TEST BOOKLET CIVIL ENGINEERING Paper I

Time Alioнed : Two Hours

INSTRUCTIONS

1. IMMEDIATELY AFTER THE COMMENCEMENT OF THE EXAMINATION, YOU SHCULD CHECK THAT THIS TEST BOOKLET DOES NOT HAVE ANY UNPRINTED OR TORN OR MISSING- ?AこES OR ITEMS, FTC IF SO, GET IT REPLACED BY A COMPLETE TEST BOOKLET,
2. Flease note that it is the candidate's responsibility to encode and fill in the Roll Nurber and Test Eooslet Series Code A, B, C or D carefully and without any omission or discrepancy at the appropriate places in the OMR Answer Sheet. Any omission/discrepancy wil zencer the Answer Sheet liable for rejection.
๕. You have to enter your Roll Number on the

Test Booklet in the Box provided alongside.
LOO NOT write anything else on the Test Bcoklet.

S. This Test Eooklet contains 120 items (questions). Each item comprises four responses (enswers). You will select the response which you want to mark on the Answer Sheet. In cas 3 , you feel that thera is mory than one correct response, mark the response which you consider the best. In ary case, choose $O N L Y O N E$ response for each item.
5. You have to mark all your responses ONLY on the separate Answer Sheet provided. See directions in the Ansvier Sheet.
6. All itens carry equal marks.
7. Eefcre you proceed to mark in the Answer Sheet the response to various items in the Test Bookle:, you have to fill in some particulars in the Answer Sheet as per instructions sent tc you w:th your Δ dmission Certificate.
8. After you have completed filling in all your responses on the Answer Sheet and tiee examinaion has concluded, you should hand over to the Invizilator only the Answer Sheet. You ase permitted to fake away wizh you the Test Booklet.
4. Sheets for rough work are appended in the Test Booklet at the end.
10. Fenally for wrong answers :

THER 3 WILL BE PENALTY FOR WRONG ANSWERS MARKED BY A CANDITIATE.

(i) Fhere are four alternatives for the answer to every question. For each question for which a wrong answer has been given by the candidate, one-third (0.33) of the marks assigned to that cestior will ke deducted as penalty.
(ii) If a candidate gives more than one answer, t will be treated as a wrong answer eren is one of cie given answ \in rs happens to be correct and there will be same penalty as above to that queston.
(iii) If aquestion is left blank, i.e., no answer is given by the candidate, there will ke ro penalty for that question.
DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

B-E-D-O-JIA
(1-A)

1. Dre bag of Portland cement, 50 kg in weight, wculd normally have a bulk volume of
(a) $30 l$
(b) $35 l$
(c) $40 l$
(d) $45 l$
2. ASOL , \& preservative for wood, developed by the Forest Research Institute, Dehradun, comprises of chemicals :
$\mathrm{Ls}_{2} \mathrm{O}_{5} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{C}_{7}$ in tae proportion of
(a) $1: 1: 1$
(b) $1: 2: 3$
(c) $1: 2: 4$
(d) $1: 3: 4$
3. The minimum number of annular rings to be seen in every 2.54 cm in the radial direction fron the core for timber to be classified as "Tlense' is
(c.) 10
(k) 20
(c) 25
d) 30
4. Sunsider the following statements related to autcclave bricks:
5. Less water absorption compared to other bricks.
6. Nose reduction.
7. It is cheap compared to other types of brieks.
8. Requirement of bulk volume of mor-ar in joints being relatively less compared to cther types of brick masonry.
9. Not recommended for outer walls.

Which or the above statements are relevant to the use of 'autoclave' bricks?
(a) 1,2 and 4
(3) 1,3 and 5
(b) 2,3 and 4
(d) 2, 4 and 5
5. If the actual thickress of a brick masenry well is 19 cm , its effective ergth is 2.7 l m , iss effective height is 2.82 m a.ad i -s code-specified stiffering coefficient is $1 \cdot 2$, then, for design sonsideratiors, the slenderness ratio on the wall will be taken as
(a) 11.8
(b) $12 \cdot 4$
(c) $14 \cdot 2$
(d) 14.8
6. Consider the followirg orms of water in a hydrated cement paste:

1. Capillary water
2. Chemically combined water

- Interlayer wa:er

Adsorbed water
Which of the above forms of water will, cr its/their removal, cause shrinkage of the paste?
(a) 1, 2 and 3
(b) 1, 2 and 4
(c) 2, 3 and 4
(d) 1, 3 and 4
7. A specimen is subjected tc a pure shea- stress regime of intensity τ. The resulting sensile: and compressive stresses σ, which oceur on planes inclined at 45° tc the direction of the shear stresses, woulc be
(a) τ
(b) $\frac{\tau}{2}$
(c) $\sqrt{2} \tau$
(d) $\frac{\tau}{\sqrt{2}}$
8. Sonsider the following statements:

High early strength of cement is obtained as a zesult of

1. Fine grinding.
2. Decreasing the lime content.
3. Burning at nigher temperature.
\leq. Increasing the quantity of gypsum.
Which of the above statements are correct?
(a) 1 and 2
(כ) 1 and 3
(c) 2 and 3
(d) 3 and 4
4. Consider the following statements related to 'composite mortar' :

1 Addition of lime to cement mortar improves its workability.
2. Composite mortar is obtained by adding 10% by weight of cement and mixing with water.
3. Composite nortar is not preferred ir tall buildings.

Mechanical grinding is essential for developing co nposite mortar.

W zich of the above statements are true in this case?
(a) 1, 2 and 3 only
(b) 1, 3 and 4 only
(c) 2,3 and 4 only
(d) 1,2,3 and 4
10. Consider the following stater-ents related to '7on-destructive lesting' of concrete :

1. Indentation test is used to assess the quality of corcrete.
2. Resonant Frequensy Method is based on a laboratory test.
3. Ccmpressive strength of concrete is estimated through Pulse Yelocity Measurement.
\leq Dyramic Modulus of Elasticity is desermined by a Scnometer Test.
4. Thickness of concrete can be estimated by in-situ Rebound Hammer Test.

Which of the above statements are cor rect?
(a) 1,2 and 3 orly
(a) 1,2 and 5 orly
(c) $1,2,3$ and 4 only
(d) $1, \varepsilon, 3,4$ and $\overline{6}$
11. What is the amount of water required for a workable RC of m× $1: 2: 4$ by weight, when W.C is 0.60 and unit weight of conirete is $2400 \mathrm{~kg}^{\prime} \mathrm{m}^{3}$?
(๕. $165 l$
(k) $205 l$
(c) $245 l$
(d) $285 l$
12. For a given elastic material, the Elastic M-dulus \mathbf{E} is 210 GPa and its Poisson's Ratio is 1.27 . What is the approximate value of its Mrdulus of Rigidity ?
(a. 105 APa
(b) 83 GPa
(c) 159 aPa
(d) 165 GPa
13. A mild steel bar is subjected to an axicl force P, resulting in an axial stress $\sigma_{\mathrm{x}}=10 \mathrm{~J} / \mathrm{mm}^{2}$. What would be the normal stress J_{n} on a plane $n-n$ making an angle $\theta=45^{\circ}$ with its axis?

(a) $25 \mathrm{~N} / \mathrm{mm}^{2}$
(b) $40 \mathrm{~N} / \mathrm{mm}^{2}$
(c) $505 / \mathrm{mm}^{2}$
(d) $1 \mathrm{CON} / \mathrm{mm}^{2}$
14. What is the ratio of the strain energy in bar X to that in bar Y when the material of the two bars is the same? The cross-sectional areas Ere as indicated over the indicated lengths.

12. Wish of the following stresses is measured on inclined surface in Mohr's Circle Methce?
(a) Principal stress
(b) Normal stress
(c) Tangential stres:
(d) Maximum stress
16. The state of stress or an element in plane strese is shown as in the figure.

What iss the value of σ if the valies of the princ-pal stresses are $164 \mathrm{~N} / \mathrm{mm}^{2}$ arc $36 \mathrm{~N} / \mathrm{rm}^{2}$, both tensile?
(a) $100 \mathrm{~N} / \mathrm{mm}^{2}$
b) $75 \mathrm{~N} / \mathrm{mm}^{2}$
ic) $5 \mathrm{~N} / \mathrm{mm}^{2}$
(d) $50 \mathrm{~N} / \mathrm{mm}^{2}$
17. Lead, as a material used in constracion, has I $=15 \mathrm{GPa}$ and $\mathrm{K}=50 \mathrm{GFa}$. What is its Exissor's Ratio?
(E.) $0<35$
(ふ) 0.30
(e) 04
(d) 0.45
18. Fcr a biock with Young's Modulus of its material being 210 GPa and its Poissor's Retio being $0 \cdot 25$, when subjected to a stress system as show in the figure, what is the magnituce of the stress σ for no strain along $A B$?

a) $30 \mathrm{~N} / \mathrm{mm}^{2}$
(b) $60 \mathrm{~N} / \mathrm{mm}^{2}$
(c) $121 \mathrm{~N} / \mathrm{mm}^{2}$
(c) $240 \mathrm{~N} / \mathrm{mm}^{2}$
19. Twe planks each of $50 \mathrm{~mm} \times 50 \mathrm{~mm}$ sec-ion a-e glued together along the length to form a section $50 \mathrm{~mm} \times 100 \mathrm{~mm}$; and used as a beam. If the shear force at a section is 1000 N , what is the maximum shear stress on the glue?
(a) 0.5 MPa
(b) $0 \cdot 3 \mathrm{MPa}$
(c) 0.6 MPa
(1) $2 \cdot 4 \mathrm{MPa}$
20. The state of stress at a point in 2-D stress system is characterized by direct stresses of 40 MPa compressive and 80 MPa tensile, on nutually perpendicular planes. Shear stress is absent on these planes. The maximum shear stress at this point (along a duly ilentified plane) is
(a) 20 MPa
(b) 40 MPa
(c) 60 MPa
(d) 80 MPa
21. An electrical resistance strain rosette indicates strains of $-400,+800$ and +500 along the x, y and 45° axes. What is the shearing strain γ_{xy} "
(a) 100
(b) 800
(c) 600
(d) -2 CO
22. The biaxial strass jystem n an elemen: is showe in the fgure. Whick of the following will gize the ncrmal stress in N/ mm^{2} ir. the plane BC making an angle of 45° with the plane BA ?

