITE AS
SELECT mv.prod_name, mv.week_ending_day, COUNT(*) cnt_all,
 SUM(mv.amount_sold) sum_amount_sold,

Other Query Rewrite Considerations

11-38 Oracle Database Data Warehousing Guide

 COUNT(mv.amount_sold) cnt_amount_sold
FROM join_sales_time_product_mv mv
GROUP BY mv.prod_name, mv.week_ending_day;

Then consider the following query:

SELECT p.prod_name, t.week_ending_day, SUM(s.amount_sold)
FROM sales s, products p, times t
WHERE s.time_id=t.time_id AND s.prod_id=p.prod_id
GROUP BY p.prod_name, t.week_ending_day;

Oracle finds that join_sales_time_product_mv is eligible for rewrite. The rewritten
query has this form:

SELECT mv.prod_name, mv.week_ending_day, SUM(mv.amount_sold)
FROM join_sales_time_product_mv mv
GROUP BY mv.prod_name, mv.week_ending_day;

Because a rewrite occurred, Oracle tries the process again. This time, the query can be
rewritten with single-table aggregate materialized view sum_sales_store_time into
the following form:

SELECT mv.prod_name, mv.week_ending_day, mv.sum_amount_sold
FROM sum_sales_time_product_mv mv;

Query Rewrite in the Presence of Inline Views
Oracle Database supports query rewrite with inline views in two ways:

■ when the text from the inline views in the materialized view exactly matches the
text in the request query

■ when the request query contains inline views that are equivalent to the inline
views in the materialized view

Two inline views are considered equivalent if their SELECT lists and GROUP BY lists are
equivalent, FROM clauses contain the same or equivalent objects, their join graphs,
including all the selections in the WHERE clauses are equivalent and their HAVING clauses
are equivalent.

The following examples illustrate how a query with an inline view can rewrite with a
materialized view using text match and general inline view rewrites. Consider the
following materialized view that contains an inline view:

CREATE MATERIALIZED VIEW SUM_SALES_MV
ENABLE QUERY REWRITE AS
SELECT mv_iv.prod_id, mv_iv.cust_id,
sum(mv_iv.amount_sold) sum_amount_sold
FROM (SELECT prod_id, cust_id, amount_sold
FROM sales, products
WHERE sales.prod_id = products.prod_id) MV_IV
GROUP BY mv_iv.prod_id, mv_iv.cust_id;

The following query has an inline view whose text matches exactly with that of the
materialized view's inline view. Hence, the query inline view is internally replaced
with the materialized view's inline view so that the query can be rewritten:

SELECT iv.prod_id, iv.cust_id,
SUM(iv.amount_sold) sum_amount_sold
FROM (SELECT prod_id, cust_id, amount_sold
FROM sales, products
WHERE sales.prod_id = products.prod_id) IV

Other Query Rewrite Considerations

Advanced Query Rewrite for Materialized Views 11-39

GROUP BY iv.prod_id, iv.cust_id;

The following query has an inline view that does not have exact text match with the
inline view in the preceding materialized view. Note that the join predicate in the
query inline view is switched. Even though this query does not textually match with
that of the materialized view's inline view, query rewrite identifies the query's inline
view as equivalent to the materialized view's inline view. As before, the query inline
view will be internally replaced with the materialized view's inline view so that the
query can be rewritten.

SELECT iv.prod_id, iv.cust_id,
SUM(iv.amount_sold) sum_amount_sold
FROM (SELECT prod_id, cust_id, amount_sold
FROM sales, products
WHERE products.prod_id = sales.prod_id) IV
GROUP BY iv.prod_id, iv.cust_id;

Both of these queries are rewritten with SUM_SALES_MV as follows:

SELECT prod_id, cust_id, sum_amount_sold
FROM SUM_SALES_MV;

General inline view rewrite is not supported for queries that contain set operators,
GROUPING SET clauses, nested subqueries, nested inline views, and remote tables.

Query Rewrite Using Remote Tables
Oracle Database supports query rewrite with materialized views that reference tables
at a single remote database site. Note that the materialized view should be present at
the site where the query is being issued. Because any remote table update cannot be
propagated to the local site simultaneously, query rewrite only works in the stale_
tolerated mode. Whenever a query contains columns that are not found in the
materialized view, it uses a technique called join back to rewrite the query. However, if
the join back table is not found at the local site, query rewrite does not take place. Also,
because the constraint information of the remote tables is not available at the remote
site, query rewrite does not make use of any constraint information.

The following query contains tables that are found at a single remote site:

SELECT p.prod_id, t.week_ending_day, s.cust_id,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales@remotedbl s, products@remotedbl p, times@remotedbl t
WHERE s.time_id=t.time_id AND s.prod_id=p.prod_id
GROUP BY p.prod_id, t.week_ending_day, s.cust_id;

The following materialized view is present at the local site, but it references tables that
are all found at the remote site:

CREATE MATERIALIZED VIEW sum_sales_prod_week_mv
ENABLE QUERY REWRITE AS
SELECT p.prod_id, t.week_ending_day, s.cust_id,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales@remotedbl s, products@remotedbl p, times@remotedbl t
WHERE s.time_id=t.time_id AND s.prod_id=p.prod_id
GROUP BY p.prod_id, t.week_ending_day, s.cust_id;

Even though the query references remote tables, it is rewritten using the previous
materialized view as follows:

SELECT prod_id, week_ending_day, cust_id, sum_amount_sold
FROM sum_sales_prod_week_mv;

Other Query Rewrite Considerations

11-40 Oracle Database Data Warehousing Guide

Query Rewrite in the Presence of Duplicate Tables
Oracle Database accomplishes query rewrite of queries that contain multiple
references to the same tables, or self joins by employing two different strategies. Using
the first strategy, you need to ensure that the query and the materialized view
definitions have the same aliases for the multiple references to a table. If you do not
provide a matching alias, Oracle tries the second strategy, where the joins in the query
and the materialized view are compared to match the multiple references in the query
to the multiple references in the materialized view.

The following is an example of a materialized view and a query. In this example, the
query is missing a reference to a column in a table so an exact text match does not
work. General query rewrite can occur, however, because the aliases for the table
references match.

To demonstrate the self-join rewriting possibility with the sh sample schema, the
following addition is assumed to include the actual shipping and payment date in the
fact table, referencing the same dimension table times. This is for demonstration
purposes only and does not return any results:

ALTER TABLE sales ADD (time_id_ship DATE);
ALTER TABLE sales ADD (CONSTRAINT time_id_book_fk FOREIGN key (time_id_ship)
 REFERENCES times(time_id) ENABLE NOVALIDATE);
ALTER TABLE sales MODIFY CONSTRAINT time_id_book_fk RELY;
ALTER TABLE sales ADD (time_id_paid DATE);
ALTER TABLE sales ADD (CONSTRAINT time_id_paid_fk FOREIGN KEY (time_id_paid)
 REFERENCES times(time_id) ENABLE NOVALIDATE);
ALTER TABLE sales MODIFY CONSTRAINT time_id_paid_fk RELY;

Now, you can define a materialized view as follows:

CREATE MATERIALIZED VIEW sales_shipping_lag_mv
ENABLE QUERY REWRITE AS
SELECT t1.fiscal_week_number, s.prod_id,
 t2.fiscal_week_number - t1.fiscal_week_number AS lag
FROM times t1, sales s, times t2
WHERE t1.time_id = s.time_id AND t2.time_id = s.time_id_ship;

The following query fails the exact text match test but is rewritten because the aliases
for the table references match:

SELECT s.prod_id, t2.fiscal_week_number - t1.fiscal_week_number AS lag
FROM times t1, sales s, times t2
WHERE t1.time_id = s.time_id AND t2.time_id = s.time_id_ship;

Note that Oracle Database performs other checks to ensure the correct match of an
instance of a multiply instanced table in the request query with the corresponding
table instance in the materialized view. For instance, in the following example, Oracle
correctly determines that the matching alias names used for the multiple instances of
table times does not establish a match between the multiple instances of table times in
the materialized view.

The following query cannot be rewritten using sales_shipping_lag_mv, even though
the alias names of the multiply instanced table time match because the joins are not
compatible between the instances of time aliased by t2:

SELECT s.prod_id, t2.fiscal_week_number - t1.fiscal_week_number AS lag
FROM times t1, sales s, times t2
WHERE t1.time_id = s.time_id AND t2.time_id = s.time_id_paid;

Other Query Rewrite Considerations

Advanced Query Rewrite for Materialized Views 11-41

This request query joins the instance of the time table aliased by t2 on the s.time_id_
paid column, while the materialized views joins the instance of the times table aliased
by t2 on the s.time_id_ship column. Because the join conditions differ, Oracle
correctly determines that rewrite cannot occur.

The following query does not have any matching alias in the materialized view,
sales_shipping_lag_mv, for the table, times. But query rewrite now compares the
joins between the query and the materialized view and correctly match the multiple
instances of times.

SELECT s.prod_id, x2.fiscal_week_number - x1.fiscal_week_number AS lag
FROM times x1, sales s, times x2
WHERE x1.time_id = s.time_id AND x2.time_id = s.time_id_ship;

Query Rewrite Using Date Folding
Date folding rewrite is a specific form of expression matching rewrite. In this type of
rewrite, a date range in a query is folded into an equivalent date range representing
higher date granules. The resulting expressions representing higher date granules in
the folded date range are matched with equivalent expressions in a materialized view.
The folding of date range into higher date granules such as months, quarters, or years
is done when the underlying data type of the column is an Oracle DATE. The expression
matching is done based on the use of canonical forms for the expressions.

DATE is a built-in data type which represents ordered time units such as seconds, days,
and months, and incorporates a time hierarchy (second -> minute -> hour -> day ->
month -> quarter -> year). This hard-coded knowledge about DATE is used in folding
date ranges from lower-date granules to higher-date granules. Specifically, folding a
date value to the beginning of a month, quarter, year, or to the end of a month, quarter,
year is supported. For example, the date value 1-jan-1999 can be folded into the
beginning of either year 1999 or quarter 1999-1 or month 1999-01. And, the date value
30-sep-1999 can be folded into the end of either quarter 1999-03 or month 1999-09.

Because date values are ordered, any range predicate specified on date columns can be
folded from lower level granules into higher level granules provided the date range
represents an integral number of higher level granules. For example, the range
predicate date_col >= '1-jan-1999' AND date_col < '30-jun-1999' can be folded into
either a month range or a quarter range using the TO_CHAR function, which extracts
specific date components from a date value.

The advantage of aggregating data by folded date values is the compression of data
achieved. Without date folding, the data is aggregated at the lowest granularity level,
resulting in increased disk space for storage and increased I/O to scan the
materialized view.

Consider a query that asks for the sum of sales by product types for the year 1998:

Note: Due to the way date folding works, you should be careful
when using BETWEEN and date columns. The best way to use
BETWEEN and date columns is to increment the later date by 1. In
other words, instead of using date_col BETWEEN '1-jan-1999'
AND '30-jun-1999', you should use date_col BETWEEN
'1-jan-1999' AND '1-jul-1999'. You could also use the TRUNC
function to get the equivalent result, as in TRUNC(date_col)
BETWEEN '1-jan-1999' AND '30-jun-1999'. TRUNC will, however,
strip time values.

Other Query Rewrite Considerations

11-42 Oracle Database Data Warehousing Guide

SELECT p.prod_category, SUM(s.amount_sold)
FROM sales s, products p
WHERE s.prod_id=p.prod_id AND s.time_id >= TO_DATE('01-jan-1998', 'dd-mon-yyyy')
 AND s.time_id < TO_DATE('01-jan-1999', 'dd-mon-yyyy')
GROUP BY p.prod_category;

CREATE MATERIALIZED VIEW sum_sales_pcat_monthly_mv
ENABLE QUERY REWRITE AS
SELECT p.prod_category, TO_CHAR(s.time_id,'YYYY-MM') AS month,
 SUM(s.amount_sold) AS sum_amount
FROM sales s, products p
WHERE s.prod_id=p.prod_id
GROUP BY p.prod_category, TO_CHAR(s.time_id, 'YYYY-MM');

SELECT p.prod_category, SUM(s.amount_sold)
FROM sales s, products p
WHERE s.prod_id=p.prod_id
AND TO_CHAR(s.time_id, 'YYYY-MM') >= '01-jan-1998'
AND TO_CHAR(s.time_id, 'YYYY-MM') < '01-jan-1999'
GROUP BY p.prod_category;

SELECT mv.prod_category, mv.sum_amount
FROM sum_sales_pcat_monthly_mv mv
WHERE month >= '01-jan-1998' AND month < '01-jan-1999';

The range specified in the query represents an integral number of years, quarters, or
months. Assume that there is a materialized view mv3 that contains pre-summarized
sales by prod_type and is defined as follows:

CREATE MATERIALIZED VIEW mv3
ENABLE QUERY REWRITE AS
SELECT prod_name, TO_CHAR(sales.time_id,'yyyy-mm')
 AS month, SUM(amount_sold) AS sum_sales
FROM sales, products WHERE sales.prod_id = products.prod_id
GROUP BY prod_name, TO_CHAR(sales_time_id, 'yyyy-mm');

The query can be rewritten by first folding the date range into the month range and
then matching the expressions representing the months with the month expression in
mv3. This rewrite is shown in two steps (first folding the date range followed by the
actual rewrite).

