

Program Structure for ME Mechanical Engineering (CAD/CAM and Robotics) Mumbai University (With Effect from 2012-2013)

Semester I

Subject		Teaching Scheme (Contact Hours)				Credits Assigned			
Code	Subject Name	Theo ry	Pract.	Tut.	T	heory	Pract.	Tut.	Total
CCC101	Computer aided Design	04				04			04
CCC102	Control Engineering	04				04			04
CCC103	Mechatronics	04				04			04
CCE101X	Elective I	04				04			04
CCE102X	Elective II	04				04			04
CCL101	Laboratory I - CAD &FEA		02				01		01
CCL102	Laboratory II - Objected oriented Programming		02				01		01
Total		20	04			20	02		22
			_	Е	xaminat	ion Schen	ne		1
				Theory	/				
Subject	Subject Name	Internal Assessment			End	Exam.	Term	Pract.	T-4-1
Code		Test1 Te	Test 2	Ava	Sem.	Duration	Work	/oral	Total
			Test 2	Avg.	Exam.	(in Hrs)			
CCC101	Computer aided Design	20	20	20	80	03			100
CCC102	Control Engineering	20	20	20	80	03			100
CCC103	Mechatronics	20	20	20	80	03			100
CCE101X	Elective I	20	20	20	80	03			100
CCE102X	Elective II	20	20	20	80	03			100
CCL101	Laboratory I - CAD &FEA						25	25	50
CCL102	Laboratory II - Objected Oriented Programming						25	25	50
	Total			100	400		30	30	000

Subject Code	Elective I	Subject Code	Elective II
CCE1011	Advanced Stress Analysis [*]	CCE1021	Analysis and Synthesis of Mechanisms ^{\$}
CCE1012	Reliability Engineering ^{\$}	CCE1022	Computational Fluid Dynamics [%]
CCE1013	Rapid Prototyping and Tooling [*]	CCE1023	Product Design
CCE1014	Advanced Finite element analysis [*]	CCE1024	Simulation & Modeling

* Common for Machine Design, Automobile Engineering and CAD/CAM and Robotics

\$ Common for Machine Design and CAD/CAM and Robotics

% Common for Machine Design, Automobile Engineering, CAD/CAM and Robotics and Energy Engineering

Subject Subject Name		Teaching Scheme (Contact Hours)			Credits Assigned				
Code	, , , , , , , , , , , , , , , , , , ,	Theory	Pract.	Tut.	T	heory	Pract.	Tut.	Total
CCC201	Robotics [*]	04				04			04
CCC202	Optimization ^{\$}	04				04			04
CCC203	Computer Aided Machining(CAM)	04				04			04
CCE203X	Elective III	04				04			04
CCE204X	Elective IV	04				04			04
CCL203	Laboratory III - CAM		02				01		01
CCL204	Laboratory IV - Mechatronics &Robotics		02				01		01
	Total	20	04			20	02		22
				E	xaminat	tion Schen	ne		
Subject		Theory							
Codo	Subject Name	Intern	al Assess	ment	End	Exam.	Term	Pract.	Total
Coue		Test1	Tost 2	Ava	Sem.	Duration	Work	/oral	10141
		10511	1050 2	Avg.	Exam.	(in Hrs)			
CCC201	Robotics	20	20	20	80	03			100
CCC202	Optimization ^{\$}	20	20	20	80	03			100
CCC203	Computer Aided Machining(CAM)	20	20	20	80	03			100
CCE203X	Elective III	20	20	20	80	03			100
CCE204X	Elective IV	20	20	20	80	03			100
CCL203	Laboratory III - CAM						25	25	50
CCL204	Laboratory IV - Mechatronics &Robotics						25	25	50
	Total			100	400		50	50	600

Semester II

Subject Code	Elective III	Subject Code	Elective IV
CCE2031	Virtual Reality	CCE2041	Supply Chain Management
CCE2032	Product Lifecycle Management [@]	CCE2042	Artificial Intelligence
CCE2033	Concurrent Engineering	CCE2043	Composite Material ^{\$}
CCE2034	Micro Electro Mechanical Systems [@]	CCE2044	Smart Materials and Applications [*]

* Common for Machine Design, Automobile Engineering and CAD/CAM and Robotics

\$ Common for Machine Design and CAD/CAM and Robotics

@ Common for Machine Design, Automobile Engineering, CAD/CAM and Robotics and Manufacturing Systems Engineering

Semester III

Subject	Subject Name	Teaching Scheme (Contact Hours)			Credits Assigned				
Code		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
CCS301	Seminar		06			03		03	
CCD301	Dissertation I		24			12		12	
Total			30			15		15	
		Examination Scheme							
Subject	Subject Name	Theory				Tarres	Due of		
Code		Internal Assessment			End Sem.	Work	Pract.	Total	
		Test1	Test 2	Avg.	Exam.	WOIK			
CCS301	Seminar					50	50	100	
CCD301	Dissertation I					100		100	
	Total					150	50	200	

Semester IV

Subject	Subject Name	Teaching Scheme (Contact Hours)			Credits Assigned				
Code		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
CCD401	Dissertation II		30			15		15	
Total			30			15		15	
		Examination Scheme							
Subject	Subject Name	Theory				Tam	D	Total	
Code		Internal Assessment			End Sem.	End Sem. Vork			
		Test1	Test 2	Avg.	Exam.	WOIK			
CCD401	Dissertation II					100	100	200	
Total						100	100	200	

Note:

• In case of Seminar (CCS301), 01 Hour / week / student should be considered for the calculation of load of a teacher

• In case of Dissertation I (CCD301) and DissertationII (CCD401), 02 Hour / week / student should be considered for the calculation of load of a teacher

Subi	iect	Code
Duo		Couc

CCC101

Computer Aided Design

Module	Detailed content	Hours
1	Introduction to computer Graphics : Definitions, Classification, Architecture	14
	of interactive computer Graphics, Applications	
	Display & Interactive devices	
	Scan Conversion: Pixel plotting, scan conversion of Line, Circle, ellipse,	
	Parabola, Hyperbola.	
	Effects of Scan conversion	
	Polygons: Types, Poly gon filling using Boundary fill, edge fill, Flood fill	
	algorithms, Scan conversion with Real Time scan conversion ,Run length	
	encoding, Cell encoding	
2	2-D Transformations, 3-D Transformations	08
3	2-D Viewing & Clipping, 3-D Viewing & Clipping	12
	Projection: parallel & Perspective Projections	
4	Curves : Splines, Bezier & B-Spline Curves	08
	Surfaces: Hermite, Bezier & B-Spilne surfaces	
5	Virtual Reality: Hidden Lines & Hidden Surfaces: Z-Buffer, Painters, Area-	10
	Subdivision, Scan Line algorithm	
	Light, Color & Shading Models	
	Animation	
6	CAD & Geometric Modelling: Features of Modeling & Assembly Packages,	08
	Types of Geometric Modelling, Data Structures, Product Data exchange	
	Formats.	
	Fundamentals of CAE: General procedures of Numerical methods like FEM	
	& FDM, Kinematic analysis & Animation , Features and Application of	
	Commercial packages of CAE.	

References:

- 1. Computer Grahics by F.S Hill. Jr
- 2. Computer graphics by Zhigang Xiang & Roy Plastock (Schaum's outline's)
- 3. Computer Graphics by Hearn & Baker
- 4. Mathematical elements for Computer Graphics by David F. Rogers, James Alan Adams
- 5. Procedural elements for Computer Graphics by David F. Rogers, James Alan Adams
- 6. Mastering CAD/CAM by Ibrahim Zeid
- 7. Geometric Modelling by Mortenson, M.E.

- **Internal:** Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.
- **End Semester Examination:** Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students.Minimum 80% syllabus should be covered in question papers of end semester examination.

Subject CodeSubject NameCreditsCCC102Control Engineering04

Module	Detailed content	Hours
1	Introduction to control systems. Classification of control system, Effect of feedback. Mathematical modeling of control systems, concept of transfer function. Block diagram algebra, and signal flow graphs,.	08
2	Time response analysis: Time response of control system, standard test signal, Time Response Analysis of First and Second order system, Time Domain specifications. Step response of second order system. steady-state errors, static error constants, steady state, analysis of Different type of systems using step. Ramp and parabolic inputs. Response with P,PI,PD,PID Controller.	10
3	Classification of control systems according to 'TYPE' of systems, Stability analysis: Introduction to concepts of stability. The Routh and Hurwitz stability criteria. Relative stability analysis.	10
4	Root locus Techniques. Frequency Response Analysis, Frequency domain specifications Correlation between time and frequency response. Polar Plots. Bode Plots, Nyquist Plots,	12
5	State space modeling: Concept of state, state variable, state model. State space representation using physical and phase variables, decomposition of transfer function, diagonalisation. State transition matrix. Transfer function from state model. Controllability and observability of linear system.	10
6	Compensation (Introduction only): Types of compensator, selection of compensator, Lead, Lag and Lag-Lead compensation. Control system Components : servomotor, stepper motors,Synchros, Potentiometer, amplifiers	08

References:

- 1. Control System Engineering: by Nagrath LT. and Gopal .M., Wiley Eastern Lid.
- 2. Modem Control engineering: by K.Ogata, Prentice Hall.
- 3. Benjamin C. Kuo, Automatic Control Systems, Pearson education, seventh edition.
- 4. MadanGopal, Control Systems Principles and Design, Tata McGraw Hill, seventh edition, 1997
- 5. Nise, control system Engineering, John wiley& sons, 3rd edition

- **Internal:** Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.
- **End Semester Examination:** Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of end semester examination.