(a) 25
(b) $\quad 20$
(c) 15
(d) 10
23. A cylindical pressure vessel is 1200 mm in diameter. It is made of rolled mild steel Jlate. The ressel is subjected to an internal pressure of $a \mathrm{~N} / \mathrm{mm}^{2}$. If the material yields at $200 \mathrm{~N} / \mathrm{mm}^{2}$, what should be the min mum safe thickness of the plate, based on Mas.mum Principal Stress Theory?
(a) 18 mm
(b) 15 mm
(c) 12 mm
(d) 9 mm
24. A machine element develops principal stresses of nagnitudes 2 P and P . What is the maximum magnitude of P before the material reaches the yield stress f_{y} as per Distortion Shear Energy Theory?
(a) f_{y}
(b) $\frac{f_{y}}{2}$
(c) $\frac{\mathrm{f}_{\mathrm{y}}}{2 \sqrt{3}}$
(d) $\frac{\mathrm{f}_{\mathrm{y}}}{\sqrt{3}}$
25. A structural element is subjected to a two-dimensioral stress system, wherein $\sigma_{-}=225 \mathrm{~N} / \mathrm{mm}^{2}$ (tensile) with σ_{2} being compressive. The yield stress in both simple jension $\left(\sigma_{y}\right)_{t}$ and simple compression $\left(\sigma_{y}\right)_{c}$ is $253 \mathrm{~N} / \mathrm{mm}^{2}$ and $\mu=0 \cdot 25$. What is the value of J_{2}, according to Maximum Strain Theofy ?
(a) $\quad 200 \mathrm{~N} / \mathrm{mm}^{2}$
(3) $150 \mathrm{~N} / \mathrm{mm}^{2}$
((1) $1<5 \mathrm{~N} / \mathrm{mm}^{2}$
(d) $100 \mathrm{~N} / \mathrm{mm}^{2}$
26. A simply supported beam of length 4 m is subjected to a aniformly distributed load of $2 \mathrm{kV} / \mathrm{m}$. What is the maximum shear stress if the ross-section is rectangular, 100 mm wide ard 200 mm dees?
. $3.0 .2 \mathrm{~N} / \mathrm{mm}^{2}$
(b) $0.1 \mathrm{~N} / \mathrm{mm}^{2}$
(c) $0.4 \mathrm{~N} / \mathrm{mm}^{2}$
(幺) $0.3 \mathrm{~N} / \mathrm{mm}^{2}$
27. A mild steel structural section is an unsymmetrical I-section, with the greater width at the sor end the smalle- width at the bottom. The overal depth of the kearn is 300 mm , anc the flange stresses at the top and the bottcm on the beam ara $150 \mathrm{~N} / \mathrm{rmm}^{2}$ and $50 \mathrm{~N} / \mathrm{m}^{2} \mathrm{n}^{2}$ respectively. What is the height of the nettral axis of the beam from: its bottom?
(a) 125 mm
(b) 100 mn
(c) 75 mm
(d) 50 mm
28. A circular shat of diameter ' D ' is made 0 : a material for whidn Ycung's Modulis of Elasticity is ' 3 ' and Poisson's Rat:c is ' r '. The ratio of flexurel rigidity oo torsicral rigidity for the shaft is
(a) $4(1+v)$
(b) $1.5\left(1-\boldsymbol{\prime}_{1}\right)$
(c)
(d) $0.25(1+v)$
29. A closely coiled helizal sp-ing of rcund sterl wire 5 mm in dianeter heaving 12 complete coils of 50 mm neen diameter is siojected to an axial load $o=10(1 \mathrm{~N}$. Modulus of Kigidi:y of the spring is $80 \mathrm{EN} / \mathrm{mm}^{2}$. Whet is the deflection of the spring?
(a) 12 mm
(b) 24 mm
(c) 36 mm
(d) 48 mm
30. What is the shear steess at the neutral axis in a beam of isosceles riargular secticr. with a jase of 40 mm and height $2 C \mathrm{~mm}$ subjectec to a shear force of $\sum \mathrm{EN}$?
(a) 3 MPa
(b) 6 MPa
(2) 10 MPa
(d) 20 MPa
31. F beam of square cross-section is placed such that its neatral axis coincides with its diagoral, and it is subjected to a shear fcree F. What is the ratio of the maximum shear stress to the shear stress at the neutral axis?
(a) $5 / 8$
(b) $8 / 9$
c) $7 / 8$
(d) 3,7
32. The intensity cf u.d.l. which, when it acts over the entire spar of 1 m of a cantilever bean of rectangular criss-section of width 100 mm anc depth 200 mm , would produce a m:aximum shea- stress of $1.5 \mathrm{~N} / \mathrm{mm}^{2}$, is
(c) $20 \mathrm{kN} / \mathrm{m}$
(b) $30 \mathrm{kN} / \mathrm{m}$
(c. $\quad 26.3 \mathrm{kN} / \mathrm{m}$
(d) $\quad 36.6 \mathrm{kN} / \mathrm{m}$
33. A solid conical bar of circular cross-section is suspended vertically as shown in the figure. The diameter of the bar at the base, D, equels 100 mm and its length, L , is 0.5 m . If $\mathrm{E}=200 \mathrm{GN} / \mathrm{m}^{2}$ and its weight per urit volume is $80 \mathrm{kN} / \mathrm{m}^{3}$, the elongation of the bar uncer self-weight is

34. Two closely coiled helical springs A and B are equal in all respects but for the number of turns, with A having just half the number of turns of tha of B What is the ratio of deflectiors in terms $o^{\text {r }}$ spring A to spring B ?
(a) 1,8
(b) 1,4
(c) $1 / 2$
(d) $2 / 1$
35. What is the diameter \dot{c} of a solid crrcular shaft when scbjected to a to que T with. a corresponding maximum shear stress of magnitude f_{s} ?
(a) $\frac{16 \mathrm{~T}}{\pi \mathrm{f}_{\mathrm{s}}}$
(b) $\frac{\pi f_{3}}{16 T}$
(c) $\sqrt{\frac{16 \mathrm{~T}}{\pi \mathrm{f}_{\mathrm{s}}}}$
(d)

$$
\sqrt{\frac{16 \mathrm{~T}}{\pi \mathrm{f}_{\mathrm{s}}}}
$$

36. A cubical element of a structural part made cf mild steel is sujjested to a tri-asial compressive stress as shown in the figure. The yertical compressive stress is σ_{1}. The Modulus of Elasticity and Poisson's Ratio are E and μ, respectively. Wha shoald be tie uniform lateral pressure σ_{2} in terms of σ_{1} and μ, so thai lateral strain is prevented?

(a) $\frac{\mu}{1-\mu} \cdot \Gamma_{1}$
(b) $\frac{\lambda}{(1+\mu)\left(1-\mu_{j}^{j}\right.} \sigma_{1}$
(c) $\frac{\mu}{1+\mu} \sigma_{1}$
(d) $\frac{1+\mu}{1-\mu} \sigma$.

37．A metcl shaft of solid circular section rotaves $\varepsilon=160 \mathrm{rpm}$ and is subjected to a torque of 1500 Nm ．What is the power，in kW ， transmitted by the shaft？
（三） 32τ
（：） 16 T
（：） 12τ
（シ） 8π

38．HKa：is the power transmitted by a 100 mm $\dot{\text { c}}$－ameter solid shaft at 150 rpm withcut Eaceeding a maximum stress of $60 \mathrm{~N} / \mathrm{mm}^{2}$ ？ Taze $\pi^{2}=10$ ．
（シ） 187.5 kW
（三） 18.75 kW
（．） 1.875 kW
（i） 1875 kW

39．Kha：is the Polar Modulus of a solid circular retad shaft of diameter 8 cm ？
（3） $54 \tau \cdot \mathrm{~cm}^{3}$
（二） $32 r \mathrm{~cm}^{3}$
（．） $16 \pi \mathrm{~cm}^{3}$
（i） $8 \pi \mathrm{~cm}^{3}$

40．F．hollow circuler shaft has the diameters 50 cn and 30 cm and is subjected to a torque． I the realized maximum skear stress is $30 \mathrm{~N} / \mathrm{rsm}^{2}$ ，what is the applied torque to necrest units？
（a） 160 Nm
（b） 320 Nm
（e） 80 Nm
（d） 32 Nm

41．Two simply supparted beams are made ur of the same material and are of the same cross－section．Both beams carry uniformly distributec loads of equel intensities．Cine beam is 2 m long ard the other is $\leq \mathrm{m}$ long． The 2 m lcng beam shows a central deflection of 1 mrn ．What is the central deflection of the 4 m －ong beam？
（a） 13 mm
（b） 2 mm
（c） 8 mm
（d） 1 mm
42．A simply suppo－ted beam is subjected tc a couple at a section wi－kin its spar．It will produce

1．SF d：agram of zero magnitude．
2．Uniformly varying triangular BM d agram．

3．Sudden change in sign of BM at the point of application o^{-}the couple．

4．Equel ard oppcsite reactions at supports．

Whicin of the above statements are correct？
（a） 1 and 2
（b） 2 and 3
（c） 3 and 4
（d） 1 and 4
43．If the deflection at the free end of a uniformly loaded cantilever bear．is 15 mm and the slope of the deflection curve at the free end is 0.02 radian，then the lergtt of the beam is
（a） 08 m
（b） 1.0 m
（c） 1.2 m
（d） 1.5 m
44. A bean of overall length l, with equal overhangs on both sides, carries a uniformly distr-bcted load over the entire length. To have ntmer.cally equal bending moments εt the cenre of the beam and at its supports, the listance between the supports should be
a) 0.277 l
b) $0.403 l$
c) $0.586 l$
d) $0.707 l$
4.\% A singte-bay single-storeyed portal frame $A B C D: s$ fixed at A and D as shown in the -igure. If axal deformation is neglected, the zinematic indeterminacy is

(a) 3
(b) 2
(c) 6
(d) 4
46. What is the number (of kinemat:e indeterminacy for the building frame as shown in the figure when members are inext nc =ble :
(a) 3
(כ) 10
(e) 12
(d) 16
47. For the welded joint shown in the figure, the cirect vertical siear stress on the weld is 40 MPa and the kendirg stress is 120 MPa . For what strergth should the weld be designed?

Front View
Side View

(a) 80 MPa
(b) 120 MPa
c. 132 MPa
d) 160 MPa
48. Degree of static inceterminacy of the structure as shown in the figure is

(a) 0
(b) 1
(c) 2
(c) 3
49. Which one of the following statements is ecrrect for the piri-ointed truss shown in the figure?

