C.S.E. AGRICULTURE AGRICULTURE – 2005 (PRELIMINARY)

Time Allowed: Two Hours Maximum Marks: 300

1. Consld.er the following statements:

	1. Inaia is the largest producer of saff	lowe	er oil in the world
	2. Areawise, India is the largest cul statements given above is/are corre		or of tea in the world Which of the
	(a) 1 only	(b)	2 only
	(c) Both 1 and 2	(d)	Neither 1 nor 2
2.	Which one among the following con	mpo	nents of soil organic matter is most
	resistant to decomposition?		
	(a) Cellulose	(b)	Hemicellulose
	(c) Starch	(d)	Lignin
3.	Which one of the following is a me	asur	e of the net positive charge held on
	soil exchange complex?		^
	(a) Anion exchange capacity	(b)	Cation exchange cap city
	(c) Base exchange capacity	(d)	Electrical conducti ity
4.	Volatilisation loss of ammonia in soi	l inc	reases wi h the ncrease in:
	(a) Calcium carbonate content of soil		
	(b) Moisture content of soil		
	(c) Clay content of soil		
	(d) Cation exchange capacity of soil		
5.	The deficiency of which one of the fo	llow	ing causes Khaira disease?
	(a) Copper	(b)	Iron
	(c) Phosphorus	(d)	Zinc
6.	Which one of the following factors	is r	esponsible for poor fruit setting in
	custard apple?		
	(a) Dioecious natur	(b)	Heterostyly
	(c) Dichogamy	(d)	Self-incompatibility
7.		ropo	sed the Critical Level Concept for
	nutrients n soil?		
	(a) Jackson	(b)	Cate and Nelson
	(c) Stem	(d)	Schofield
8.			ist II (Source in Soil) and select the
	correct answer using the codes given		
	List I	Lis	
	A Calcium	1.	Apatite
	B. Nitrogen	2.	Dolomite
	C. Phosphorus	3.	Feldspar
	D. Potassium	4.	Organics

		A	В	C	D				A	В	C	D	
	(a)	2	1	4	3			(b)	3	4	1	2	
	(c)	3	1	4	2			(d)	2	4	1	3	
9.	Wh	ich o	ne of	the fol	lowing o	organist	ns is i	invol	ved i	n the fo	rmatio	on of N ₂ C)?
	(a)	Thio	bacill	us ferro	oxidans		(b)	Para	cocc	us denit	riiicans	8	
	(c)	Nitro	osomo	nas eur	opaea		(d)	Desi	ulfov	ibrio de	sulfuiic	cans	
10.						ing is	the	corr	ect (order	regard	ing ther	rmal
	(a)	Peat	> Cla	y > Loa	am > Sar	nd	(b)	Clay	/ > L	oam > S	Sand > 1	Peat	
	(c)	Loar	n > Sa	and > P	eat > Cla	ay	(d)	Sand	1 > L	oam > (Clay > 1	Peat	
11.						oil is du	e to						
							` ′			l fixatio			7 -
	` '						(d) Soil exchange reaction						
12.				the fo	llowing	soil pro	perti	es do	es no	ot chang	ge by	ropping	and
	(a)	Bulk	densi	ty			(b)	Part	icle d	lensity		♦	
	(c)	Poro	sity				(d)	Pern	neabi	lity			
13.	Size	of t	he spi	ray dro	p from	a mist s	praye	er va	ries	rom			
	(a)	1 - 5	0 µm				(b)	50 -	100	μm			
	(c)	100 -	- 200 <u>j</u>	μm			(d)	200	- 300) µm			
14.	 9. Which one of the following of (a) Thiobacillus ferroxidans (c) Nitrosomonas europaea 10. Which one of the following conductivity of soils? (a) Peat > Clay > Loam > Sand (c) Loam > Sand > Peat > Clay 11. Ammonium fixation in the soil (a) Microbial assimilation (c) Microbial immobilization 12. Which one of the following socultivation? (a) Bulk density (b) Porosity 13. Size of the spray drop from an (a) 1 - 50 μm (c) 100 - 200 μm 14. Which one of the following is (a) Sylepta luna/is (c) Cydia hemidoxa 15. Cartap hydrochloride, a confrom (a) Streptomyces grisea (c) Lumbriconeseis heteropod 16. The use of flood jet nozzle is (a) Minimizing the drift of che (b) Increasing the droplet size (c) Quick delivery of spray flut (d) Be ter adhesion of spray flut (d) Be ter adhesion of spray flut 17. Consider the following states 1 The sequence of nucleotic 			s a pest									
	(a)	Sylep	ota lui	ıa/is			(b)	Nod	oston	na subse	cota/un	i	
		•								a /anige			
15.		_	hydro	ochlori	de, a co	ontact &	& sto	macl	ı poi	son ins	secticid	le is isol	ated
	(a)	Strep	otomy	ces gris	rea	\	(b)	Stre	ptom	yces ave	ermiti/i	S	
	(c)	Lumi	bricon	neseis h	eteropod	d	(d)	Baci	il/us :	sub/ilis			
16.	The	use	of flo	od jet i	nozzle is	require	ed for	•					
	(a)	Mini	mizin	g the d	rift of ch	emicals							
	(b)	Incre	easing	the dro	plet size)							
				_									
17.					_								
	16. The use of flood jet nozzle is required for(a) Minimizing the drift of chemicals												
M.		_			e than	a hund	red 1	restric	ction	endoni	uclease	s have	been
11	3.	Reve	erse tra	anscrip	tase synt	hesizes	DNA	using	g RN	A as a t	emplate	e.	
	Whi	ich o	f the s	tateme	nts giver	above :	are co	rrect					
	(a)	1 and	12				(b)	2 an	d 3				
	(c)	1 and	13				(d)	1, 2	and 3	3			