Sub	iect	Code
Sub	ect	Coue

CCC103

Mechatronics

Module	Detailed content	Hours
1	Introduction to Mechatronics, Traditional and Mechatronics design,	06
	Mechatronics Key elements, Basic Components of Mechatronics Systems,	
	Integrated design issues in Mechatronics, Mechatronics design process,	
	Mechatronics Systems in Factory, Home and Business Applications,	
	Objectives, Advantages , disadvantages of Mechatronics	
2	Overview of micro processors and micro-controllers, 8051 microcontrollers:	12
	Functional block diagram and architecture, Instruction set and assembly	
	language programming.	
3	Interfacing hardware with real world, analog interface and data acquisition,	10
	digital i/o interfacing, special function interfacing signal conditioning, special	
	utility support hardware Interfacing of: HEX-keyboards, LCD display, ADC,	
4	DAC and stepper motor with 8051 Micro controller	0.0
4	Overview of Sensors and Transducers- Sensors for motion and position,	08
	Force Torque and Tactile Sensors, Range Sensors, Proximity Sensors,	
	Miero and Nano. Songorg in Machetronicg	
5	Flactro Preumatic systems Electro Hydraulic systems Development of	14
5	circuits for Industrial-automation	14
	circuits for industrial-automation.	
	Logic Gates - AND OR NOT NAND and NOR applications of basic	
	control circuits based on these gates. Karnaugh map for signal simplification	
	control en cales ou cales gues, runnaugh mup for orginal omprineation	
	Programmable logic controllers- Over viewand applications of	
	programmable logic controllers in manufacturing, Relay logic, programming a	
	PLC using ladder diagram programming, Ladder logic programme for control	
	of single cylinder and two cylinder pneumatic systems and hydraulic systems	
6	Case Studies of Mechatronics Systems- Timed Switch, Pick and Place Robot,	10
	Car Park Barriers, Automatic Camera, Car Engine Management, Bar Code	
	System, CNC Machine, ABS, Artificial Intelligence in Mechatronics, Fuzzy	
	Logic applications in Mechatronics	

References:

- 1. The 8051 microcontroller and embedded systems using assembly and C by M.A.Mazidi, J. c:.Mazidi and R. D. McKinlay. PHI, second edition
- 2. The 8051 microcontroiler Architecture, Programming anJ Applications Kenn'th J T Ayala, Pemam International Publishing, (India).
- 3. Process control & Instrumentation technology : Cirtis D Johnson
- 4. Industrial control & instrumentation W Bolaton, (Orient Longman)
- 5. Mechatronics Electronic Control Systems in Mechanical Engineering, Bolton Pearson education
- 6. Mechatronics. HMT
- 7. Fundamentals of Electro-Pneumatics :Festo Series
- 8. Fundamentals of Electro-Hydraulics: Festo Series

Assessment:

- **Internal:** Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.
- **End Semester Examination:** Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of end semester examination.

Subject Code	Subject Name	Credits
CCE1011	Advanced Stress Analysis [*]	04

Module	Detailed content	Hrs.
1	Analysis of stress in three dimensions:	12
	Stress at a point – components of stress; Principal stresses; Determination of	
	principal stresses; Stress invariants; Determination of maximum shear	
	stresses; Octahedral shear stress, Hydrostatic and Deviatoric Stress Tensors	
	Mohr's Circle for 2D and 3D stress problem.	
2	Analysis of strain:	10
	Strain at a point – Components of strain; Differential equations of	
	equilibrium; Conditions of compatibility, Hydrostatic and Deviatoric	
	Strain Tensors Mohr's Circle for 2D and 3D strain problem.	
3	Stress Strain relationship:	10
	Generalized Hooke's law, Elastic behavior for different materials (Isotropic,	
	Orthotropic and Anisotropic).	
4	Electrical Strain Gauges:	08
	Principle of operation and requirements, Types and their uses, Materials for	
	strain gauge. Calibration and temperature compensation, cross sensitivity,	
	Rosette analysis, Wheastone bridge and potentiometer circuits for static and	
	dynamic strain measurements, strain indicators. Load cell and its types	
	Introduction to Recent Trends in Strain Measurement	
5	Fatigue and Fracture:	10
	Introduction to fatigue and fracture mechanics of ductile and brittle fractures	
	mechanism of fatigue failure. Factors affecting fatigue. Methods of	
	improving fatigue strength. Cumulative damage theories. Linear elastic	
	fracture mechanics. Finite life, infinite life, design of machine components,	
	Fracture toughness, Crack growth studies	
6	Environmental considerations in design:	10
	Corrosion, corrosion under stress, fretting corrosion and effects of other	
	chemicals. Methods of improving corrosion resistance.	

* Common for Machine Design, Automobile Engineering and CAD/CAM and Robotics

- 1. Srinath, L.S., Raghava, M.R., Lingaiah, K., Garagesha, G., Pant B., and Ramachandra, K., "Experimental Stress Analysis", Tata McGraw-Hill, New Delhi, 1984.
- 2. M. Ameen, "Computational Elasticity", Narosa Publishing House.
- 3. Dally, J.W., and Riley, W.F., "Experimental Stress Analysis", McGraw-Hill Inc., New York, 1998.
- 4. Cook and Young, "Advanced Mechanics of Materials", Prentice Hall
- 5. Richard G. Budynas, "Advanced Strength and Applied Stress Analysis", McGraw Hill
- 6. Boresi, Schmidt, "Advanced Mechanics of Materials", Sidebottom, Willey
- 7. Timoshenko and Goodier, "Theory of Elasticity", McGraw Hill
- 8. Timoshenko, "Advanced Strength of Materials, Vol. 1,2", CBS
- 9. T.L. Anderson, "Fracture Mechanics Fundamentals and Applications " CRC Press

- **Internal:** Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.
- **End Semester Examination:** Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of end semester examination.

CCE1012

Reliability Engineering^{\$}

	04	

Module	Detailed content	Hours
1	Probability theory	
	Probability · Standard definitions and concepts: Conditional Probability	
	Bave's Theorem.	
	Probability Distributions: Central tendency and Dispersion; Binomial,	12
	Normal, Poisson, Weibull, Exponential, relations between them and their	
	significance.	
	Measures of Dispersion: Mean, Median, Mode, Range, Mean Deviation,	
	Standard Deviation, Variance, Skewness, Kurtosis.	
2	Reliability Concepts	
	Paliability definitions, Importance of Paliability, Quality Assurance and	
	Reliability Bath Tub Curve	
	Failure Data Analysis: Hazard rate failure density Failure Rate Mean	14
	Time To Failure (MTTF), MTBF, Reliability Functions.	
	Reliability Hazard Models : Constant Failure Rate, Linearly increasing,	
	Time Dependent Failure Rate, Weibull Model. Distribution functions and	
	reliability analysis.	
3	System Reliability	
	Sector Conferenciano Conico negalicitaria i conferencian la contesta d	08
	system Configurations : Series, parallel, mixed configuration, k- out of n	
4	Reliability Improvement	
	Redundancy Techniques : Element redundancy, Unit redundancy, Standby	08
	redundancies. Markov analysis.	08
	System Reliability Analysis – Enumeration method, Cut-set method,	
	Success Path method, Decomposition method.	
5	Maintainability and Availability	
	System downtime	
	Design for Maintainability : Maintenance requirements.	10
	Design methods : Fault Isolation and self diagnostics, Parts standardization	10
	and Interchangeability, Modularization and Accessibility, Repair Vs	
	Replacement. Availability – qualitative aspects.	
6	Failure Mode, Effects and Criticality Analysis	
	Failura moda affacts analysis sayarity/ariticality analysis EMECA	
	examples Fault tree construction basic symbols development of	08
	functional reliability block diagram. Fault tree analysis and Event tree	
	Analysis	
0		•

\$ Common for Machine Design and CAD/CAM and Robotics

- 1. L.S. Srinath, "Reliability Engineering", Affiliated East-West Press (P) Ltd., 1985.
- 2. Charles E. Ebeling, "Reliability and Maintainability Engineering", Tata McGraw Hill.
- 3. B.S. Dhillion, C. Singh, "Engineering Reliability", John Wiley & Sons, 1980.
- 4. P.D.T. Conor, "Practical Reliability Engineering", John Wiley & Sons, 1985.
- 5. K.C. Kapur, L.R. Lamberson, "Reliability in Engineering Design", John Wiley & Sons.
- 6. Murray R. Spiegel, "Probability and Statistics", Tata McGraw-Hill Publishing Co. Ltd.

- **Internal:** Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.
- **End Semester Examination:** Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of end semester examination.

Subject	Code	Subject Name	Credits
CCE1013		Rapid Prototyping and Tooling [*]	04
Module		Detailed content	Hours
1	Rapid	Prototyping	10
	•	Historical Development	
	•	Applications: Design, Planning, Manufacturing and Tooling	
	•	Applications: Automotive, Jewelry, Coin and Bio-Medical	
	•	Fundamentals of Rapid Prototyping, Design Process	
	•	Rapid Prototyping Process Chain	
2	Subsy	stems of RP Machine	10
	•	Subsystems of RP machine	
		 Optical System 	
		 Mechanical Scanning System 	
		 Computer Interfacing hardware, DAQs 	
		 Signal Flow, 3D Model to RP Prototype 	
	•	Introduction to 3D Modeling Softwares (Auto-CAD, PROE,	
		CATIA, IDEAs etc.)	
	•	Slicing and Scan Path Generation Algorithms	
	•	Data Conversion and Transmission	
	•	File Formats, IGES, STL	
	•	Preprocessing and Post-processing	
3	Liquid	l Based Rapid Prototyping Systems	10
	•	Materials	
	•	Stereolithography	
	•	Solid Ground Curing	
	•	Solid Object UV (Ultra-Violet) Printer	
	•	Two Laser System	
	•	Micro-stereolithography	
4	Solid 1	Based Rapid Prototyping Systems	10
	•	Materials	
	•	LOM (Laminated Object Manufacturing) System	
	•	FDM (Fuse Deposition Modeling) System	
	•	Multi-Jet Modeling (MJM) System	
	•	Model Maker and Pattern Master	
	•	Shape Deposition Manufacturing Process	
5	Powde	er Based Rapid Prototyping Systems	10
	•	Materials	
	•	SLS (Selective Laser Sintering)	
	•	(3DP) Three-Dimensional Printing	
	•	(LENS) Laser Engineered Net Shaping	
	•	(MJS) Multiphase Jet Solidification	
	•	(EBM) Electron Beam Melting	
6	Advar	ces in RP Systems and Case Studies	10
	•	Advances in RP: Resolution & Accuracy issues, Integrated	
		Hardening Process, Two Photon Process for Micro/Nano	
		Fabrication, Reverse Engineering Process and Applications.	
	•	Case Study: Wind-Tunnel Testing with RP Models	
	Case S	tudy: Investment Casting with RP	