(a) The truss is externally ceterminate but internally inde-ermizate
(b) The truss is both externally and internally determinate
\therefore The truss is externally daterminate and internally indeterminate and is unstable
(d) The truss is axternally determinate and internally indeterminate and is stable
50. Waith one of the following methods is not clessifiable as a \mathcal{F} orce Method?
(a) The Theorem of Three Moments
(b) The Moment Distribution Method
(c) The Method of Consistent Deformation
(d) Castigliano's Theorem

5L. A cable of negligible weight is suspended bewween two prints spaced 300 m ap.rrt ho-izontally, with the right support being 12 m higher than the left support. Four vertical loads of magnitudes $400,200,400$ and 1200 kN are applied at points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D which are $60,120,180$ and 240 m horizontally respectively from the left support. The largest sag of the cable will be at
(a) A
(b) B
(c) C
(d) D

5\%. A single-bay portal frame of height h, fixed at the base, is subjected to a horizontal displacement δ at the top. The base momerts developed are each proportional to
(a) $\frac{1}{\mathrm{~h}}$
(b) $\frac{1}{\mathrm{~h}^{2}}$
(c) $\frac{1}{\mathrm{~h}^{3}}$
(d)

55. For the stracture shown in the figure, all of I, EI and L are of respective unit values. The equivalent stiffness constant for the structure is

(a) 1
(b) $1 \cdot 5$
(c) $4 \cdot 5$
(d) 9
56. In considering Plastic Analysis, which of tie following is a valid comprehensive statenent?
(a) Shape factor is the ratio of Plastic Section: Modulus to the Elastic Section Modulus
(b) Shape factor is the ratio of Elastie Sect-or Modulus to the Plastic Secticn Modalus
(c) Shape factor is the ratio of Plastic Section Modulus to the Elastic Section Modults and its value is always greater than $1 \cdot 1$
(d) Shape factor is the ratio of Elastic Section Modulus to the Plastic Section Moaulus and its yalue is always less than 1.0
57. A fillet-welded joint is shown in the figure. The size of the weld is 8 mm . Safe stress in the weld is ${ }_{\sim} 110 \mathrm{~N} / \mathrm{mm}^{2}$. What is the safe force (to the nearest magnitude) to which the weld can be subjected?

(a) 135 kN
(b) 1.30 kNJ
(c) 140 kN
(d) 135 kN
58. A circclar shaft of damete 120 mm is welded to a regid plate by a fillet weld of size 6 mm . If a torque of 8 kNm is apolied to the shaft, what is the maximum stress in the veld (to the nearest unit!?
(๕. $34 \mathrm{~N} / \mathrm{mm}^{2}$
(b) $\quad .37 \mathrm{~N} / \mathrm{mm}^{2}$
(c) $90 \mathrm{~N} / \mathrm{mm}^{2}$
(d) $95 \mathrm{~N} / \mathrm{mm}^{2}$
59. Two p_ctes of dimensions $150 \mathrm{~mm} \times 16 \mathrm{~mm}$ and $15 \mathrm{Cmm} \times 12 \mathrm{~mm}$ at their welding edges are joined by butt welding as shown in the figure. What is the maximum tension that this single V-butt weld joirt can transmit? The pe-nissible tensile stress in the plates is 150 MF .

(a) 168.75 kN
(b) 27 c kN
(c) $21 \varepsilon \mathrm{kN}$
(d) 1350 kN
60. A solid shaft trarsmits 150 kW at a shear stress or 70 MPa running at a frequency of 3 Hz . What will be the shear stress wher the frequency is 1.5 Hz ?
(a) 35 MPa
(b) 50 NPa
(c) 57 MPa
(d) 14 CMPa
61. What is the maximum number of 20 mm diarneter bolts that can be accommodated in a single row on a 140 mm wide flat strip used as ore of the structural elements involved in the process?

```
(a) 4
b) 3
c. 2
'd' 5
```

62. Whet is the nearest magnitude of strength of $\exists \geqslant \mathrm{mm}$ fillet weld of 100 mm length made jetween two flats each 10 mm thick ? The allowable shear stress on the weld is 110 MPa
'a. 23 kN
(b) 33 xN
(c) 46 sN
(d) 66 sN
63. Consider the following statements;
-. The thickness of the gusset plate sho ald not be more than the thickness of the stractural members being connected.
64. A plate girder is essentially a beam and its moment of resistance depends uron its section modulus.
65. The function of the flanges in a plate girder is tolfesist the bending moment anc hence their respective areas can be reduced near the supports of a simply supported beam.
Fhrch of the above statements are correct?
(a) 1 and 2 only
(b) 1 and 3 only
(2) 2 and 3 only
(1) 1,2 and 3
66. Jonsider the following stater-ents:
-n a plate girder
67. Bearing stiffeners are designed for bearing forces and they must also be checked for safery against compressive forces.
68. The length $0:$ any staggered intermittent fillet weld should not be less than 10 times, the thickness of the stiffener.
69. Bearing stifferers mus- be providec at the point of maxinum bending moment.
Which of the above statements are correct "
(a) 1 and 3 only
(b) 2 and 3 only
(d) 1 and 2 only
(d) 1,2 and 3
70. Consider the following statements :

Secondary stresses a a e ircuced in a roof truss cue to

1. Purlins placed at irtermediate points on panel lengths.
₹. Rigidity of joints.
引. Eccentricity of the bolt line relative to the centroid of the member.

Which of the above statements are correct?
(a) 1 and 2 only

ว) 1 and 3 only
2) 2 and 3 only
d) 1,2 and 3
66. -1 the case of an axially loaded colurnn, nachined for full jearing, the fastenings eonnecting the colunn to the base plates trough gussets are to ke designed for
(a) 100% of the load cn the column
(b) 50% of the load or tae cclumn
(e) 25% of the load or tae column
(d) Respective erection conditions only

B-GTD-C-[IDA
67. Consider -he following statements :

1. When analyzing by the Ultimate Load Method, the eccentrically loaded fastener group rotates about an instantaneous centre.
2. The rivet which is the farthest from the centre of gravity of the rivet group and may also be the nearest to the applied load line is the most 'critical' one.
3. The deformation at each rivet is not proportional to its distance from the centre of rotation.
Wh:ch of the above statements are correct?
(a) 1 and 3 only
(b) 2 and 3 only
(c) 1 and 2 only
(d) 1, 2 and 3
4. For a reinforced concrete beam with M 20 corcrete with Fe 415 steel, the working moment corresponding to 'balanced failure' by the Limit State Method of Design is A times of the relatable magnitude of the working moment computed by the Working Stress Methcd. This value of A is nearly

(a)	1.0
(b)	1.5
(c)	2.0
(d.	2.5

69. A singy reinforced rectangular concrete beam has a width of 150 mm and an effective depth of 35 C mm . The characteristic compressive strength of concrete is 20 MPa and the tensile strength of steel is 415 MPa . Adopt the stress b-ack for concrete as per IS 456-2000 and take the limiting value of depth of neutral axis as 0.48 times the effective depth of the beam for considering as a balanced section. V_{1}^{r} nat is the likely approximation for the limiting value of the moment of resistance of tal beam?
(a) 15 kNm
(b) 25 kNm
(c) 45 kNm
(d) 75 kNm
70. If the stirrup spacing is ϵq cal to 0.75 times the effective depth of an $3 C$ beam, then the shear capacity of stirrup stee. is equal to
(a) $1.25\left(f_{y} \mathrm{~A}_{\mathrm{sv}}\right)$
(b) $1 \cdot 16\left(f_{\mathrm{y}} \mathrm{A}_{\mathrm{sr}}\right)$
(c) $1.00\left(\mathrm{f}_{\mathrm{y}} \mathrm{A}_{\mathrm{s}}\right)$
(d) $\quad\left(1.80\left(\mathrm{f}_{\mathrm{y}} \mathrm{A}_{\mathrm{sp}}\right)\right.$
where f_{y} is rield strength and, $A_{\text {sv }}$ is cross-sectional area of the stirrup steel.
71. A conerete column carries an axial load D^{2} 450 kN and a kending moment of 60 kNm at its base. An isoated fooing of size $2 \mathrm{~m} \times 3 \mathrm{n}$ with the 3 m side clong the plane of the bendihg moment is provided under the column. Centres of gravizy of the column and the footing coincide. The net maximum and mininum pressures, in kPa , on the soil under the foting are: respectively
(a) 95 and 75
(b) 75 and 55
(c) 95 and 55
(d) 75 and 75
72. Carry-over factor at a support/end is defined as
(a) Modulus of Elastieity EI
(b) The ratio of momert prodiced at the tar end to the applied moment at that support end
(c) The value of the moment to be applied to that end to cause a local slope of cne radian
(d) 2 EK
73. What is the pH value of potable water, as sperified by IS $456-2000$?
(a) Equal to 7
(b) Between 6 and 9
(c) Less than 6
(d) Not less than 6

74．A certair RC structure has to be constructed abing ε sea coast．The minimum grade of ：cnarete to be used as per IS 456－2000 is
a）More than M 20
（b）More than M 20 and less than M 30
（c）Not less than M 30
（1）Less than M 45 and more than M 30

75．What is the minimum area of tension reinforment in beams when Fe 415 is used？
（三）0－8\％
（E） 012%
（c） 015%
（d） $0-22^{c}$

76．If a 2 －lagge 8 mm diameter HYSD bar is us $=\mathrm{C}$ as shear reinforcement for a beam of w：三th 23C mm and effective depth 300 mm ， wt．at s the nearest magnitude of the spacing of nimim：un shear reinforcement？
（a） 42 ） mm
（b） 390 mm
（c） 8.50 mm

77．Web tuckling occurs in a beam due to exc－ssine
（a）Direct $t \in$ nsile stress in the web
（b）Bending tensile stress in the web
（c）Torsional shear stress in the web
（d）Compressive stress in the web

78．Which of the following statements are correct in respect of weldこd cenrections？
1．Strength of Buit weld is equa，to the strength of comp onents joined．
2．Fillet welds carry the loads computed based on the tersile strength characterist：ce of fusion material．
3．For effective transmiss ch on load by fillet weld，the fusio 1 faces shall subtend an angle betryee． 60° and 120° ．
（a）1，2 and 3
（b） 1 and 2 only
（c） 2 and 3 only
（d） 1 and 3 only
79．A postrtensioned beam of span 25 m is prestressed with 20 numbers of 40 mm diameter cables，éch stressed to 1500 MFa ， with eccentricity $\epsilon=0$ at supports and $\mathrm{e}=500 \mathrm{~mm}$ at midspan，varying parabolically．If the shear section due to externally apzed load is 4500 kN ，what is the nearest magnitzde of the shear force resisted by the stirrups？
（a） 3060 kN
（b） 4540 kN
（c） 250 kN
（d） 1480 kN
30．For a pre－tensioned bean，Young＇s Modulus of steel and concrete are $2 C 0 \mathrm{GPa}$ and 35.35 GPa ，respectively．If the ultimate shrinkage strain and Ultimate Creef Coefficient are $2(1)$ mirrons and 16 ， respectively，what is the level of sustained stress in concrete at the level of＇steel if the loss due to creep is three times the ioss due to shrinkage？
（a） 9 MPa
（b） 13 MPa
（c） 11 MPa
（d） 15 MPa
81. Consider the following statements :

Correct estimation of loss of prestress is reqeived for assessing
1 The serviceability behaviour of a PSC beam.
2. The ultimate shear resistance of a PSC beam.
3. The ultimate moment of resistance of a PSC beam.