SELECT prod_name, SUM(amount_sold) AS sum_sales
FROM sales, products
WHERE sales.prod_id = products.prod_id AND TO_CHAR(sales.time_id, 'yyyy-mm') >=
 TO_CHAR('01-jan-1998', 'yyyy-mm') AND TO_CHAR(sales.time_id, '01-jan-1999',
 'yyyy-mm') < TO_CHAR(TO_DATE(''01-jan-1999'', ''dd-mon-yyyy''), ''yyyy-mm'')
GROUP BY prod_name;

SELECT prod_name, sum_sales
FROM mv3 WHERE month >=
 TO_CHAR(TO_DATE('01-jan-1998', 'dd-mon-yyyy'), 'yyyy-mm')
 AND month < TO_CHAR(TO_DATE('01-jan-1999', 'dd-mon-yyyy'), 'yyyy-mm');

If mv3 had pre-summarized sales by prod_name and year instead of prod_name and
month, the query could still be rewritten by folding the date range into year range and
then matching the year expressions.

Other Query Rewrite Considerations

Advanced Query Rewrite for Materialized Views 11-43

Query Rewrite Using View Constraints
Data warehouse applications recognize multi-dimensional cubes in the database by
identifying integrity constraints in the relational schema. Integrity constraints
represent primary and foreign key relationships between fact and dimension tables. By
querying the data dictionary, applications can recognize integrity constraints and
hence the cubes in the database. However, this does not work in an environment
where database administrators, for schema complexity or security reasons, define
views on fact and dimension tables. In such environments, applications cannot
identify the cubes properly. By allowing constraint definitions between views, you can
propagate base table constraints to the views, thereby allowing applications to
recognize cubes even in a restricted environment.

View constraint definitions are declarative in nature, but operations on views are
subject to the integrity constraints defined on the underlying base tables, and
constraints on views can be enforced through constraints on base tables. Defining
constraints on base tables is necessary, not only for data correctness and cleanliness,
but also for materialized view query rewrite purposes using the original base objects.

Materialized view rewrite extensively uses constraints for query rewrite. They are
used for determining lossless joins, which, in turn, determine if joins in the
materialized view are compatible with joins in the query and thus if rewrite is
possible.

DISABLE NOVALIDATE is the only valid state for a view constraint. However, you can
choose RELY or NORELY as the view constraint state to enable more sophisticated query
rewrites. For example, a view constraint in the RELY state allows query rewrite to occur
when the query integrity level is set to TRUSTED. Table 11–3 illustrates when view
constraints are used for determining lossless joins.

Note that view constraints cannot be used for query rewrite integrity level ENFORCED.
This level enforces the highest degree of constraint enforcement ENABLE VALIDATE.

Example 11–10 View Constraints

To demonstrate the rewrite capabilities on views, you need to extend the sh sample
schema as follows:

CREATE VIEW time_view AS
SELECT time_id, TO_NUMBER(TO_CHAR(time_id, 'ddd')) AS day_in_year FROM times;

You can now establish a foreign key/primary key relationship (in RELY mode) between
the view and the fact table, and thus rewrite takes place as described in Table 11–3, by
adding the following constraints. Rewrite will then work for example in TRUSTED
mode.

ALTER VIEW time_view ADD (CONSTRAINT time_view_pk
 PRIMARY KEY (time_id) DISABLE NOVALIDATE);
ALTER VIEW time_view MODIFY CONSTRAINT time_view_pk RELY;

See Also: View Constraints Restrictions

Table 11–3 View Constraints and Rewrite Integrity Modes

Constraint States RELY NORELY

ENFORCED No No

TRUSTED Yes No

STALE_TOLERATED Yes No

Other Query Rewrite Considerations

11-44 Oracle Database Data Warehousing Guide

ALTER TABLE sales ADD (CONSTRAINT time_view_fk FOREIGN KEY (time_id)
 REFERENCES time_view(time_id) DISABLE NOVALIDATE);
ALTER TABLE sales MODIFY CONSTRAINT time_view_fk RELY;

Consider the following materialized view definition:

CREATE MATERIALIZED VIEW sales_pcat_cal_day_mv
ENABLE QUERY REWRITE AS
SELECT p.prod_category, t.day_in_year, SUM(s.amount_sold) AS sum_amount_sold
FROM time_view t, sales s, products p
WHERE t.time_id = s.time_id AND p.prod_id = s.prod_id
GROUP BY p.prod_category, t.day_in_year;

The following query, omitting the dimension table products, is also rewritten without
the primary key/foreign key relationships, because the suppressed join between sales
and products is known to be lossless.

SELECT t.day_in_year, SUM(s.amount_sold) AS sum_amount_sold
FROM time_view t, sales s WHERE t.time_id = s.time_id
GROUP BY t.day_in_year;

However, if the materialized view sales_pcat_cal_day_mv were defined only in terms
of the view time_view, then you could not rewrite the following query, suppressing
then join between sales and time_view, because there is no basis for losslessness of
the delta materialized view join. With the additional constraints as shown previously,
this query will also rewrite.

SELECT p.prod_category, SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p WHERE p.prod_id = s.prod_id
GROUP BY p.prod_category;

To undo the changes you have made to the sh schema, issue the following statements:

ALTER TABLE sales DROP CONSTRAINT time_view_fk;
DROP VIEW time_view;

View Constraints Restrictions
If the referential constraint definition involves a view, that is, either the foreign key or
the referenced key resides in a view, the constraint can only be in DISABLE NOVALIDATE
mode.

A RELY constraint on a view is allowed only if the referenced UNIQUE or PRIMARY KEY
constraint in DISABLE NOVALIDATE mode is also a RELY constraint.

The specification of ON DELETE actions associated with a referential Integrity constraint,
is not allowed (for example, DELETE cascade). However, DELETE, UPDATE, and INSERT
operations are allowed on views and their base tables as view constraints are in
DISABLE NOVALIDATE mode.

Query Rewrite Using Set Operator Materialized Views
You can use query rewrite with materialized views that contain set operators. In this
case, the query and materialized view do not have to match textually for rewrite to
occur. As an example, consider the following materialized view, which uses the postal
codes for male customers from San Francisco or Los Angeles:

CREATE MATERIALIZED VIEW cust_male_postal_mv
ENABLE QUERY REWRITE AS
SELECT c.cust_city, c.cust_postal_code
FROM customers c

Other Query Rewrite Considerations

Advanced Query Rewrite for Materialized Views 11-45

WHERE c.cust_gender = 'M' AND c.cust_city = 'San Francisco'
UNION ALL
SELECT c.cust_city, c.cust_postal_code
FROM customers c
WHERE c.cust_gender = 'M' AND c.cust_city = 'Los Angeles';

If you have the following query, which displays the postal codes for male customers
from San Francisco or Los Angeles:

SELECT c.cust_city, c.cust_postal_code
FROM customers c
WHERE c.cust_city = 'Los Angeles' AND c.cust_gender = 'M'
UNION ALL
SELECT c.cust_city, c.cust_postal_code
FROM customers c
WHERE c.cust_city = 'San Francisco' AND c.cust_gender = 'M';

The rewritten query will be the following:

SELECT mv.cust_city, mv.cust_postal_code
FROM cust_male_postal_mv mv;

The rewritten query has dropped the UNION ALL and replaced it with the materialized
view. Normally, query rewrite has to use the existing set of general eligibility rules to
determine if the SELECT subselections under the UNION ALL are equivalent in the query
and the materialized view.

See UNION ALL Marker.

If, for example, you have a query that retrieves the postal codes for male customers
from San Francisco, Palmdale, or Los Angeles, the same rewrite can occur as in the
previous example but query rewrite must keep the UNION ALL with the base tables, as
in the following:

SELECT c.cust_city, c.cust_postal_code
FROM customers c
WHERE c.cust_city= 'Palmdale' AND c.cust_gender ='M'
UNION ALL
SELECT c.cust_city, c.cust_postal_code
FROM customers c
WHERE c.cust_city = 'Los Angeles' AND c.cust_gender = 'M'
UNION ALL
SELECT c.cust_city, c.cust_postal_code
FROM customers c
WHERE c.cust_city = 'San Francisco' AND c.cust_gender = 'M';

The rewritten query will be:

SELECT mv.cust_city, mv.cust_postal_code
FROM cust_male_postal_mv mv
UNION ALL
SELECT c.cust_city, c.cust_postal_code
FROM customers c
WHERE c.cust_city = 'Palmdale' AND c.cust_gender = 'M';

So query rewrite detects the case where a subset of the UNION ALL can be rewritten
using the materialized view cust_male_postal_mv.

UNION, UNION ALL, and INTERSECT are commutative, so query rewrite can rewrite
regardless of the order the subselects are found in the query or materialized view.
However, MINUS is not commutative. A MINUS B is not equivalent to B MINUS A.
Therefore, the order in which the subselects appear under the MINUS operator in the

Other Query Rewrite Considerations

11-46 Oracle Database Data Warehousing Guide

query and the materialized view must be in the same order for rewrite to happen. As
an example, consider the case where there exists an old version of the customer table
called customer_old and you want to find the difference between the old one and the
current customer table only for male customers who live in London. That is, you want
to find those customers in the current one that were not in the old one. The following
example shows how this is done using a MINUS operator:

SELECT c.cust_city, c.cust_postal_code
FROM customers c
WHERE c.cust_city= 'Los Angeles' AND c.cust_gender = 'M'
MINUS
SELECT c.cust_city, c.cust_postal_code
FROM customers_old c
WHERE c.cust_city = 'Los Angeles' AND c.cust_gender = 'M';

Switching the subselects would yield a different answer. This illustrates that MINUS is
not commutative.

UNION ALL Marker
If a materialized view contains one or more UNION ALL operators, it can also include a
UNION ALL marker. The UNION ALL marker is used to identify from which UNION ALL
subselect each row in the materialized view originates. Query rewrite can use the
marker to distinguish what rows coming from the materialized view belong to a
certain UNION ALL subselect. This is useful if the query needs only a subset of the data
from the materialized view or if the subselects of the query do not textually match
with the subselects of the materialized view. As an example, the following query
retrieves the postal codes for male customers from San Francisco and female
customers from Los Angeles:

SELECT c.cust_city, c.cust_postal_code
FROM customers c
WHERE c.cust_gender = 'M' and c.cust_city = 'San Francisco'
UNION ALL
SELECT c.cust_city, c.cust_postal_code
FROM customers c
WHERE c.cust_gender = 'F' and c.cust_city = 'Los Angeles';

The query can be answered using the following materialized view:

CREATE MATERIALIZED VIEW cust_postal_mv
ENABLE QUERY REWRITE AS
SELECT 1 AS marker, c.cust_gender, c.cust_city, c.cust_postal_code
FROM customers c
WHERE c.cust_city = 'Los Angeles'
UNION ALL
SELECT 2 AS marker, c.cust_gender, c.cust_city, c.cust_postal_code
FROM customers c
WHERE c.cust_city = 'San Francisco';

The rewritten query is as follows:

SELECT mv.cust_city, mv.cust_postal_code
FROM cust_postal_mv mv
WHERE mv.marker = 2 AND mv.cust_gender = 'M'
UNION ALL
SELECT mv.cust_city, mv.cust_postal_code
FROM cust_postal_mv mv
WHERE mv.marker = 1 AND mv.cust_gender = 'F';

Other Query Rewrite Considerations

Advanced Query Rewrite for Materialized Views 11-47

The WHERE clause of the first subselect includes mv.marker = 2 and mv.cust_gender =
'M', which selects only the rows that represent male customers in the second subselect
of the UNION ALL. The WHERE clause of the second subselect includes mv.marker = 1 and
mv.cust_gender = 'F', which selects only those rows that represent female customers
in the first subselect of the UNION ALL. Note that query rewrite cannot take advantage
of set operators that drop duplicate or distinct rows. For example, UNION drops
duplicates so query rewrite cannot tell what rows have been dropped, as in the
following:

SELECT c.cust_city, c.cust_postal_code
FROM customers c
WHERE c.cust_city= 'Palmdale' AND c.cust_gender ='M'
SELECT c.cust_city, c.cust_postal_code
FROM customers c
WHERE c.cust_gender = 'M' and c.cust_city = 'San Francisco'
UNION ALL
SELECT c.cust_city, c.cust_postal_code
FROM customers c
WHERE c.cust_gender = 'F' and c.cust_city = 'Los Angeles';

The rewritten query using UNION ALL markers is as follows:

SELECT c.cust_city, c.cust_postal_code
FROM customers c
WHERE c.cust_city= 'Palmdale' AND c.cust_gender ='M'
UNION ALL
SELECT mv.cust_city, mv.cust_postal_code

FROM cust_postal_mv mv
WHERE mv.marker = 2 AND mv.cust_gender = 'M'
UNION ALL
 SELECT mv.cust_city, mv.cust_postal_code
 FROM cust_postal_mv mv
 WHERE mv.marker = 1 AND mv.cust_gender = 'F';

The rules for using a marker are that it must:

■ Be a constant number or string and be the same data type for all UNION ALL
subselects.