* Common for Machine Design, Automobile Engineering and CAD/CAM and Robotics

References:

- 1. Chua C.K., Leong K.F., and Lim C.S., "Rapid Prototyping Principles and Applications", World Publishing Co. Pte. Ltd.
- 2. James O. Hamblen, and Michael D. Furman, "Rapid Prototyping of Digital Systems", Kluwer Academic Publishers.
- 3. Kenneth G. Cooper, "Rapid Prototyping Technology Selection and Application", 2001, Marcel Dekker Inc, New York.
- 4. Ali Kamrani, EmadAbouel Nasr, "Rapid Prototyping Theory and Practice", 2006, Springer Inc.
- 5. BopayaBidanda, Paulo J. Bartolo, "Virtual Prototyping and Bio Manufacturing in Medical Applications", 2008, Springer Inc.
- 6. I. Gibson, D.W. Rosen, and B. Stucker, "Additive Manufacturing Technologies Rapid Prototyping to Direct Digital Manufacturing", 2010, Springer Inc.

- **Internal:** Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.
- **End Semester Examination:** Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of end semester examination.

Subject Name

CCE1014

Advanced Finite Element Analysis*

04

Module	Detailed content	Hrs.
1	• Introduction to FEA, General FEM procedure,	14
	• Approximate solutions of differential equations: FDM method, W-R technique, collocation least square sub-domain and Galerkin method	
	• Numerical integration. Gauss quadrature in 2 D and 3 D	
	 Numerical integration, Gauss quadrature in 2-D and 5-D Structure of EEA program. Pre and Post processor commercially available. 	
	standard packages, and desirable features of FEA packages.	
	• Principal of minimum total potential, elements of variational calculus, minimization of functional, Rayleigh-Ritz method, Formulation of elemental matrix equation, and assembly concepts.	
2	One Dimensional FEM:	12
	• Coordinate system: Global, local, natural coordinate system.	
	Shape functions: Polynomial shape functions, Derivation of shape functions,	
	Natural co-ordinate and coordinate transformation, Linear quadratic and cubic	
	elements, Shape functions using Lagrange polynomials. Convergence and	
	compatibility requirement of shape functions.	
	• One dimensional field problems: structural analysis (step-bar, taper-bar).	
	composite bar fins. Eluid network and flow through porous medium, analysis of	
	electrical network problems by FEA	
3	Trusses Thermal effects in truss members Beams	10
-	 Two dimensional finite elements formulations. Threenoded triangular element. 	
	Four-noded rectangular element, Four-noded quadrilateral element, derivation	
	of shape functions: natural coordinates, triangular elements, and quadrilateral	
	elements.	
	• Six-noded triangular elements, Eight-noded quadrilateral elements, Nine-noded	
	quadrilateral element; Strain displacement matrix for CST element	
4	 Penalty Method, Lagrange methods, Multipoint Constraints 	08
	Concept of Master/Slave entities	
	• Examples of Contact problems.	
	• Iso-parametric concepts, basic theorem, Iso-parametric, super-parametric, sub-	
5	parametric elements, Concept of Jacobian	00
5	• Finite element formulation of Dynamics, application to free-vibration problems,	08
	 Transient dynamic problems in heat transfer and solid mechanics 	
	 Introduction to time-integration methods: Implicit and Explicit methods 	
	Convergence. Impact of Mesh quality on convergence	
6	• Three dimensional elements: Tetrahedron, Rectangular prism (brick), Arbitrary	08
	hexahedron; Three Dimensional polynomial shape functions, Natural co-	
	ordinates in 3D, Three dimensional Truss(space trusses)	
	• Introduction to material models: Introduction to plasticity (Von-Mises	
	Plasticity), Hyper -elasticity. Generating and using experimental data to model	
	material behaviour.	
	• Errors in FEA, sources of errors, method of elimination, Patch test.	

* Common for Machine Design, Automobile Engineering and CAD/CAM and Robotics

- 1. O.C.Zienkiewicz, R.L.Taylor&J.Z.Zhu, "The Finite Element Method its Basis and Fundamentals", Butterworth-Heinemann,Elsevier
- 2. Reddy J. N., "Finite Element Method", McGraw-Hill
- 3. S.S.Rao, "The Finite Element Method in Engineering", 4th Edition, Academic Press, Elsevier
- 4. U.S.Dixit, "Finite Element Methods for Engineers", Cengage Learning
- 5. P.Seshu, "Textbook of FE Analysis", Prentice Hall
- 6. Desai and Abel, "Introduction to Finite Elements Methods", CBS Publication
- 7. Tirupati R. Chandrupatla and Ashok D.Belegundu, "Introduction to Finite Elements in Engineering"
- 8. Erik Thompson, "Introduction to Finite Element Methods", Wiley India
- 9. H. Kardestuneer, "Finite Elements Hand Book"
- 10. R.D.Cook, "Concepts & Applications of Finite Element Analysis"
- 11. Bathe K.J., "Finite Element Procedures in Engineering Analysis", Prentice Hall of India
- 12. Huebener K.H., Dewhirst D.D., Smith D.E. and Byrom T.G., "The Finite Element Method for Engineers", John Wiley, New York
- 13. Logan, "Finite Element Methods" Cengage Learning
- 14. George Buchanan, "Finite Elements Analysis", McGrawHill
- 15. C.S.Krishnamoorthy, "Finite Elements Analysis", Tata McGraw-Hill
- 16. RobertCook, "Concept and Application of Finite Element Methods", Wiley India.

- **Internal:** Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.
- **End Semester Examination:** Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of end semester examination.

Subject Name

CCE1021

Analysis and Synthesis of Mechanisms^{\$}

Credits

04

Module	Detailed content	Hrs.
1	Basics of Mechanism:	10
	Rigid body, Kinematic pairs, Lower pairs connections, Higher pair connections,	
	Kinematic chain, Mechanism, Four bar mechanism, Slider crank mechanism,	
	Transmission, deviation and pressure angles, Equivalent mechanisms.	
2	Type Synthesis, Number Synthesis, Dimensional Synthesis	10
	Type synthesis, Number synthesis, Dimensional synthesis, Accuracy points,	
	Spacing of of accuracy points, Chebyshev polynomials.	
3	Four Bar Coupler Point Curve:	10
	Four bar linkage, coupler curve equation, double points and symmetry, Roberts-	
	Chebyshev theorem.	
4	The Euler Savary Equation and Cubic of Stationary Curvature:	10
	The Euler Savary equation and the Inflection circle, The cubic of stationary	
	curvature.	
5	Linkage Synthesis with ThreeAccuracy Points (Geometric Methods):	10
	Concept of poles, relative poles, pole triangle of four bar and slider crank	
	mechanism. Application in position generation, function generation problems.	
	Linkage Synthesis with Four Accuracy Points (Geometric Methods):	
	Concept of opposite pole quadrilateral, Center point curve, Circle point curve,	
	Application in position generation problems.	
6	Linkage Synthesis with Three Accuracy Points (Algebraic Method)	10
	Fredeinstain displacement equation of four bar linkage for three accuracy	
	points, Crank-follower linkage synthesis angular velocities and acceleration	
	Linkage Synthesis with Three Accuracy Points:	
	Complex Number Method	

\$ Common for Machine Design and CAD/CAM and Robotics

References:

- 1. Rudolf Beyer, "The Kinematic Synthesis of Mechanisms", Chapman & Hall
- 2. Asok Kumar Malik, Amitabh Ghosh, "Kinematic Analysis and Synthesis of Mechanism"
- 3. Deh Chang Tao, "Applied Linkage Synthesis", Addison-Wesley Pub. Co.
- 4. Richard ScheunemannHartenberg andJacques Denavit, "Kinematic Synthesis of Linkages", McGraw-Hill
- 5. Delbert Tesar, "Graphical Procedures for Kinematic Synthesis of Mechanism", University of Florida

- **Internal:** Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.
- **End Semester Examination:** Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students.Minimum 80% syllabus should be covered in question papers of end semester examination.