Which of the above statements is/are correct?
(a) 1, 2 and 3
(c) 3 only
(c) 2 only
(c) 1 only
82. Which of the following statements are correct in case of vertical intermediate stiffeners?

1. These are required only when the ratio on $^{-}$ web depth to thickness is greater than 1EC.
2. They should be provided throughout the length of beam at spacing less than 1.5 times web depth.
3. These can be fitted between flanges with clear gaps at top and bottom
(a) 1 and 2 only
(b) 2 and 3 only
(c. 1 and 3 only
(d) 1,2 and 3

8E. The relation between the strength of brick mascrry f_{w}, the strength of bricks f_{b}, and the steergth of mortar f_{m} is given by (where K_{w} is a scefficient based on the layout of the bricks ard the joints)
(a) $f_{w}=\sqrt{K_{w} \frac{f_{b}}{f_{m}}}$
(b) $f_{f_{N}}=K_{w} \sqrt{\frac{f_{b}}{f_{m}}}$
(c) $\quad \mathbf{f}_{\mathrm{w}}=\sqrt{\mathrm{K}_{\mathrm{w}} \mathbf{f}_{\mathrm{b}} \mathrm{f}_{\mathrm{m}}}$
id. $\quad f_{w}=K_{w} \sqrt{f_{j} f_{m}}$
84. As $\mathrm{p} \rightarrow \mathrm{r}$ IS 3102-196E, for F1 class bricks, the percentcge water absorotion after 24 hrs of immərsion in cold water shall not exceed
(a) 20%
(b) 12%
(c) 25%
(d) 5%
85. The effective he-ght of a masonryl wall of height I restrained fully, at its top and partially at its bottom is
(a) 0.75 H
(b) $0 \cdot \varepsilon \cdot 5 \mathrm{H}$
(c) $1 \cdot 60 \mathrm{H}$
(d) $1 \cdot \mathrm{E} 0 \mathrm{H}$
86. The effective lensth of a masonry wall stiffened by butresses on bcth ends end continuing beyond these buttrasses at koth ends is
(a)

(b) 20 CL
(c)
0.9 L
(d) 0.8 L
where L is the c / c lenjth. of the wall between successive buttresses.
87. A wall cerries an axial load, $12 \mathrm{kN} / \mathrm{m}$ anc also an eccentric load $o_{2} 27 \mathrm{kN} / \mathrm{m}$ at 72 mm from the central axis of the wall. The equivalent eccentricity e is $\mathrm{n} \in$ arly
(a) 65 mm
(b) 60 mm
(c) 55 mm
(d) 50 mm
88. A shear wall of lergth $E \mathrm{~m}$, height 3 m and thickness 250 mm has to resist the forces due to hcrizontal earckuake in its plane. The relevant Section Rodulus of the wall sertion is
(a) $3.75 \times 10^{8} \mathrm{~mm}^{3}$
(b) $10.41 \times 10^{8} \mathrm{~mm}^{3}$
(c) $31.25 \times 10^{6} \mathrm{~mm}^{3}$
(d) $75 \times 10^{3} \mathrm{~mm}^{3}$
s. In reinfcried brickwork slabs, the diameter of main reinforcement shall, preferably not exceed
(a) 8 nm
(b) 10 mm
c) 12 mm
d) 16 mm
9). Jonsider two $R C \mathcal{D}$ beams, P and Q, each of width $4 C 0 \mathrm{~mm}$ and effective depth 750 mm , nade with concrete having a $\tau_{c \max }=2.0 \mathrm{MPa}$. Ior the reinforcement provided and the grade of concrete used, it may be assumed tha: ${ }^{-} \mathrm{c}_{\text {max }}=0.75 \mathrm{MPa}$. If the design shear for the beams F and Q is 400 kN and 750 kN , respectively, which of the followirg statements is true considering the provisions of IS 456-2000 ?
(a) Shear reinforcement should be designec for 175 kN for beam P and the section: for beam Q should be revised
(b) Nominal shear reinforcement requred for beam P and the shear reinforcement should be designed for $120 \mathrm{l}=\mathrm{N}$ for bəam Q
(2) Shear reinforcement should be designed for 175 kN for beam P and the section for beam - should be designed for 525 kN for bream Q
(1) The sections for both beams, P and Q, nee 1 to be reyjsed
91. The minimum strain at failure in tension steel hav ng yield stress $\mathrm{f}_{\mathrm{y}}=415 \mathrm{MPa}$ and Young's Modulus $\mathrm{E}_{\mathrm{s}}=200 \mathrm{GPa}$, as per Limit State Method of Design, is
(a) 0.0 C 25
(b) 0.01638
(c) 0.0045
(d) 0.0053
92. Which one of the following Mohr's Circles represents the state of pare shear?
(a)

(b)
(c)

(d)

93. Act.vity A, Activity B and Activity C are cast intc a ladder diagrammatic CPM networis, witi splitting each into three equal parts as $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$; and $\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}$; and $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$. Typical sequencirg as in a ladder diagram is adcpted (like B_{2} following A_{2} and B_{1}). The optimum number of dummy arrows needed for a satisfactory and correct ladder diagram will be
(a) 1
(b) 2
(c) 3
(d) 4

G4. A mechanism shown in the figure consists of equally long sttel and copper wires which carry the applied load in equal shares. What shall be the ratic of the diameter of the copper wire to that of the steel wire, when both the wires undergo ecual strains?

Steel wire $\mathrm{E}_{\mathrm{s}}=200 \mathrm{GPa}$

(a) $\sqrt{2}$
(ว) 1.0
(2)

(d) $\frac{1}{2}$
95. Consider the following relazed to sand in mortars :

1. It increases the vorme of the mortar mix.
2. It increases the strezegth of masonry.
3. The cost of ile mortan is $r \in d u f e d$.
4. Shrinkage of the mortar is almost prevented.
5. Surkhi can replace sand in cement mortar used -n plasjerng and this modified moztar is more d arable.

Which of the abore are relevant to 'sand' in mertar?
(a) $1,2,4$ and 5
(b) 1, 3 and 4 or.ly
(c) 3,4 and 5 moly
(d. $, 2,3$ and 4 moly
96. In a concrete nix, if tie maximum size of coarse aggregatz is increasec, the proportion of fine to coarse aggregate should je
(a) Increased
(b) Decreasec
(c) Kept the same
(c) Not deper denz on size of aggregates
97. It is estimated that an a tivity can be assigned an op-imistic duration of 16 days, a pessimistic duration of 28 dcys and a most likely duration of 19 deys. What is the expected duration for this activity?
(a) 20 days
(J) 19 days
(2) 22 days
(d) 18 days
98. Consider the following statements :

1. Modulus of Elasticity of concrete increases with increase in compressive strength of concrete.
2. Brittleness of concrete increases with decrease in compressive strength of concrete.
3. Shear strength of concrete increases with increase in compressive strength of concrete.
Which of the above statements are correct?
(a) 1 and 2 only
(b) 1, 2 and 3
(c) 1 and 3 only
(d) 2 and 3 only
4. A three-hinged parabolic arch of span ' l ' and rise ' h ' is subjected to a u.d.l. of intensity ' ω '; then the horizontal thrust at the supports is
(a) $\frac{\omega t^{2}}{3 \mathrm{~h}}$
(b) $\frac{0!}{h}$
(c) $\frac{\omega l}{8 \mathrm{~h}^{2}}$
(d) $\frac{\omega \mathrm{h} l}{8}$
5. A rectangular beam of (width 230 mm and effective depth 300 mm is proposed to carry a BM and SF of 120 kNm and $270 / \mathrm{kN}, \sim$ respectively. If M 30 grade of concrete and Fe 415 steel are used for which $\tau_{c \text { max }}=3.5 \mathrm{MPa}$, which one of the following statements is correct?
(a) It can be designed as a singly reinforced, under-reinforced section
(b) It can be designed as a douby reinforced section
(c) The section is unsafe from shear considerations
(d) It can be designed as a doubly :einforced section but it is unsafe from shear considerations

Diractions: Each of the Rex: twenty (20) itemis consists of two statemerts, one labelled as the 'Stct:ment (I)' and the other as 'S'atement (II)'. You are to examine these two statements carefully and seles: the ar-swers to these items using the codes giver below :

Coces :

(a) Both Statement (I) and Statement (II) are individually true ard Statement (I) is the correct explanation of Statement (I)
(b) Both Statement (I) ard Statement (II) are individually true but Statement (II) is not the correct explanation ois S-ater ent (I)
(c) Statement (I) is true but Statement (II) is false
(d) Statement (I) is false but Statement (II) is true.

101. Statement (i):

Timber suitable for furriture is obtained from: conifers only.

Statement (II) :
Woods with distinct annual rings ace conifers.
102. Stateme.tt (I) :

Seasoning of timber gives dimensional stability, safety against attack by fungi and -mprove 1 workability.
statemest (II) :
Seasonirg of timber removes moisture in the torm of sap from timber.
103. Statement (I):

Strength of brick wall is dependent on the type of bicks and the mertar ased.

Statemer.t (II) :
Slenderness ratio of masomry decides thee strength of the wall, and alsc mortar type to ke used.

1(4. Statemert (I) :
Fly ask bricks are used in construction as alternatives to burnt clay bricks.

Statement (II) :
Fly aish bricks are lighter in weight and are stronger than burnt clay bricks.
10.5. Statement (I) :

Air-entraning cement has a higher initial setting time than o.p.c. and resists frost action ketter.

Stctement (II) :
Air-entraining cement has a longer fir-al settirg time compared to o.p.c.
1)(6. Statenent (I):

A merging node will have a uniquely determinable Late Event Time.
is)atement (II) :
A me-ging node is defined as a node where more than one incoming activity arrow leads in

1C. S'txternent I):
Deadveight of a structure can be reduced by t sing ight weight concrete in construction.

Staterrent $(I I)$:

Aerated concrete, being of light weight, is used in R.C.C. multi-storied construction.
108. Sictement (I) :

Adnixture in concrete is an essentia. corstituent of concrete.
Svatem?nt (II) :
Admixture helps in improving or modifying specific qualities in concrete.
109. Statement (I):

The failure suriace of an axially loaded mild steel tension specimen of circular cross-section is alorg a plane at 45° to the axis of the specimen.