■ Yield a constant, distinct value for each UNION ALL subselect. You cannot reuse the
same value in multiple subselects.

■ Be in the same ordinal position for all subselects.

Query Rewrite in the Presence of Grouping Sets
This section discusses the following considerations for using query rewrite with
grouping sets:

■ Query Rewrite When Using GROUP BY Extensions

■ Hint for Queries with Extended GROUP BY

Query Rewrite When Using GROUP BY Extensions
Several extensions to the GROUP BY clause in the form of GROUPING SETS, CUBE, ROLLUP,
and their concatenation are available. These extensions enable you to selectively
specify the groupings of interest in the GROUP BY clause of the query. For example, the
following is a typical query with grouping sets:

SELECT p.prod_subcategory, t.calendar_month_desc, c.cust_city,

Other Query Rewrite Considerations

11-48 Oracle Database Data Warehousing Guide

 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, customers c, products p, times t
WHERE s.time_id=t.time_id AND s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY GROUPING SETS ((p.prod_subcategory, t.calendar_month_desc),
 (c.cust_city, p.prod_subcategory));

The term base grouping for queries with GROUP BY extensions denotes all unique
expressions present in the GROUP BY clause. In the previous query, the following
grouping (p.prod_subcategory, t.calendar_month_desc, c.cust_city) is a base
grouping.

The extensions can be present in user queries and in the queries defining materialized
views. In both cases, materialized view rewrite applies and you can distinguish
rewrite capabilities into the following scenarios:

■ Materialized View has Simple GROUP BY and Query has Extended GROUP BY

■ Materialized View has Extended GROUP BY and Query has Simple GROUP BY

■ Both Materialized View and Query Have Extended GROUP BY

Materialized View has Simple GROUP BY and Query has Extended GROUP BY When a query
contains an extended GROUP BY clause, it can be rewritten with a materialized view if its
base grouping can be rewritten using the materialized view as listed in the rewrite
rules explained in "When Does Oracle Rewrite a Query?" on page 10-2. For example, in
the following query:

SELECT p.prod_subcategory, t.calendar_month_desc, c.cust_city,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, customers c, products p, times t
WHERE s.time_id=t.time_id AND s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY GROUPING SETS
((p.prod_subcategory, t.calendar_month_desc),
 (c.cust_city, p.prod_subcategory));

The base grouping is (p.prod_subcategory, t.calendar_month_desc, c.cust_city,
p.prod_subcategory)) and, consequently, Oracle can rewrite the query using sum_
sales_pscat_month_city_mv as follows:

SELECT mv.prod_subcategory, mv.calendar_month_desc, mv.cust_city,
 SUM(mv.sum_amount_sold) AS sum_amount_sold
FROM sum_sales_pscat_month_city_mv mv
GROUP BY GROUPING SETS
((mv.prod_subcategory, mv.calendar_month_desc),
 (mv.cust_city, mv.prod_subcategory));

A special situation arises if the query uses the EXPAND_GSET_TO_UNION hint. See "Hint
for Queries with Extended GROUP BY" on page 11-51 for an example of using EXPAND_
GSET_TO_UNION.

Materialized View has Extended GROUP BY and Query has Simple GROUP BY In order for a
materialized view with an extended GROUP BY to be used for rewrite, it must satisfy two
additional conditions:

■ It must contain a grouping distinguisher, which is the GROUPING_ID function on all
GROUP BY expressions. For example, if the GROUP BY clause of the materialized view
is GROUP BY CUBE(a, b), then the SELECT list should contain GROUPING_ID(a, b).

■ The GROUP BY clause of the materialized view should not result in any duplicate
groupings. For example, GROUP BY GROUPING SETS((a, b), (a, b)) would
disqualify a materialized view from general rewrite.

Other Query Rewrite Considerations

Advanced Query Rewrite for Materialized Views 11-49

A materialized view with an extended GROUP BY contains multiple groupings. Oracle
finds the grouping with the lowest cost from which the query can be computed and
uses that for rewrite. For example, consider the following materialized view:

CREATE MATERIALIZED VIEW sum_grouping_set_mv
ENABLE QUERY REWRITE AS
SELECT p.prod_category, p.prod_subcategory, c.cust_state_province, c.cust_city,
 GROUPING_ID(p.prod_category,p.prod_subcategory,
 c.cust_state_province,c.cust_city) AS gid,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c
WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY GROUPING SETS
((p.prod_category, p.prod_subcategory, c.cust_city),
 (p.prod_category, p.prod_subcategory, c.cust_state_province, c.cust_city),
 (p.prod_category, p.prod_subcategory));

In this case, the following query is rewritten:

SELECT p.prod_subcategory, c.cust_city, SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c
WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY p.prod_subcategory, c.cust_city;

This query is rewritten with the closest matching grouping from the materialized view.
That is, the (prod_category, prod_subcategory, cust_city) grouping:

SELECT prod_subcategory, cust_city, SUM(sum_amount_sold) AS sum_amount_sold
FROM sum_grouping_set_mv
WHERE gid = grouping identifier of (prod_category,prod_subcategory, cust_city)
GROUP BY prod_subcategory, cust_city;

Both Materialized View and Query Have Extended GROUP BY When both materialized view
and the query contain GROUP BY extensions, Oracle uses two strategies for rewrite:
grouping match and UNION ALL rewrite. First, Oracle tries grouping match. The
groupings in the query are matched against groupings in the materialized view and if
all are matched with no rollup, Oracle selects them from the materialized view. For
example, consider the following query:

SELECT p.prod_category, p.prod_subcategory, c.cust_city,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c
WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY GROUPING SETS
((p.prod_category, p.prod_subcategory, c.cust_city),
 (p.prod_category, p.prod_subcategory));

This query matches two groupings from sum_grouping_set_mv and Oracle rewrites the
query as the following:

SELECT prod_subcategory, cust_city, sum_amount_sold
FROM sum_grouping_set_mv
WHERE gid = grouping identifier of (prod_category,prod_subcategory, cust_city)
 OR gid = grouping identifier of (prod_category,prod_subcategory)

If grouping match fails, Oracle tries a general rewrite mechanism called UNION ALL
rewrite. Oracle first represents the query with the extended GROUP BY clause as an
equivalent UNION ALL query. Every grouping of the original query is placed in a
separate UNION ALL branch. The branch will have a simple GROUP BY clause. For
example, consider this query:

Other Query Rewrite Considerations

11-50 Oracle Database Data Warehousing Guide

SELECT p.prod_category, p.prod_subcategory, c.cust_state_province,
 t.calendar_month_desc, SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c, times t
WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY GROUPING SETS
((p.prod_subcategory, t.calendar_month_desc),
 (t.calendar_month_desc),
 (p.prod_category, p.prod_subcategory, c.cust_state_province),
 (p.prod_category, p.prod_subcategory));

This is first represented as UNION ALL with four branches:

SELECT null, p.prod_subcategory, null,
 t.calendar_month_desc, SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c, times t
WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY p.prod_subcategory, t.calendar_month_desc
UNION ALL
 SELECT null, null, null,
 t.calendar_month_desc, SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c, times t
WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY t.calendar_month_desc
UNION ALL
SELECT p.prod_category, p.prod_subcategory, c.cust_state_province,
 null, SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c, times t
WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY p.prod_category, p.prod_subcategory, c.cust_state_province
UNION ALL
 SELECT p.prod_category, p.prod_subcategory, null,
 null, SUM(s.amount_sold) AS sum_amount_sold
 FROM sales s, products p, customers c, times t
 WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id
 GROUP BY p.prod_category, p.prod_subcategory;

Each branch is then rewritten separately using the rules from "When Does Oracle
Rewrite a Query?" on page 10-2. Using the materialized view sum_grouping_set_mv,
Oracle can rewrite only branches three (which requires materialized view rollup) and
four (which matches the materialized view exactly). The unrewritten branches will be
converted back to the extended GROUP BY form. Thus, eventually, the query is rewritten
as:

SELECT null, p.prod_subcategory, null,
 t.calendar_month_desc, SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c, times t
WHERE s.prod_id = p.prod_id AND s.cust_id = c.cust_id
GROUP BY GROUPING SETS
 ((p.prod_subcategory, t.calendar_month_desc),
 (t.calendar_month_desc),)
UNION ALL
 SELECT prod_category, prod_subcategory, cust_state_province,
 null, SUM(sum_amount_sold) AS sum_amount_sold
 FROM sum_grouping_set_mv
 WHERE gid = <grouping id of (prod_category,prod_subcategory, cust_city)>
 GROUP BY p.prod_category, p.prod_subcategory, c.cust_state_province
UNION ALL
 SELECT prod_category, prod_subcategory, null,
 null, sum_amount_sold
 FROM sum_grouping_set_mv
 WHERE gid = <grouping id of (prod_category,prod_subcategory)>

Other Query Rewrite Considerations

Advanced Query Rewrite for Materialized Views 11-51

Note that a query with extended GROUP BY is represented as an equivalent UNION ALL
and recursively submitted for rewrite optimization. The groupings that cannot be
rewritten stay in the last branch of UNION ALL and access the base data instead.

Hint for Queries with Extended GROUP BY
You can use the EXPAND_GSET_TO_UNION hint to force expansion of the query with
GROUP BY extensions into the equivalent UNION ALL query. This hint can be used in an
environment where materialized views have simple GROUP BY clauses only. In this case,
Oracle extends rewrite flexibility as each branch can be independently rewritten by a
separate materialized view. See Oracle Database SQL Tuning Guide for more information
regarding EXPAND_GSET_TO_UNION.

Query Rewrite in the Presence of Window Functions
Window functions are used to compute cumulative, moving and centered aggregates.
These functions work with the following aggregates: SUM, AVG, MIN/MAX., COUNT,
VARIANCE, STDDEV, FIRST_VALUE, and LAST_VALUE. A query with window function can
be rewritten using exact text match rewrite. This requires that the materialized view
definition also matches the query exactly. When there is no window function on the
materialized view, then a query with a window function can be rewritten provided the
aggregate in the query is found in the materialized view and all other eligibility checks
such as the join computability checks are successful. A window function on the query
is compared to the window function in the materialized view using its canonical form
format. This enables query rewrite to rewrite even complex window functions.

When a query with a window function requires rollup during query rewrite, query
rewrite will, whenever possible, split the query into an inner query with the aggregate
and an outer query with the windowing function. This permits query rewrite to
rewrite the aggregate in the inner query before applying the window function. One
exception is when the query has both a window function and grouping sets. In this
case, presence of the grouping set prevents query rewrite from splitting the query so
query rewrite does not take place in this case.

Query Rewrite and Expression Matching
An expression that appears in a query can be replaced with a simple column in a
materialized view provided the materialized view column represents a precomputed
expression that matches with the expression in the query. If a query can be rewritten to
use a materialized view, it will be faster. This is because materialized views contain
precomputed calculations and do not need to perform expression computation.

The expression matching is done by first converting the expressions into canonical
forms and then comparing them for equality. Therefore, two different expressions will
generally be matched as long as they are equivalent to each other. Further, if the entire
expression in a query fails to match with an expression in a materialized view, then
subexpressions of it are tried to find a match. The subexpressions are tried in a
top-down order to get maximal expression matching.

Consider a query that asks for sum of sales by age brackets (1-10, 11-20, 21-30, and so
on).