UUEIU22

Module	Detailed content	Hours
1	Introduction:	06
	Definition and overview of CFD, Advantages and applications, CFD methodology	
2	Governing Differential Equations:	10
	Governing equations for mass, momentum and energy; Navier-Stokes equations; Mathematical behaviour of PDE's viz. parabolic, elliptic and hyperbolic, Initial and boundary conditions, Initial and Boundary value problems.	
3	Discretization Techniques:	12
	Introduction to Finite difference Method, Finite Volume method and Finite Element method Finite difference methods; Finite difference representation of PDE's; Solutions to Finite Difference Equations; Implicit, semi-implicit and explicit methods; Errors and stability criteria	
4	Finite Volume Methods:	14
	FVM solutions to steady one, two and three dimensional diffusion problems and unsteady one and two dimensional diffusion problems FVM solutions to convection-diffusion problems - one and two dimensional, steady and unsteady; Advection schemes; Pressure velocity coupling; SIMPLE family of algorithms	
5	Grid Generation:	10
	Structured and Unstructured Grids; General transformations of the equations; body fitted coordinate systems; Algebraic and Elliptic Methods; multi block structured grids; adaptive grids	
6	Turbulence Modeling:	08
	Effect of turbulence on governing equations; RANS, LES and DNS Models	

% Common for Machine Design, Automobile Engineering, CAD/CAM and Robotics and Energy Engineering

- 1. Muralidhar, K., Sundararajan, T., "Computational fluid flow and heat transfer", NArosa Publishing House, New Delhi1995
- 2. Ghosdhasdidar, P.S., "Computer simulation of flow and heat transfer", TataMcGraw-Hill Publishing company Ltd., 1998.
- 3. Subas, V.Patankar, "Numerical heat transfer fluid flow", Hemisphere publishing Corporation.
- 4. Taylor, C and Hughes J.B., "Finite Element Programming of the Navier Stokes Equation", Pineridge Press Ltd., U.K, 1981.
- 5. Anderson, D.A., Tannehill , I.I., and Pletcher, R.H., "Computational fluid Mechanics and Heat Transfer", Hemisphere Publishing Corporation, New York , USA, 1984.
- 6. Fletcher, C.A.J., "Computational Techniques for Fluid Dynamics 1", Fundamental and General Techniques, Springer- Verlag, 1987

- **Internal:** Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.
- **End Semester Examination:** Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of end semester examination.

CCE1023

Product Design

Module	Detailed content	Hours
1	Importance of product design, type of design product definition, product specification, Phases of product development: conceptual, embodiment and detailed design, product and technology development cycle, conceptgeneration and evaluation methods.Product life cycle with management with case studies,Creativitivity& Idea generation techniques.Importance of QualityDimensions:Performance,Features,aesthetics,Ergonomics,Reliabilty ,Sustainability,Serviceability,Brand value, Value Vs cost,Importance of shape, color,feature &Resemblance.	10
2	Material selection– Importance, classification material performance characteristic, selection criteria Ashby Material selection chart.New developments in materials:Special alloys, Composites and Ceramics.	06
3	Process selection – Importance types of manufacturing process and their classification, Sources of information selection criteria Material and Process selection Methods, Expert systems. Computer Database Approach, performance indices decision matrix, AHP and fuzzy approach introduction to material and process selection software. Axiomatic design principles and case studies.	10
4	Benchmarking – DFM, DFA, DFX, supplier involvement robust design, QFD and concurrent engineering.Design & process FMEA.	10
5	Mathematics of Times Value of Money, Cost Comparison, Depreciation,Taxes. Inflation profitability of Investment and Investment Decision Analysis,Sensitivity Analysis. Methods of cost Estimates, Industrial EngineeringApproach, parametric Approach. Introduction to Assembly Modeling, Top-Down and Bottom-Up Approaches of AM,Mating Conditions, representation Schemes. Generation of Assembly Sequences.	10
6	Product Development Cycle and Importance of Prototyping. Types of prototypes. Principal and advantages & Different Type of Generative Manufacturing process, Viz. Stereo lithography. FDM, SLS etc. Factors Concerning to RP: Consideration for Adoptions, Advantages, Accuracy andEconomic Consideration Case studies	14

- 1. Product Design and Manufacturing by A.K.Chitale, R.C.Gupta, PHI.
- 2. Product Design and Development by Ulirich Karl T. and Eppinger Steven D,McGraw Hill.
- 3. Engineering Design by Dieter George E., McGraw Hill.
- 4. Handboook of Product Design for Manufacturing by Bralla, James G,McGraw Hill.
- 5. Product Design by Kevin Otto & Kristin Wood

- **Internal:** Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.
- **End Semester Examination:** Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of end semester examination.

Subject Name

Credits 04

CCE1024

Module	Detailed content	Hrs
1	Principle of computer modelling and simulation: Monte Carlo simulation. Nature of computer- modeling and simulation. Limitations of simulation, areas of applications. Components of a system - discrete and continuous systems, Models of a system -a variety of modeling approaches.	07
2	Discrete Event Formalisms Concepts of discrete event simulation, model components, a discrete event system simulation, simulation world views or formalisms. Characteristics of queueing systems, queueing notations, long run measures of performance of queueing systems, Steady state behavior of Markovian models (M/G/1, M/M/1, M/M/c) overview of finite capacity and finite calling population models, Network of Queues simulation of single channel queue, multi channel queue, inventory system and dump truck problem using event scheduling approach.	10
3	Statistical Models in Simulation Overview of probability and statistics, useful statistical model, discrete distribution, continuous distribution, empirical distribution and Poisson process. Discrete uniform -distribution poisson distribution -geometric distribution - acceptance -rejection technique for Poisson distribution gamma distribution.	10
4	RANDOM NUMBER GENERATION: Techniques for generating random numbers- Mid square method -the mod product method -Constant multiplier technique -Additive congruential method -Linear congruential method -Tests for random numbers -The Kolmogorov-Smimov test -the Chi-square test RANDOM VARIABLE GENERATION: Inversion transforms technique- exponential distribution. uniform distribution, weibul distribution, continuous distribution, generating approximate normal variates-Erlang distribution.	11
5	Input Modeling Introduction, steps to build a useful model of input data, data collection, identifying the distribution with data, parameter estimation, suggested estimators, goodness of fit tests, selection input model without data, covariance and correlation, multivariate and time series input models.	12
6	Verification and Validation of Simulation Model Introduction, model building, verification of simulation models, calibration and validation of models:- validation process, face validity, validation of model, validating input-output transformation, t-test, power of test, input output validation using historical data and Turing test.	10

Output Analysis

Types of simulations with respect to output analysis, stochastic nature of output data, measure of performance and their estimation, output analysis of terminating simulators, output analysis for steady state simulation. variance reduction techniques -antithetic variables, variables-verification and validation of simulation models.

- 1. Banks J., Carson J. S., Nelson B. L., and Nicol D. M., "Discrete Event System Simulation", 3rd edition, Pearson Education, 2001.
- 2. Gordon Geoffrey, "System Simulation", 2nd edition, PHI, 1978.
- 3. Law A. M., and Kelton, W. D., "Simulation Modeling and Analysis", 3rd edition, McGraw-Hill, 2000.
- 4. NarsingDeo, "System Simulation with Digital Computer", PHI.
- 5. Frank L. Severance, "System Modeling and Simulation"
- 6. Trivedi K. S., "Probability and Statistics with Reliability, Queueing, and Computer Science Applications", PHI, 1982.
- 7. Wadsworth G. P., and Bryan, J. G., "Introduction to Probability and Random Variables", McGraw-Hill, 1960.
- 8. Donald W. Body, "System Analysis and Modeling", Academic Press Harcourt India.
- 9. Bernard, "Theory Of Modeling and Simulation"
- 10. Levin & Ruben, "Statistics for Management"
- 11. Aczel&Sounderpandian, "Business Statistics"

- **Internal:** Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.
- **End Semester Examination:** Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students.Minimum 80% syllabus should be covered in question papers of end semester examination.

Subject Code	Subject Name	Credits
CCL101	CAD and FEA	01

Module	Detailed content	Lab.
		Sessions
1	3D- Modeling and Assembly & Drafting	05
2	Kinematic & Kinetic Analysis of Mechanisms	05
3	Static & Dynamic analysis using FEA	05

Assessment:

End Semester Examination: Practical/Oral examination is to be conducted by pair of internal and external examiners

Subject Code	Subject Name	Credits
CCL102	Object Oriented Programming	01

Module	Detailed content	Lab.
		Sessions
1	Object oriented programming using C++	08
2	Object oriented programming using Java	07

Assessment:

End Semester Examination: Practical/Oral examination is to be conducted by pair of internal and external examiners

Subject Code	Subject Name	Credits
CCC201	Robotics [*]	04

Module	Detailed content	Hours
1	Introduction:Automation & robotics, Robotic System & Anatomy Classification, FutureProspectsRobotic Application in Manufacturing:Material transfer, Machine loading & unloading, Processing operations,Assembly & InspectorsSocial Issues and Economics of roboticsDrives:Control Loops, Basic Control System Concepts & Models, Control SystemAnalysis, Robot Activation & Feedback Components, Position & VelocitySensors, Actuators , Power Transmission Systems.	12
2	 Robot &its Peripherals: End Effecters - types, Mechanical & other grippers, Tool as end effecter Sensors: Sensors in Robotics, Tactile Sensors, Proximity & Range Sensors, Sensor Based Systems Robotic Cell Design & Control. 	08
3	Robot Kinematics : Coordinate Frames, Rotations, Homogeneous Coordinates, Arm Equation of Planer Robot, Four axis SCARA Robot, TCV, Inverse Kinematics of Planer Robot, Four Axis SCARA Robot.	12
4	Trajectory Planning & Robot Dynamics: Manipulator Path Control- Linear, Quadratic and Cubic Interpolation, Work Space Analysis, Robot Dynamics –Langrangian Dynamics of one and two link robot arm	08
5	Machine Vision: Introduction, Low level & High level vision, Sensing &Digitising, Image processing & analysis, Segmentation, Edge detection, Object description& recognition, Interpretation, Noises in Image, Applications	08
6	 Programming For Robots: Methods, Robot programme as a path in space, Motion interpolation, level & task level languages, Robot languages; Programming in suitable languages Characteristics of robot Robot Intellgence Task Planning: Introduction, State space search, Problem reduction, Use of predictive logic, Means -Ends Analysis, Problem solving, Robot learning,Robot task planning. 	12

* Common for Machine Design, Automobile Engineering and CAD/CAM and Robotics

- 1. YoremKoren, "Robotics for Engineers"
- 2. J. F. Engelberger, "Robotics in Practice"
- 3. Ulrich Rembolds, ChristialBlume, "Computer Integrated Manufacturing Technology and Systems"
- 4. Ramamurthy, "Computer Aided Design in Mechanical Engineering"
- 5. Mark Spong, "Robot Dynamics and Control", Wiley India
- 6. John Craig, "Robotics"
- 7. Paul R.P., "Robot Manipulators: Mathematics, Programming and Control"
- 8. Groover and Simmers, "Industrial Robotics"
- 9. Ernest Deoblin, "Measurement systems"
- 10. Beckwith and Lewisbuck, "Mechanical Measurements"
- 11. K. Ogata,"Modern Control Engineering",PHI
- 12. Benjamin Kuo, "Automatic Control Systems", Wiley India
- 13. Richard D. Klafter et al, "Robotic Engineering -an Integrated Approach", PHI
- 14. Spyros G. Tzafestas, "Intelligent Robotic Systems"

- **Internal:** Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.
- **End Semester Examination:** Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of end semester examination.

Subject Code	Subject Name	Credits
CCC202	Optimization ^{\$}	04

Module	Detailed content	Hours
1	Basic Concepts:	10
	Statement of the Optimization Problem, Basic Definitions, Optimality	
	Criteria for Unconstrained Optimization, Optimality Criteria for	
	Constrained Optimization, Engineering Application of Optimization,	
	Overview of optimization technique, Interdisciplinary nature, Introduction	
	to related software.	
2	Linear Programming Problem:	10
	Formulation, Simplex method, Primal to Dual, Dual Simplex method,	
	Sensitivity Analysis.	
3	Integer L.P. Model:	10
	Gomory's cutting plane method, Branch & Bound Technique.	
	Non L.P. Model:	
	Lagrangian method & Kuhn tucker method.	
4	Unconstrained Optimization Technique:	10
	Necessary and sufficient condition – search method (unrestricted Fibonacci	
	and Golden) - Interpolation method (Quadratic, Cubic & Direct root	
	method). Direct search method – Random search, Pattern search and Rosen	
	Brock's hill climbing method.	
5	Newtonian Method:	10
	Newton's method, Marquardt's method, Quasi Newton method.	
	Discrete Event Simulation: Generation of Random Variable, Simulation	
	Processes, Monte-Carlo Technique.	
6	Response Surface Method:Response Surface, The Least-Squares	10
	Methods, Two-Level Factorial Design, Addition of Center Points, Central	
	Composite Design(CCD), Sequential Nature of RSM, Other Experimental	
	Design	

\$ Common for Machine Design and CAD/CAM and Robotics

References:

- 1. RanjanGanguli, "Engineering Optimization A Modern Approach" Universities Press
- 2. Pablo Pedregal, "Introduction to Optimization", Springer
- 3. S.S. Rao, "Engineering Optimization Theory and Practice", John Wiley and Sons Inc.
- 4. L.C. Jhamb, "Quantitative Techniques Vol. 1 and 2", Everest Pub. House
- 5. Pierre D.A., "Optimization, Theory with Application", John Wiley & sons.

- Internal: Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.
- End Semester Examination: Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students.Minimum 80% syllabus should be covered in question papers of end semester examination.

Computer Aided Machining

Module	Detailed content	Hours
1	Introduction to Computer Numerical Control.	10
	History of various NC machines like TNC, NC, CNC, DNC, Elements of	
	CAM, Various CNC applications in different industries, Computer control	
	concepts, Data processing units, Binary execution.	
2	CNC Hardware	10
	Structure of CNC machine tools, Spindle design, Spindle and axis drives,	
	Various actuation systems and feedback devices like encoder,	
	tachogenerator, etc.	
3	CNC Control System and Machine Tools.	10
	CNC motion controller, Linear, circular, helical interpolator, Positioning	
	and contouring control loops, MCU, adaptive control system, CNC	
	machining centre, turning, grinding, EDM, wire EDM, boring, turn mill and	
	CNC gear cutting, Study of two control systems.	
4	CNC Tooling.	10
	Latest CNC tool materials and manufacturing, Turning and milling tool	
	geometry, Tool probing and presetting, Automatic Pallet Changer (APC)	
	and Automatic Turret Changer (ATC), Study of various probes and special	
	tools.	
5	CNC Programming.	12
	Part programming fundamentals, Manual part programming methods,	
	Various G & M codes,	
	Absolute and incremental system, TNRC, Tool length and diameter	
	compensation, Programming of turning, machining centre and EDM, Use	
	of canned cycles, loop, jump, subroutines, CAPP, APT, Post processing.	
6	R Parameter programming, Macros, 3D programming	08

References:

- 1. P. Radhakrishnan& S. Subramanyan "CAD/CAM/CIM" Willey Eastern Limited New Delhi.
- 2. Hans B. Kief and J. Frederick Waters "CNC" Glencae Macmillan / McGraw Hill
- 3. Steve Krar and Arthar Gill "CNC Technology and Programming", McGraw Hill Pub. Company, New Delhi.
- 4. P.N. Rao, N. K. Tewariet el "CAM" Tata McGraw Hill Pub. New Delhi

- **Internal:** Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.
- **End Semester Examination:** Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students.Minimum 80% syllabus should be covered in question papers of end semester examination.

Subject CodeSubject NameCreditsCCE2031Virtual Reality04

Module	Detailed content	Hrs.
1	Introduction:	08
1	A short history of early virtual reality, early commercial VR Technology, VR becomes an Industry, The five classical components of VR Systems.	00
	Input Devices: Trackers, Navigations and Gesture Interfaces.	
	Three Dimensional Position Trackers: Tracker performance parameters, Mechanical trackers, Magnetic trackers, Ultrasonic trackers, Optical Trackers and	
	Hybrid Inertial Trackers	
	Navigation and Manipulation Interfaces: Tracker based Navigation/Manipulation	
	Pinch Clove the 5DT Date Clove the Didiiglove the Cuberglove	
2	Output Daviage: Craphical Three Dimensional Sound and Hantic Displays	10
Z	Graphical Display: The human visual system personal graphics displays.	10
	volume displays Sound displays: the human auditory system, the convolvotron	
	Sneaker based three dimentional sound	
	Haptic Feedback: The human haptic system. Tactile Feedback Interfaces. Force	
	Feedback Interfaces.	
3	Computing Architectures for Virtual Reality:	10
	The Rendering Pipeline: The graphical rendering pipeline, The haptics rendering	
	pipeline. PC Graphics Architectures: Pc Graphics Accelerators, Graphics	
	Benchmarks. Work Station Based Architectures: the Sun Blade 1000	
	Architecture, The SGI Infinite Reality Architecture. Distributed VR	
	Architectures: Multipipeline Synchronization, Colocated rendering Pipelines,	
	Distributed Virtual Environments.	
4	4. Modeling:	10
	Geometric Modeling: Virtual Object Shape, Object Visual Appearance.	
	Kinematics Modeling: Homogeneous Transformation Matrices, Object Position,	
	ransformation invariants, Object Hierarchies, viewing the three dimensional	
	Computation Force Smoothing and Mapping Haptic Texturing Behavior	
	Modeling and Model Management: Level of Detail Management Cell	
	Segmentation	
5	Virtual Reality Programming: Toolkits and Scene Graphs.	12
C	World Toolkit: Model Geometry and Appearance. The WTK Scene Graph.	
	Sensors and Action Functions, WTK Networking,	
	JAVA 3D: Model Geometry and Appearance, Java 3D Scene graph, Sensors and	
	Behaviors, Java 3D Networking, WTK and Java 3D Performance Comparison.	
	General Haptics Open Software Toolkit: GHOST Integration with the Graphics	
	Pipeline, The GHOST Haptic Scene Graph, Collision Detection and response,	
	Graphics and PHANToM Calibration.	
	Human Factors in Virtual Reality:	
	Methodology and Terminology: Data Collection and Analysis, Usability	
	Engineering Methodology. User Performance Studies: Test bed Evaluation of	
	universal VR Tasks, Influence of System Responsiveness on User Performance,	
	Influence of Feedback Multimodality.	

6	Traditional Virtual Reality Applications:	10
	Medical Application of VR: Virtual Anatomy, Triage and Diagnostic, Surgery	
	and Rehabilitation. Education, Arts and Entertainment: VR in Education, VR and	
	the Arts, Entertainment Application of VR. Military VR Application: Army use	
	of VR, VR Application in Navy, Air Force use of VR.	
	Emerging Application of VR: VR Application and Manufacturing: Virtual	
	Prototyping, other VR Application in Manufacturing, Application of VR in	
	Robotics: Robot Programming, Robot Tele operation. Information Visualization:	
	Oil Exploration and Well Management, Volumetric Data Visualization.	

- 1. GrigoreBurdea, Philippe Coiffet, "Virtual Reality Technology" 2nd edition. Wiley India
- 2. John vince, "Virtual Reality Systems" Pearson Education Asia
- 3. Understanding Virtual Reality ,Sherman,Elsever.

- **Internal:** Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.
- **End Semester Examination:** Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students.Minimum 80% syllabus should be covered in question papers of end semester examination.

CCE2032

Subject Name

Product Lifecycle Management[@]

04

Module	Detailed content	Hours
1	Introduction to Product Lifecycle Management (PLM): Product Lifecycle Management (PLM), Need for PLM, Product Lifecycle Phases, Opportunities of Globalization, Pre-PLM Environment, PLM Paradigm, Importance & Benefits of PLM, Widespread Impact of PLM, Focus and Application, A PLM Project, Starting the PLM Initiative, PLM Applications	10
	PLM Strategies: Industrial strategies, Strategy elements, its identification, selection and implementation, Developing PLM Vision and PLM Strategy, Change management for PLM	
2	ProductDesign: Product Design and Development Process, Engineering Design, Organization and Decomposition in Product Design, Typologies of Design Process Models, Reference Model, Product Design in the Context of the Product Development Process, Relation with the Development Process Planning Phase, Relation with the Post design Planning Phase, Methodological Evolution in Product Design, Concurrent Engineering, Characteristic Features of Concurrent Engineering, Concurrent Engineering and Life Cycle Approach, New Product Development (NPD) and Strategies, Product Configuration and Variant Management, The Design for X System, Objective Properties and Design for X Tools, Choice of Design for X Tools and Their Use in the Design Process	10
3	 Product Data Management (PDM): Product and Product Data, PDM systems and importance, Components of PDM, Reason for implementing a PDM system, financial justification of PDM, barriers to PDM implementation Virtual Product Development Tools: For components, machines, and manufacturing plants, 3D CAD systems and realistic rendering techniques, Digital mock-up, Model building, Model analysis, Modeling and simulations in Product Design, Examples/Case studies 	10
4	Integration of Environmental Aspects in Product Design: Sustainable Development, Design for Environment,Need for Life Cycle Environmental Strategies, Useful Life Extension Strategies, End-of-Life Strategies, Introduction of Environmental Strategies into the Design Process, Life Cycle Environmental Strategies and Considerations for Product Design	10
5	Life Cycle Assessment and Life Cycle Cost Analysis: Properties, and Framework of Life Cycle Assessment, Phases of LCA in ISO Standards, Fields of Application and Limitations of Life Cycle Assessment, Cost Analysis and the Life Cycle Approach, General Framework for LCCA, Evolution of Models for Product Life Cycle Cost Analysis	10

6	Technology Forecasting:	10
	Evolution for technology forecasting and its importance, Future mapping,	
	Methods of technology forecasting such as Relevance Trees, Morphological	
	Methods and Mission Flow Diagram, Combining forecast of different	
	technologies	

@ Common for Machine Design, Automobile Engineering, CAD/CAM and Robotics and Manufacturing Systems Engineering

References:

- 1. John Stark, "Product Lifecycle Management: Paradigm for 21st Century Product Realisation", Springer-Verlag, 2004. ISBN: 1852338105
- 2. Fabio Giudice, Guido La Rosa, AntoninoRisitano, "Product Design for the environment-A life cycle approach", Taylor & Francis 2006, ISBN: 0849327229
- 3. SaaksvuoriAntti, ImmonenAnselmie, "Product Life Cycle Management", Springer, Dreamtech, ISBN: 3540257314
- 4. Michael Grieve, "Product Lifecycle Management: Driving the next generation of lean thinking", Tata McGraw Hill, 2006, ISBN: 0070636265

- **Internal:** Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.
- **End Semester Examination:** Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students.Minimum 80% syllabus should be covered in question papers of end semester examination.

CCE2033

Concurrent Engineering

Module	Detailed content	Hours
1	Introduction: Concurrent design of products and systems - Product design -	08
	Fabrication and assembly system design - designing production systems for	
	robustness and structure	
2	Strategic approach and technical aspects of product design: Steps in the	10
	strategicapproach to product design - Comparison to other product design	
	methods -Assemblysequence generation - Choosing a good assembly	
	sequence - Tolerances and their relation toassembly - Design for material	
	handling and part mating - Creation and evaluation of testingstrategies.	
3	Basic issues in manufacturing system design: System design procedure -	14
	Design factors -Intangibles - Assembly resource alternatives - Task	
	assignment - Tools and tool changing -Part feeding alternatives - Material	
	handling alternatives - Floor layout and systemarchitecture alternatives.	
4	Assembly workstation design: Strategic issues - Technical issues analysis	08
5	Design of automated fabrication systems: Objectives of modern fabrication	10
	system design -System design methodology - Preliminary system feasibility	
	study - Perform detailed workcontent analysis - Define alternative fabrication	
	configurations - Configuration design and layout - Human resource	
	considerations - Evaluate technical performance of solution.	
6	System Simulation: Simulation as an alternative to analysis, Discrete event	10
	simulation tools	
	Case Studies	

References:

- 1. Concurrent Design of Product and Processes by James L. Nevins and Daniel E. Whitney, McGraw-Hill Publishing Company, 1989
- 2. Engineering Productivity through CAD/CAM by Dimitris.N.Chorafas Butterworth
- 3. Automatic assembly by Boothroyd
- 4. Discrete Event Simulation by Jerry Banks

- **Internal:** Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.
- **End Semester Examination:** Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students.Minimum 80% syllabus should be covered in question papers of end semester examination.

Subject Name

CCE2034

Micro Electro Mechanical Systems[@]

Credits 04

Module	Detailed content	Hours
1	 Introduction to MEMS & Applications Introduction to Micro-Electro-Mechanical Systems, Applications and Materials, Advantages & Disadvantages of Micro-sensors, and micro-actuators. 	08
2	 Sensors and Actuators in Micro-domain Concept of Sensors & Actuators, Sensing & Actuation Principles: Mechanical Sensing, Capacitive, Electrostatic, Electromagnetic, Piezo Resistive, Piezo Electric, Thin Films, Shape Memory Alloys Comb Drive Actuation & Sensing. Micro-mechanisms, Air-Bag Sensors, Chemical Sensors Sensors & Actuators for Automotive, Biomedical, Industrial applications Design of sensor and actuator for few applications such as automobile accelerometer, bimetallic temperature sensor, etc. 	12
3	 Fabrication Methods Microfabrication Methods (VLSI Techniques) Positive and Negative Photoresists, Bulk Micromachining, Surface Micromachining, Etching (Isotropic and Anisotropic), Deposition techniques such as CVD (Chemical Vapor Deposition), Metallization Techniques. 3D High Aspect Ratio Techniques LIGA, AMANDA, Microstereolithography, IH-Process, X-Ray Techniques, Ion-beam Lithography etc. 	10
4	 Modelling and Simulation Techniques Scaling Laws, Governing Equations Modelling of Mechanical Structures via classical methods, Newtons Laws, Thermal Laws, Fluid Flow Analysis Micro-mechanism modelling and analysis techniques : Lumped Parameter Modelling and Distributed Parameter Modelling Modelling of Micro-channel as heat exchanger, accelerometers, micro-hinges, compound microstructures. Linear & Nonlinear Model. Numerical Methods used for MEMS analysis. 	10

-		
	Characterization Techniques	
	Topography Methods (Optical, Electrical and Mechanical Methods)	
	 Microscopy, STM (Scanning Tunneling Microscopes), 	
	• SEM (Scanning Electron Microscopes), SPM(Scanning Probe	
	Microscopes), AFM (Atomic Force Microscopes)	
	Mechanical Structure Analysis	
	• Deformation & Vibration Measurement Techniques (Piezo resistive and	
	piezo electric)	
5	Interferometry Techniques,	12
	• SPI (Speckle Pattern Interferometry),	
	• ESPI (Electronic Speckle Pattern Interferometry),	
	• Laser Techniques, Laser Doppler Vibro-meters	
	Fluid, Thermal and Chemical Analysis	
	• Thermal Analysis Techniques (Theoretical and Experimental),	
	• Fluid Flow Pattern Analysis, Electro-chemical Analysis,	
	PIV Techniques	
	• Spectroscopy	
	Introduction to Advances of MEMS and Nanotechnology	
	• CNT (Carbon Nano Tubes) Applications, its properties, and Fabrication	
	Method,	
	• Nano-mechanical Systems (NEMS),	0.0
6	• Nano-tribology, &nano-indentation techniques,	08
	• Domestic and Industrial Applications of nanotechnology	
	Molecular Modelling Techniques.	
	• Social and Ethical Implications of nanotechnology in Society	

@ Common for Machine Design, Automobile Engineering, CAD/CAM and Robotics and Manufacturing Systems Engineering

References:

- 1. Julian W. Garden, Vijay K. Varadan and Osama O. Awadelkarim "Microsensors MEMS and Smart devices", John Wiley and sons, Ltd.
- 2. NadimMulaf and Kirt Williams, "An Introduction to Microelectromechanical systems Engineering", Artech House.
- 3. NicolaeLobontiu and Ephrahim Garcia, "Mechanics of Microelectromechanical systems", Kluwer Academic Publication.
- 4. Stanley Wolf and Richard Tauber, "Silicon Processing for the VLSI era Volume -1 Technology", Lattice press.
- 5. Vijay K. Varadan, K.J.Vinoy and S. Gopalkrishnan, "Smart Material Systems and MEMS: Design and Development Methodologies", John Wiley and sons Ltd.
- 6. Bhushan, "Springer Handbook of Nanotechnology", Springer Inc.

- **Internal:** Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.
- **End Semester Examination:** Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students. Minimum 80% syllabus should be covered in question papers of end semester examination.

CCE2041

Subject Name

Credits

Supply Chain Management

04

Module	Detailed content	Hours
1	INTRODUCTION TO SUPPLY CHAIN MANAGEMENT: Understanding Supply Chain: Current Business Scenario, what is supply chain?, Need of the Supply Chain, How Supply chain works? Evolution of SCM Function, Theme, objective, Decision phases and Pillars of SCM System, Process view of supply chain, CODP Concepts. Supply Chain Performance : Achieving strategies and fit, Supply chain drivers and metric.	08
2	 MATERIALS MANAGEMENT IN SUPPLY CHAIN Purchasing And Procurement: Scope, importance, classification of materials, Procurement management in SC, Types of Purchases and its policies. Inventory Management In SC: (roles, estimation)–managing Economics of scale in a supply chain - cycle inventory and managing uncertainty in a supply chain- safety inventory, determining the optimal levels of product availability, Cost elements of procurement. VMI &CMI. Use of computers for materials function. JIT,Kanban,other modern methods. 	10
3	 SUPPLY CHAIN NETWORK: Designing SC Network: Role, factor influencing, channels, design option for Distribution Network in supply chain, Network Design in supply chain (roles, factor, models for facility location and capacity allocation), impact of Globlisation on supply chain. Planning Demand And Supply In Supply Chain:Demand forecasting-roles characteristics, components of forecast and forecasting methods, measure of forecast error. Aggregate planning in supply chain, Managing demand and supply in supply chain. New Supply Planning Paradigms. 	10
4	 DESIGNING AND PLANNING TRANSPORTATION NETWORK Transportation In Supply Chain: Evolution& Role of transportation in Supply Chain, Modes of transport and their performance characteristics, design options, trade-offs in transportation design, Intermodal transportation , international transportation, types of carrier and its selection and evaluation methods; Transportation Management: Transport decisions, routing decisions, routing models. Intermodal transportation, International transportation, Ocean carrier management, port administration and regulation, costing and pricing issues of logistics, cost transport Claim management, Reverse Logistics. Containerization, Packaging, Material handling, Storage systems, Warehousing, warehouse management. 	10

6	SUPPLY CHAIN COORDINATION	10
	The Bullwhip effect. Effect on performance of lack of Coordination,	
	Collaborative Planning, Forecasting, and Replenishment, CRM, SRM and	
	Supply Chain Integration, Optimization Modeling,	
	PERFORMANCE MEASURE ALONG SUPPLY CHAIN:	
	Tradition Performance measures, world class performance measures, SC	
	performance measures, SCOR model, Benchmarking and Balanced Score	
	card modeling., total distribution cost analysis, future of supply chain	
	management.	

- 1. Supply Chain Management: Concepts and Cases, Altekar Rahul V., Prentice Hall of India
- 2. Supply Chain Management: Janat Shah, Pearson Education
- 3. Supply Chain Management Theories and Practices, R.P. Mohanty and S. G. Deshmukh, Biztantra Publication.
- 4. Logistics and Supply Chain Management, Martin Christopher, Richard Irwin
- 5. Principles of Supply Chain Management, Joel Wisner, G. Keong, Keah-Choon Tan, Cengage Learning
- 6. Materials Management and purchasing, Ammer DS Taraporewala
- 7. "Modeling the Supply Chain", Jeremy F. Shapiro, Thomson Learning Publication
- 8. Supply Chain Management-strategy, planning and operation, sunilchopra, Peter Meindl, D V Kalra, Pearson.

- **Internal:** Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.
- **End Semester Examination:** Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students.Minimum 80% syllabus should be covered in question papers of end semester examination.

Subject Name

Credits

CCE2042

Artificial Intelligence

04

Module	Detailed content	Hours
1	AI AND INTERNAL REPRESENTATION:	12
	Artificial Intelligence and the World, Representation in AI, Properties of	
	Internal Representation, The Predicate Calculus	
	Intelligent Agents: Concept of Rational Agent, Structure of Intelligent	
	agents, Agent Environments.	
	Problem Solving : Solving problems by searching, Problem Formulation, Search Strategies, Uninformed Search Techniques, DFS, BFS, Uniform cost search, Iterative Deepening, Comparing different Techniques, Informed search methods – Best First Search, heuristic functions, Hill Climbing, A*.IDA*. Crypt Arithmetic, Bactracking for CSP	
2	Programming in LISP or PROLOG	08
	Lisps, Typing at Lisp, Defining Programs, Basic Flow of Control in Lisp, Lisp Style, Atoms and Lists, Basic Debugging, Building Up List Structure, More on Predicates, Properties, Pointers, Cell Notation and the Internals (Almost) of Lisp, Destructive Modification of Lists, The for Function, Recursion, Scope of Variables Input/Output, Macros	
3	Fundamentals Concepts and Models of Artificial Neural Systems	12
U	Biological Neuron and their Artificial Models, Models of ANN, Learning and Adaptation, Neural Networking Learning Rules. Single-layer Perception Classifiers	
	Classification, Delta Learning Rule, Feedforward Recall and Error Back- Propagation Training, Learning Factor	
4	Fuzzy Systems. Fuzzy Sets : Fuzzy Relations, Fuzzy Function, Fuzzy Measures,	08
	probabilities possibilities.	
	Fuzzy Modeling and applications of Fuzzy Control	
	Neural and fuzzy machine Intelligence	
5	Genetic Algorithm Simple genetic algorithm, Simulation by hands, similarity templates(Schemata), Mathematical foundations, Schema Processing at	10
	The two- armed and k- armed Bandit Problem, The building block hypothesis The minimal Deceptive Problem	
	Computer implementation of Genetic algorithm, Data Structures, Reproduction, Cross over and Mutation. Time to reproduce and time to Cross Mapping objective function to fitness, form, Fitness scaling.	
	Applications of genetic algorithm, De Jong and Function Optimization, Improvement in basic techniques, Introduction to Genetics based machine learning, applications of genetic based machine leaning.	

6	DATA MINING & INFORMATION RETRIEVAL	10
	Data warehousing & Data Mining.	
	Online Analytic Processing [OLAP]: its architecture and its use. Java	
	implementations, classification trees and exploratory data analysis [EDA].	
	EDA Vs Hypothesis Testing, Computational EDA Techniques, Graphical	
	[Data Visualization] EDA techniques for function fitting, data smoothing,	
	layering, tessellations, contour projections, Verification of results of EDA.	
	Applications & trends in data mining.	
	Case Studies	

- 1. Introduction to Artificial intelligence By Eugene Charniak, Drew McDermott Addison Wesley
- 1. Artificial Neural Networks- B.Yegnanarayana, PHI, 1999.
- 2. Genetic Algorithms in search, Optimization & Machine Learning by David E Goldberg-Addison wesley
- 3. Data Mining by Pieter Adriaans and Dolt Zantinge Pearson Education Asia
- 4. Data Warehousing in the Real World by Sam Anahory and Dennis Murray.
- 5. Artificial Intelligence, Elaine Rich, Kevin Knight, S. Nair, McGraw Hill Publishing Company Ltd
- 6. Principles of Artificial Intelligence N.J. Nilsson, Tioga Hill, 1992.
- 7. Artificial Intelligence and Design of Expert Systems C.F. Luger & W.A. Stubblefeild, Addison-Wesley.
- 8. Introduction to Data Mining & Knowledge Discovery Edelstein, Herbert A.
- 9. Introduction to Artificial Neural Systems Jacek M. Zurada, Jaico Publishing House, 2001.
- 10. Neural Network SimsonHaykin, Macmillan Publication, 1994.
- 11. Fuzzy Set Theory & its Applications H.J.Zimmermann, Allied Publishers Ltd, 1996.

- **Internal:** Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.
- **End Semester Examination:** Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students.Minimum 80% syllabus should be covered in question papers of end semester examination.

Subject Name

Composite Materials^{\$}

Module	Detailed content	Hrs
1	Introduction to Composite Materials	10
	Basic Concepts and Terminology	
	Classification	
	- Polymer Matrix Composites, Metal Matrix Composites, Ceramic Matrix	
	Composites, Carbon–Carbon Composites	
	Current and Potential Advantages and Applications of Composite Materials	
2	MacromechanicalBehaviour of a Lamina	10
	• Review of Definitions:	
	- Stress, Strain, Elastic Moduli, Strain Energy	
	 Hooke's Law for Different Types of Materials 	
	- Anisotropic Material, Monoclinic Material, Orthotropic Material	
	(Orthogonally Anisotropic)/SpeciallyOrthotropic, Transversely Isotropic	
	Material, Isotropic Material	
	Hooke's Law for a Two-Dimensional Unidirectional Lamina	
	- Plane Stress Assumption, Reduction of Hooke's Law in Three	
	Dimensions to TwoDimensions, Relationship of Compliance and	
	Stiffness Matrix to Engineering Elastic Constants of a Lamina	
	• Hooke's Law for a Two-Dimensional AngleLamina	
	• Engineering Constants of an Angle Lamina	
	• Invariant Form of Stiffness and Compliance Matrices for anAngle Lamina	
	• Strength Failure Theories of an Angle Lamina	
	- Maximum Stress Failure Theory, Strength Ratio, Failure Envelopes,	
	Maximum Strain Failure Theory, Isai–Hill Failure Theory, Isai–Wu	
2	Micromochanical Bahaviour of a Lamina	10
5	Volume and Mass Errotions, Density, and Void Content	10
	• Volume and Wass Fractions, Density, and Volu Content Volume Eractions, Mass Fractions, Density, Void Content	
	 Fvaluation of the Four Elastic Moduli by Strength of Materials Approach 	
	• Evaluation of the Four Elastic Moduli by Stiength of Materials Approach, Semi-Empirical Models and Elasticity Approach	
	Flastic Moduli of Lamina with Transversely Isotronic Fibers	
	Illitimate Strengths of a Unidirectional Lamina	
	- Longitudinal Tensile Strength Longitudinal Compressive Transverse	
	Tensile Strength Transverse Compressive Strength In-Plane Shear	
	Strength	
4	MacromechanicalBehaviour of a Laminate	10
	• Introduction	
	Laminate Code	
	Classical Laminated Plate Theory	
	• First Order Laminated Plate Theory	
	Laminated Stiffnesses for Selected Laminates	
	- Single Layered Configurations, Symmetric Laminates. Antisymmetric	
	Laminates, Balanced and Quasi-Isotropic Laminates	

5	Failure, Analysis and Design of Laminates	10
	• Introduction	
	• Failure Criterion for a Laminate	
	Design of a Laminated Composite	
	Other Mechanical Design Issues	
	- Sandwich Composites, Long-Term Environmental Effects, Interlaminar	
	Stresses, Impact Resistance, Fracture Resistance, Fatigue Resistance	
6	Introduction to Fabrication Techniques for Composites	10
	Polymer Composites	
	- Liquid Resin Impregnation Routes, Pressurized Consolidation of Resin	
	Pre-Pregs, Consolidation of Resin Moulding Compounds, Injection	
	Moulding of Thermoplastics, Hot Press Moulding of Thermoplastics	
	Metal Composites	
	- Squeeze Infiltration, Stir Casting, Spray Deposition, Powder Blending	
	and Consolidation, Diffusion Bonding of Foils, Physical Vapour	
	Deposition (PVD)	
	Ceramic Composites	
	- Powder-Based Routes, Reactive Processing, Layered Ceramic	
	Composites, Carbon/Carbon Composites	

\$ Common for Machine Design and CAD/CAM and Robotics

References:

- 1. R.M. Jones, "Mechanics of Composite Materials", Taylor and Francis, Inc.
- J.N. Reddy, "Mechanics of Laminated Composite Plates and Shells Theory and Analysis", CRC Press
- 3. A.K. Kaw, "Mechanics of Composite Materials", Taylor and Francis Group, LLC
- 4. D. Hull and T.W. Clyne, "An Introduction to Composite Materials", Cambridge University Press
- 5. L.P. Kollar, G.S. Springer, "Mechanics of Composite Structures", Cambridge University Press

- **Internal:** Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.
- **End Semester Examination:** Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students.Minimum 80% syllabus should be covered in question papers of end semester examination.

Subject Name

CCE2044

Smart Materials and Applications^{*}

Module	Detailed content	Hours
1	Introduction to Smart / Intelligent Materials:	08
	Overview of Smart / Intelligent Materials, Primitive Functions of Intelligent	
	Materials, Intelligence Inherent in Materials, Actuator Materials, Sensing	
	Technologies, Microsensors, Intelligent Systems, Hybrid Smart Materials,	
	Passive Sensory Smart Structures, Reactive Actuator based Smart	
	Structures, Active Sensing and Reactive Smart Structures, Smart Skins	
2	Introduction to Highbandwidth - Low straingenerating (HBLS)	10
	SmartMaterials	
	Piezoelectric Materials	
	constitutive relationship,electromechanicalcoupling	
	coefficients, piezoelectric constants, piezoceramic materials, variation of	
	couplingcoefficients in hard andsoft piezoceramics, polycrystalline vs	
	singlecrystal piezoelectricmaterials, polyvinyldenefluoride,	
	piezoelectriccomposites	
	MagnetostrictiveMaterials	
	constitutiverelationship, magnetomechanicalcouplingcoefficients, Joule	
	Effect, Villari Effect, MatteuciEffect, Wiedemanneffect,	
	Giantmagnetostriction inTerfenol-D, Terfenol-Dparticulate	
	composites, Galfenol and Metglasmaterials.	
3	Actuators based on HBLSSmart Materials	12
	Piezoelectric Actuators	
	Induced Strain actuationmodel, Unimorph and Bimorph Actuators, Actuators	
	embedded incomposite laminate,Impedance matching inactuator	
	design, Feedback Control, PulseDrive, Resonance Drive.	
	MagnetostrictiveActuators	
	Magnetostrictive MiniActuators, Thermalinstabilities, Discretelydistributed	
	actuation, ManetostrictiveComposites.	
	MEMS based Actuators	
	PiezoelectricMicropumps,Magnetostrictivemicromechanisms,Imaging	
	SystemApplications, InchwormDevices, Inkjet Printers, Piezoelectric	
	Relays, Ultrasonic Motors, and Microscale Walking Machines.	
	Sensors based on HBLSSmart Materials	
	Piezoelectric Sensors, MagnetostrictiveSensors, Techniques of Self-	
	Sensing, MEMS Sensors	
4	Introduction to Lowbandwidth - High straingenerating (LBHS)	08
	materials	
	Shape Memory Alloys(SMA)	
	Electro-active Polymers (EAP)	
5	Actuators based on LBHSSmart Materials	12
	Shape Memory Alloybased actuators for Shape Control	
	Electro-active Polymersfor Work-Volume Generation	
	Sensors based on LBHSSmart Materials	
	EAP based sensors, SMA based encoders	1

	Optical Fibre based Sensing	
6	Advances in Smart Materials	10
	Active Fibre Composites (AFC)	
	Energy Harvesting Actuators and Energy Scavenging Sensors	
	Self-healing and Autophagous Smart Materials	

* Common for Machine Design, Automobile Engineering and CAD/CAM and Robotics

References:

- 1. M.V. Gandhi and B.S. Thompson, "Smart Materials and Structures", Chapman & Hall,London; New York, 1992 (ISBN: 0412370107)
- 2. Bryan Culshaw, "Smart Structures and Materials", Artech House
- 3. Mel Scwartz, "Encyclopedia of Smart Materials Vol. I and II", John Wiley & Sons
- 4. SenolUtku, "Theory of Adaptive Structures : Incorporating Intelligence into Engineered Products", CRC Press
- 5. H. Janocha, "Actuators Basics and Applications", Springer
- 6. B. Culshaw, "Smart Structures and Materials", Artech House, Boston, 1996 (ISBN: 0890066817)
- 7. A.V. Srinivasan, "Smart Structures: Analysis and Design", Cambridge University Press, Cambridge; New York, 2001 (ISBN: 0521650267)
- 8. A.J. Moulson and J.M. Herbert, "Electroceramics: Materials, Properties, Applications",2nd Edition, John Wiley & Sons, Chichester, West Sussex; New York, 2003 (ISBN:0471497479)
- 9. G. Gautschi, "Piezoelectric Sensorics: Force, Strain, Pressure, Acceleration and Acoustic Emission Sensors, Materials and Amplifiers", Springer, Berlin; New York, 2002 (ISBN:3540422595)
- 10. K. Uchino, "Piezoelectric Actuators and Ultrasonic Motors", Kluwer Academic Publishers, Boston, 1997 (ISBN: 0792398114)
- 11. G. Engdahl, "Handbook of Giant Magnetostrictive Materials", Academic Press, San Diego, Calif.; London, 2000 (ISBN: 012238640X)
- 12. K. Otsuka and C.M. Wayman, "Shape Memory Materials", Cambridge University Press, Cambridge; New York, 1998 (ISBN: 052144487X)
- 13. Eric Udd, "Fiber Optic Sensors: An Introduction for Engineers and Scientists", John Wiley & Sons, New York, 1991 (ISBN: 0471830070)
- 14. André Preumont, "Vibration Control of Active Structures: An Introduction", 2nd Edition, Kluwer Academic Publishers, Dordrecht; Boston, 2002 (ISBN: 1402004966)
- 15. HojjatAdeli, "Control, Optimization, and Smart Structures: High-Performance Bridges and Buildings of the Future", John Wiley, New York, 1999 (ISBN: 047135094X)
- 16. T.T. Soong, "Passive Energy Dissipation Systems in Structural Engineering", Wiley, Chichester; New York, 1997 (ISBN: 0471968218)

- **Internal:** Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.
- **End Semester Examination:** Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by

students.Minimum 80% syllabus should be covered in question papers of end semester examination.

Subject Code	Subject Name	Credits
CCL203	CAM	01

Module	Detailed content	Lab.
		Sessions
1	Manufacturing Simulation	05
2	CNC Programming on Machining Centre	05
3	CNC programming on Turning Centre	05

Assessment:

End Semester Examination:	Practical/Oral examination is to be conducted by pair of internal and
	external examiners

Subject Code	Subject Name	Credits
CCL204	Mechatronics & Robotics	01

Module	Detailed content	Lab.
		Sessions
1	Automation using Pneumatics and Hydraulics	03
2	Programmable logic controllers	04
3	Interfacing Servo motor/Stepper motor /Keyboard etc. with Micro controller	04
4	Programming & Manipulating an Industrial Manipulator	04

Assessment:

End Semester Examination: Practical/Oral examination is to be conducted by pair of internal and external examiners

Subject Code	Subject Name	Credits
CCS301	Seminar	03

Guidelines for Seminar

- o Seminar should be based on thrust areas in Mechanical Engineering
- Students should do literature survey and identify the topic of seminar and finalize in consultation with Guide/Supervisor. Students should use multiple literatures (at least 10 papers from Refereed Journals) and understand the topic and compile the report in standard format and present in front of Panel of Examiners(pair of Internal and External examiners appointed by the University of Mumbai)

• Seminar should be assessed based on following points

- Quality of Literature survey and Novelty in the topic
- Relevance to the specialization
- Understanding of the topic
- Quality of Written and Oral Presentation

NOTE :

- 1. Assessment of Seminar will be carried out by a pair of Internal and External examiner. The external examiner should be selected from approved panel of examiners for Seminar by University of Mumbai,OR faculty from Premier EducationalInstitutions /Research Organizations such as IIT, NIT, BARC, TIFR, DRDO, etc. ORa person having minimum Post-Graduate qualification with at least five years' experience in Industries.
- 2. Literature survey in case of seminar is based on the broader area of interest in recent developments and for dissertation it should be focused mainly on identified problem.
- 3. At least 4-5 hours of course on Research Methodology should be conducted which includes literature survey, identification of problems, analysis and interpretation of results and technical paper writing in the beginning of 3rd semester.

Credits

CCD301 / CCD401 **Dissertation (I and II)**

12 + 15

Guidelines for Dissertation

• Students should do literature survey and identify the problem for Dissertation and finalize in consultation with Guide/Supervisor. Students should use multiple literatures and understand the problem. Students should attempt solution to the problem by analytical/simulation/experimental methods. The solution to be validated with proper justification and compile the report in standard format.

Guidelines for Assessment of Dissertation I

- Dissertation I should be assessed based on following points
 - Quality of Literature survey and Novelty in the problem
 - Clarity of Problem definition and Feasibility of problem solution
 - Relevance to the specialization
 - Clarity of objective and scope
- Dissertation I should be assessed through a presentation by a panel of Internal examiners appointed by the Head of the Department/Institute of respective Programme.

Guidelines for Assessment of Dissertation II

- o Dissertation II should be assessed based on following points
 - Quality of Literature survey and Novelty in the problem
 - Clarity of Problem definition and Feasibility of problem solution
 - Relevance to the specialization or current Research / Industrial trends
 - Clarity of objective and scope
 - Quality of work attempted
 - Validation of results
 - Quality of Written and Oral Presentation
- Dissertation II should be assessed through a presentation jointly by Internal and External Examiners appointed by the University of Mumbai
- Students should publish at least one paper based on the work in reputed International / National Conference (desirably in Refereed Journal)