Statement (II) :
The failure occurs on a plane of the pecimen subjected to maximum shear stress and mild steel is relatively weak inlshear.
110. Statement (I) :

In pin-jointed roof trusses, purlins are kept above nodes in the top chord.
statement (II) :
The top chord is continuous shrough the nodes of the truss.
111. Statement (I) :

Repegated passes are nceded with shəep-foot rollers for optimum compaction.

S'tatement (II) :

Even if optimum noistuce content is easured, repeated passes are needed to ensure right and even distribution of mosture wition the soil volume.
112. Statement (I):

Dewatering pumps for use in shallow pits are often of nearly straight-bade centrifugal types.

Siatement (II) :
Centrifugal pumps can lift water to high. Fifts.
113. Statement (I) :

Crawler-mounted excavasor is more suitable for excavation in scft ground.

Stztement (II) :
Crawler-mounted excavator can be moved at low speeds.
114. Statement (I) :

In a project involving construction of several self-similar multi-storey houses, the Sheduled Bar Chart is best converted :nto L_nes n_{-}^{n} Balance Diagram - which yet $r \in$ mains a 'Stacked' Bar Chart.

Siaterizer:t (II) :
It is necessary to ensure that no set of Lines of Balance slope forward in time, from last olock to first block, or top to bottom.
115. Statement (I) :

At positions of curtailment of flange plates in a built-up structure, web stiffeners are aiso necessarily to be provided.

Statement (II) :
This improves the architectural beauty of the structure
116. Stetement (I) :

ACN networks lo not generally have any dunmy links.

Stctement (II) :
Lirks express activity (dependencies exhaus ively and completely.
117. Statement (I) :
'I ift' ard 'lead', even if wherever relevant, do not affect any activity duration during the ccurse of inplemehtation of a project.

Siatement (II) :
Prozurement of materials, particularly, is nornally fiom assigned, or designated, quarry sites, which are already fixed while starting the project
118. Stctement (I) :

Tine-Cost Study for a project must bэ adopted only when proje 2 duraticn is to $\mathrm{b} \geqslant$ crashed.

Staterrent (II) :

When shere are unmanageable restrictions ir: realizing a predatermined resource fistosram Time-Cost Study may have to consider extension of procest durazion as well
119. Stȧement (I): Activity streans along a corponent Work-Ereakdown Structure along a sub-path ran refer also to an auxiliary
Won-Breakdown Structure cinsidered rertically in segnents of adjacent sub-Faths.

Statement (II) :
Work-Breakdown Structures refer tc a single sub-path with a эrogressive duration along the activity arrows.
120. S'tatement (I) :

In a malti-path F'ERT network, the project duratior resulting from the critical path always h .as a 50% probability of completion by tiat duration.

Statement (II) :

The expected throcgh-path duration toge-her with 3 -t-mes the standard deviation o? that ϵ epected duratior nust be considered for all the patis in the network

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK

SPACE FOR ROUGH 'NORK

T.B.C. : B-GTD-O-DDB

Serial No.

Time Allowed : Two Hours

Test Booklet Series
TEST BOOKLET

CIVIL ENGINEERING

Paper II

Maximum Marks : 200

INSTRUCTIONS

1. IMMEDIATELY AFTER THE COMMENCEMENT OF THE EXAMINATION, YOU SHOULD CHECK THAT THIS TEST BOOKLET DOES NOT HAVE ANY UNPRINTED OR TOFIN OR MISSING PAGES OR ITEMS, ETC. IF SO, GET IT REPLACED BY A COMPLETE TEST BOOKLET.
2. PLEASE NOTE THAT IT IS THE CANDIDATE'S RESPONSIBILITY TC' ENCODE ANE' FILL IN THE ROLL NUMBER AND TEST BOOKLET SERIES CODE A, B, C OR D CAREFULLY AND WITHOUT ANY OMISSION OR DISCREPANCY AT THE APPROPRIATE PLACES IN THE OMR ANSWER SHEET. ANY OMISSION/DISCREPANCY WILL RENDEF THE ANS'WER SHEET LIABLE FOR REJECTION.
3. You have to enter your Roll Number on the Test Booklet in the Box provided alongside. DO NOT write anything else on the Test Booklet.
4. This Test Booklet contains $\mathbf{1 2 0}$ items (questions). Each item comprises foar responses (aniwers). You will select the response which you want to mark on the Answer Sheet. In case, you feel that there is more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each item.
5. You have to mark your responses ONLY on the separate Answer Sheet provided. See directions in the Answer Sheet.
6. All items carry equal marks.
7. Before you proceed to mark in the Answer Sheet the response to various items in the Test Booklet, you have to fill in some particulars in the Answer Sheet as per instructions sent to you w.th your Adm ssion Certificate.
8. After you have completed filling in all your responses on the Answer Sheet and the examinat on has concluded, you should hand over to the Invigilator only the Answer Sheet. You are permittec to take away with you the Test Booklet.
9. Sheets for rough/work are appended in the Test Booklet at the end.
10. Penalty for wrong Answers :

THERE WILL BE PENALTY FOR WRONG ANSWERS MARKED BY A CANDIDATE.
(i) There are four alternatives for the answer to every question. For each question for which a wrong answer has been given by the candidate, one-third (0.33) of the marks assigned to that question will be deducted as penalty.
(ii) If a candidate gives more than one answer, it will be treated as wrong answer even if one of the given answers happens to be correct and there will be same penalty as above to that question.
(iii) If a question is left blank i.e., no answer is given by the candidate, there will be no penalty for that question.

1. A ship has a metacentric height of 0.90 m and its period of rolling is 20 seconds. The relevant radius of gyration is nearly
(a) 5.5 m
(b) 7.5 m
(c) 9.5 m
(d) 11.5 m
2. A square gate, $1.5 \mathrm{~m} \times 1.5 \mathrm{~m}$, on one of the vertical sides of a fully filled water tank, has one side on the free water surface. It is hinged on the lower horizontal side and is held in position by a force applied on the vertical central line at a depth of 0.75 m below the free surface. The right magnitude of this force is
(a) $500 \times 9.81 \mathrm{~N}$
(b) $600 \times 9.81 \mathrm{~N}$
(c) $750 \times 9.81 \mathrm{~N}$
(d) $1000 \times 9.81 \mathrm{~N}$
3. A certain water needs dlum treatment to the extent of 10 p.p.m. How much alum, in quintals per day, would be needed to treat 10 MLD of water?
(a) 10
(b) 10
(c) $\quad 100$
(d) 1000
4. The surface tension in a soap bubble of 50 mm diameter with its inside pressure being $2.5 \mathrm{~N} / \mathrm{m}^{2}$ above the atmospheric pressure is
(a) $0.0125 \mathrm{~N} / \mathrm{m}$
(b) $0.0156 \mathrm{~N} / \mathrm{n}$
(c) $0.2 \mathrm{~N} / \mathrm{m}$
(d) $\cdot 0.0312 \mathrm{~N} / \mathrm{m}$
5. A mercury water manometer has a gauge difference of 0.8 m . The differencesin pressure measured ir metres of water is
(a) 0.8
(b) 1.06
(c) 10.05
(d) 8.02
6. A sphere is moving in water with a velocity of $1.6 \mathrm{~m} / \mathrm{s}$. Another sphere of twice the diameter is placed in a wind tunnel and teste 1 with air which is 750 times less dense and 60 times less viscous (dynamically) than water. The velocity of air that will model dynamically similar conditions is
(a) $5 \mathrm{~m} / \mathrm{s}$
(b) $20 \mathrm{~m} / \mathrm{s}$
(c) $10 \mathrm{~m} / \mathrm{s}$
(d) $40 \mathrm{~m} / \mathrm{s}$
7. The flow in a rive: is 1500 cumecs. A distorted model is built with horizontal scale of $\frac{1}{150}$ and vertical scale of $\frac{1}{2 \varepsilon}$. The flow rate in the model should be
(a) $0.04 \mathrm{~m}^{3} \mathrm{~s}^{-1}$
(b) $0.06 \mathrm{~m}^{3} \mathrm{~s}^{-1}$
(c) $0.08 \mathrm{~m}^{3} \mathrm{~s}^{-1}$
(d) $0.10 \mathrm{~m}^{3} \mathrm{~s}^{-1}$
8. 10 MLD water is to be chlorinated in a clear water reservoir (CWR) with $0.8 \mathrm{mg} / l$ chlorine dose with providing contact time of 40 minutes. The required CWR capacity is nearly
(a) $220 \mathrm{~m}^{3}$
(b) $280 \mathrm{~m}^{3}$
(c) $28 \mathrm{~m}^{3}$
(d) $22 \mathrm{~m}^{3}$
9. The head over a V-notch at the end of a channel is 75 cm . If an error of 0.15 cm is possible in the measurement of the head, then the percentage error in computing the discharge is
(a) 0.25
(b) 0.5
(c) 0.75
(d) 1.0

1(1. At a hydraulic jump, the depths at its two sides are 0.3 m and 1.2 m . The head loss in the jump is
(a) 1.0 m
(b) 0.8 m
(c) 0.5 m
(d) 0.45 m
11. Field observations are carried out to assess the discharge of a river. Measurements are taken in a 2000 m straight react. Slope is approximately 1 in 4000. Bed slope is determinable to a possible accuracy of 0.4 cm ; wetted perimeter is deterninable within 4% of possible error; and $3 e c t i o n a l ~ a r e a ~ w i t h i n ~ 6 \% ~ o f ~ p o s s i-~$ ble error. Using Chezy's equation, the assessed discharge will be accurate to within
(a) $9 \cdot 6 \%$
(b) 10.8%
(c) 11.4%
(d) $12 \cdot 7 \%$
12. Consider the fol owing statements in respect of cast iren pipes employed for water supply:

1. Easy to nake joints
2. Strong and durable
3. Corrosiol resistant

4. Long life

Which of the above statements are correct?
(a) 1,2 and 3 only
(b) 1,3 and 4 only
(c) 2,3 and 4 only
(d) 1,2,3 and 4
13. In turbulent flows through rough pipes, the ratio of the maximum velocity to the mean velocity is
(a) 2
(b) $\frac{4}{3}$
(c) $1 \cdot 1$
(d) Dependent on the friction factor
14. Two reservoirs are connected by two pipes P and Q. The pipes have the same diameter and length and are placed in parallel. If the friction factor of P is 9 times that of Q, then the discharge in P to that in Q is
(a) 0.5
(b) 0.45
(c) 0.33
(d) 0.27
15. A sludge had $100 \mathrm{~m}^{3}$ volume when its moisture content was 95%. What would be ts volume if its moisture content charged to 90% ?
(a) $200 \mathrm{~m}^{3}$
(b) $50 \mathrm{~m}^{3}$
(c) $94.7 \mathrm{~m}^{3}$
(d) $\quad 05.5 \mathrm{~m}^{3}$
16. The Sludge Volume Index for mixed liquor having suspended solids concentration of $2000 \mathrm{mg} / l$ and showing a settled volume of 200 ml from a one litre sample would be
(a) $0 .-$
(b) 1000
(c) 109
(d) 10
17. The number of impellers required for a multistage pump to lift 4500 litres/minute against a total head 190 m at a speed of 750 rpm with specific speed not to exceed 700 is
(a) 6
(b) 8
(c) 10
(d) 12
18. A hydrautic turbine has an output of 6000 kW when it works under a head of 25 m and runs at 100 rpm . Then the type of turinine used is
(a) Pelton wheel
(3) Francis
(c) Kaplan
(d) Propeller
19. The velocity heads of water at the inlet and outlet sections of a draft tube are 3.0 m and 0.20 m , respectively. The frictional and other losses in the draft tube are 0.4 n . What is the efficiency of the draft tube?
(a) 15%
(b) 67%
(c) 86%
(d) 92%
20. Consider the following statements regarding valve; in, 2 pipe line :

In long pipe liffes, air will accumulate in the low point of the line and will interfere with the flow.
2. Pressure re'ief valves are used in pipe lines where pressure may , increase beyond the maximum permissible pressure.
3. Non-return valves prevent water flowing back, i.e. in the opposite direction.
Which of the above statements are correct?
(a) 1 and 2 only
(b) 2 and 3 only
(c) 1 and 3 only
(d) 1,2 and 3
21. A 4-hour rainfall in a catchment of $250 \mathrm{~km}^{2}$ produces rainfall depths of 6.2 cm and 5 cm in suxcessive 2-hour unit periods. Assurning the φ index of the soil to be $1.2 \mathrm{~cm} /$ hour, the runoff volume is
(a) 1.6 ha-m
(b) 16 ha-m
(c) 160 ha-m
(d) $1600 \mathrm{ha}-\mathrm{m}$
22. Return Period Refers to
(a) The Probability of Exceedance of an event
(b) The Probability of Non-Exceedance of an event
(c) The Inverse of the Probability of Exceedance of an event
(d) The Inverse of the Probability of Non-Exceedance of an event
23. Orographic rain occurs when the air is coo ed sufficiently as a result of
(a) lifting due to flow over a mountain barrier
(b) relative movement of two large air masses
(c) violent upthrow of air arising from localized heating
(d) cyclonic conditions
24. A Double-Mass-Curve Analysis is useful in
(a) Consistency Analysis
(b) Frequency Analysis
(c) Storage Computation Analysis
(d) Guessing missing data in cases of ñon-homogeneous terrain
25. Consider the following steps which are involved in arriving at a unit hydrograph :

1. Separation of base flow
2. Estimating the surface runoff in volume
3. Estimating the surface runoff in depth
4. Dividing surface runoff ordinate vy depth of runoff

Which is the correct sequence of these steps?
(a) 4, 3, 2 and 1
(b) 1,2,3 and 4
(c) 4, 2, 3 and 1
(d) 1, 3, 2 and 4
26. Probability of a 10 -year flood in occar at least once in the next 5 years is
(a) 35%
(b) 40%
(c) 50%
(d) 65%
27. S-curve Hydrogreph is the hydragrap_
(a) produting 1 cm of runoff over the basin
(b) of flow from a 1 cm intensity rain of infinite duration
(c) having a volume of $1 \mathrm{~cm}^{3}$
(d) of the total storm duratior in any single storm rainfall
28. Surface Runoff represerts the total water
(a) flowing in surface channels afte: the rainfall
(b) obtained after deducting from rainfall water what kas infiltrated and/or evaporated, from the tota. rainfall
(c) excluding the base flow in surface channels afte- the rainfall
(d) flown (or llowing) throush all channels over a specified yeriod of time
29. Consumptive Use refers to the loss of water as a result of
(a) Evaporation and Transpiration
(b) Crop Water Requirement
(c) Eraporation and Infiltration
(d) Evaporation and Transpiration from the cropped area
30. In a un form semi-infinite aquifer, the dependable discharge of a lone circular open weil is increased most easily by
(a) increasing the diameter
(b) making it into one with a square kerb
(c) deepening the well
(d) provid ng coarser screening filter
31. In a ski-jump bucket provided in an overflow spllway, the lip angle is 30°, and the actual velocity of flow entering the bucket is $30 \mathrm{~m} / \mathrm{s}$. The maximum vertical height attained by the trajectory of the jet, measured above the lip of the bucket, is nearly
(a) 45 m
(b) 35 m
(2) 22 m
(d) 11 m
32. The discharge capacity required at the outlet to irrigate 3000 ha of sugarcane haring a kor depth of 173 mm and a sor period of 30 days is
(a) $2.0 \mathrm{~m}^{3} / \mathrm{s}$
(b) $1.0 \mathrm{~m}^{3} / \mathrm{s}$
(c) $23 \mathrm{~m}^{3} / \mathrm{s}$
(d) $0.20 \mathrm{~m}^{3} / \mathrm{s}$
33. By considering the chamel index as $\frac{5}{3}$, the setting of an orifice type irrigation, outlet tc have proportionality is
(a) 0.90
(b) 0.6 ,
(c) 0.30
(d) 0.15
34. What is the strainer lergth required for a deep tute well giving a lischarge of 8 litres per second? Ass me permissible entrance velocity of 2 cm second. It is desired to have the strair er of slot sizes $20 \mathrm{~mm} \times 0.2 \mathrm{~mm}$ with nurnber of slots per cm length of the striner as 100 .
(a) 8 m
(b) 1 m
(c) 12 m
(d) 10 m
35. The population of a city in the year 2000 was 82,300 . If average per cent increase in population per decade is 35%, the population of the city in the year 2020 estimated geometrical increase will nearly be
(a) $1,00,000$
(b) $1,25,000$
(c) $1,50,000$
(d) $1,75,000$
36. The different actions that take place in anaerobic decomposition process are

1. Alkaline fermentation
2. Acid fermentation
3. Acid regression
4. Methane formation

V/hat is the correct sequence of these a tions (from earlier to later)?
(a) 4, 3, 1 and 2
(b) 2,3,1 and 4
(C) $4,1,3$ and 2
(c) 2,1,3 and 4
37. What is the rapid sand filter surface atea required for filtering of 10 MLD water assuming a filtration rate of $110,000 \mathrm{l} / \mathrm{m}^{2} /$ day?
(a) $100 \mathrm{~m}^{2}$
(b) $10 \mathrm{~m}^{2}$
(c) $1 \mathrm{~m}^{2}$
(d) $1000 \mathrm{~m}^{2}$
38. Consider the following statements in respect of slow sand filter and rapid sand filter :

1. The two filters differ in respect of the standards regarding nonuniformity of the sand used in their filtering media.
2. The two filters do not differ in respect of the effective size of the sand used in them.

3 The two filters differ in respect of their respective under-drainage system.
4. The two filters differ in respect of their respective rate of filtration.

Which of the above statimens are correct?
(a) 1,2 and 3
(b) 1,2 and 4
(c) 2,3 and 4
(d) 1, 3 and 4
39. How many kg of bleashing powder is needed per dav to chlorinate 4 MLI) of water so tha:, after 400 rinutes of contact, there remains residal chlozine of $0.25 \mathrm{mg} / \mathrm{l}$. The input water has a chlorine demand of $1.25 \mathrm{mg} ; i$, and -hat the bleaching powder has only 25% available chlorine.
ia) 8 kg
(b) 20 kg
(c) 24 kg
(d) 6.6 kg
40. Which of the following help is prevent water pollution due to land-tisposal of waste?

1. Proper consolidation oì waste to reduce pore space and perneability
2. Disposal orer impervious strata
3. Layer of :mpervious sol on the top and the sides of the deposited solid waste
(c) 1 and 2 on. y
(t) 1 and 3 on y
(c) 1, 2 and 3
(d) 2 and 3 only
4. Consider the following statements in respect of electrostatic precipitators:
5. Power requirement is very small compared to other air pollution control devices and so they are cheaper to perform than other devices.
6. Can handle both gases and mists for high volume flow.
7. Very small particles can be collected, either wet or dry.

Which of the above statements are correct?
(a) 1 and 2 only
(3) 2 and 3 only
(a) 1 and 3 only
(d) 1,2 and 3

Which of the above statements is/are correct?
(a) 1 only
(b) Both 1 and 2
-(c) 2 only
(d) Neither 1 nor 2
43. What is the required plan size of a square sedimentation tank (as the primary sedimentation tank in sewage treatment), given that its effective depth is 3 m , and the flow rate is 40 M CD with admissible surfaceloading of $100,000 \mathrm{l} / \mathrm{m}^{\text {² }} /$ day?
(a) $23.5 \mathrm{~m} \times 23.5 \mathrm{~m}$
(b) $30 \mathrm{~m} \times 30 \mathrm{~m}$
(c) $20 \mathrm{~m} \times 20 \mathrm{~m}$
(d) $15 \mathrm{~m} \times 15 \mathrm{~m}$
44. Consider the following statements related to ozone :

1. Tropospheric ozone is harmful
2. Stratospheric ozone is beneficial
3. During prevalence of photochemical smog, O_{3} is formed

Which of the above statements are correct?
(a) 1,2 and 3
(b) 1 and 2 only
(c) 1 and 3 only
(d) 2 and 3 only
45. Consider the following statements related to noise :

1. The range of sound power and sound pressures produced is from 0.0002μ bars to 10000μ bars.
2. Human ears do not respond linearly to increase in sound pressures.
3. Regular exposure to moderate noise makes the human ear more resistant to occasional exposures of high-intensity noise.