CREATE MATERIALIZED VIEW sales_by_age_bracket_mv
ENABLE QUERY REWRITE AS
SELECT TO_CHAR((2000-c.cust_year_of_birth)/10-0.5,999) AS age_bracket,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, customers c WHERE s.cust_id=c.cust_id

Other Query Rewrite Considerations

11-52 Oracle Database Data Warehousing Guide

GROUP BY TO_CHAR((2000-c.cust_year_of_birth)/10-0.5,999);

The following query rewrites, using expression matching:

SELECT TO_CHAR(((2000-c.cust_year_of_birth)/10)-0.5,999), SUM(s.amount_sold)
FROM sales s, customers c WHERE s.cust_id=c.cust_id
GROUP BY TO_CHAR((2000-c.cust_year_of_birth)/10-0.5,999);

This query is rewritten in terms of sales_by_age_bracket_mv based on the matching
of the canonical forms of the age bracket expressions (that is, 2000 - c.cust_year_of_
birth)/10-0.5), as follows:

SELECT age_bracket, sum_amount_sold FROM sales_by_age_bracket_mv;

Query Rewrite Using Partially Stale Materialized Views
When a partition of the detail table is updated, only specific sections of the
materialized view are marked stale. The materialized view must have information that
can identify the partition of the table corresponding to a particular row or group of the
materialized view. The simplest scenario is when the partitioning key of the table is
available in the SELECT list of the materialized view because this is the easiest way to
map a row to a stale partition. The key points when using partially stale materialized
views are:

■ Query rewrite can use a materialized view in ENFORCED or TRUSTED mode if the
rows from the materialized view used to answer the query are known to be FRESH.

■ The fresh rows in the materialized view are identified by adding selection
predicates to the materialized view's WHERE clause. Oracle rewrites a query with
this materialized view if its answer is contained within this (restricted)
materialized view.

The fact table sales is partitioned based on ranges of time_id as follows:

PARTITION BY RANGE (time_id)
(PARTITION SALES_Q1_1998
 VALUES LESS THAN (TO_DATE('01-APR-1998', 'DD-MON-YYYY')),
 PARTITION SALES_Q2_1998
 VALUES LESS THAN (TO_DATE('01-JUL-1998', 'DD-MON-YYYY')),
 PARTITION SALES_Q3_1998
 VALUES LESS THAN (TO_DATE('01-OCT-1998', 'DD-MON-YYYY')),
...

Suppose you have a materialized view grouping by time_id as follows:

CREATE MATERIALIZED VIEW sum_sales_per_city_mv
ENABLE QUERY REWRITE AS
SELECT s.time_id, p.prod_subcategory, c.cust_city,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c
WHERE s.cust_id = c.cust_id AND s.prod_id = p.prod_id
GROUP BY time_id, prod_subcategory, cust_city;

Also suppose new data will be inserted for December 2000, which will be assigned to
partition sales_q4_2000. For testing purposes, you can apply an arbitrary DML
operation on sales, changing a different partition than sales_q1_2000 as the
following query requests data in this partition when this materialized view is fresh.
For example, the following:

INSERT INTO SALES VALUES(17, 10, '01-DEC-2000', 4, 380, 123.45, 54321);

Other Query Rewrite Considerations

Advanced Query Rewrite for Materialized Views 11-53

Until a refresh is done, the materialized view is generically stale and cannot be used
for unlimited rewrite in enforced mode. However, because the table sales is
partitioned and not all partitions have been modified, Oracle can identify all partitions
that have not been touched. The optimizer can identify the fresh rows in the
materialized view (the data which is unaffected by updates since the last refresh
operation) by implicitly adding selection predicates to the materialized view defining
query as follows:

SELECT s.time_id, p.prod_subcategory, c.cust_city,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c
WHERE s.cust_id = c.cust_id AND s.prod_id = p.prod_id
AND s.time_id < TO_DATE('01-OCT-2000','DD-MON-YYYY')
OR s.time_id >= TO_DATE('01-OCT-2001','DD-MON-YYYY'))
GROUP BY time_id, prod_subcategory, cust_city;

Note that the freshness of partially stale materialized views is tracked on a
per-partition base, and not on a logical base. Because the partitioning strategy of the
sales fact table is on a quarterly base, changes in December 2000 causes the complete
partition sales_q4_2000 to become stale.

Consider the following query, which asks for sales in quarters 1 and 2 of 2000:

SELECT s.time_id, p.prod_subcategory, c.cust_city,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c
WHERE s.cust_id = c.cust_id AND s.prod_id = p.prod_id
AND s.time_id BETWEEN TO_DATE('01-JAN-2000', 'DD-MON-YYYY')
AND TO_DATE('01-JUL-2000', 'DD-MON-YYYY')
GROUP BY time_id, prod_subcategory, cust_city;

Oracle Database knows that those ranges of rows in the materialized view are fresh
and can therefore rewrite the query with the materialized view. The rewritten query
looks as follows:

SELECT time_id, prod_subcategory, cust_city, sum_amount_sold
FROM sum_sales_per_city_mv
WHERE time_id BETWEEN TO_DATE('01-JAN-2000', 'DD-MON-YYYY')
AND TO_DATE('01-JUL-2000', 'DD-MON-YYYY');

Instead of the partitioning key, a partition marker (a function that identifies the
partition given a rowid) can be present in the SELECT (and GROUP BY list) of the
materialized view. You can use the materialized view to rewrite queries that require
data from only certain partitions (identifiable by the partition-marker), for instance,
queries that have a predicate specifying ranges of the partitioning keys containing
entire partitions. See Chapter 6, "Advanced Materialized Views" for details regarding
the supplied partition marker function DBMS_MVIEW.PMARKER.

The following example illustrates the use of a partition marker in the materialized
view instead of directly using the partition key column:

CREATE MATERIALIZED VIEW sum_sales_per_city_2_mv
ENABLE QUERY REWRITE AS
SELECT DBMS_MVIEW.PMARKER(s.rowid) AS pmarker,
 t.fiscal_quarter_desc, p.prod_subcategory, c.cust_city,
 SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c, times t
WHERE s.cust_id = c.cust_id AND s.prod_id = p.prod_id
AND s.time_id = t.time_id
GROUP BY DBMS_MVIEW.PMARKER(s.rowid),
 p.prod_subcategory, c.cust_city, t.fiscal_quarter_desc;

Other Query Rewrite Considerations

11-54 Oracle Database Data Warehousing Guide

Suppose you know that the partition sales_q1_2000 is fresh and DML changes have
taken place for other partitions of the sales table. For testing purposes, you can apply
an arbitrary DML operation on sales, changing a different partition than sales_q1_
2000 when the materialized view is fresh. An example is the following:

INSERT INTO SALES VALUES(17, 10, '01-DEC-2000', 4, 380, 123.45, 54321);

Although the materialized view sum_sales_per_city_2_mv is now considered
generically stale, Oracle Database can rewrite the following query using this
materialized view. This query restricts the data to the partition sales_q1_2000, and
selects only certain values of cust_city, as shown in the following:

SELECT p.prod_subcategory, c.cust_city, SUM(s.amount_sold) AS sum_amount_sold
FROM sales s, products p, customers c, times t
WHERE s.cust_id = c.cust_id AND s.prod_id = p.prod_id AND s.time_id = t.time_id
AND c.cust_city= 'Nuernberg'
AND s.time_id >=TO_DATE('01-JAN-2000','dd-mon-yyyy')
AND s.time_id < TO_DATE('01-APR-2000','dd-mon-yyyy')
GROUP BY prod_subcategory, cust_city;

Note that rewrite with a partially stale materialized view that contains a PMARKER
function can only take place when the complete data content of one or more partitions
is accessed and the predicate condition is on the partitioned fact table itself, as shown
in the earlier example.

The DBMS_MVIEW.PMARKER function gives you exactly one distinct value for each
partition. This dramatically reduces the number of rows in a potential materialized
view compared to the partitioning key itself, but you are also giving up any detailed
information about this key. The only information you know is the partition number
and, therefore, the lower and upper boundary values. This is the trade-off for reducing
the cardinality of the range partitioning column and thus the number of rows.

Assuming the value of p_marker for partition sales_q1_2000 is 31070, the previously
shown queries can be rewritten against the materialized view as follows:

SELECT mv.prod_subcategory, mv.cust_city, SUM(mv.sum_amount_sold)
FROM sum_sales_per_city_2_mv mv
WHERE mv.pmarker = 31070 AND mv.cust_city= 'Nuernberg'
GROUP BY prod_subcategory, cust_city;

So the query can be rewritten against the materialized view without accessing stale
data.

Cursor Sharing and Bind Variables
Query rewrite is supported when the query contains user bind variables as long as the
actual bind values are not required during query rewrite. If the actual values of the
bind variables are required during query rewrite, then you can say that query rewrite
is dependent on the bind values. Because the user bind variables are not available
during query rewrite time, if query rewrite is dependent on the bind values, it is not
possible to rewrite the query. For example, consider the following materialized view,
customer_mv, which has the predicate, (customer_id >= 1000), in the WHERE clause:

CREATE MATERIALIZED VIEW customer_mv
ENABLE QUERY REWRITE AS
SELECT cust_id, prod_id, SUM(amount_sold) AS total_amount
FROM sales WHERE cust_id >= 1000
GROUP BY cust_id, prod_id;

Other Query Rewrite Considerations

Advanced Query Rewrite for Materialized Views 11-55

Consider the following query, which has a user bind variable, :user_id, in its WHERE
clause:

SELECT cust_id, prod_id, SUM(amount_sold) AS sum_amount
FROM sales WHERE cust_id > :user_id
GROUP BY cust_id, prod_id;

Because the materialized view, customer_mv, has a selection in its WHERE clause, query
rewrite is dependent on the actual value of the user bind variable, user_id, to compute
the containment. Because user_id is not available during query rewrite time and
query rewrite is dependent on the bind value of user_id, this query cannot be
rewritten.

Even though the preceding example has a user bind variable in the WHERE clause, the
same is true regardless of where the user bind variable appears in the query. In other
words, irrespective of where a user bind variable appears in a query, if query rewrite is
dependent on its value, then the query cannot be rewritten.

Now consider the following query which has a user bind variable, :user_id, in its
SELECT list:

SELECT cust_id + :user_id, prod_id, SUM(amount_sold) AS total_amount
FROM sales WHERE cust_id >= 2000
GROUP BY cust_id, prod_id;

Because the value of the user bind variable, user_id, is not required during query
rewrite time, the preceding query will rewrite.

SELECT cust_id + :user_id, prod_id, total_amount
FROM customer_mv;

Handling Expressions in Query Rewrite
Rewrite with some expressions is also supported when the expression evaluates to a
constant, such as TO_DATE('12-SEP-1999','DD-Mon-YYYY'). For example, if an
existing materialized view is defined as:

CREATE MATERIALIZED VIEW sales_on_valentines_day_99_mv
BUILD IMMEDIATE
REFRESH FORCE
ENABLE QUERY REWRITE AS
SELECT s.prod_id, s.cust_id, s.amount_sold
FROM times t, sales s WHERE s.time_id = t.time_id
AND t.time_id = TO_DATE('14-FEB-1999', 'DD-MON-YYYY');

Then the following query can be rewritten:

SELECT s.prod_id, s.cust_id, s.amount_sold
FROM sales s, times t WHERE s.time_id = t.time_id
AND t.time_id = TO_DATE('14-FEB-1999', 'DD-MON-YYYY');

This query would be rewritten as follows:

SELECT * FROM sales_on_valentines_day_99_mv;

Whenever TO_DATE is used, query rewrite only occurs if the date mask supplied is the
same as the one specified by the NLS_DATE_FORMAT.

Advanced Query Rewrite Using Equivalences

11-56 Oracle Database Data Warehousing Guide

Advanced Query Rewrite Using Equivalences
There is a special type of query rewrite that is possible where a declaration is made
that two SQL statements are functionally equivalent. This capability enables you to
place inside application knowledge into the database so the database can exploit this
knowledge for improved query performance. You do this by declaring two SELECT
statements to be functionally equivalent (returning the same rows and columns) and
indicating that one of the SELECT statements is more favorable for performance.

This advanced rewrite capability can generally be applied to a variety of query
performance problems and opportunities. Any application can use this capability to
affect rewrites against complex user queries that can be answered with much simpler
and more performant queries that have been specifically created, usually by someone
with inside application knowledge.

There are many scenarios where you can have inside application knowledge that
would allow SQL statement transformation and tuning for significantly improved
performance. The types of optimizations you may wish to affect can be very simple or
as sophisticated as significant restructuring of the query. However, the incoming SQL
queries are often generated by applications and you have no control over the form and
structure of the application-generated queries.