18. Where is National Institute of Agriculture Marketing locatd?

(a) Jaipur

(b) Kamal

(c) Lucknow

(d) Vijayawada

19. With reference to photosynthesis, consider the following statements:

- 1. Ferridoxin is located in the thylakoid membrane.
- 2. Phaeophytin is actually a chlorophyll b molecule that does not contain a magnesium ion.
- 3. The reactions that break down water and produce oxygen and protons are located in stroma.

Which of the statements given above is/are correct?

(a) 1 only

(b) 1 and 2

(c) 1 and 3

(d) 2 and 3

20. Which one of the following pairs is *not* correctly matched

substance

(a) Cocaine

(b) Colchicin

(c) Digitalin

(d) Opium

Part of the plant yielding substance

Leaves

Bulb

Root

Fruit

21. With reference to flowering plants, consider the following statements:

- 1. Pollen grains contain auxin.
- 2. Pollination prevents ovary abscission
- 3. Normal seeds synthesise auxins gibbe ellins & cytokinins. Which of the statements given above are corre t?
- (a) 1 and 2

(b) 2 and 3

(c) 1 and 3

(d) 1, 2 and 3

Directions: The following 9 (Nine) items consist of two statements: one labelled as the 'Assertion (A)' and the other as 'R a on (R)'. You are to examine these two statements carefully and select the answer $\,$ these items using the codes given below:

- (a) Both A and R are individually true and R is the correct explanation of A
- (b) Both A and R are indi idually true but R is not the correct explanation of A
- (c) A is true but R is false
- (d) A is f lse but R is true
- **22.** Assertion (A): In order to overcome the problems facing Indian agriculture, the Government of India evolved the Macro Management of Agriculture by integrating 27 identified schemes.
 - Reason (R) : As Agriculture is a subject under Concurrent List in the Seventh Schedule of the Constitution of India, the primary responsibility for increasing agricultural production rests with the Union Govt.
- 23. Assertion (A): Without NAD+, ATP cannot be formed in glycolysis.
 - **Reason (R)** : Without NAD+, 3-phosphoglyceraldehyde cannot be oxidized to 1, 3-diphosphoglycerate.
- **24.** Assertion (A): Ethephon is used to hasten ripening in banana.
 - **Reason (R)** : Ethephon releases auxin.

25. Assertion (A): A change in the ratio of input-prices correspondingly changes the slope of the iso-cost line. : The slope of the iso-cost line indicates the ratio of factor-prices. Reason (R) **26. Assertion** (A): Dwarf wheat is always sown shallow compared to tall wheat. Reason (R) : The coleoptile length is longer if! case of mexican wheat as compared to tall wheat. 27. Assertion (A): The rosette habit of cabbage can be changed drastically by the application of Gibberellic Acid (GA). Reason (R) : Since Gibberellic Acid helps in cell division and differentiation, the rosette habit of cabbage is changed. **28.** Assertion (A: With reference to soils, isomorphous substitution is an important mechanism through which negative charges are developed : Isomorphous substitution of lower valent ions occurs by high r Reason (R) valent ions. 29. Assertion (A): The rotating disc aerosol generator is not useful or generating aerosol of pesticides like pyrethrum. Reason (R) : Pyrethrum is a heat sensitive pesticide of plan origin **30.** Assertion (A : All young soils are deficient in nitrogen. : Nitrogen is not a significant component of any type of rock. Reason (R) 31. Which one of the following pairs is *not* correctly matched? Crop Impor ant m isture sensitive stage (a) Rice Panicle initiation, flowering (b) Sugarcane Germination (c) Cotton Flowering, boll development (d) Chillies Flowering 32. Consider the following statements 1. A gram of guava fruit has mo e vitamin C than a gram of orange fruit. 2. Papaya does not contain vitamin C. 3. Jack fruit has a diges ive enzyme bromelin. Which of the s atements given above is/are correct? (a) 1 only (b) 1 and 2 (c) 1 and 3 (d) 2 and 3 33. Anti-cance drug vincristin is obtained from (a) Piper nigrum (b) Rauwolfia serpentina (c) Hemidesmus indicus (d) Catharanthus roseus **Consider the following statements:** All the proteins of mitochondria are encoded by mitochondrial genome. The chloroplast DNA does not code for all chloroplast proteins. Which of the statements given above is/are correct? (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2

25	Mo	tah I	ist I	(Dlant) with	List II (Pı	ionor	ration) and	coloat	the ee	mmoat a	ncuon
JJ.						ow the lists		gauon	<i>)</i> and	select	the co	iieci a	mswei
	List			6				Li	st II				
		Pinea	pple					1.	Soft	wood	cutting	2	
		Citrus	-					2.		t cuttii	-	J	
	C P	each						3.		ding	U		
	D. 3	Sapota	a					3.		_			
		1						5.	Stor	ne graf	ting		
		A	В	C	D				A	В	C	D	
	(a)	4	3	2	1			(b)	5	2	3	4	
	(c)	5	3	2	4			(d)	4	2	3	1	
36.	Cor	nsidei	r the	follow	ing sta	atements :							
	1. The strawberry propagates by runners.												
	2. The chrysanthemum propagates by suckers.												
	Which of the statements given above is/are correct?												
	(a)	1 onl	у				(b)	2 onl	ly			\	
	(c)	Both	1 and	12			(d)	Neitl	ner 1	or 2			
37.	Wh	nich o	ne of	the fo	llowin	g fruit cro	ps is	highl	y susc	eptibl	e to sa	linity?	
	(a)	Date	palm	(Phoe	nix da	ctylifera)							
	(b)	Ber (Zizyp	hus juj	iuba)			. (,	小	•			
	(e)	Pome	grana	ite (Pu	nica g	ranatum)							
	(d)	Almo	ond (A	Amygde	alus ce	ommunis)							
38.	Wh	ich o	ne of	the fo	llowin	g is the be	st tes	t for 1	ripene	ess of t	able g	rapes?	
	(a)	Colo	ur of	the fru	it								
	(b)	Swee	tness	and cl	nange	in se d co	our						
	` ′			f the fr	_								
	(d)	Ease	of se	paratio	o g	rapes from	the v	ines					
39.						h List II (ivar)	and s	select	the co	rrect a	nswer
		-	e code	e give	n belo	ow the lists		. TT					
	List						Lis		1				
		Banan		•			1.	Sona					
		Grape					2.	Poov					
		Carro					3.	Supe					
	D	Rose	D	C	ъ		4.	Pusa	Kesa			ъ	
		A	B	C	D 2			(b)	A	В	C	D 2	
7	(a)	3	1 4	4 1	2 3			(b)	3	4	1	2 3	
40	(c)	2 naidar		-	-	-to		(d)	2	1	4	3	
40.	COL	nsiaei	tne	TOHOW	ıng sta	atements:							

- 1. In Indian agriculture, oil seeds are next to sugarcane in area coverage, production and value.
- 2. India's share in the world production of mango is more than 45%.

Which of the statements given above is/are correct?

	(a)	1 only	(b)	2 only							
	(c)	Both 1 and 2	(d)	Neither 1 nor 2							
41.	Wh	ich one of the following fruits is g	ood	in curing diabetes?							
	(a)	Bel' (Zizyphus jujuba)									
	(b)	Date palm (Phoenix dactyli/era)									
	(c)	Apple (Pyrus malus)									
	(d)	Jamun (<i>Eugenia jambo/ana or Syz</i> y	giun	n cumiwi)							
42.	Cor	nsider the following statements:									
	1.	The medicinal plant Glycyrrhiza gl	abra	is a legume.							
	2.	The leaves of Cassia angusti/o/ia a	re pu	ırgative.							
43.	Wh	ich of the statements given above	is/a	re correct?							
		1 only	(b)	2 only							
		Both 1 and 2	` ′	Neither 1 nor 2							
43.			ical	s is used to keep the fruits and							
	_	etables firm?	(1.)								
		Calcium chloride	` ′	Sodium benzoate							
4.4		Ascorbic acid	(a)	Sodium chloride							
44.	Consider the following statements: 1. Sunn hemp is obtained from <i>Crotalaria juncea</i> of family Papilionaceae.										
		•		ac ually he scelerenchymatous tissue							
		of secondary phloem.	arc	ac daily lie seciereneitymatous ussue							
		-	is sa	va yields fibres used in making ropes							
		and sacks.									
		ich of the statements .given above a									
		1 and 2	` ′	2 and 3							
		1 and 3	` ′	1, 2 and 3							
45.		heat treatment given by fore can am followed by cooling is termed a		g of vegetables with boiling water or							
		Blanching Blanching		Brining							
		Clinching	• •	Exhausting							
46.		nsider the following statements:	(4)	Zamasung							
		c uses of deterioration in canned f	ruit 1	products are							
		Bacteria.	2.	Iron salts.							
	3.	Copper salts.									
	Wh	ch of the statements given above is	/are	correct?							
		1 only	(b)	1 and 2							
7	(c)	2 and 3	(d)	1, 2 and 3							
47.	Wh	en should the fertilizer be applied	l to l	awn grass?							
	(a)	When it is available at the lowest p	rice								
	(b)	In summer time for cool season gra	isses								
	(c)	When the grass begins the dormant	rest	cycle							
	(d)	Just before the beginning of the act	ive g	growth cycle of the grass							

48.	With reference to mutagenic agents, consider the following statements:									
	1. Acridine dyes cause frame shift mu	atations.								
	2. Ultraviolet light causes point mutat	tions.								
	3. Five-bromouracil causes transition	n mutation.								
	Which of the statements given above are correct?									
	(a) 1 and 2	(b) 2 and 3								
	(c) 1 and 3	(d) 1, 2 and 3								
49.	What is the amount of ammonium n 25 kg of calcium ammonium nitrate	itrogen and nitrate nitrogen presence in (20 % N)?								
	(a) 1.5 kg ammonium nitrogen and 3.5 kg nitrate nitrogen									
	(b) 2.5 kg ammonium nitrogen and 2.5 kg nitrate nitrogen									
	(c) 3.5 kg ammonium nitrogen and 1.5 kg nitrate nitrogen									
	(d) 4.5 kg ammonium nitrogen and 0.5 kg nitrate nitrogen									
50. Match List I (Disease) with List II (Crop) and select the correct nswer										
	using the codes given below the lists:									
	List I	List II								
	A. Late blight	1. Wheat								
	B. Loose smut	2. Potato								
	C. Blast	3 Pe r								
	D. Fire blight	4. Rice								
	A B C D	A B C D								
	(a) 3 4 1 2	(b) 2 4 1 3								
~1	(c) 2 1 4 3	(d) 3 1 4 2								
51.	emitter (producer) species a e known	hich provide adaptive advantage to the								
	(a) Allomones	(b) Hormones								
	(c) Kairomones	(d) Pheromones								
52.		s has the outbreak of woolyaphid been								
	noticed recently?									
	(a) Maize	(b) Barley								
	(c) Sugarcane	(d) Cotton								
53.		Agro omi research carried out on farmer's field with active participation								
	of the farm r is called									
	(a On-1 rm research	(b) Adaptive research								
	(c) Operational research	(d) Diversified research								
54.	Match list I (Weed) with List II (Fan the codes given below the lists:	mily) and select the correct answer using								
	List I	List II								
	A Parthenium hysterophorus	1. Aizoaceae								
	B. Trianthema portulacastrum	2. Compositae								
	C. Eichhornia crassipes	3. Pontederiaceae								
	•									

	A B C		A B	C						
	(a) 1 2 3	(b)	3 1	2						
	(c) 2 3 1	(d)	2 1	3						
55.	With reference to root hairs of pl	ants, conside	the follow	ving stateme	ents:					
	1. Root hairs are the extensions of the cortex cells of the root.									
	2. The cell wall of root hairs acts	as a semi-pern	neable men	nbrane.						
	Which of these statements is/are co	rrect?								
	(a) 1 only	(b) 2 onl	у							
	(c) Both 1 and 2	(d) Neith	ner 1 nor 2							
56.	The nozzle used to produce fog is									
	(a) Gaseous energy nozzle									
	(b) Thermal energy nozzle									
	(c) Centrifugal energy nozzle									
	(d) Kinetic energy nozzle									
57.	The critical stages of irrigation in	cotton are								
	(a) Vegetation and flowering	(b) Squa	ring and lo	owering						
	(c) Flowering and boiling	(d) Bolli	ng and bo	opening						
58.	Which one of the following is mos	st remunerati	ve n low a	nd farming	system?					
	(a) Rice - Fish culture	(b) Ri e	- Poultry -	Fish culture						
	(c) Rice - Dairy		- Silvicultu							
59.	Which one of the following comp	anion croppii	ig systems	is most pre	valent in					
	Andaman and Nicobar Islands?									
	(a) Coconut + Sugarcane		nut + Maiz							
	(c) Coconut + Black pepper		nut + Sunf	lower						
60.	Which one of the following ap id									
	(a) Rhopalosiphum maidis	=	ıs persicae							
<i>-</i>	(c) Lipaphis erysimi	• •	s cracivora		•10					
61.	Which of the following s the char				11?					
	(a) Less than 0 002 mm in diamete				1					
	(b) Less than 0.002 mm in dian minerals	neter and con	sist of pri	mary and s	econdary					
	(c) 0.002 to 0.05 mm in diameter a	nd consist of s	econdary r	ninerals						
	(d) Less than 0.002 mm in diameter		•							
62.		i and consist (n secondar	y mmerans						
02	Buddlea asiatica	2. Dura	nta plumer	ii						
	3. Carnation (Dianthus caryophyl)		ma pramer	11						
VI_{\perp}	Which of the above is/are suitable if	•	industry?							
11.	(a) 1 and 2	(b) 2 onl	-							
~	(c) 1 and 3	(d) 3 onl	•							
	(c) 1 and 3	(a) 5 om	J							

71.	Consider the following statements:										
	Modern soil classification (taxonomy)	is ba	sed or	n							
	1. Soil morphology	2.	Soil	genesis							
	3. Climate of soil formation	4.	Age	of soil							
	Which of the statements given above a	re co	rrect?	•							
	(a) 1, 2 and 3	(b)	2 and	13							
	(c) 1, 2 and 4	(d)	1 and	14							
72.	Which one of the following pairs is n	ot co	orrect	ly mate	ched?	•					
	(a) Acid soils	ΑI	toxicit	ty							
	(b) Saline alkali soils	K t	oxicity	y							
	(c) Water logged soils	Me	thane	emissic	n						
	(d) Sandy soils	Nut	rient l	leaching	g						
73.	The bushy appearance with dead he	art	in sug	arcane	at 6	th inte	rnode is	due			
	to										
	(a) Excess irrigation	(b)	Exce	ss nitro	gen						
	(c) Top borer	(d)	Meal	ly bug		> . •	•				
74.	Which one among the following is the	e pn	euma	tic spra	ay r?						
	(a) Foot sprayer	(b)	Stirru	up sprag	yer						
	(c) Hand compression sprayer (d)			orayer							
75.	Match List I (Agroclimatic Zon						-				
	Development) and select the correct answer sing the codes given below the lists:										
		List	П								
				mation	of rox	zanoue	oran				
	A. Lower Gangetic plains B. Control plateau and hills							wor.			
	B. Central plateau and hillsC. Western dry region			asis on diversif			he tree co	vei			
	D. Trans-gangetic plains		-	irrigati			mac				
	A B C D	4.	MILLIOI	A	юн рі В	Ogram C	D				
	(a) 3 1 2 4		(b)	4	ь 1	2	3				
	(a) 3 1 2 4 (c) 3 2 4		(d)	4	2	1	3				
76.			(u)	7	2	1	3				
70.	1. Fo increasing the production of	f oil	caadei	/edible	oile	and to	attain c	alf			
	sufficiency in their production, a										
	Prog amme is being implemented in										
	2. Convergence of Oilseeds Pro	oduc	tion	Progra	mme	with	Waters	hed			
	Development Programme is one of						for increas	sing			
	the production of oilseeds during th				ır Pla	n.					
	Which of the statements given above is										
	(a) 1 only		2 onl	_	_						
	(c) Both 1 and 2	(d)	Neith	ner 1 no	or 2						

77.	Th	ne market equilibrium for an agric	ultu	ral commodity is determined by
		The market demand for the commo		·
		The market supply of the commod	-	
		The balancing of the forces of dem	-	and supply for the commodity
		Imports and exports		11.5
78.		onsider the following crops:		
	1.	Cereal crops	2.	Plantation crops
		Pulses and oilseeds		•
		hich of the above crops are exempldings?	oted	from enforcement of ceiling on land
	(a)	1 and 2	(b)	2 only
	(c)	2 and 3	(d)	3 only
79.	W	hich one of the following struct	ural	changes is becoming in re singly
	po	pular in the agricultural marketin	g sy	stem in India?
	(a)	Integration	(b)	Specialization
	(c)	Diversification	(d)	Decentralisation
80.	Co	onsider the following statements:		
	1.	Vacuoles implant cells have single	men	nbrane.
	2.	Mitochondrial DNA lacks histones		
	3.	Smooth Endoplasmic Reticulum is assembly.	invo	olved in 1 pid synthesis and membrane
	W	hich of the statements given above is		
	(a)	1 only	(b)	1 and 2
	(c)	2 and 3	(d)	1, 2 and 3
81.			inte	er-regional allocation of agricultural
	-	oduction credit?		
		Proportionate number of armers		
		Variation in the cost of production		
		Proportionate cultiva ed area		
		Differential productivity of capital		
82.		onsider the following statements:		
			mido	llemen in agricultural marketing could
		ttri uted to	. . 0. 1.0	, was a was
		The demand for farm products ove		_
	∠.	Highly scattered agricultural produ		products which also involves special
		care.	ural	products which also involves special

Which of the statements given above is/are correct?

(b) 2 and 3(d) 1, 2 and 3

(a) 1 and 2

(c) 3 only

83. To produce more output per unit of land, a cultivator will

- (a) Resort to diversification
- (b) Use land intensively
- (c) Use land extensively
- (d) Use land intensively as well as extensively

84. Which of the following characterizes co-operative joint farming?

- (a) Ownership and cultivation are individual practices
- (b) Ownership is individual and the reward is based on the contribution of labour
- (c) Cultivation is joint and the reward is based on the contribution of land
- (d) Cultivation is joint but the reward is not based on the contribution of land.

85. A farm is said to be diversified when

- (a) Crop enterprise is mixed with livestock enterprise
- (b) Any' one of the enterprises contributes more than 50% of the total income
- (c) None of the enterprises contributes more than 50% of the total income
- (d) Crop enterprise is combined with forestry

86. Consider the following statements:

- 1. The smallest unit of DNA which is capable of undergo ng crossing over and recombination is called cistron.
- 2. In protein synthesis the enzyme that catalyzes peptid bonding is located in the smaller subunit of ribosomes.
- 3. In cell cycle, replication of DNA occurs uring G1 phase. Which of the statements given above is/are correct?
- (a) 1 and 2

(b) 2 only

(c) 2 and 3

(d) 3 only

87. Which one of the following typ of soils is most suitable for groundnut cultivation?

- (a) Sandy and sandy-lo m so 1
- (b) Loam and clay soil

(c) Clayey soil

(d) Silty soil

88. The concave Product on Possibility Curve (PPC) is very common in agriculture be ause of

- (a) Cons ant rates of substitution between two products
- (b) In reas ng rates of substitution between two products
- (c) Increasing rates of substitution between two factors
- (d) Increasing rates of substitution between two factors and between two products

89. Scientific name of macaroni wheat is

- (a) Triticum aestivum
- (b) Triticum dicoccum

(c) Triticum duram

(d) Triticum vulgare

90.	Match List I with List II and selection below the lists:	ct the correct answer using the codes given
	List I (Crop)	List II (Variety)
	A Castor	1. BR 13
	B. Pigeonpea	2. lal Bahadur
	C. Maize	3. Kissan
	D. Wheat	4. NPH 1
	A B C D	A B C D
	(a) 4 3 1 2	(b) 4 1 3 2
	(c) 2 1 3 4	(d) 2 3 1 4
91.	Consider the following statements	:
	1. Muriate of potash is not suitable	for sugarcane.
	2. Saltpetre contains 65% K20.	
	3. Single superphosphate contains	gypsum.
	4. Ammonium phosphates are statements given above are corre	completely water soluble. Which of the ect?
	(a) 1 and 2	(b) 1, 3 and 4
	(c) 3 and 4	(d) 1, 2, 3 and 4
92.	With reference to the food grain one among the following states has	cultivation next to Uttar Pradesh, which s the highest irrigated area?
	(a) Andhra Pradesh	(b) Maharashtra
	(c) Punjab	(d) West Bengal
93.	The Chromosome theory of inheri	itance was first postulated by
	(a) Avery, McCarty and Macleod	(b) Frederick Griffith
	(c) Morgan and Sturtevant	(d) Sutton and Boveri
94.	In meiosis, reduction in the numb	er of chromosomes occurs in
	(a) Diakinesis	(b) Anaphase I
	(c) Metaphase I	(d) Anaphase II
95.		the correct sequence in the biosynthetic
	pathway of Ind le Acitic Acid (IA	
	(a) Tryptophan - Indole pyruvic acid	-
	(b) Ind le pyruvic acid - Indoleacet	
	() Tryptophan - Indoleacetaldehyd	
000	(d) Indoleacetaldehyde - Indole pyro	• • •
96.		*
	(a) Cucurbits (b) Franch been	: Self pollinated
114	(b) French bean	: Self pollinated
	(c) Brinjal	: Often cross pollinated
	(d) Pea	: Self pollinated

97. What is RNA splicing?

- (a) Termination of RNA synthesis at specific base sequences within the DNA molecule
- (b) The excision of the introns and the formation of final Mrna molecule by joining the exons
- (c) The beginning of transcription as soon as the RNA polymerase-promoter complex is formed and an appropriate nucleotide binds to the enzyme
- (d) Release of newly formed RNA after the termination of transcription

98. Which one of the following phytohormones controls the apical dominance in plants?

(a) Auxin

(b) Cytokinin

(c) Ethylene

(d) Giberellin

99. Whi.ch one of the following processes is most adversely affected by the deficiency of magnesium in plants?

- (a) Defoliation
- (b) Upward translocation of nutrients
- (c) Downward movement of nutrients
- (d) Photosynthesis and carbohydrate metabolism

100. Consider the following amino acids:

1. Cysteine

2. M thionine

3. Glutamic acid

Which of the above contain sulphur?

(a) 1 and 2

(b) 2 nd 3

(c) 1 and 3

(d) 1, 2 and 3

101. Which one of the following pairs is *not* correctly matched?

(a) Copper

Plastocyanin

(b) Iron

Phytochrome

(c) Magnesium

Chlorophyll

(d) Cobalt

Vitamin B₁₂

102. With reference to photorespiration in plants, consider the following statements:

- 1. With the increase in temperature and oxygen concentration, the affinity of RuBP rboxylase decreases for CO_2 and increase for O_2 .
- 2. The peroxisomes present in the cells metabolise glycolate into glycine; and glycine into serine and CO₂.
- 3. In plants adapted to C4 pathway of photosynthesis to overcome photorespiratory losses, the CO2 is fixed in mesophyll cells.

Which of the statements given above are correct?

(a) 1 and 2

(b) 2 and 3

(c) 1 and 3

(d) 1, 2 and 3

((a) Dichogamy	(b) Herkogamy
	(c) Self-sterility	(d) Unisexuality
	Consider the following statements:	(d) Onsoxuanty
	•	fertilizers as there is no indigenous source
	available.	_
	2. The all-India average fertilizer con	
	Which of the statements given above i	
	(a) 1 only	(b) 2 only
	(c) Both 1 and 2	(d) Neither 1 nor 2
	_	nents is a component of cell membrane?
	(a) Sulphur	(b) Zinc
((c) Molybdenum	(d) Phosphorus
		the correct answer using the codes given
J	below the lists:	O . *
	List I (Pest)	List II (Crop)
	A. San Jose Scale	1. Coconut
	B. Stem fly	2. Apple
	C. Black headed caterpillar	3. Soy b an
]	D. Fruit sucking moths	4. Citr s
	A B C D	A B C D
((a) 4 1 3 2	(b) 4 3 1 2
((c) 2 3 1 4	(d) 2 1 3 4
107.	Conversion of $N0_3$ - N to N_2 , NO and	d N ₂ 0 is known as
((a) Oxidation	(b) Denitrification
((c) Mineralisation	(d) Nitrification
108.	Consider the following statements:	
	 Ethyl methane sulphonate is wide polyploidy. 	ely employed in the artificial induction of
2	2. Colchicin is used for inducing gen ab ve is/are correct?	e mutations. Which of the statements given
((a) 1 only	(b) 2 only
	(c) Both 1 and 2	(d) Neither 1 nor 2
109	Wh ch one of the following causes	a disease in wheat due to which small,
	inear or oblong dark brown blo appear on floral bracts and nodal ti	tches, studded with minute black dots, ssues of culms?
	(a) Altemaria triticina	(b) Dilophosopora rolisli
	(c) Helminthosporium sativum	(d) Septoria nodorum
	•	
1I0. (Consic1er the following statements:	
	Consister the following statements: Fomato hybrids are becoming popular	

	3. Uniform fruit size			
		above is large compact?		
	Which of the statements given			
	(a) 1 only	(b) 2 and 3		
	(c) 1 and 3	(d) 1, 2 and 3		
	*			
	-			
	· ·			
	 In autopolyploids, the tim fast growth rate 	e of blooming is earlier and also shortened due t		
	2. Fertility level and seed set	are very high in induced polyploids.		
	· -			
	(a) 1 and 2	(b) 2 only		
	(c) 3 only	(d) 1 and 3		
	113. Tift-23A, a cytoplasmic male st	erile line, is used for de elopment of hybrids in		
	(a) Sorghum	(b) Maize		
	(c) Rice	(d) Pearl m llet		
	114. Consider the following states	ments:		
	Haploids can be artificially pro	oduced by		
	•			
	3. Anther culture			
	Which of the statements giv n	boy is/are correct?		
	from	r		
	(a) Triticum die ceum	(b) Triticum durum		
	(c) Triticum timopheevi	(d) Triticum monococcum		
	116. Consider the following states	ments:		
	1 All RNA molecules have	guanine residue at 5' end.		
	2. The amino acid is accepted	Mixing seeds of inbred lines Crossing inbred lines tested for SCA Mixing seeds of open-pollinated cultivars maker the following statements: In autopolyploids, the time of blooming is earlier and also shortened due to fast growth rate Fertility level and seed set are very high in induced polyploids. Gossypium hirsutum is an example of amphidiploidy. Which of the statements given above is/are correct? 1 and 2 (b) 2 only 2 only (d) 1 and 3 Greech (d) Pearl in the following statements: Apploids can be artificially produced by X-ray treatment 2. Delayed pollination Anther culture hich of the statements giv n bov is/are correct? 1 and 2 (b) 1 and 3 2 only (d) 1, 2 and 3 Triticum die count (b) Triticum durum Triticum timopheevi (d) Triticum monococcum Triticum timopheevi (d) Triticum monococcum Triticum timopheevi (d) Triticum durum All RNA molecules have guanine residue at 5' end. The amino acid is accepted by tRNA at 3' end only. All tRNA molecules have CCA sequence at 3' end. Which of the statements given above are correct? 1 and 2 (b) 2 and 3 1 and 3 (d) 1, 2 and 3 1 and 4 (d) 1, 2 and 3 1 and 3 (d) 1, 2 and 3 1 and 3 (d) 1, 2 and 3 1 and 4 (d) 1, 2 and 3 1 and 6 (d) 1, 2 and 3 1 and 8 (d) 1, 2 and 3 1 and 9 (d) 1, 2 and 3		
		•		
	(a) 1 and 2	(b) 2 and 3		
	(c) 1 and 3	(d) 1, 2 and 3		
	117. The Wobble hypothesis rega	rding genetic code (codons and anticodons) was		
111. Synthetic variety is developed by (a) Crossing inbred lines tested for GCA (b) Mixing seeds of inbred lines (c) Crossing inbred lines tested for SCA (d) Mixing seeds of open-pollinated cultivars 112. Consider the following statements: 1. In autopolyploids, the time of blooming is earlier and also shortened fast growth rate 2. Fertility level and seed set are very high in induced polyploids. 3. Gossypium hirsutum is an example of amphidiploidy. Which statements given above is/are correct? (a) 1 and 2 (b) 2 only (c) 3 only (d) 1 and 3 113. Tift-23A, a cytoplasmic male sterile line, is used for de clopment of hybrids (a) Sorghum (b) Maize (c) Rice (d) Pearl in llet 114. Consider the following statements: Haploids can be artificially produced by 1. X-ray treatment 2. Delayed pollination 3. Anther culture Which of the statements giv n bov is/are correct? (a) 1 and 2 (b) 1 and 3 (c) 3 only (d) 1, 2 and 3 115. The male sterility used in the development of hybrid wheat has been from (a) Triticum dic ccum (b) Triticum durum (c) Triticum timopheevi (d) Triticum monococcum 116. Consider the following statements: 1 All RNA molecules have guanine residue at 5' end. 2. The amino acid is accepted by tRNA at 3' end only. 3. All tRNA molecules have CCA sequence at 3' end. Which of the state given above are correct? (a) 1 and 2 (b) 2 and 3 (c) 1 and 3 (d) 1, 2 and 3 117. The Wobble hypothesis regarding genetic code (codons and anticodor proposed by (a) Nirenberg (b) Leder				
	(a) Nirenberg	(b) Leder		
	(c) Khorana	(d) Crick		

II8. Consider the following characters of Pisum sativum:

1. Colour of cotyledon

2. Colour of seed coat

3. Shape of seed

4. Length of pod

Which of the above were taken into account in Mendel's experiments on hybridization?

(a) 1, 2 and 3

(b) 2, 3 and 4

(c) 1 and 4

(d) 1, 2, 3 and 4

119. Which one of the following statements is *not* correct?

- (a) Rough Endoplasmic Reticulum is particularly well developed in cells actively engaged in protein synthesis
- (b) Ribosomes have large contents of lipids in their compositions
- (d) Golgi *complex* is involved in *the* formation *of* cell plate during cell division
- (d) In germinating seeds, glyoxysomes convert fatty acids into sugars

120. The development of seed without sexual fusion of male and female gametes is known as

- (a) Vegetative reproduction
- (b) Apomixis
- (c) Self-incompatibility
- (d) Apospory

ANSWERS - AGRICULTURE - PRELIMS - 2005

1.	(c)	2.	(d)	3.	(b)	4.	(a)	5.	(d)	6.	(c)
7.	(b)	8.	(d)	9.	(b)	1.	(d)	11.	(d)	12.	(b)
13.	(b)	14.	(d)	15.	(c)	16.	(a)	17.	(b)	18.	(a)
19.	(a)	20.	(c)	21.	(d)	22	(c)	23.	(a)	24.	(c)
25.	(a)	26.	(c)	27.	(c)	28.	(b)	29.	(a)	30.	(a)
31.	(b)	32.	(c)	33.	.(d)	34.	(b)	35.	(a)	36.	(c)
37.	(d)	38.	(d)	39	(d)	40.	(b)	41.	(d)	42.	(c)
43.	(a)	44.	(d)	45.	(a)	46.	(d)	47.	(d)	48.	(d)
49.	(b)	50.	(c)	51.	(a)	52.	(c)	53.	(a)	54.	(d)
55.	(d)	56.	(b)	57.	(c)	58.	(b)	59.	(c)	60.	(d)
61.	(d)	62.	(d)	63.	(a)	64.	(c)	65.	(a)	66.	(b)
67.	(c)	68.	(b)	69.	(c)	70.	(c)	71.	(c)	72.	(b)
73.	(c)	74.	(c)	75.	(b)	76.	(c)	77.	(c)	78.	(b)
79.	(a)	80.	(d)	81.	(b)	82.	(d)	83.	(b)	84.	(c)
85	(c)	86.	(a)	87.	(a)	88.	(b)	89.	(c)	90.	(b)
91	(h)	92.	(c)	93.	(d)	94.	(b)	95.	(a)	96.	(a)
97.	(b)	98.	(a)	99.	(d)	100.	(a)	101.	(b)	102.	(c)
103.	(a)	104	(a)	105.	(d)	106.	(c)	107.	(b)	108.	(d)
109.	(a)	110.	(d)	111.	(a)	112.	(c)	113.	(d)	114.	(d)
115.	(c)	116.	(d)	117.	(d)	118.	(a)	119.	(b)	120.	(b)