Which of the above statements are correct?
(a) 1 and 2 only
(b) 1 and 3 only
(c) 2 and 3 only
(d) 1, 2 and 3
46. Consider the following statements in respect of effect of air pollutants on vegetation:

1. Necrosis refers to killing of tissue
2. Calorosis refers to loss or reduction of green plant pigment
3. Leaf abscission refers to the dropping of leaves
4. Leaf epinasty refers to a downward cu-vature of a leaf due to a higher rate of growth on the upper surface

Which of the above statements are correct?
(a) 1,2 and 3 only
(b) 1,2,3 and 4
(c) 2,3 and 4 only
(d) 1,2 and 4 culy
47. A soil deposit has a void ratio of $1 \cdot 0$. If the void ratio is reduced to 0.60 by compaction, the percentage volume loss is
(a) 10%
(b) 20%
(c) 30%
48. The specific grav ty of a soil sampie is 2.7 and its void ratio is 0.945 . When it is fully saturated the moisture content of the soil will be
(a) 25%
(b) 30%
(c) 35%
(d) 40%
49. If the co-efficient of permeability is doubled and the co-efficient of vo ume compressibility is simultaneously ha'ved, the co-efficient of censolidation
(a) increases by 2 :imes
(b) decreases by 2 times
(c) increases by 4 times
(d) decreases by 4 times
50. Consider the following statements :

Lime stabilization of soil leads to

1. Decrease in shrinkage limit
2. Increase in plastic limit
3. Decrease in liquid limit
L. Flocculation of clay particles

Which of the above statements are correct?
(a) 1,2 and 3
b) 1,2 and 4
(c) 1,3 and 4
d) 2, 3 and 4
51. Arrange the following soils with/respect :o increasing order of realizable friction atio :

1. Lcose gravel fill
2. Sands or gravels
3. Clay sand mixtures and silts
4. Clays and peats
(a) 1,2,3 and 4
(b) 4, 2, 3 and 1
(c) 1,3,2 and 4
(d) 4, 3, 2 and 1
5. In a 7 m thick soil stratum, with its initial void ratio of 0.40 , the void ratio decreases to 0.30 when the affective pressure on the stratum is increased by $1.0 \mathrm{~kg} / \mathrm{cm}^{2}$. The consolidation settlement of the stratum will te
(a) 5 cm
(b) 50 cm
(c) 100 cm
(d) 150 cm
6. A footing $1 \mathrm{~m} \times 1 \mathrm{~m}$ in size rests on the surface of an infinite layer of soil. It is subjected to a load of 600 kN . What is the immediate settlerent of the soil by considering $\mathrm{Eu}=2 \cdot(\mathrm{C} \mathrm{MPa}, \mathrm{N}=0.5$ and influence factor $=0.95$?
(a) 22.5 mm
(b) 25.5 mm
(c) 27.5 mm
(d) 30.0 mm
7. A stratum of soil consists of three layers of equal thickness. The permeability of both the top and the bottom layers is $10^{-4} \mathrm{~cm} / \mathrm{s}$; and that of the middle layer is $10^{-3} \mathrm{~cm} / \mathrm{s}$; then the value of the horizontal coefficien: of permeability for the entire composite of the scil layers is
(a) $2 \times 10^{-4} \mathrm{~cm} / \mathrm{s}$
(b) $3 \times 10^{-4} \mathrm{~cm} / \mathrm{s}$
(c) $4 \times 10^{-4} \mathrm{~cm} / \mathrm{s}$
(d) $5 \times 10^{-4} \mathrm{~cm} / \mathrm{s}$
8. Consider the following statements regarding the overflow rate of a sedimertation tank :
9. Tempeature of water affects the overflow rate
10. Size of particle intended to be removed does not affect the overflow rate
11. Density of particle intended to be removed affects the overflow rate

Which of the above statements are correct?
(a) 1 and 3 only
(b) 1 and 2 anly
(c) 2 and 3 only
(d) 1, 2 and 3
56.

The virgin compression curve for a particular soil is as shown in the above figure on the standard graphical format. The compression index of the soil is
(a) 0.3
(b) 1) 4
(c) 0.5
(d) C. 6
57. In a triaxial compression test, the major principal stress was $9(\mathrm{kPa}$ and the minor principal 3 tross was 3 ? kPa , at failure. The pore pressure at feilure was observed to be 13 kPa . The tangent of the angle of shecrir? resistance of the sandy soil that was -ested was
(a) $\frac{1}{2}$
(b) $\frac{1}{3}$
(c) $\frac{2}{3}$
(d) $\frac{3}{4}$
58. A cylindrical soil spec-men of saturated clay, 3.50 cm diameter and 3 cm length, is tested in an unconfied compression testing machine. The specimen failed under a vertical load oi 50 kg together with an accompanyirg additicnal deformation of 8 mm . What is the unconfined compressive strength of t is ciay?
(a) $4.67 \mathrm{~kg} / \mathrm{cm}^{2}$
(b) $5.0 \mathrm{~kg} / \mathrm{cm}^{2}$
(c) $5.5 \mathrm{~kg} / \mathrm{cm}^{2}$
(d) $6.0 \mathrm{~kg} / \mathrm{cm}^{2}$
59. Consider the following statements related to the properties of a good quality soil sample :

1. Area ratio should re ow
2. Cutting edge should E thick:
3. Inside clearance should be high
4. Outside clearance sholld be low

Which of the above stacments are correct?
(a) 1 and 2
(b) 2 and 3
(c) 3 and 4
(d) 1 and 4
60. Ccnsider the following statements regarding biochemical oxygen demand (BOD) of river water :

1. The BOD rate constant varies with river water temperature
2. The BOD rate constant does not depend on the BOD of the river water
3. The BOD rate constant is often different for different river waters
4. The BOD rate constant cannot be determined in a laboratory

Which of the above statements are correct?
(a) 1 and 4
(b) 1 and 3
(c) 2 and 3
(d) 2 and 4

61. The -ime taken to construct a building was from April 1992 to September 1993. In Scptember 1996, the average settlement was found to be $5 \cdot 16 \mathrm{~cm}$. If the ultimate settiement is estimated to be 25 cr1, then the settlement in January 1997 would have been
(a) 6 cm
(b) 7 cm
(c) 8 cm
(d) 9 cm
62. Consider the follicwing statemerts :

1. The proporioning of footing in sand is more of.en governed ty settlement rather than by bearirg capacity.
2. The pressure julb profiles under a strip footire form as cos-axially imaginable tulbs under its length.
3. Friction piles are also called 'floating piles'

Which of the above statements are correct?
(a, 1, 2 and 3
(b) 1 and 2 only
(c) 1 and 3 only
(d) 2 and 3 only
63. Which of the following facto affect the bearing capacity of cohesive soils?

1. Density of the soil
2. Angle of shecring resistance of the soil
3. Depth of the $x c t i n g$
4. Width of the footing
(a) 1,2 and 3 on. y
(b) 1,2 and \angle only
(c) 2,3 and 4 onl V
(d) 1, 2, 3 and 4
5. Consider the following statements :
6. The required yield of a retaining wall to reach equilibrium in the active case is less than for the passive case.
7. The active pressure caused by a conesionless backfill on a smooth vertical retaining wall may be recused by compacting the backfill.
8. Given a choice, one should prefer a cohesive soil for a backfill vis-a-vis a non-cohesive soil.

Which of the above statements are correct ?
(a) 1,2 and 3 only
(b) 1 and 2 only
(c) 1 and 3 only
(d) 2 ard 3 only
65. Consider the following statements :

Problems regarding foundations to be constructed in expansive soils are solved by

1. Resorting to light foundation pressure
2. Using under-reamed piles for light loads
3. Making the structure rigid enough so that settlement and uplift would not affect them
4. Providing a well-designed basement with the foundation below the neutra point

Which of the above statements are correct?
(a) 1 and 2
(b) 2 and 4
(c) 1 and 3
(d) 2 and 3
66. Which of the following tests are essential for designing a foundation on expansive soils?

1. Swelling pressure tort
2. Free swe.11 test
3. Estimation of different al free swell
4. Shrinkage limit les:
(a) 1,2 and 3 only
(b) 1,2 and 4 only
(c) 1, 2, 3 and 4
(d) 2,3 and 4 only
5. Consider the fo lowing starments :

The general principles of surveying are

1. To work from part whole
2. To locate a new station my measurements from at least two fixed reference points already ϵ established and/or identifiable

Which of the above statements is/are correct?
(a) 1 only
(b) 2 only
(c) Both 1 and 2
(d). Neither 1 nor 2
68. Consider the following statements :

1. Dynamic resistance of a soil is not much different from its static resistance
2. The most comprehensive pile driving formula is Hiley's formula
3. Pile driving formulae are more useful if the subsoil consists of coarse grained soils

Which of the above statements are correct?
(a) 1 and 2 only
(b) 1 and 3 only
(c) 2 and 3 only
(d) 1,2 and 3
69. The Whole Circle Bearing of line $A B$ is 50° and of line $B C$ is 120°. The deflection angle at B from $A B$ to $B C$ is
(a) 50°
(b) 70°
ic) 110°
(d) 120°
70. The levelling staff held at a distance of 200 m is read at 4.54 m with the lubble out of centre by 2 divisions towards the observer. If the sensitiveness cf the bubble is 25 . secs/division, and 1 division $=2 \mathrm{~mm}$, then actual staff reading must have been
(a) 4.5 m
(b) 4492 m
(c) 4.54 m
(c) 4.62 m
71. In a levelling survey, the summation of all backsights and the s.mmation of all foresights are 7.475 n and 7.395 m , respectively. The reduced leve of the initial benchmark is $16(1.000 \mathrm{~m}$. The reduced level of the kas: poin: where the staff is held will be
(a) 100.000 m
(b) 100.080 m
(c) 107.395 m
(d) 107.475 m
72. Consider the following statemerts regarding excreta disposa? without water carriage system :

1. Pit-Privy is a pi: in the ground with the toilet sea: lacated directly over it.
2. Bore-Hole Latrines to not cavse nuisance due to flies and odour.
3. Aqua-Privy works on the sarre principle as a septic tank.
4. In the context of a Bore-Hcke Latrine, a pit of about 30 mb 40 cm diameter is drg to a dept 1 of 4 m to 8 m .

Which of the above stalements are correct?
(a) 1, 2 and 3 only
(b) 2 and 4 only
(c) 1,3 and 4 only
(d) 1, 2, 3 and 4
73. Wh ch of the following minor instrumerts are used for setting out right angles in chain surveying?

1. Cross staff
2. Optical square
3. Prism square
4. Auto level
(a) 1 and 2 only
(b) 2 and 3 only
(c) 1, 2 and 3
(d) 2,3 and 4 only
5. Regarding a Prismatic Compass, which one of the following statements is correct?
(a) The object is sighted first. The observer then moves to the side of the object vane to take the reading
(b) Sighting and reading are done simultaneously
(c) Tae readings are taken from the north end
(d) The compass has an edge bar reedle
6. With regard to Trigonometric Levelling, which one of the following statements is correct at its simplest applications?
(a) Determination of the elevations of stations is based on the observed vertical angles and the horizontal distances
(b) Determinaticn of the horicontal distances is based on the observed vertical angles
(c) Determination of the vertical angles is based on the orsezved horizontal distances
(d) Determination of the horisuntal distances is basecton the obseryed vertical angles and the meazured elevations
7. Consider the following statements:
8. The componert of the distance between two points measured is the north-south drection is called the latitude of the line, between the points

The component of the distance between two porits measured in the east-west directior. is called the departure of the line, between the points
3. The latitude is considered as positive when reckoned southward
4. The departure is considered as negative when reckoned westward

Which of the above statements are correct?
(a) 1,2 and 3 only
(b) 2,3 and 4 only
(c) 1, 2 and 4 only
(d) 1, 2, 3 and 4
77. For minor adjustments of horizontal angits measured using a theodolite, the tangential screw is adjusted after
(a) both the plates are unclamped
(b) the lower plate is clamped and the upper plate is unclamped
(c) the upper plate is clamped and the lower plate is unclamped
(d) both the plates are clamped
78. Consider the following statements regarding ecology :

1. Climax ecosystem is a stage in the erolution of an ecosystem, at which all the species are in dynamic ecuilibrium among themselves as also with the environment.
2. Ecological niche means all the physical, chemical and biological factors that a species needs in order to live and reproduce exist.
3. Edge effect refers to the presence of rich and unique biological diversity found in an ecotone.