To gain access to this capability, you need to connect as SYSDBA and explicitly grant
execute access to the desired database administrators who will be declaring rewrite
equivalences. See Oracle Database PL/SQL Packages and Types Reference for more
information.

To illustrate this type of advanced rewrite, some examples using multidimensional
data are provided. To optimize resource usage, an application may employ
complicated SQL, custom C code or table functions to retrieve the data from the
database. This complexity is irrelevant as far as end users are concerned. Users would
still want to obtain their answers using typical queries with SELECT ... GROUP BY.

The following example declares to Oracle that a given user query must be executed
using a specified alternative query. Oracle would recognize this relationship and every
time the user asked the query, it would transparently rewrite it using the alternative.
Thus, the user is saved from the trouble of understanding and writing SQL for
complicated aggregate computations.

Example 11–11 Rewrite Using Equivalence

There are two base tables sales_fact and geog_dim. You can compute the total sales
for each city, state and region with a rollup, by issuing the following statement:

SELECT g.region, g.state, g.city,
GROUPING_ID(g.city, g.state, g.region), SUM(sales)
FROM sales_fact f, geog_dim g WHERE f.geog_key = g.geog_key
GROUP BY ROLLUP(g.region, g.state, g.city);

An application may want to materialize this query for quick results. Unfortunately, the
resulting materialized view occupies too much disk space. However, if you have a
dimension rolling up city to state to region, you can easily compress the three
grouping columns into one column using a decode statement. (This is also known as
an embedded total):

DECODE (gid, 0, city, 1, state, 3, region, 7, "grand_total")

What this does is use the lowest level of the hierarchy to represent the entire
information. For example, saying Boston means Boston, MA, New England Region

Advanced Query Rewrite Using Equivalences

Advanced Query Rewrite for Materialized Views 11-57

and saying CA means CA, Western Region. An application can store these embedded
total results into a table, say, embedded_total_sales.

However, when returning the result back to the user, you would want to have all the
data columns (city, state, region). In order to return the results efficiently and quickly,
an application may use a custom table function (et_function) to retrieve the data back
from the embedded_total_sales table in the expanded form as follows:

SELECT * FROM TABLE (et_function);

In other words, this feature allows an application to declare the equivalence of the
user's preceding query to the alternative query, as in the following:

DBMS_ADVANCED_REWRITE.DECLARE_REWRITE_EQUIVALENCE (
 'EMBEDDED_TOTAL',
 'SELECT g.region, g.state, g.city,
 GROUPING_ID(g.city, g.state, g.region), SUM(sales)
 FROM sales_fact f, geog_dim g
 WHERE f.geog_key = g.geog_key
 GROUP BY ROLLUP(g.region, g.state, g.city)',
 'SELECT * FROM TABLE(et_function)');

This invocation of DECLARE_REWRITE_EQUIVALENCE creates an equivalence declaration
named EMBEDDED_TOTAL stating that the specified SOURCE_STMT and the specified
DESTINATION_STMT are functionally equivalent, and that the specified DESTINATION_
STMT is preferable for performance. After the DBA creates such a declaration, the user
need have no knowledge of the space optimization being performed underneath the
covers.

This capability also allows an application to perform specialized partial
materializations of a SQL query. For instance, it could perform a rollup using a UNION
ALL of three relations as shown in Example 11–12.

Example 11–12 Rewrite Using Equivalence (UNION ALL)

CREATE MATERIALIZED VIEW T1
AS SELECT g.region, g.state, g.city, 0 AS gid, SUM(sales) AS sales
FROM sales_fact f, geog_dim g WHERE f.geog_key = g.geog_key
GROUP BY g.region, g.state, g.city;

CREATE MATERIALIZED VIEW T2 AS
SELECT t.region, t.state, SUM(t.sales) AS sales
FROM T1 GROUP BY t.region, t.state;

CREATE VIEW T3 AS
SELECT t.region, SUM(t.sales) AS sales
FROM T2 GROUP BY t.region;

The ROLLUP(region, state, city) query is then equivalent to:

SELECT * FROM T1 UNION ALL
SELECT region, state, NULL, 1 AS gid, sales FROM T2 UNION ALL
SELECT region, NULL, NULL, 3 AS gid, sales FROM T3 UNION ALL
SELECT NULL, NULL, NULL, 7 AS gid, SUM(sales) FROM T3;

By specifying this equivalence, Oracle Database would use the more efficient second
form of the query to compute the ROLLUP query asked by the user.

DBMS_ADVANCED_REWRITE.DECLARE_REWRITE_EQUIVALENCE (
 'CUSTOM_ROLLUP',
 'SELECT g.region, g.state, g.city,

Creating Result Cache Materialized Views with Equivalences

11-58 Oracle Database Data Warehousing Guide

 GROUPING_ID(g.city, g.state, g.region), SUM(sales)
 FROM sales_fact f, geog_dim g
 WHERE f.geog_key = g.geog_key
 GROUP BY ROLLUP(g.region, g.state, g.city ',
 ' SELECT * FROM T1
 UNION ALL
 SELECT region, state, NULL, 1 as gid, sales FROM T2
 UNION ALL
 SELECT region, NULL, NULL, 3 as gid, sales FROM T3
 UNION ALL
 SELECT NULL, NULL, NULL, 7 as gid, SUM(sales) FROM T3');

Another application of this feature is to provide users special aggregate computations
that may be conceptually simple but extremely complex to express in SQL. In this case,
the application asks the user to use a specified custom aggregate function and
internally compute it using complex SQL.

Example 11–13 Rewrite Using Equivalence (Using a Custom Aggregate)

Suppose the application users want to see the sales for each city, state and region and
also additional sales information for specific seasons. For example, the New England
user wants additional sales information for cities in New England for the winter
months. The application would provide you a special aggregate Seasonal_Agg that
computes the earlier aggregate. You would ask a classic summary query but use
Seasonal_Agg(sales, region) rather than SUM(sales).

SELECT g.region, t.calendar_month_name, Seasonal_Agg(f.sales, g.region) AS sales
FROM sales_fact f, geog_dim g, times t
WHERE f.geog_key = g.geog_key AND f.time_id = t.time_id
GROUP BY g.region, t.calendar_month_name;

Instead of asking the user to write SQL that does the extra computation, the
application can do it automatically for them by using this feature. In this example,
Seasonal_Agg is computed using the spreadsheet functionality (see Chapter 21, "SQL
for Modeling"). Note that even though Seasonal_Agg is a user-defined aggregate, the
required behavior is to add extra rows to the query's answer, which cannot be easily
done with simple PL/SQL functions.

DBMS_ADVANCED_REWRITE.DECLARE_REWRITE_EQUIVALENCE (
 'CUSTOM_SEASONAL_AGG',
 SELECT g.region, t.calendar_month_name, Seasonal_Agg(sales, region) AS sales
 FROM sales_fact f, geog_dim g, times t
 WHERE f.geog_key = g.geog_key AND f.time_id = t.time_id
 GROUP BY g.region, t.calendar_month_name',
 'SELECT g,region, t.calendar_month_name, SUM(sales) AS sales
 FROM sales_fact f, geog_dim g
 WHERE f.geog_key = g.geog_key AND t.time_id = f.time_id
 GROUP BY g.region, g.state, g.city, t.calendar_month_name
 DIMENSION BY g.region, t.calendar_month_name
 (sales ['New England', 'Winter'] = AVG(sales) OVER calendar_month_name IN
 ('Dec', 'Jan', 'Feb', 'Mar'),
 sales ['Western', 'Summer'] = AVG(sales) OVER calendar_month_name IN
 ('May', 'Jun', 'July', 'Aug'), .);

Creating Result Cache Materialized Views with Equivalences
A special type of materialized view, called a result cache materialized view (RCMV),
enables you to use a result cache when running query rewrite. These result cache
materialized views offer the main advantages of the result cache, faster access with

Creating Result Cache Materialized Views with Equivalences

Advanced Query Rewrite for Materialized Views 11-59

less space required, without the normal drawback of being unable to run query rewrite
against them.

An example of using this type of materialized view is the following.

Example 11–14 Result Cache Materialized View

First, grant the requisite permissions:

CONNECT / AS SYSDBA
GRANT CREATE MATERIALIZED VIEW TO sh;
GRANT EXECUTE ON DBMS_ADVANCED_REWRITE TO sh;

Next, create the result cache materialized view:

CONNECT sh/sh
begin
 sys.DBMS_ADVANCED_REWRITE.Declare_Rewrite_Equivalence
 (
 Name => 'RCMV_SALES',
 Source_Stmt =>
 'select channel_id, prod_id, sum(amount_sold), count(amount_sold)
 from sales
 group by prod_id, channel_id',
 Destination_Stmt =>
 'select * from
 (select /*+ RESULT_CACHE(name=RCMV_SALES) */
 channel_id, prod_id, sum(amount_sold), count(amount_sold)
 from sales
 group by prod_id, channel_id)',
 Validate => FALSE,
 Rewrite_Mode => 'GENERAL'
);
end;
/

ALTER SESSION SET query_rewrite_integrity = stale_tolerated;

Then, verify that different queries all rewrite to RCMV_SALES by looking at the explain
plan:

EXPLAIN PLAN FOR
 SELECT channel_id, SUM(amount_sold) FROM sales GROUP BY channel_id;
@?/rdbms/admin/utlxpls

PLAN_TABLE_OUTPUT
--
Plan hash value: 3903632134
--
|Id | Operation | Name |Rows|Bytes|Cost(%CPU)| Time |Pstart|Pstop|

0	SELECT STATEMENT		4	64	1340 (68)	00:00:17		
1	HASH GROUP BY		4	64	1340 (68)	00:00:17		
2	VIEW		204	3264	1340 (68)	00:00:17		
3	RESULT CACHE	3gps5zr86gyb53y36js9zuay2s						
4	HASH GROUP BY		204	2448	1340 (68)	00:00:17		
5	PARTITION RANGE ALL		918K	10M	655 (33)	00:00:08	1	28
6	TABLE ACCESS FULL	SALES	918K	10M	655 (33)	00:00:08	1	28

Result Cache Information (identified by operation id):
--

Verifying that Query Rewrite has Occurred

11-60 Oracle Database Data Warehousing Guide

 3 - column-count=4; dependencies=(SH.SALES); name="RCMV_SALES"

18 rows selected.

Then, execute the query that creates the cached result:

SELECT channel_id, SUM(amount_sold)
FROM sales
GROUP BY channel_id;

CHANNEL_ID SUM(AMOUNT_SOLD)
---------- ----------------
 2 26346342.3
 4 13706802
 3 57875260.6
 9 277426.26

Next, verify that the materialized view was materialized in the result cache:

CONNECT / AS SYSDBA

SELECT name, scan_count hits, block_count blocks, depend_count dependencies
FROM V$RESULT_CACHE_OBJECTS
WHERE name = 'RCMV_SALES';

NAME HITS BLOCKS DEPENDENCIES
---------- ---- ------ ------------
RCMV_SALES 0 5 1

Finally, drop the RCMV query equivalence:

begin
 sys.DBMS_ADVANCED_REWRITE.Drop_Rewrite_equivalence('RCMV_SALES');
end;
/

For more information regarding result caches, see Oracle Database SQL Tuning Guide.

Verifying that Query Rewrite has Occurred
Because query rewrite occurs transparently, special steps have to be taken to verify
that a query has been rewritten. Of course, if the query runs faster, this should indicate
that rewrite has occurred, but that is not proof. Therefore, to confirm that query
rewrite does occur, use the EXPLAIN PLAN statement or the DBMS_MVIEW.EXPLAIN_
REWRITE procedure.

This section contains the following topics:

■ Using EXPLAIN PLAN with Query Rewrite

■ Using the EXPLAIN_REWRITE Procedure with Query Rewrite

Using EXPLAIN PLAN with Query Rewrite
The EXPLAIN PLAN facility is used as described in Oracle Database SQL Language
Reference. For query rewrite, all you need to check is that the operation shows MAT_
VIEW REWRITE ACCESS. If it does, then query rewrite has occurred. An example is the
following, which creates the materialized view cal_month_sales_mv:

CREATE MATERIALIZED VIEW cal_month_sales_mv

Verifying that Query Rewrite has Occurred

Advanced Query Rewrite for Materialized Views 11-61

ENABLE QUERY REWRITE AS
SELECT t.calendar_month_desc, SUM(s.amount_sold) AS dollars
FROM sales s, times t WHERE s.time_id = t.time_id
GROUP BY t.calendar_month_desc;

If EXPLAIN PLAN is used on the following SQL statement, the results are placed in the
default table PLAN_TABLE. However, PLAN_TABLE must first be created using the
utlxplan.sql script. Note that EXPLAIN PLAN does not actually execute the query.

EXPLAIN PLAN FOR
SELECT t.calendar_month_desc, SUM(s.amount_sold)
FROM sales s, times t WHERE s.time_id = t.time_id
GROUP BY t.calendar_month_desc;

For the purposes of query rewrite, the only information of interest from PLAN_TABLE is
the operation OBJECT_NAME, which identifies the method used to execute this query.
Therefore, you would expect to see the operation MAT_VIEW REWRITE ACCESS in the
output as illustrated in the following:

SELECT OPERATION, OBJECT_NAME FROM PLAN_TABLE;

OPERATION OBJECT_NAME
-------------------- -----------------------
SELECT STATEMENT
MAT_VIEW REWRITE ACCESS CALENDAR_MONTH_SALES_MV

Using the EXPLAIN_REWRITE Procedure with Query Rewrite
It can be difficult to understand why a query did not rewrite. The rules governing
query rewrite eligibility are quite complex, involving various factors such as
constraints, dimensions, query rewrite integrity modes, freshness of the materialized
views, and the types of queries themselves. In addition, you may want to know why
query rewrite chose a particular materialized view instead of another. To help with this
matter, Oracle Database provides the DBMS_MVIEW.EXPLAIN_REWRITE procedure to
advise you when a query can be rewritten and, if not, why not. Using the results from
DBMS_MVIEW.EXPLAIN_REWRITE, you can take the appropriate action needed to make a
query rewrite if at all possible.

Note that the query specified in the EXPLAIN_REWRITE statement does not actually
execute.

This section contains the following topics:

■ DBMS_MVIEW.EXPLAIN_REWRITE Syntax

■ Using REWRITE_TABLE

■ Using a Varray

■ EXPLAIN_REWRITE Benefit Statistics

■ Support for Query Text Larger than 32KB in EXPLAIN_REWRITE

■ EXPLAIN_REWRITE and Multiple Materialized Views

■ EXPLAIN_REWRITE Output

DBMS_MVIEW.EXPLAIN_REWRITE Syntax
You can obtain the output from DBMS_MVIEW.EXPLAIN_REWRITE in two ways. The first is
to use a table, while the second is to create a VARRAY. The following shows the basic
syntax for using an output table:

Verifying that Query Rewrite has Occurred

11-62 Oracle Database Data Warehousing Guide

DBMS_MVIEW.EXPLAIN_REWRITE (
 query VARCHAR2,
 mv VARCHAR2(30),
 statement_id VARCHAR2(30));

You can create an output table called REWRITE_TABLE by executing the utlxrw.sql
script.

The query parameter is a text string representing the SQL query. The parameter, mv, is
a fully-qualified materialized view name in the form of schema.mv. This is an optional
parameter. When it is not specified, EXPLAIN_REWRITE returns any relevant messages
regarding all the materialized views considered for rewriting the given query. When
schema is omitted and only mv is specified, EXPLAIN_REWRITE looks for the materialized
view in the current schema.

If you want to direct the output of EXPLAIN_REWRITE to a varray instead of a table, you
should call the procedure as follows:

DBMS_MVIEW.EXPLAIN_REWRITE (
 query [VARCHAR2 | CLOB],
 mv VARCHAR2(30),
 output_array SYS.RewriteArrayType);

Note that if the query is less than 256 characters long, EXPLAIN_REWRITE can be easily
invoked with the EXECUTE command from SQL*Plus. Otherwise, the recommended
method is to use a PL/SQL BEGIN... END block, as shown in the examples in
/rdbms/demo/smxrw*.

Using REWRITE_TABLE
The output of EXPLAIN_REWRITE can be directed to a table named REWRITE_TABLE. You
can create this output table by running the utlxrw.sql script. This script can be found
in the admin directory. The format of REWRITE_TABLE is as follows:

CREATE TABLE REWRITE_TABLE(
 statement_id VARCHAR2(30), -- id for the query
 mv_owner VARCHAR2(30), -- owner of the MV
 mv_name VARCHAR2(30), -- name of the MV
 sequence INTEGER, -- sequence no of the msg
 query VARCHAR2(2000), -- user query
 query_block_no INTEGER, -- block no of the current subquery
 rewritten_txt VARCHAR2(2000), -- rewritten query
 message VARCHAR2(512), -- EXPLAIN_REWRITE msg
 pass VARCHAR2(3), -- rewrite pass no
 mv_in_msg VARCHAR2(30), -- MV in current message
 measure_in_msg VARCHAR2(30), -- Measure in current message
 join_back_tbl VARCHAR2(30), -- Join back table in message
 join_back_col VARCHAR2(30), -- Join back column in message
 original_cost INTEGER, -- Cost of original query
 rewritten_cost INTEGER, -- Cost of rewritten query
 flags INTEGER, -- associated flags
 reserved1 INTEGER, -- currently not used
 reerved2 VARCHAR2(10)) -- currently not used
;

Example 11–15 EXPLAIN_REWRITE Using REWRITE_TABLE

An example PL/SQL invocation is:

EXECUTE DBMS_MVIEW.EXPLAIN_REWRITE -
('SELECT p.prod_name, SUM(amount_sold) ' || -

Verifying that Query Rewrite has Occurred

Advanced Query Rewrite for Materialized Views 11-63

'FROM sales s, products p ' || -
'WHERE s.prod_id = p.prod_id ' || -
' AND prod_name > ''B%'' ' || -
' AND prod_name < ''C%'' ' || -
'GROUP BY prod_name', -
'TestXRW.PRODUCT_SALES_MV', -
'SH');

SELECT message FROM rewrite_table ORDER BY sequence;
MESSAGE
--
QSM-01033: query rewritten with materialized view, PRODUCT_SALES_MV
1 row selected.

The demo file xrwutl.sql contains a procedure that you can call to provide a more
detailed output from EXPLAIN_REWRITE. See "EXPLAIN_REWRITE Output" on
page 11-66 for more information.

The following is an example where you can see a more detailed explanation of why
some materialized views were not considered and, eventually, the materialized view
sales_mv was chosen as the best one.

DECLARE
 qrytext VARCHAR2(500) :='SELECT cust_first_name, cust_last_name,
 SUM(amount_sold) AS dollar_sales FROM sales s, customers c WHERE s.cust_id=
 c.cust_id GROUP BY cust_first_name, cust_last_name';
 idno VARCHAR2(30) :='ID1';
BEGIN
 DBMS_MVIEW.EXPLAIN_REWRITE(qrytext, '', idno);
END;
/
SELECT message FROM rewrite_table ORDER BY sequence;

SQL> MESSAGE
--
QSM-01082: Joining materialized view, CAL_MONTH_SALES_MV, with table, SALES, not possible
QSM-01022: a more optimal materialized view than PRODUCT_SALES_MV was used to rewrite
QSM-01022: a more optimal materialized view than FWEEK_PSCAT_SALES_MV was used to rewrite
QSM-01033: query rewritten with materialized view, SALES_MV

Using a Varray
You can save the output of EXPLAIN_REWRITE in a PL/SQL VARRAY. The elements of this
array are of the type RewriteMessage, which is predefined in the SYS schema as shown
in the following:

TYPE RewriteMessage IS OBJECT(
 mv_owner VARCHAR2(30), -- MV's schema
 mv_name VARCHAR2(30), -- Name of the MV
 sequence NUMBER(3), -- sequence no of the msg
 query_text VARCHAR2(2000), -- User query
 query_block_no NUMBER(3), -- block no of the current subquery
 rewritten_text VARCHAR2(2000), -- rewritten query text
 message VARCHAR2(512), -- EXPLAIN_REWRITE error msg
 pass VARCHAR2(3), -- Query rewrite pass no
 mv_in_msg VARCHAR2(30), -- MV in current message
 measure_in_msg VARCHAR2(30), -- Measure in current message
 join_back_tbl VARCHAR2(30), -- Join back table in current msg
 join_back_col VARCHAR2(30), -- Join back column in current msg
 original_cost NUMBER(10), -- Cost of original query

Verifying that Query Rewrite has Occurred

11-64 Oracle Database Data Warehousing Guide

 rewritten_cost NUMBER(10), -- Cost rewritten query
 flags NUMBER, -- Associated flags
 reserved1 NUMBER, -- For future use
 reserved2 VARCHAR2(10) -- For future use
);

The array type, RewriteArrayType, which is a varray of RewriteMessage objects, is
predefined in the SYS schema as follows:

■ TYPE RewriteArrayType AS VARRAY(256) OF RewriteMessage;

■ Using this array type, now you can declare an array variable and specify it in the
EXPLAIN_REWRITE statement.

■ Each RewriteMessage record provides a message concerning rewrite processing.

■ The parameters are the same as for REWRITE_TABLE, except for statement_id,
which is not used when using a varray as output.

■ The mv_owner field defines the owner of materialized view that is relevant to the
message.

■ The mv_name field defines the name of a materialized view that is relevant to the
message.

■ The sequence field defines the sequence in which messages should be ordered.

■ The query_text field contains the first 2000 characters of the query text under
analysis.

■ The message field contains the text of message relevant to rewrite processing of
query.

■ The flags, reserved1, and reserved2 fields are reserved for future use.

Example 11–16 EXPLAIN_REWRITE Using a VARRAY

Consider the following materialized view:

CREATE MATERIALIZED VIEW avg_sales_city_state_mv
ENABLE QUERY REWRITE AS
SELECT c.cust_city, c.cust_state_province, AVG(s.amount_sold)
FROM sales s, customers c WHERE s.cust_id = c.cust_id
GROUP BY c.cust_city, c.cust_state_province;

You might try to use this materialized view with the following query:

SELECT c.cust_state_province, AVG(s.amount_sold)
FROM sales s, customers c WHERE s.cust_id = c.cust_id
GROUP BY c.cust_state_province;

However, the query does not rewrite with this materialized view. This can be quite
confusing to a novice user as it seems like all information required for rewrite is
present in the materialized view. You can find out from DBMS_MVIEW.EXPLAIN_REWRITE
that AVG cannot be computed from the given materialized view. The problem is that a
ROLLUP is required here and AVG requires a COUNT or a SUM to do ROLLUP.

An example PL/SQL block for the previous query, using a VARRAY as its output, is as
follows:

SET SERVEROUTPUT ON
DECLARE
 Rewrite_Array SYS.RewriteArrayType := SYS.RewriteArrayType();
 querytxt VARCHAR2(1500) := 'SELECT c.cust_state_province,

Verifying that Query Rewrite has Occurred

Advanced Query Rewrite for Materialized Views 11-65

 AVG(s.amount_sold)
 FROM sales s, customers c WHERE s.cust_id = c.cust_id
 GROUP BY c.cust_state_province';
 i NUMBER;
BEGIN
 DBMS_MVIEW.EXPLAIN_REWRITE(querytxt, 'AVG_SALES_CITY_STATE_MV',
 Rewrite_Array);
 FOR i IN 1..Rewrite_Array.count
 LOOP
 DBMS_OUTPUT.PUT_LINE(Rewrite_Array(i).message);
 END LOOP;
END;
/

The following is the output of this EXPLAIN_REWRITE statement:

QSM-01065: materialized view, AVG_SALES_CITY_STATE_MV, cannot compute
 measure, AVG, in the query
QSM-01101: rollup(s) took place on mv, AVG_SALES_CITY_STATE_MV
QSM-01053: NORELY referential integrity constraint on table, CUSTOMERS,
 in TRUSTED/STALE TOLERATED integrity mode
PL/SQL procedure successfully completed.

EXPLAIN_REWRITE Benefit Statistics
The output of EXPLAIN_REWRITE contains two columns, original_cost and
rewritten_cost, that can help you estimate query cost. original_cost gives the
optimizer's estimation for the query cost when query rewrite was disabled.
rewritten_cost gives the optimizer's estimation for the query cost when query was
rewritten using a materialized view. These cost values can be used to find out what
benefit a particular query receives from rewrite.

Support for Query Text Larger than 32KB in EXPLAIN_REWRITE
In this release, the EXPLAIN_REWRITE procedure has been enhanced to support large
queries. The input query text can now be defined using a CLOB data type instead of a
VARCHAR data type. This allows EXPLAIN_REWRITE to accept queries up to 4 GB.

The syntax for using EXPLAIN_REWRITE using CLOB to obtain the output into a table is
shown as follows:

DBMS_MVIEW.EXPLAIN_REWRITE(
 query IN CLOB,
 mv IN VARCHAR2,
 statement_id IN VARCHAR2);

The second argument, mv, and the third argument, statement_id, can be NULL.
Similarly, the syntax for using EXPLAIN_REWRITE using CLOB to obtain the output into a
varray is shown as follows:

DBMS_MVIEW.EXPLAIN_REWRITE(
 query IN CLOB,
 mv IN VARCHAR2,
 msg_array IN OUT SYS.RewriteArrayType);

As before, the second argument, mv, can be NULL. Note that long query texts in CLOB can
be generated using the procedures provided in the DBMS_LOB package.

Verifying that Query Rewrite has Occurred

11-66 Oracle Database Data Warehousing Guide

EXPLAIN_REWRITE and Multiple Materialized Views
The syntax for using EXPLAIN_REWRITE with multiple materialized views is the same as
using it with a single materialized view, except that the materialized views are
specified by a comma-delimited string. For example, to find out whether a given set of
materialized views mv1, mv2, and mv3 could be used to rewrite the query, query_txt,
and, if not, why not, use EXPLAIN_REWRITE as follows:

DBMS_MVIEW.EXPLAIN_REWRITE(query_txt, 'mv1, mv2, mv3')

If the query, query_txt, rewrote with the given set of materialized views, then the
following message appears:

QSM-01127: query rewritten with materialized view(s), mv1, mv2, and mv3.

If the query fails to rewrite with one or more of the given set of materialized views,
then the reason for the failure will be output by EXPLAIN_REWRITE for each of the
materialized views that did not participate in the rewrite.

EXPLAIN_REWRITE Output
Some examples showing how to use EXPLAIN_REWRITE are included in
/rdbms/demo/smxrw.sql. There is also a utility called SYS.XRW included in the demo
xrw area to help you select the output from the EXPLAIN_REWRITE procedure. When
EXPLAIN_REWRITE evaluates a query, its output includes information such as the
rewritten query text, query block number, and the cost of the rewritten query. The
utility SYS.XRW outputs the user specified fields in a neatly formatted way, so that the
output can be easily understood. The syntax is as follows:

SYS.XRW(list_of_mvs, list_of_commands, query_text),

where list_of_mvs are the materialized views the user would expect the query
rewrite to use. If there is more than one materialized view, they must be separated by
commas, and list_of_commands is one of the following fields:

QUERY_TXT: User query text
REWRITTEN_TXT: Rewritten query text
QUERY_BLOCK_NO: Query block number to identify each query blocks in
 case the query has subqueries or inline views
PASS: Pass indicates whether a given message was generated
 before or after the view merging process of query rewrite.
COSTS: Costs indicates the estimated execution cost of the
 original query and the rewritten query

The following example illustrates the use of this utility:

DROP MATERIALIZED VIEW month_sales_mv;

CREATE MATERIALIZED VIEW month_sales_mv
 ENABLE QUERY REWRITE
 AS
 SELECT t.calendar_month_number, SUM(s.amount_sold) AS sum_dollars
 FROM sales s, times t
 WHERE s.time_id = t.time_id
GROUP BY t.calendar_month_number;

SET SERVEROUTPUT ON
DECLARE
 querytxt VARCHAR2(1500) := 'SELECT t.calendar_month_number,
 SUM(s.amount_sold) AS sum_dollars FROM sales s, times t
 WHERE s.time_id = t.time_id GROUP BY t.calendar_month_number';

Design Considerations for Improving Query Rewrite Capabilities

Advanced Query Rewrite for Materialized Views 11-67

BEGIN
 SYS.XRW('MONTH_SALES_MV', 'COSTS, PASS, REWRITTEN_TXT, QUERY_BLOCK_NO',
querytxt);
END;
/

Following is the output from SYS.XRW. As can be seen from the output, SYS.XRW
outputs both the original query cost, rewritten costs, rewritten query text, query block
number and whether the message was generated before or after the view merging
process.

==
>> MESSAGE : QSM-01151: query was rewritten
>> RW QUERY : SELECT MONTH_SALES_MV.CALENDAR_MONTH_NUMBER CALENDAR_MONTH_NUMBER,
MONTH_SALES_MV.SUM_DOLLARS SUM_DOLLARS FROM SH.MONTH_SALES_MV MONTH_SALES_MV
>> ORIG COST: 19.952763130792 RW COST: 1.80687108
==
>>
------------------------- ANALYSIS OF QUERY REWRITE -------------------------
>>
>> QRY BLK #: 0
>> MESSAGE : QSM-01209: query rewritten with materialized view,
 MONTH_SALES_MV, using text match algorithm
>> RW QUERY : SELECT MONTH_SALES_MV.CALENDAR_MONTH_NUMBER CALENDAR_MONTH_NUMBER,
 MONTH_SALES_MV.SUM_DOLLARS SUM_DOLLARS FROM SH.MONTH_SALES_MV MONTH_SALES_MV
>> ORIG COST: 19.952763130792 RW COST: 1.80687108
>> MESSAGE OUTPUT BEFORE VIEW MERGING...
============================ END OF MESSAGES ===============================
PL/SQL procedure successfully completed.

Design Considerations for Improving Query Rewrite Capabilities
This section discusses design considerations that will help in obtaining the maximum
benefit from query rewrite. They are not mandatory for using query rewrite and
rewrite is not guaranteed if you follow them. They are general rules to consider, and
are the following:

■ Query Rewrite Considerations: Constraints

■ Query Rewrite Considerations: Dimensions

■ Query Rewrite Considerations: Outer Joins

■ Query Rewrite Considerations: Text Match

■ Query Rewrite Considerations: Aggregates

■ Query Rewrite Considerations: Grouping Conditions

■ Query Rewrite Considerations: Expression Matching

■ Query Rewrite Considerations: Date Folding

■ Query Rewrite Considerations: Statistics

■ Query Rewrite Considerations: Hints

Query Rewrite Considerations: Constraints
Make sure all inner joins referred to in a materialized view have referential integrity
(foreign key/primary key constraints) with additional NOT NULL constraints on the
foreign key columns. Because constraints tend to impose a large overhead, you could

Design Considerations for Improving Query Rewrite Capabilities

11-68 Oracle Database Data Warehousing Guide

make them NO VALIDATE and RELY and set the parameter QUERY_REWRITE_INTEGRITY to
STALE_TOLERATED or TRUSTED. However, if you set QUERY_REWRITE_INTEGRITY to
ENFORCED, all constraints must be enabled, enforced, and validated to get maximum
rewritability.

You should avoid using the ON DELETE clause as it can lead to unexpected results.

Query Rewrite Considerations: Dimensions
You can express the hierarchical relationships and functional dependencies in
normalized or denormalized dimension tables using the HIERARCHY and DETERMINES
clauses of a dimension. Dimensions can express intra-table relationships which cannot
be expressed by constraints. Set the parameter QUERY_REWRITE_INTEGRITY to TRUSTED
or STALE_TOLERATED for query rewrite to take advantage of the relationships declared
in dimensions.

Query Rewrite Considerations: Outer Joins
Another way of avoiding constraints is to use outer joins in the materialized view.
Query rewrite will be able to derive an inner join in the query, such as (A.a=B.b), from
an outer join in the materialized view (A.a = B.b(+)), as long as the rowid of B or
column B.b is available in the materialized view. Most of the support for rewrites with
outer joins is provided for materialized views with joins only. To exploit it, a
materialized view with outer joins should store the rowid or primary key of the inner
table of an outer join. For example, the materialized view join_sales_time_product_
mv_oj stores the primary keys prod_id and time_id of the inner tables of outer joins.

Query Rewrite Considerations: Text Match
If you need to speed up an extremely complex, long-running query, you could create a
materialized view with the exact text of the query. Then the materialized view would
contain the query results, thus eliminating the time required to perform any complex
joins and search through all the data for that which is required.

Query Rewrite Considerations: Aggregates
To get the maximum benefit from query rewrite, make sure that all aggregates which
are needed to compute ones in the targeted set of queries are present in the
materialized view. The conditions on aggregates are quite similar to those for
incremental refresh. For instance, if AVG(x) is in the query, then you should store
COUNT(x) and AVG(x) or store SUM(x) and COUNT(x) in the materialized view. See
"General Restrictions on Fast Refresh" on page 5-22 for fast refresh requirements.

Query Rewrite Considerations: Grouping Conditions
Aggregating data at lower levels in the hierarchy is better than aggregating at higher
levels because lower levels can be used to rewrite more queries. Note, however, that
doing so will also take up more space. For example, instead of grouping on state,
group on city (unless space constraints prohibit it).

Instead of creating multiple materialized views with overlapping or hierarchically
related GROUP BY columns, create a single materialized view with all those GROUP BY
columns. For example, instead of using a materialized view that groups by city and
another materialized view that groups by month, use a single materialized view that
groups by city and month.

Design Considerations for Improving Query Rewrite Capabilities

Advanced Query Rewrite for Materialized Views 11-69

Use GROUP BY on columns that correspond to levels in a dimension but not on columns
that are functionally dependent, because query rewrite will be able to use the
functional dependencies automatically based on the DETERMINES clause in a dimension.
For example, instead of grouping on prod_name, group on prod_id (as long as there is
a dimension which indicates that the attribute prod_id determines prod_name, you will
enable the rewrite of a query involving prod_name).

Query Rewrite Considerations: Expression Matching
If several queries share the same common subselect, it is advantageous to create a
materialized view with the common subselect as one of its SELECT columns. This way,
the performance benefit due to precomputation of the common subselect can be
obtained across several queries.

Query Rewrite Considerations: Date Folding
When creating a materialized view that aggregates data by folded date granules such
as months or quarters or years, always use the year component as the prefix but not as
the suffix. For example, TO_CHAR(date_col, 'yyyy-q') folds the date into quarters,
which collate in year order, whereas TO_CHAR(date_col, 'q-yyyy') folds the date into
quarters, which collate in quarter order. The former preserves the ordering while the
latter does not. For this reason, any materialized view created without a year prefix
will not be eligible for date folding rewrite.

Query Rewrite Considerations: Statistics
Optimization with materialized views is based on cost and the optimizer needs
statistics of both the materialized view and the tables in the query to make a
cost-based choice. Materialized views should thus have statistics collected using the
DBMS_STATS package.

Query Rewrite Considerations: Hints
This section discusses the following considerations:

■ REWRITE and NOREWRITE Hints

■ REWRITE_OR_ERROR Hint

■ Multiple Materialized View Rewrite Hints

■ EXPAND_GSET_TO_UNION Hint

REWRITE and NOREWRITE Hints
You can include hints in the SELECT blocks of your SQL statements to control whether
query rewrite occurs. Using the NOREWRITE hint in a query prevents the optimizer from
rewriting it.

The REWRITE hint with no argument in a query forces the optimizer to use a
materialized view (if any) to rewrite it regardless of the cost. If you use the
REWRITE(mv1,mv2,...) hint with arguments, this forces rewrite to select the most
suitable materialized view from the list of names specified.

To prevent a rewrite, you can use the following statement:

SELECT /*+ NOREWRITE */ p.prod_subcategory, SUM(s.amount_sold)
FROM sales s, products p WHERE s.prod_id = p.prod_id
GROUP BY p.prod_subcategory;

Design Considerations for Improving Query Rewrite Capabilities

11-70 Oracle Database Data Warehousing Guide

To force a rewrite using sum_sales_pscat_week_mv (if such a rewrite is possible), use
the following statement:

SELECT /*+ REWRITE (sum_sales_pscat_week_mv) */
 p.prod_subcategory, SUM(s.amount_sold)
FROM sales s, products p WHERE s.prod_id=p.prod_id
GROUP BY p.prod_subcategory;

Note that the scope of a rewrite hint is a query block. If a SQL statement consists of
several query blocks (SELECT clauses), you must specify a rewrite hint on each query
block to control the rewrite for the entire statement.

REWRITE_OR_ERROR Hint
Using the REWRITE_OR_ERROR hint in a query causes the following error if the query
failed to rewrite:

ORA-30393: a query block in the statement did not rewrite

For example, the following query issues an ORA-30393 error when there are no
suitable materialized views for query rewrite to use:

SELECT /*+ REWRITE_OR_ERROR */ p.prod_subcategory, SUM(s.amount_sold)
FROM sales s, products p WHERE s.prod_id = p.prod_id
GROUP BY p.prod_subcategory;

Multiple Materialized View Rewrite Hints
There are two hints to control rewrites when using multiple materialized views. The
NO_MULTIMV_REWRITE hint prevents the query from being rewritten with more than one
materialized view and the NO_BASETABLE_MULTIMV_REWRITE hint prevents the query
from being rewritten with a combination of materialized views and the base tables.

EXPAND_GSET_TO_UNION Hint
You can use the EXPAND_GSET_TO_UNION hint to force expansion of the query with
GROUP BY extensions into the equivalent UNION ALL query. See "Hint for Queries with
Extended GROUP BY" on page 11-51 for further information.

12

Attribute Clustering 12-1

12 Attribute Clustering

Attribute clustering is a table-level directive that clusters data in close physical
proximity based on the content of certain columns. Storing data that logically belongs
together in close physical proximity can greatly reduce the amount of data to be
processed and can lead to better performance of certain queries in the workload.

This chapter includes the following sections:

■ About Attribute Clustering

■ Attribute Clustering Operations

■ Viewing Attribute Clustering Information

About Attribute Clustering
An attribute-clustered table stores data in close proximity on disk in an ordered way
based on the values of a certain set of columns in the table or a set of columns in the
other tables.

You can cluster according to the linear order of specified columns or by using a
function that permits multi-dimensional clustering (also known as interleaved
clustering). Attribute clustering improves the effectiveness of zone maps, Exadata
Storage Indexes, and In-memory min/max pruning. Queries that qualify clustered
columns will access only the clustered regions. When attribute clustering is defined on
a partitioned table, the clustering applies to all partitions.

Attribute clustering is a directive property of a table. It is not enforced for every DML
operation, but only affects direct-path insert operations, data movement, or table
creation. Conventional DML operations on the table are not affected by attribute
clustering. This means that whatever is done to cluster the data is an operation that is
only done on the current working data set. This is in contrast to a manually-applied
ORDER BY command, such as what occurs as part of a CTAS operation.

You can cluster data using the following methods:

■ Clustering based on one or more columns of the table on which attribute
clustering is defined.

■ Clustering based on one or more columns that are joined with the table on which
attribute clustering is defined. Clustering based on joined columns is called join
attribute clustering. The tables should be connected through a primary
key-foreign key relationship but foreign keys do not have to be enforced.

Because star queries typically qualify dimension hierarchies, it can be beneficial if
fact tables are clustered based on columns (attributes) of one or more dimension
tables. With join attribute clustering, you can join one or more dimension tables

About Attribute Clustering

12-2 Oracle Database Data Warehousing Guide

with a fact table and then cluster the fact table data by dimension hierarchy
columns. To cluster a fact table on columns from one or more dimension tables, the
join to the dimension tables must be on a primary or unique key of the dimension
tables. Join attribute clustering in the context of star queries is also known as
hierarchical clustering because the table data is clustered by dimension hierarchies,
each made up of an ordered list of hierarchical columns (for example, the nation,
state, and city columns forming a location hierarchy).

Note: In contrast with Oracle Table Clusters, join attribute clustered tables do not
store data from a group of tables in the same database blocks. For example,
consider an attribute clustered table sales joined with a dimension table
products. The sales table will only contain rows from the sales table, but the
ordering of the rows will be based on the values of columns joined from products
table. The appropriate join will be executed during data movement, direct path
insert and CTAS operations.

This section contains the following topics:

■ Types of Attribute Clustering

■ Advantages of Attribute-Clustered Tables

■ About Defining Attribute Clustering for Tables

■ About Specifying When Attribute Clustering Must be Performed

Types of Attribute Clustering
Attribute clustering is a user-defined table directive that provides data clustering on
one or more columns in a table. The directives can be specified when the table is
created or modified.

Oracle Database provides the following types of attribute clustering:

■ Attribute Clustering with Linear Ordering

■ Attribute Clustering with Interleaved Ordering

Regardless of the type of attribute clustering used, you can either cluster data based on
a single table or by joining multiple tables (join attribute clustering).

Attribute Clustering with Linear Ordering
Linear ordering stores the data according to the order of specified columns. This is the
default type of clustering. For example, linear ordering on the (prod_id, channel_id)
columns of the table SALES sorts the data by prod_id first and then by channel_id. The
sorted data is stored on disk with the data for clustered columns being in close
proximity.

Linear ordering can be defined on single tables or multiple tables that are connected
through a primary key-foreign key relationship.

Use the CLUSTERING ... BY LINEAR ORDER directive to perform attribute clustering
based on the order of specified columns.

Attribute clustering based on linear ordering of columns is best used in the following
scenarios:

■ Queries specify the prefix of columns included in the CLUSTERING clause in a single
table

About Attribute Clustering

Attribute Clustering 12-3

For example, if queries on sales often specify either a customer ID or a
combination of customer ID and product ID, then you could cluster data in the
table using the column order cust_id, prod_id.

■ Columns used in the CLUSTERING clause have an acceptable level of cardinality

The potential data reduction that can be obtained in the scenarios described in
"Advantages of Attribute-Clustered Tables" on page 12-4 increases in direct
proportion to the data reduction obtained from a predicate on a column.

Linear clustering combined with zone maps is very effective in I/O reduction.

Attribute Clustering with Interleaved Ordering
Interleaved ordering uses a special multidimensional clustering technique based on
Z-order curve fitting. It maps multiple column attribute values (multidimensional data
points) to a single one-dimensional value while preserving the multidimensional
locality of column values (data points). Interleaved ordering is supported on single
tables or multiple tables. Unlike linear ordering, this method does not require the
leading columns of the clustering definition to be present to achieve I/O pruning
benefits for the scenarios described in "Advantages of Attribute-Clustered Tables" on
page 12-4.

Columns can be used individually or grouped together into column groups. Each
individual column or column group will be used to constitute one of the
multidimensional data points in the cluster. Grouped columns are bracketed by ’(’..’)’,
and must follow the dimensional hierarchy from the coarsest to the finest level of
granularity. For example, (product_category, product_subcategory).

Use the CLUSTERING ... BY INTERLEAVED ORDER directive to perform clustering by
interleaved ordering.

Interleaved clustering is most beneficial for SQL operations with varying predicates on
multiple columns. This is often the case for star queries against a dimensional model,
where the query predicates are on dimension tables and the number of predicates vary.
Using interleaved join attribute clustering is most common in environments where the
fact table is clustered based on columns from the dimension tables. The columns from
a dimension table will likely contain a hierarchy, for example, the hierarchy of a
product category and sub-category. In this case, clustering of the fact table would
occur on dimension columns forming a hierarchy. This is the reason join attribute
clustering for star schemas is sometimes referred to as hierarchical clustering. For
example, if queries on sales specify columns from different dimensions, then you
could cluster data in the sales table according to columns in these dimensions.

Interleaved clustering combined with zone maps is very effective in I/O pruning for
star schema queries. In addition, it enables you to provide a very efficient I/O pruning
for queries using zone maps, and enhances compression because the same column
values are close to each other and can be easily compressed.

Example: Attribute Clustered Table
An example of how a clustered table looks is illustrated in Figure 12–1. Assume you
have a table sales with columns (category, country). The table on the left is
clustered using linear ordering, and the table on the right is clustered using
interleaved ordering. Observe that, in the interleaved-ordered table, there are
contiguous regions on disk that contain data with a given category and country.

About Attribute Clustering

12-4 Oracle Database Data Warehousing Guide

Figure 12–1 Attribute-Clustered Tables

Guidelines for Using Attribute Clustering
The following are some considerations when defining an attribute clustered table:

■ Use attribute clustering in combination with zone maps to facilitate zone pruning
and its associated I/O reduction.

■ Consider large tables that are frequently queried with predicates on medium to
low cardinality columns.

■ Consider fact tables that are frequently queried by dimensional hierarchies.

■ For a partitioned table, consider including columns that correlate with partition
keys (to facilitate zone map partition pruning).

■ For linear ordering, list columns in prefix-to-suffix order.

■ Group together columns that form a dimensional hierarchy. This constitutes a
column group. Within each column group, list columns in order of coarsest to
finest granularity.

■ If there are more than four dimension tables, include the dimensions that are most
commonly specified with filters. Limit the number of dimensions to two or three
for better clustering effect.

■ Consider using attribute clustering instead of indexes on low to medium
cardinality columns.

■ If the primary key of a dimension table is composed of dimension hierarchy
values (for example, the primary key is made up of year, quarter, month, day
values), make the corresponding foreign key as clustering column instead of
dimension hierarchy.

Advantages of Attribute-Clustered Tables
■ Eliminates storage costs associated with using indexes

About Attribute Clustering

Attribute Clustering 12-5

■ Enables the accessing of clustered regions rather than performing random I/O or
full table scans when used in conjunction with zone maps

■ Provides I/O reduction when used in conjunction with any of the following:

– Oracle Exadata Storage Indexes

– Oracle In-memory min/max pruning

– Zone maps

Attribute clustering provides data clustering based on the attributes that are used
as filter predicates. Because both Exadata Storage Indexes and Oracle In-memory
min/max pruning track the minimum and maximum values of columns stored in
each physical region, clustering reduces the I/O required to access data.

I/O pruning using zone maps can significantly reduce I/O costs and CPU cost of
table scans and index scans.

■ Enables clustering of fact tables based on dimension columns in star schemas

Techniques such as traditional table clusters do not provide for ordering by
columns of other tables. In star schemas, most queries qualify dimension tables
and not fact tables, so clustering by fact table columns is not effective. Oracle
Database supports clustering on columns in dimension tables.

■ Improves data compression ratios and in this way indirectly improves table scan
costs

Compression can be improved because, with clustering, there is a high probability
that clustered columns with the same values are close to each other on disk, hence
the database can more easily compress them.

■ Minimizes table lookup and single block I/O operations for index range scan
operations when the attribute clustering is on the index selection criteria.

■ Enables I/O reduction in OLTP applications for queries that qualify a prefix in and
use attribute clustering with linear order

■ Enables I/O reduction on a subset of the clustering columns for attribute
clustering with interleaved ordering

If table data is ordered on multiple columns, as in an index-organized table, then a
query must specify a prefix of the columns to gain I/O savings. In contrast, a BY
INTERLEAVED table permits queries to benefit from I/O pruning when they specify
columns from multiple tables in a non-prefix order.

About Defining Attribute Clustering for Tables
Attribute clustering information is part of the table metadata. You can define attribute
clustering for a table either when table is first created or subsequently, by altering the
table definition.

Use the CLUSTERTING clause of the CREATE TABLE statement to define attribute
clustering for a table. The type of attribute clustering is specified by including BY
LINEAR ORDER or BY INTERLEAVED ORDER.

See Also:

■ "Creating Attribute-Clustered Tables with Linear Ordering" on
page 12-7

■ "Creating Attribute-Clustered Tables with Interleaved Ordering"
on page 12-8

Attribute Clustering Operations

12-6 Oracle Database Data Warehousing Guide

If attribute clustering was not defined when the table was created, you can modify the
table definition and add clustering. Use the ALTER TABLE ... ADD CLUSTERING
statement to define attribute clustering for an existing table.

About Specifying When Attribute Clustering Must be Performed
Performing clustering may be expensive because it involves reorganization of the table
and clustering data during DML operations. Oracle Database does not enforce the
clustering of data on conventional DML, conventional insert, update, and merge.

Clustering can be performed in two ways. The first is to automatically perform
clustering for certain DML operations on the table. This is done by defining, as part of
the table metadata, the operations for which clustering is triggered. The second is to
explicitly specify that must be performed as described in "Using Hints to Control
Attribute Clustering for DML Operations" on page 12-11 and "Overriding Table-level
Settings for Attribute Clustering During DDL Operations" on page 12-11. In this case,
you can perform clustering for a table even if its metadata definition does not include
clustering.

As part of the table definition, you can specify that attribute clustering must be
performed when the following operations are triggered:

■ Direct-path insert operations

Set the ON LOAD option to YES to specify that attribute clustering must be
performed during direct-path insert operations. This includes MERGE operations
with implied direct loads using hints.

■ Data movement operations

Set the ON DATA MOVEMENT option to YES to specify clustering must be performed
during data movement operations. This includes online table redefinition and the
following partition operations: MOVE, MERGE, SPLIT, and COALESCE.

The ON LOAD and ON DATA MOVEMENT options can be included in a CREATE TABLE or
ALTER TABLE statement. If neither YES ON LOAD nor YES ON DATA MOVEMENT is specified,
then clustering is not enforced automatically.

It will serve only as metadata defining natural clustering of the table that may be used
later for zone map creation. In this case, it is up to the user to enforce clustering during
loads.

Attribute Clustering Operations
This section describes common tasks involving attribute clustering and includes:

■ Privileges for Attribute-Clustered Tables

■ Creating Attribute-Clustered Tables with Linear Ordering

■ Creating Attribute-Clustered Tables with Interleaved Ordering

■ Maintaining Attribute Clustering

See Also: "Adding Attribute Clustering to an Existing Table" on
page 12-10

See Also: "Adding Attribute Clustering to an Existing Table" on
page 12-10 for an example on using the ON LOAD and ON DATA
MOVEMENT options