Which of the above statements are correct?
(a) 1,2 and 3
(b) 1 and 2 only
(c) 1 and 3 only
(d) 2 and 3 only
79. For better accuracy in measuring and plotting the sides of a triangle by triangulation, the angles of the triangle
(a) should not be more than 30°
(b) should not be less than 30° or more than 120°
(c) are not restrictec in magnitude
(d) should not be less thar. 120°
80. To uniquely determine the position of the user using GPS, one needs to receive signals from at least
(a) 1 satellite
(b) 2 satellites
(c) 3 satellites
(d) 4 satellites
81. Which one of the fol owing Remote Sensing Systems empioys only one detector?
(a) Scanning
(b) Framing
(c) Electromagnetic spectrum
(d) All of the above
82. The maximum superelevation to be provided on a road curve is 1 in 15 . If the rate of change of superelevation is specified as 1 in 120 and the road width is 10 m , then the minrmurn length of the transition curve on each end will be
(a) 120 m
(b) 100 m
(c) 80 m
(d) 180 m
83. A four-lane Jivided highway, with each carric geway being 7.0 m wide, is to be constructed in a zone of high rainfall. In this stretch, the highway has a longitudinal slope of 3% and is provided a camber of 2%. What is the hydraulic gradient on tais highway in this stretch?
(a) 4.0%
(b) 3.6%
(c) 4.5%
(1) $\because 0 \%$
34. In ar area of heavy rainfall, a State Highway of righ-type bituminous surface with four lanes (14.0 m wide) is to ke constructed. What will be the height of the crown of the road relative to the edges for a composite camber (.e. middle half as parabolic and the rest as straight lires) ?
(a) 14 cm
(b) 21 cm
(c) 28 cm
(d) 7 cm
85. Consider the -ollowing statements :

1. Effective stress in a sand layer below a lake with standing water does not alter as the water level fluctuates.
2. Regarding water table below the ground surface, any rise in the water table causes equal changes in both pore pressure and effective stress.
3. Capillary saturation will cause the effective stress to increase.

Which of the above satemens are correct?
(a) 1, 2 and 3
(b) 1 and 2 only
(c) 2 and 3 only
(d) 1 and 3 only
86. A descending gradiert \&f 4% meets an ascending grade of 1 i- -0 where a valley curve of leagth 200 m is tce be formed. What will be the distance of the lowest point on the valley curve from its first tangent poin:?
(a) 100 m
(b) 111 m
(c) 125 m
(d) 118 m
87. What will be the non-cassing sight distance on a highway for a jesign speed of 100 kmpk when its asce.ding gradient is 2% ? Assurne coefficient of friction as 0.7 and brake eiziciency as 50\%.
(a) 176 m
(b) 200 m
(c) 150 m
(d) 185 m
88. Consider the following statements :

1 The ultimate bearing capacity of a footing on sand increases with an increase in its width.
2. The settlement of the footing on sand increases with increase in its width.

Which of the above statements are correct?
(a) 1 only
(b) 3oth 1 and 2
(c) 2 only
(d) Neither 1 nor 2
89. The duration of green time in a traffic signal depends on
(a) traffic density
(b) traffic volume
(c) traffic speed
(d) Al of the above
90. What will be the theoretical maximum capacity (to nearest 10 units) for a single lane of highway given that the speed of the traffec stream is 40 kmph ?
(a) 3000 veh $/ \mathrm{b}$
(b) 2860 veh $/ \mathrm{h}$
(c) 201 C veh $/ \mathrm{h}$
(d) $2510 \mathrm{veh} / \mathrm{h}$
91. The lowest height above the runway where the pilots make the decision to continue the landing manoeuvre or to cut it short is called the
(a) Runway height
(b) Decision height
(c) Threshold height
(d) Runway visual range
92. What would be the admissible gradient for a BG track when the grade esistance coupled with a 4° curve resistance/shal. equal the reastance due to a nuling gradient of 1 in 200?
(a) 0.30%
(b) 0.40%
(c) 0.24%
(d) 0.34%
93. In, the layout of an MG track, the versine of a ho-izontal circuicr carve is measured over a 11.8 m chrid length. What would be the radius of the carve if the value of the versine was 2 cm ?
(a) 900 m
(b) 800 m
(c) 870 m
(d) 850 m
94. What will be the optimum depti of ballast cushion required for a BG raiway track below the sleefers with slese: density of $(\mathrm{M}+5)$ and bottor vidtion o_{-} 22.22 cm ?
(a) 25 cm
(b) 21 cm
(c) 28 cm
(d) 30 cm
95. Which one of the following items of hi.l road construction does not help in the prevention of landslides during the monsoon season?
(a) Breast walls
(b) Hair-pin bends
(c) Catch-water drains
(d) Retaining walls
96. The radius of a horizontal circular curve is 480 m and design speed therein 70 kmph . What will be the equilibrium superelevation for the pressures on the inner and the outer wheels to be equal ?
(a) 5%
(b) 6%
(c) 7%
(d) 8%
-1
(a) 500
(b) 421
(c) 490
(d) 449
100. What shall be the radius of an exit taxiway with desion exit speed of 90 kmph and coefficient of ziction $0 \cdot 13$?
(a) 550 m
(b) 500 m
(c) 475 m
(d) 449 m

Ditections:

Ecch of the next Twenty (20) items consists of two statements, one labelled as the 'Statement (I)' and the other as 'Statement (a)'. Examine these two statements carefully ard select the answers to these items using the codes given below :

Codes:

(a) Both Statement (I) and Statement (II) are individually true and Statement (II) is the correct explanation of Statement (I)
(b) Both Statement (I) and Statement (II) are individually true but Statement (II) is not the correct explanation of Statement (I)
(c) Statement (I) is true but Statement (II) is false
(d) Statement (I) is false but Statement (II) is true
101. Statement (I) : Open channel flow in a channel is said to be critical when the specific force is maximum for a -given discharge.

Statenent (II) : Direct integration for steady non-uniform flow by Bresse's method was developed for very wide rectangular channels.
102. Statement (I) : A moving hydraulic jump is called a surge.

Statement (II) : The travel of a wave is faster in the upper portion than in the lower portion in case of positive surges.
103. Statement (I) : Total energy line and the hydraulic gradient line for a pipe flow cennot intersect each other
Statement (II): The vertical differences between these two lines must equal the velocity head
104. Statement (I): In a reciprocating fump, the Jiston is consilered to be moving with simple
$<$ harmonic motion on the
assumption that the conlecting rod is very large compared to the crank length.
Statement (II) : There is acceleration at the beginning and retardation at the \in nd of each stroke.
105. Statement (I) : Pos sibility of cavitation is an important consideratior in the selection of a turbine for a given head and a range of correspording specific speed.
Statement (II): High-speed turbines are used for high heads.
106. Statement (I): By providing Air `essels on the suction and dehivery sides of a reciprocating Jump, it is possible to increase the deivery head of the punp.
Statement (II) : The Air Vessel termi-na-es the acceleration head and contributes to the outgoing discharge becoming reasonably steacy and uniform.

1(17. Statement (I) : If the soil moisture is only slightly more than the wilting coefficient, the plant must expend extra energy to obtain the water; and hence the plant will not grow healthily.

Statement (II) : Excessive water. supply retards plant growth.
108. Statement (I): Dracontiasis is transmitted by drinking contaminated water.

Statement (II) : Dracontiasis can be controlled by filtration of the drinking water.

10c. Statenent (I : Coagulation is the process of charge neutralization on colloids.

Statement (III: Flocculation is the process to grow the chargeless colloids into settleable flocs.
110. Statement (I , : The flow in water distribution pipes takes place due to gravity.

Statement (II): The flow in sewers takes place due to gravity.
111. Stater ent (i) : Anaerobic digestion of sewage is unsuitable in the vicinity of a crowded locality.

Statement (II) : Aerobic digestion of sewage is costly but is suitable at a crowded locality.
112. Statement (I) : Luty of drio irrigation is very high.

Statement (II) : Losses are least in crio irrigation.
113. Statement (I): An alluvial chânnel is defined as a channel in which the flow trans. ports sediment of the same physical characteristics as the material ir. the wetted surface of the channel.

Statement (II) : This ensures that the channel cross-section and the ciannel slope do not change.
114. Statement (I): The excavation of side slope of en irrigation canal for clayey type of soil should be made at $1: 1$ (i.e. 1 borizontal to 1 vertical) which is taken as nearly equal to the angle of internal friction of the soil.

Statement (II) : The angle of internal friction represents the statle slope when the excavated soil, or soil in loose conditions, assumes when dumped in situ.
115. Statement (I): Composting is basically a treatment method for inorganic waste from a comnunity.

Statement (II) : In the incinerat:on methoc of refuse disyosal, the refuse is burnt off and the volume is much reduced.
116. Satement (I) : Gases are normally formless fluids and can be changed to liquid or solid states by change of temperature and pressure.

Stetement (II): Smog refers to the occurrence of a heavy, cloudy, hazy floating layer in the atmosphere formed by a mixture of smoke, dust, fog and mist.
117. Starement (I) : The specific speed $\left(\mathrm{N}_{\mathrm{S}}\right)$ of a centrifugal pump is defined as the speed (in rpm) at which it works most efficiently.

Sta-ement (II) : The specific speed is a characteristic of pumps that can be used as a basis for comparing the performance of centrifugal pumps.
118. Statement (I) : Permaner lowering of ground wate- tatle results ir settlement of foundations.

Statement (II) : Increase in effe:tive stress does not resuit in settlemen: of strata.
119. Statement (I) : Boussinesq equatio is not saitable for sedimeztary deposits.

Statement (II) : Sedimentary deposit do not represent an is()-tropic-cun-homogen \quad ous system.
120. Statement (I) : In cohes:ve scils, thee ultimate bearing capesity is independent of foundation width.

Statement (II) : The ultimate bearing capacity o ${ }^{\sim}$ cohesive soils increases with depth below ground level.

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK

