

 Indira Gandhi
 National Open University
 School of Computer and
 Information Sciences

MCS-021
DATA AND

FILE STRUCTURES

Block

2
STACKS, QUEUES AND TREES
UNIT 4
Stacks 5

UNIT 5
Queues 16

UNIT 6
Trees 31

Programme / Course Design Committee

Prof. Sanjeev K. Aggarwal, IIT, Kanpur
Prof. M. Balakrishnan, IIT, Delhi
Prof. Harish Karnick, IIT, Kanpur
Prof. C. Pandurangan, IIT, Madras
Dr Om Vikas, Sr. Director,
 Ministry of CIT, Delhi
Prof. P. S. Grover, Sr. Consultant
 SOCIS, IGNOU

Faculty of School of Computer and
Information Sciences

Shri Shashi Bhushan
Shri Akshay Kumar
Prof. Manohar Lal
Shri V.V. Subrahmanyam
Shri P. Venkata Suresh

Block Preparation Team

Shri G.V.S.S.S.Srinivas (Content Editor)
 Technical Manager
 HCL Technologies

Mr.Pankaj Lathar
 Dept. of Computer Science
 Maharaja Surajmal Institute
 New Delhi

Shri Akshay Kumar Purohit
 Deputy Director (IT)
 Bureau of Indian Standards
 New Delhi

Shri P. Venkata Suresh
SOCIS, IGNOU

Prof. M.R.Dua (Language Editor)
New Delhi

Prof.A.K.Verma (Language Editor)
New Delhi

Course Coordinator : Shri.P. Venkata Suresh

Block Production Team

Shri T. R. Manoj, Section Officer (Pub.) and H. K Som, Consultant, SOCIS
CRC prepared by Shri A. N. Kispotta

May, 2005

©Indira Gandhi National Open University, 2005

ISBN −

All rights reserved. No part of this work may be reproduced in any form, by mimeograph or any other means, without
permission in writing from the Indira Gandhi National Open University.

Further information on the Indira Gandhi National Open University courses may be obtained from the University’s
office at Maidan Garhi, New Delhi-110 068.

Printed and published on behalf on the Indira Gandhi National Open University, New Delhi by The Director, SOCIS.

Printed at:

BLOCK INTRODUCTION

This block introduces learner to Stacks, Queues and Trees.

Stack is a data structure which allows elements to be inserted as well as deleted from
only one end. Hence, the last element that was inserted will be the first element to be
deleted. Stack is also known as LIFO data structure. A stack can be implemented
using arrays or linked lists. Both the representations are having their own advantages
and disadvantages. So, the selection of a particular representation for the stack is
strictly application dependent. It is possible to implement multiple stacks using
Arrays. One of the visible applications of the Stacks are their use by operating systems
and tools related to programming languages. Stacks are discussed in Unit-4.

Queue is a data structure which allows elements to be inserted at one end called Front
and deleted at another end called Rear. The features of a Queue are similar to the
features of any queue of customers at a counter, at a bus stop etc. A queue can be
implemented using arrays or linked lists. Both the representations are having their
own advantages and disadvantages. So, the selection of a particular representation for
the queue is strictly application dependent. A queue can be represented as a circular
queue. This representation saves space when compared to the linear queue. Finally,
there are special cases of queues called Dequeues which allow insertion and deletion
of elements at both the end. Queues are discussed in Unit-5.

The final data structure that was discussed in this block is Tree. Primarily, we focus
on Generic trees and Binary trees. We cover the implementations of tree. There are
fixed number of ways of traversing trees. These traversal algorithms can be
implemented recursively or non-recursively. Again, the issue of whether to implement
them recursively or non-recursively is application dependent. Finally, applications of
trees were discussed. Trees are discussed in Unit-6.

There are a large number of programs in this block. Students are advised to simulate
the programs by hand before trying to execute them on the machine. All programs
may not readily execute on the machine. The programs were written in such a way
that the older versions of compilers will be able to execute them as the newer versions
from third parties will have some variance in the syntax. It is very important to
simulate every program by hand, make necessary modifications and then execute the
program. It is always suggested that students should write programs on their own and
should not copy any portion of the program that is existent in the block. You are also
hereby advised to refer as many books as possible on the related topics to increase
your knowledge.

This block consists of three units and is organised as follows:

Unit-4 deals with Stacks. Array and Linked list implementations of stacks are
discussed. Also, Multiple stacks are covered.

Unit-5 deals with the Queues. Circular queues, Dequeues along with array and linked
list implementations of queues are covered.

Unit-6 deals with Trees. Different tree traversals and Binary trees are covered in this
unit. Also, applications of trees are discussed.

5

Stacks

UNIT 4 STACKS

Structure Page Nos.

4.0 Introduction 5
4.1 Objectives 6
4.2 Abstract Data Type-Stack 7
4.3 Implementation of Stack 7

4.3.1 Implementation of Stack Using Arrays
4.3.2 Implementation of Stack Using Linked Lists

4.4 Algorithmic Implementation of Multiple Stacks 13
4.5 Applications 14
4.6 Summary 14
4.7 Solutions / Answers 15
4.8 Further Readings 15

4.0 INTRODUCTION

One of the most useful concepts in computer science is stack. In this unit, we shall
examine this simple data structure and see why it plays such a prominent role in the
area of programming. There are certain situations when we can insert or remove an
item only at the beginning or the end of the list.

A stack is a linear structure in which items may be inserted or removed only at one
end called the top of the stack. A stack may be seen in our daily life, for example,
Figure 4.1 depicts a stack of dishes. We can observe that any dish may

top of the stack

 Figure 4.1: A stack of dishes

be added or removed only from the top of the stack. It concludes that the item added
last will be the item removed first. Therefore, stacks are also called LIFO (Last In
First Out) or FILO (First In Last Out) lists. We also call these lists as “piles” or
“push-down list”.

Generally, two operations are associated with the stacks named Push & Pop.

• Push is an operation used to insert an element at the top.
• Pop is an operation used to delete an element from the top

Example 4.1

Now we see the effects of push and pop operations on to an empty stack. Figure
4.2(a) shows (i) an empty stack; (ii) a list of the elements to be inserted on to stack;

 6

Stacks, Queues
and Trees

and (iii) a variable top which helps us keep track of the location at which insertion or
removal of the item would occur.

List: A,B,C List: B,C List: C List:

top[3] C 3

top[2] B 2 B 2

top[1] A 1 A 1 A 1

Stack Stack Stack Stack

(a) Push operation

 List: C List: B,C List: A,B,C

top[2] B 2

 A 1 top[1] A top[0]

Shift

 Stack Stack Stack
 (b) Pop Operation

Figure 4.2: Demonstration of (a) Push operation, (b) Pop operation

Initially in Figure 4.2(a), top contains 0, implies that the stack is empty. The list
contains three elements, A, B &C. In Figure 4.2(b), we remove an element A from
the list of elements, push it on to stack. The value of top becomes 1, pointing to the
location of the stack at which A is stored.

Similarly, we remove the elements B & C from the list one by one and push them on
to the stack. Accordingly, the value of the top is incremented. Figure 4.2(a) explains
the pushing of B and C on to stack. The top now contains value 3 and pointing to the
location of the last inserted element C.

On the other hand, Figure 4.2(b) explains the working of pop operation. Since, only
the top element can be removed from the stack, in Figure 4.2(b), we remove the top
element C (we have no other choice). C goes to the list of elements and the value of
the top is decremented by 1. The top now contains value 2, pointing to B (the top
element of the stack). Similarly, in Figure 4.2(b), we remove the elements B and A
from the stack one by one and add them to the list of elements. The value of top is
decremented accordingly.

There is no upper limit on the number of items that may be kept in a stack. However,
if a stack contains a single item and the stack is popped, the resulting stack is called
empty stack. The pop operation cannot be applied to such stacks as there is no
element to pop, whereas the push operation can be applied to any stack.

4.1 OBJECTIVES

After going through this unit, you should be able to:

7

Stacks • understand the concept of stack;
• implement the stack using arrays;
• implement the stack using linked lists;
• implement multiple stacks, and
• give some applications of stack.

4.2 ABSTRACT DATA TYPE-STACK

Conceptually, the stack abstract data type mimics the information kept in a pile on a
desk. Informally, we first consider materials on a desk, where we may keep separate
stacks for bills that need paying, magazines that we plan to read, and notes we have
taken. We can perform several operations that involve a stack:

• start a new stack;
• place new information on the top of a stack;
• take the top item off of the stack;
• read the item on the top; and
• determine whether a stack is empty. (There may be nothing at the spot where the

stack should be).

When discussing these operations, it is conventional to call the addition of an item to
the top of the stack as a push operation and the deletion of an item from the top as a
pop operation. (These terms are derived from the working of a spring-loaded rack
containing a stack of cafeteria trays. Such a rack is loaded by pushing the trays down
on to the springs as each diner removes a tray, the lessened weight on the springs
causes the stack to pop up slightly).

4.3 IMPLEMENTATION OF STACK

Before programming a problem solution that uses a stack, we must decide how to
represent a stack using the data structures that exist in our programming language.
Stacks may be represented in the computer in various ways, usually by means of a
one-way list or a linear array. Each approach has its advantages and disadvantages.
A stack is generally implemented with two basic operations – push and pop. Push
means to insert an item on to stack. The push algorithm is illustrated in Figure 4.3(a).
Here, tos is a pointer which denotes the position of top most item in the stack. Stack
is represented by the array arr and MAXSTACK represents the maximum possible
number of elements in the stack. The pop algorithm is illustrated in Figure 4.3(b).

Step 1: [Check for stack overflow]
 if tos >=MAXSTACK
 print “Stack overflow” and exit

Step 2: [Increment the pointer value by one]
 tos=tos+1
Step 3: [Insert the item]
 arr[tos]=value
Step 4: Exit

Figure 4.3(a): Algorithm to push an item onto the stack

 8

Stacks, Queues
and Trees

The pop operation removes the topmost item from the stack. After removal of top
most value tos is decremented by 1.

Step 1: [Check whether the stack is empty]
 if tos = 0
 print “Stack underflow” and exit

Step 2: [Remove the top most item]
 value=arr[tos]
 tos=tos-1

Step 3: [Return the item of the stack]
 return(value)

Figure 4.3(b): Algorithm to pop an element from the stack

4.3.1 Implementation of Stack Using Arrays

A Stack contains an ordered list of elements and an array is also used to store ordered
list of elements. Hence, it would be very easy to manage a stack using an array.
However, the problem with an array is that we are required to declare the size of the
array before using it in a program. Therefore, the size of stack would be fixed.
Though an array and a stack are totally different data structures, an array can be used
to store the elements of a stack. We can declare the array with a maximum size large
enough to manage a stack. Program 4.1 implements a stack using an array.

#include<stdio.h>

int choice, stack[10], top, element;

void menu();
void push();
void pop();
void showelements();

void main()
{ choice=element=1;
 top=0;
 menu();
}

void menu()
{
 printf("Enter one of the following options:\n");
 printf("PUSH 1\n POP 2\n SHOW ELEMENTS 3\n EXIT 4\n");
 scanf("%d", &choice);
 if (choice==1)
 {
 push(); menu();
 }
 if (choice==2)
 {
 pop();menu();

9

Stacks }
 if (choice==3)
 {
 showelements(); menu();
 }
 }

void push()
{
 if (top<=9)
 {
 printf("Enter the element to be pushed to stack:\n");
 scanf("%d", &element);
 stack[top]=element;
 ++top;

 }
 else
 {
 printf("Stack is full\n");
 }
 return;
}

void pop()
{
 if (top>0)
 {
 --top;
 element = stack[top];
 printf("Popped element:%d\n", element);
 }
 else
 {
 printf("Stack is empty\n");
 }
 return;

}

void showelements()
{
 if (top<=0)
 printf("Stack is empty\n");

 else
 for(int i=0; i<top; ++i)
 printf("%d\n", stack[i]);

}
 Program 4.1: Implementation of stack using arrays

Explanation

 10

Stacks, Queues
and Trees

The size of the stack was declared as 10. So, stack cannot hold more than 10 elements.
The main operations that can be performed on a stack are push and pop. How ever, in
a program, we need to provide two more options , namely, showelements and exit.
showelements will display the elements of the stack. In case, the user is not interested
to perform any operation on the stack and would like to get out of the program, then
s/he will select exit option. It will log the user out of the program. choice is a variable
which will enable the user to select the option from the push, pop, showelements and
exit operations. top points to the index of the free location in the stack to where the
next element can be pushed. element is the variable which accepts the integer that has
to be pushed to the stack or will hold the top element of the stack that has to be
popped from the stack. The array stack can hold at most 10 elements. push and pop
will perform the operations of pushing the element to the stack and popping the
element from the stack respectively.

4.3.2 Implementation of Stack Using Linked Lists
In the last subsection, we have implemented a stack using an array. When a stack is
implemented using arrays, it suffers from the basic limitation of an array – that is, its
size cannot be increased or decreased once it is declared. As a result, one ends up
reserving either too much space or too less space for an array and in turn for a stack.
This problem can be overcome if we implement a stack using a linked list. In the case
of a linked stack, we shall push and pop nodes from one end of a linked list.
The stack, as linked list is represented as a singly connected list. Each node in the
linked list contains the data and a pointer that gives location of the next node in the
list. Program 4.2 implements a stack using linked lists.

 #include<stdio.h>
 #include<conio.h>
 #include<stdlib.h>

 /* Definition of the structure node */

typedef struct node

{

 int data;
 struct node *next;
 } ;

 /* Definition of push function */

void push(node **tos,int item)

{

 node *temp;
 temp=(node*)malloc(sizeof(node)); /* create a new node dynamically */
 if(temp==NULL) /* If sufficient amount of memory is */
 { /* not available, the function malloc will */
 printf("\nError: Insufficient Memory Space"); /* return NULL to temp */
 getch();
 return;
 }

 else /* otherwise*/

 {

 temp->data=item; /* put the item in the data portion of node*/

 temp->next=*tos; /*insert this node at the front of the stack */
tos=temp; / managed by linked list*/

11

Stacks }

 } /*end of function push*/

/* Definition of pop function */

int pop(node **tos)
{
 node *temp;
 temp=*tos;
 int item;
 if(*tos==NULL)
 return(NULL);
 else

{
 *tos=(*tos)->next; /* To pop an element from stack*/
 item=temp->data; /* remove the front node of the */
 free(temp); /* stack managed by L.L*/
 return (item);
 }
} /*end of function pop*/

/* Definition of display function */

void display(node *tos)

{
 node *temp=tos;
 if(temp==NULL) /* Check whether the stack is empty*/
 {
 printf("\nStack is empty");
 return;
 }
 else
 {
 while(temp!=NULL)
 {
 printf("\n%d",temp->data); /* display all the values of the stack*/
 temp=temp->next; /* from the front node to the last node*/
 }
 }

 } /*end of function display*/

/* Definition of main function */

void main()

{
 int item, ch;
 char choice=‘y’;
 node *p=NULL;
 do
 {
 clrscr();
 printf("\t\t\t\t*****MENU*****");

 12

Stacks, Queues
and Trees

 printf("\n\t\t\t1. To PUSH an element");
 printf("\n\t\t\t2. To POP an element");
 printf("\n\t\t\t3. To DISPLAY the elements of stack");
 printf("\n\t\t\t4. Exit");
 printf("\n\n\n\t\t\tEnter your choice:-");
 scanf("%d",&ch);
 switch(ch)
 {
 case 1:
 printf("\n Enter an element which you want to push ");
 scanf("%d",&item);
 push(&p,item);
 break;
 case 2:
 item=pop(&p);
 if(item!=NULL);
 printf("\n Detected item is%d",item);
 break;
 case 3:
 printf(“\nThe elements of stack are”);

display(p);
 break;
 case 4:
 exit(0);

 } /*switch closed */
 printf("\n\n\t\t Do you want to run it again y/n”);
 scanf(“%c”,&choice);
 } while(choice==’y’);

 }
 /*end of function main*/

Program 4.2: Implementation of Stack using Linked Lists

Similarly, as we did in the implementation of stack using arrays, to know the working
of this program, we executed it thrice and pushed 3 elements (10, 20, 30). Then we
call the function display in the next run to see the elements in the stack.

Explanation

Initially, we defined a structure called node. Each node contains two portions, data
and a pointer that keeps the address of the next node in the list. The Push function will
insert a node at the front of the linked list, whereas pop function will delete the node
from the front of the linked list. There is no need to declare the size of the stack in
advance as we have done in the program where in we implemented the stack using
arrays since we create nodes dynamically as well as delete them dynamically. The
function display will print the elements of the stack.

 Check Your Progress 1

1) State True or False.

(a) Stacks are sometimes called FIFO lists.

(b) Stack allows Push and Pop from both ends.

(c) TOS (top of the stack) gives the bottom most element in the stack.

Stacks
2) Comment on the following.

(a) Why is the linked list representation of the stack better than the array
 representation of the stack?

(b) Discuss the underflow and overflow problem in stacks.

4.4 ALGORITHMIC IMPLEMENTATION OF
MULTIPLE STACKS

So far, now we have been concerned only with the representation of a single stack.
What happens when a data representation is needed for several stacks? Let us see an
array X whose dimension is m. For convenience, we shall assume that the indexes of
the array commence from 1 and end at m. If we have only 2 stacks to implement in the
same array X, then the solution is simple.

Suppose A and B are two stacks. We can define an array stack A with n1 elements and
an array stack B with n2 elements. Overflow may occur when either stack A contains
more than n1 elements or stack B contains more than n2 elements.

Suppose, instead of that, we define a single array stack with n = n1 + n2 elements for
stack A and B together. See the Figure 4.4 below. Let the stack A “grow” to the right,
and stack B “grow” to the left. In this case, overflow will occur only when A and B
together have more than n = n1 + n2 elements. It does not matter how many elements
individually are there in each stack.

1 2 3 4 n-3 n-2 n-1 n

 Stack A Stack B

Stack A grows to right and Stack B grows to left

Bottom most element of Stack A Bottom most element of Stack B

Figure 4.4: Implementation of multiple stacks using arrays

But, in the case of more than 2 stacks, we cannot represent these in the same way
because a one-dimensional array has only two fixed points X(1) and X(m) and each
stack requires a fixed point for its bottom most element. When more than two stacks,
say n, are to be represented sequentially, we can initially divide the available memory
X(1:m) into n segments. If the sizes of the stacks are known, then, we can allocate the
segments to them in proportion to the expected sizes of the various stacks. If the sizes
of the stacks are not known, then, X(1:m) may be divided into equal segments. For
each stack i, we shall use BM (i) to represent a position one less than the position in X
for the bottom most element of that stack. TM(i), 1 < i < n will point to the topmost
element of stack i. We shall use the boundary condition BM (i) = TM (i) iff the ith
stack is empty (refer to Figure 4.5). If we grow the ith stack in lower memory indexes
than the i+1st stack, then, with roughly equal initial segments we have
BM (i) = TM (i) =  m/n  (i – 1), 1 < i < n, as the initial values of BM (i) and TM (i).

 X 1 2 m/n 2 m/n m

13

 14

Stacks, Queues
and Trees

BM(1) BM(2) B(3)

TM(1) TM(2) T (3)

 Figure 4.5: Initial configuration for n stacks in X(1:m)

All stacks are empty and memory is divided into roughly equal segments.

Figure 4.6 depicts an algorithm to add an element to the ith stack. Figure 4.7 depicts
an algorithm to delete an element from the ith stack.

 ADD(i,e)

Step1: if TM (i)=BM (i+1)

 Print “Stack is full” and exit

Step2: [Increment the pointer value by one]

 TM (i) TM (i)+1

 X(TM (i)) e

Step3: Exit

Figure 4.6: Algorithm to add an element to ith stack

//delete the topmost elements of stack i.

DELETE(i,e)

Step1: if TM (i)=BM (i)

 Print “Stack is empty” and exit

Step2: [remove the topmost item]

 e X(TM (i))

 TM (i) TM(i)-1

Step3: Exit

Figure 4.7: Algorithm to delete an element from ith stack

4.5 APPLICATIONS

Stacks are frequently used in evaluation of arithmetic expressions. An arithmetic
expression consists of operands and operators. Polish notations are evaluated by
stacks. Conversions of different notations (Prefix, Postfix, Infix) into one another are
performed using stacks. Stacks are widely used inside computer when recursive
functions are called. The computer evaluates an arithmetic expression written in infix
notation in two steps. First, it converts the infix expression to postfix expression and
then it evaluates the postfix expression. In each step, stack is used to accomplish the
task.

15

Stacks
4.6 SUMMARY

In this unit, we have studied how the stacks are implemented using arrays and using
liked list. Also, the advantages and disadvantages of using these two schemes were
discussed. For example, when a stack is implemented using arrays, it suffers from the
basic limitations of an array (fixed memory). To overcome this problem, stacks are
implemented using linked lists. This unit also introduced learners to the concepts of
multiple stacks. The problems associated with the implementation of multiple stacks
are also covered.

 Check Your Progress 2

1) Multiple stacks can be implemented using _________.
2) _________ are evaluated by stacks.
3) Stack is used whenever a __________ function is called.

4.7 SOLUTIONS / ANSWERS

Check Your Progress 1

1) (a) False (b) False

(c) False

Check Your Progress 2

1) Arrays or Pointers
2) Postfix expressions
3) Recursive

4.8 FURTHER READINGS

1. Data Structures Using C and C++, Yedidyah Langsam,Moshe J.

Augenstein,Aaron M Tenenbaum, Second Edition,PHI publications.

2. Data Structures, Seymour Lipschutz, Schaum’s Outline series, Mc GrawHill.

Reference Websites

http://www.cs.queensu.ca

http://www.cs.queensu.ca/

Stacks, Queues
and Trees

UNIT 5 QUEUES

Structure Page Nos.

5.0 Introduction 16
5.1 Objectives 16
5.2 Abstract Data Type-Queue 16
5.3 Implementation of Queue 17

5.3.1 Array implementation of a queue
5.3.2 Linked List implementation of a queue

5.4 Implementation of Multiple Queues 21
5.5 Implementation of Circular Queues 22

5.5.1 Array Implementation of a circular queue
5.5.2 Linked List Implementation of a circular queue

5.6 Implementation of DEQUEUE 25
5.6.1 Array Implementation of a dequeue
5.6.2 Linked List Implementation of a dequeue

5.7 Summary 30
5.8 Solutions / Answers 30
5.9 Further Readings 30

5.0 INTRODUCTION

Queue is a linear data structure used in various applications of computer science. Like
people stand in a queue to get a particular service, various processes will wait in a
queue for their turn to avail a service. In computer science, it is also called a FIFO
(first in first out) list. In this chapter, we will study about various types of queues.

5.1 OBJECTIVES

After going through this unit, you should be able to

• define the queue as an abstract data type;
• understand the terminology of various types of queues such as simple queues,

multiple queues, circular queues and dequeues, and
• get an idea about the implementation of different types of queues using arrays

and linked lists.

5.2 ABSTRACT DATA TYPE-QUEUE

An important aspect of Abstract Data Types is that they describe the properties of a
data structure without specifying the details of its implementation. The properties can
be implemented independent of any implementation in any programming language.

Queue is a collection of elements, or items, for which the following operations are
defined:

createQueue(Q) : creates an empty queue Q;
isEmpty(Q): is a boolean type predicate that returns ``true'' if Q exists and is
empty, and returns ``false'' otherwise;
addQueue(Q,item) adds the given item to the queue Q; and
deleteQueue (Q, item) : delete an item from the queue Q;
next(Q) removes the least recently added item that remains in the queue Q,
and returns it as the value of the function;

 16

Queues isEmpty (createQueue(Q)) : is always true, and

deleteQueue(createQueue(Q)) : error

The primitive isEmpty(Q) is required to know whether the queue is empty or not,
because calling next on an empty queue should cause an error. Like stack, the
situation may be such when the queue is “full” in the case of a finite queue. But we
avoid defining this here as it would depend on the actual length of the Queue defined
in a specific problem.

The word “queue” is like the queue of customers at a counter for any service, in which
customers are dealt with in the order in which they arrive i.e. first in first out (FIFO)
order. In most cases, the first customer in the queue is the first to be served.

As pointed out earlier, Abstract Data Types describe the properties of a structure
without specifying an implementation in any way. Thus, an algorithm which works
with a “queue” data structure will work wherever it is implemented. Different
implementations are usually of different efficiencies.

5.3 IMPLEMENTATION OF QUEUE

A physical analogy for a queue is a line at a booking counter. At a booking counter,
customers go to the rear (end) of the line and customers are attended to various
services from the front of the line. Unlike stack, customers are added at the rear end
and deleted from the front end in a queue (FIFO).

An example of the queue in computer science is print jobs scheduled for printers.
These jobs are maintained in a queue. The job fired for the printer first gets printed
first. Same is the scenario for job scheduling in the CPU of computer.

Like a stack, a queue also (usually) holds data elements of the same type. We usually
graphically display a queue horizontally. Figure 5.1 depicts a queue of 5 characters.

 | a | b | c | d | e | f |

 front rear

Figure 5.1: A queue of characters

The rule followed in a queue is that elements are added at the rear and come off of the
front of the queue. After the addition of an element to the above queue, the position of
rear pointer changes as shown below. Now the rear is pointing to the new element ‘g’
added at the rear of the queue(refer to Figure 5.2).

 | a | b | c | d | e | f | g |

 front rear

Figure 5.2: Queue of figure 5.1 after addition of new element

 17

Stacks, Queues
and Trees

After the removal of element ‘a’ from the front, the queue changes to the following
with the front pointer pointing to ‘b’ (refer to Figure 5.3).

 | b | c | d | e | f | g |

 front rear

Figure 5.3: Queue of figure 5.2 after deletion of an element

Algorithm for addition of an element to the queue

Step 1: Create a new element to be added
Step 2: If the queue is empty, then go to step 3, else perform step 4
Step 3: Make the front and rear point this element
Step 4: Add the element at the end of the queue and shift the rear pointer to the newly

added element.

Algorithm for deletion of an element from the queue

Step 1: Check for Queue empty condition. If empty, then go to step 2, else go to step 3
Step 2: Message “Queue Empty”
Step 3: Delete the element from the front of the queue. If it is the last element in the

queue, then perform step a else step b
 a) make front and rear point to null
 b) shift the front pointer ahead to point to the next element in the queue

5.3 1 Array implementation of a queue

As the stack is a list of elements, the queue is also a list of elements. The stack and the
queue differ only in the position where the elements can be added or deleted. Like
other liner data structures, queues can also be implemented using arrays. Program 5.1
lists the implementation of a queue using arrays.

#include “stdio.h”
#define QUEUE_LENGTH 50
struct queue
{ int element[QUEUE_LENGTH];
 int front, rear, choice,x,y;
}

struct queue q;

main()
{
int choice,x;
printf (“enter 1 for add and 2 to remove element front the queue”)
printf(“Enter your choice”)
scanf(“%d”,&choice);
switch (choice)

 {

case 1 :
 printf (“Enter element to be added :”);

 18

Queues scanf(“%d”,&x);

add(&q,x);
break;

case 2 :
delete();
break;

 }

}
add(y)
{
++q.rear;
if (q.rear < QUEUE_LENGTH)
 q.element[q.rear] = y;
else
 printf(“Queue overflow”)
}

delete()
{

if q.front > q.rear printf(“Queue empty”);
else{
 x = q.element[q.front];
 q.front++;
 }
retrun x;
}

 Program 5.1: Array implementation of a Queue

5.3.2 Linked List Implementation of a queue

The basic element of a linked list is a “record” structure of at least two fields. The
object that holds the data and refers to the next element in the list is called a node
(refer to Figure 5.4).

The data component may c
element in the queue struct
queue.

Figure 5.5: A

Data Ptrnext
Figure 5.4: Structure of a node

ontain data of any type. Ptrnext is a reference to the next
ure. Figure 5.5 depicts the linked list representation of a

 linked list representation of a Queue

19

Stacks, Queues
and Trees

Program 5.2 gives the program segment for the addition of an element to the queue.

Program 5.3 gives the program segment for the deletion of an element from the queue.

add(int value)
{
struct queue *new;
new = (struct queue*)malloc(sizeof(queue));
new->value = value;
new->next = NULL;
if (front == NULL)
{
 queueptr = new;
 front = rear = queueptr
}
else
{
rear->next = new;
rear=new;
}
}

Program 5.2: Program segment for addition of an element to the queue

delete()
{
int delvalue = 0;
if (front == NULL) printf(“Queue Empty”);
{
 delvalue = front->value;
 if (front->next==NULL)
{
free(front);
queueptr=front=rear=NULL;
}
else
{
front=front->next;
free(queueptr);
queueptr=front;

}
}
}

Program 5.3: Program segment for deletion of an element from the queue

 Check Your Progress 1

1) The queue is a data structure where addition takes place at _________ and
deletion takes place at _____________.

2) The queue is also known as ________ list.

3) Compare the array and linked list representations of a queue. Explain your

answer.

 20

Queues

5.4 IMPLEMENTATION OF MULTIPLE QUEUES

So far, we have seen the representation of a single queue, but many practical
applications in computer science require several queues. Multiqueue is a data structure
where multiple queues are maintained. This type of data structures are used for
process scheduling. We may use one dimensional array or multidimensional array to
represent a multiple queue.

 1 2 ……… n n + 1 ……… 2n 2n + 1 ………….. kn + 1 ………… m

 front [1] front [2] front [k+1]
 rear [1] rear [2] rear [k+1]

 Figure 5.6: Multiple queues in an array

A multiqueue implementation using a single dimensional array with m elements is
depicted in Figure 5.6. Each queue has n elements which are mapped to a liner array
of m elements.

Array Implementation of a multiqueue

Program 5.4 gives the program segment using arrays for the addition of an element to
a queue in the multiqueue.

addmq(i,x) /* Add x to queue i */
{
int i,x;
++rear[i];
if (rear[i] == front[i+1])
 printf(“Queue is full”);
else
{
rear[i] = rear[i]+1;
mqueue[rear[i]] = x;
}
}

Program 5.4: Program segment for the addition of an element to the queue

Program 5.5 gives the program segment for the deletion of an element from the queue.

delmq(i) /* Delete an element from queue i */
{
int i,x;
if (front[i] == rear[i])
 printf(“Queue is empty”);
{
x = mqueue[front[i]];
front[i] = front[i]-1 ;
return x;
}
}

 21
Program 5.5: Program segment for the deletion of an element from the queue

Stacks, Queues
and Trees 5.5 IMPLEMENTATION OF CIRCULAR QUEUES

One of the major problems with the linear queue is the lack of proper utilisation of
space. Suppose that the queue can store 100 elements and the entire queue is full. So,
it means that the queue is holding 100 elements. In case, some of the elements at the
front are deleted, the element at the last position in the queue continues to be at the
same position and there is no efficient way to find out that the queue is not full. In this
way, space utilisation in the case of linear queues is not efficient. This problem is
arising due to the representation of the queue.

The alternative representation is to depict the queue as circular. In case, we are
representing the queue using arrays, then, a queue with n elements starts from index 0
and ends at n-1.So, clearly , the first element in the queue will be at index 0 and the
last element will be at n-1 when all the positions between index 0 and n-1(both
inclusive) are filled. Under such circumstances, front will point to 0 and rear will
point to n-1. However, when a new element is to be added and if the rear is pointing to
n-1, then, it needs to be checked if the position at index 0 is free. If yes, then the
element can be added to that position and rear can be adjusted accordingly. In this
way, the utilisation of space is increased in the case of a circular queue.

In a circular queue, front will point to one position less to the first element anti-clock
wise. So, if the first element is at position 4 in the array, then the front will point to
position 3. When the circular queue is created, then both front and rear point to index
1. Also, we can conclude that the circular queue is empty in case both front and rear
point to the same index. Figure 5.7 depicts a circular queue.

50

15

20

[n-2]

10 [n-3]

[n-1]

[0]

[1]

[2]

[3]

[4]

[n-4]

 Figure 5.7 : A circular queue (Front = 0, Rear = 4)

 22

Queues Algorithm for Addition of an element to the circular queue:

Step-1: If “rear” of the queue is pointing to the last position then go to step-2 or else

Step-3
Step-2: make the “rear” value as 0
Step-3: increment the “rear” value by one
Step-4: a. if the “front” points where “rear” is pointing and the queue holds a not

NULL value for it, then its a “queue overflow” state, so quit; else go to
step-b

 b. add the new value for the queue position pointed by the "rear"

Algorithm for deletion of an element from the circular queue:

Step-1: If the queue is empty then say “queue is empty” and quit; else continue
Step-2: Delete the “front” element
Step-3: If the “front” is pointing to the last position of the queue then go to step-4 else
 go to step-5
Step-4: Make the “front” point to the first position in the queue and quit
Step-5: Increment the “front” position by one

5.5.1 Array implementation of a circular queue

A circular queue can be implemented using arrays or linked lists. Program 5.6 gives
the array implementation of a circular queue.

#include "stdio.h"
void add(int);
void deleteelement(void);
int max=10; /*the maximum limit for queue has been set*/
static int queue[10];
int front=0, rear=-1; /*queue is initially empty*/
void main()
{
int choice,x;
printf ("enter 1 for addition and 2 to remove element front the queue and 3 for exit");
printf("Enter your choice");
scanf("%d",&choice);
switch (choice)
{
case 1 :
printf ("Enter the element to be added :");
scanf("%d",&x);
add(x);
break;
case 2 :
deleteelement();
break;
 }
}
void add(int y)
{
 if(rear == max-1)
 rear = 0;
 else
 rear = rear + 1;
 if(front == rear && queue[front] != NULL)
 printf("Queue Overflow");

 23
 else

Stacks, Queues
and Trees

 queue[rear] = y;
}

void deleteelement()
{
int deleted_front = 0;
 if (front == NULL)
 printf("Error - Queue empty");
 else
 {
 deleted_front = queue[front];
 queue[front] = NULL;
 if (front == max-1)
 front = 0;
 else
 front = front + 1;
 }
}

Program 5.6: Array implementation of a Circular queue

5.5.2 Linked list implementation of a circular queue

Link list representation of a circular queue is more efficient as it uses space more
efficiently, of course with the extra cost of storing the pointers. Program 5.7 gives the
linked list representation of a circular queue.

#include “stdio.h”
 struct cq
{ int value;
 int *next;
 };

typedef struct cq *cqptr
cqptr p, *front, *rear;

main()
{
int choice,x;

/* Initialise the circular queue */
cqptr = front = rear = NULL;

printf (“Enter 1 for addition and 2 to delete element from the queue”)
printf(“Enter your choice”)
scanf(“%d”,&choice);
switch (choice)

{

case 1 :
 printf (“Enter the element to be added :”);
 scanf(“%d”,&x);
 add(&q,x);
 break;

case 2 :
 delete();

 24

Queues break;

 }
}

/************ Add element ******************/

add(int value)
{
 struct cq *new;
 new = (struct cq*)malloc(sizeof(queue));
 new->value = value
 new->next = NULL;

 if (front == NULL)
 {
 cqptr = new;
 front = rear = queueptr;
 }
 else
 {
 rear->next = new;
 rear=new;
 }
}

/* *************** delete element ***********/
delete()
{
int delvalue = 0;
if (front == NULL)
{ printf(“Queue is empty”);
 delvalue = front->value;
 if (front->next==NULL)
 {
 free(front);
 queueptr = front = rear = NULL;
}
else
{
front=front->next;
free(queueptr);
queueptr = front;

}
}
}

 Program 5.7 : Linked list implementation of a Circular queue

5.6 IMPLEMENTATION OF DEQUEUE

Dequeue (a double ended queue) is an abstract data type similar to queue, where
addition and deletion of elements are allowed at both the ends. Like a linear queue and
a circular queue, a dequeue can also be implemented using arrays or linked lists.

 25

Stacks, Queues
and Trees

5.6.1 Array implementation of a dequeue

If a Dequeue is implemented using arrays, then it will suffer with the same problems
that a linear queue had suffered. Program 5.8 gives the array implementation of a
Dequeue.

#include “stdio.h”
#define QUEUE_LENGTH 10;
int dq[QUEUE_LENGTH];
int front, rear, choice,x,y;
main()
{
 int choice,x;
 front = rear = -1; /* initialize the front and rear to null i.e empty queue */

 printf (“enter 1 for addition and 2 to remove element from the front of the queue");
 printf (“enter 3 for addition and 4 to remove element from the rear of the queue");
 printf(“Enter your choice”);
 scanf(“%d”,&choice);
 switch (choice)
 {
 case 1:
 printf (“Enter element to be added :”);
 scanf(“%d”,&x);
 add_front(x);
 break;
 case 2:
 delete_front();
 break;
 case 3:
 printf (“Enter the element to be added :”);
 scanf(“%d ”,&x);
 add_rear(x);
 break;
 case 4:
 delete_rear();
 break;
 }
}
/**************** Add at the front ***************/
add_front(int y)
{
if (front == 0)
{
 printf(“Element can not be added at the front“);
 return;
else
 {
 front = front - 1;
 dq[front] = y;
 if (front == -1) front = 0;
 }
 }
/**************** Delete from the front ***************/
delete_front()
{
 if front == -1
 printf(“Queue empty”);

 26

Queues else

 return dq[front];
 if (front = = rear)
 front = rear = -1
 else
 front = front + 1;
}
/**************** Add at the rear ***************/
add_rear(int y)
if (front == QUEUE_LENGTH -1)
{
 printf(“Element can not be added at the rear “)
 return;
else
{
 rear = rear + 1;
 dq[rear] = y;
 if (rear = = -1)
 rear = 0;
}
}

/**************** Delete at the rear ***************/
delete_rear()
{
 if rear == -1
 printf(“deletion is not possible from rear”);
 else
 {
 if (front = = rear)
 front = rear = -1
 else
 { rear = rear – 1;
 return dq[rear];
 }
}
}

Program 5.8: Array implementation of a Dequeue

5.6.2 Linked list implementation of a dequeue

Double ended queues are implemented with doubly linked lists.

A doubly link list can traverse in both the directions as it has two pointers namely left
and right. The right pointer points to the next node on the right where as the left
pointer points to the previous node on the left. Program 5.9 gives the linked list
implementation of a Dequeue.

include “stdio.h”
#define NULL 0
struct dq {
 int info;
 int *left;
 int *right;
 };
typedef struct dq *dqptr;
dqptr p, tp;

 27

Stacks, Queues
and Trees

dqptr head;
dqptr tail;
main()
{
 int choice, I, x;
 dqptr n;
 dqptr getnode();
 printf(“\n Enter 1: Start 2 : Add at Front 3 : Add at Rear 4: Delete at Front 5:
Delete at Back”);
while (1)
{
 printf(“\n 1: Start 2 : Add at Front 3 : Add at Back 4: Delete at Front 5: Delete
at Back 6 : exit”);
 scanf(“%d”, &choice);
 switch (choice)
 {
 case 1:
 create_list();
 break;
 case 2:
 eq_front();
 break;
 case 3:
 eq_back();
 break;
 case 4:
 dq_front();
 break;
 case 5:
 dq_back();
 break;
 case 6 :
 exit(6);
 }
 }
}

create_list()
{
 int I, x;
 dqptr t;
 p = getnode();
 tp = p;
 p->left = getnode();
 p->info = 10;
 p_right = getnode();
 return;
}

dqptr getnode()
{
 p = (dqptr) malloc(sizeof(struct dq));
 return p;
}

dq_empty(dq q)
{
 return q->head = = NULL;

 28

Queues }

eq_front(dq q, void *info)
{
 if (dq_empty(q))
 q->head = q->tail = dcons(info, NULL, NULL);
else
{
 q-> head -> left =dcons(info, NULL, NULL);
 q->head -> left ->right = q->head;
 q ->head = q->head ->left;
}
}

eq_back(dq q, void *info)
{
 if (dq_empty(q))
 q->head = q->tail = dcons(info, NULL, NULL)
 else
{
 q-> tail -> right =dcons(info, NULL, NULL);
 q->tail -> right -> left = q->tail;
 q ->tail = q->tail ->right;
}
}
 dq_front(dq q)
{
 if dq is not empty
{
dq tp = q-> head;
void *info = tp -> info;
q ->head = q->head-> right;
free(tp);
if (q->head = = NULL)
 q -> tail = NULL;
else
 q -> head -> left = NULL;
return info;
}
}

dq_back(dq q)
{
 if (q!=NULL)
 {
 dq tp = q-> tail;
 *info = tp -> info;
 q ->tail = q->tail-> left;
 free(tp);
 if (q->tail = = NULL)
 q -> head = NULL;
 else
 q -> tail -> right = NULL;
 return info;
 }
}

Program 5.9 : Linked list implementation of a Dequeue

 29

 30

Stacks, Queues
and Trees

 Check Your Progress 2

1) _________ allows elements to be added and deleted at the front as well as at the

rear.
2) It is not possible to implement multiple queues in an Array.

(True/False)
3) The index of a circular queue starts at __________.

5.7 SUMMARY

In this unit, we discussed the data structure Queue. It had two ends. One is
front from where the elements can be deleted and the other if rear to where the
elements can be added. A queue can be implemented using Arrays or Linked
lists. Each representation is having it’s own advantages and disadvantages. The
problems with arrays are that they are limited in space. Hence, the queue is
having a limited capacity. If queues are implemented using linked lists, then
this problem is solved. Now, there is no limit on the capacity of the queue. The
only overhead is the memory occupied by the pointers.

There are a number of variants of the queues. Normally, queues mean circular
queues. Apart from linear queues, we also discussed circular queues in this
unit. A special type of queue called Dequeue was also discussed in this unit.
Dequeues permit elements to be added or deleted at either of the rear or front.
We also discussed the array and linked list implementations of Dequeue.

5.8 SOLUTIONS/ANSWERS

Check Your Progress 1

1. rear , front
2. First in First out (FIFO) list

Check Your Progress 2

1. Dequeue
2. False
3. 0

5.9 FURTHER READINGS

Reference Books

1. Data Structures using C by Aaron M.Tanenbaum, Yedidyah Langsam, Moshe
J.Augenstein , PHI publications

2. Algorithms+Data Structures = Programs by Niklaus Wirth, PHI publications

Reference Websites

http://ciips.ee.uwa.edu.au/~morris/Year2/PLDS210/queues.html
http://www.cs.toronto.edu/~wayne/libwayne/libwayne.html

http://ciips.ee.uwa.edu.au/~morris/Year2/PLDS210/queues.html
http://www.cs.toronto.edu/~wayne/libwayne/libwayne.html

 31

Trees UNIT 6 TREES

Structure Page Nos.

6.0 Introduction 31
6.1 Objectives 31
6.2 Abstract Data Type-Tree 31
6.3 Implementation of Tree 34
6.4 Tree Traversals 35
6.5 Binary Trees 37
6.6 Implementation of a Binary Tree 38
6.7 Binary Tree Traversals 40

6.7.1 Recursive Implementation of Binary Tree Traversals
6.7.2 Non-Recursive Implementation of Binary Tree Traversals

6.8 Applications 43
6.9 Summary 45
6.10 Solutions/Answers 45
6.11 Further Readings 46

6.0 INTRODUCTION

Have you ever thought how does the operating system manage our files? Why do we
have a hierarchical file system? How do files get saved and deleted under hierarchical
directories? Well, we have answers to all these questions in this section through a
hierarchical data structure called Trees! Although most general form of a tree can be
defined as an acyclic graph, we will consider in this section only rooted tree as
general tree does not have a parent-child relationship.

Tree is a data structure which allows you to associate a parent-child relationship
between various pieces of data and thus allows us to arrange our records, data and
files in a hierarchical fashion. Consider a Tree representing your family structure. Let
us say that we start with your grand parent; then come to your parent and finally, you
and your brothers and sisters. In this unit, we will go through the basic tree structures
first (general trees), and then go into the specific and more popular tree called binary-
trees.

6.1 OBJECTIVES

After going through this unit, you should be able
• to define a tree as abstract data type (ADT);
• learn the different properties of a Tree and a Binary tree;
• to implement the Tree and Binary tree, and
• give some applications of Tree.

6.2 ABSTRACT DATA TYPE-TREE

Definition: A set of data values and associated operations that are precisely specified
independent of any particular implementation.

Since the data values and operations are defined with mathematical precision, rather
than as an implementation in a computer language, we may reason about effects of the

 32

Stacks, Queues
and Trees

operations, relationship to other abstract data types, whether a programming language
implements the particular data type, etc.

Consider the following abstract data type:

Structure Tree

 type Tree = nil | fork (Element , Tree , Tree)

Operations:

 null : Tree -> Boolean
 leaf : Tree -> Boolean
 fork : (Element , Tree , Tree) -> Tree

left : Tree -> Tree // It depicts the properties of tree that left of a
tree is also a tree.

 right: Tree -> Tree
 contents: Tree -> Element
 height (nil) = 0 |
 height (fork(e,T,T')) = 1+max(height(T), height(T'))
 weight (nil) = 0 |
 weight (fork(e,T,T')) = 1+weight(T)+weight(T')

 root

left tree right tree

 Figure 6.1: A binary tree

Rules:

 null(nil) = true // nil is an empty tree

 null(fork(e, T, T'))= false // e : element , T and T are two sub tree

 leaf(fork(e, nil, nil)) = true
 leaf(fork(e, T, T')) = false if not null(T) or not null(T')
 leaf(nil) = error

 left(fork(e, T, T')) = T
 left(nil) = error

 right(fork(e, T, T')) = T'
 right(nil) = error

 contents(fork(e, T, T')) = e

 contents(nil) = error

Look at the definition of Tree (ADT). A way to think of a binary tree is that it is either
empty (nil) or contains an element and two sub trees which are themselves binary
trees (Refer to Figure 6.1). Fork operation joins two sub tree with a parent node and

 33

Trees produces another Binary tree. It may be noted that a tree consisting of a single leaf is
defined to be of height 1.

Definition : A tree is a connected, acyclic graph (Refer to Figure 6.2).

It is so connected that any node in the graph can be
reached from any other node by exactly one path.

It does not contain any cycles (circuits, or closed
paths), which would imply the existence of more than
one path between two nodes. This is the most general
kind of tree, and may be converted into the more
familiar form by designating a node as the root. We can
represent a tree as a construction consisting of nodes,
and edges which represent a relationship between two
nodes. In Figure 6.3, we will consider most common
tree called rooted tree. A rooted tress has a single root
node which has no parents.

Figure 6.2 : Tree as a connected acyclic graph

Root

 Figure 6.3 : A rooted tree

In a more formal way, we can define a tree T as a finite set of one or more nodes such
that there is one designated node r called the root of T, and the remaining nodes in
(T – { r }) are partitioned into n > 0 disjoint subsets T1, T2, ..., Tk each of which is a
tree, and whose roots r1 , r2 , ..., rk , respectively, are children of r. The general tree is
a generic tree that has one root node, and every node in the tree can have an unlimited
number of child nodes. One popular use of this kind of tree is a Family Tree.
A tree is an instance of a more general category called graph.

• A tree consists of nodes connected by edges.
• A root is a node without parent.
• Leaves are nodes with no children.
• The root is at level 1. The child nodes of root are at level 2. The child nodes of

nodes at level 2 are at level 3 and so on.
• The depth (height) of a Binary tree is equal to the number of levels in it.
• Branching factor defines the maximum number of children to any node. So, a

branching factor of 2 means a binary tree.

Internal node

Edge

Level 1

Level 2

Level 3

Leaf node

 34

Stacks, Queues
and Trees

• Breadth defines the number of nodes at a level.
• The depth of a node M in a tree is the length of the path from the root of the tree

to M.
• A node in a Binary tree has at most 2 children.

The following are the properties of a Tree.

Full Tree : A tree with all the leaves at the same level, and all the non-leaves having
the same degree

• Level h of a full tree has dh-1 nodes.
• The first h levels of a full tree have 1 + d + d2 + d3 + d4 + ……. + dh-1 = (dh -

1)/(d - 1) nodes where d is the degree of nodes.
• The number of edges = the number of nodes – 1 (Why? Because, an edge

represents the relationship between a child and a parent, and every node has a
parent except the root.

• A tree of height h and degree d has at most d h - 1 elements.

Complete Trees

A complete tree is a k-ary position tree in which all levels are filled from left to right.
There are a number of specialized trees.

They are binary trees, binary search trees, AVL-trees, red-black trees, 2-3 trees.

Data structure- Tree

Tree is a dynamic data structures. Trees can expand and contract as the program
executes and are implemented through pointers. A tree deallocates memory when an
element is deleted.

Non-linear data structures: Linear data structures have properties of ordering
relationship (can the elements/nodes of tree be sorted?). There is no first node or last
node. There is no ordering relationship among elements of tree.

Items of a tree can be partially ordered into a hierarchy via parent-child relationship.
Root node is at the top of the hierarchy and leafs are at the bottom layer of the
hierarchy. Hence, trees can be termed as hierarchical data structures.

6.3 IMPLEMENTATION OF TREE

The most common way to add nodes to a general tree is to first find the desired parent
of the node you want to insert, then add the node to the parent’s child list. The most
common implementations insert the nodes one at a time, but since each node can be
considered a tree on its own, other implementations build up an entire sub-tree before
adding it to a larger tree. As the nodes are added and deleted dynamically from a tree,
tree are often implemented by link lists. However, it is simpler to write algorithms for
a data representation where the numbers of nodes are fixed. Figure 6.4 depicts the
structure of the node of a general k-ary tree.

Data link1 link2 link k

Figure 6.4 : Node structure of a general k-ary tree

 35

Trees
 1

2

3

4

5

 6

7

Figure 6.5: A linked list representation of tree (3-ary tree)

Figure 6.5 depicts a tree with one data element and three pointers. The number of
pointers required to implement a general tree depend of the maximum degree of nodes
in the tree.

6.4 TREE TRAVERSALS

There are three types of tree traversals, namely, Preorder, Postorder and Inorder.

Preorder traversal: Each node is visited before its children are visited; the root is
visited first.

Algorithm for pre order traversal:

1. visit root node
2. traverse left sub-tree in preorder
3. traverse right sub-tree in preorder

Example of pre order traversal: Reading of a book, as we do not read next chapter
unless we complete all sections of previous chapter and all it’s sections (refer to
Figure 6.6).

book

Preface
Chapter 1 Chapter 8 Summary

Section 1 Section 4

Section 1.1 Section 4.1 Section 4.2

Section 4.1.1

 Figure 6.6 : Reading a book : A preorder tree traversal

 36

Stacks, Queues
and Trees

As each node is traversed only once, the time complexity of preorder traversal is
T(n) = O(n), where n is number of nodes in the tree.

Postorder traversal: The children of a node are visited before the node itself; the root
is visited last. Every node is visited after its descendents are visited.

Algorithm for postorder traversal:

1. traverse left sub-tree in post order
2. traverse right sub-tree in post order
3. visit root node.

Finding the space occupied by files and directories in a file system requires a
postorder traversal as the space occupied by directory requires calculation of space
required by all files in the directory (children in tree structure) (refer to Figure 6.7)

/root

 /dir1 /dir2 /dir3

File 1 File n File 1

Figure 6.7 : Calculation of space occupied by a file system : A post order traversal

As each node is traversed only once, the time complexity of post order traversal is
T(n) = O(n), where n is number of nodes in the tree.

Inorder traversal: The left sub tree is visited, then the node and then right sub-tree.

Algorithm for inorder traversal:
1. traverse left sub-tree
2. visit node
3. traverse right sub-tree

+

─

3 1

24

7/

*

Figure 6.8 : An expression tree : An inorder traversal

 37

Trees Inorder traversal can be best described by an expression tree, where the operators are
at parent node and operands are at leaf nodes.

Let us consider the above expression tree (refer to Figure 6.8). The preorder,
postorder and inorder traversal are given below:

preorder Traversal : + * / 4 2 7 - 3 1
postorder traversal : 4 2 / 7 * 3 1 - +
inorder traversal : - ((((4 / 2) * 7) + (3 - 1))

There is another tree traversal (of course, not very common) is called level order,
where all the nodes of the same level are travelled first starting from the root (refer to
Figure 6.9).

Figure 6.9: Tree Traversal: Level Order

 Check Your Progress 1

1) If a tree has 45 edges, how many vertices does it have?
2) Suppose a full 4-ary tree has 100 leaves. How many internal vertices does it

have?
3) Suppose a full 3-ary tree has 100 internal vertices. How many leaves does it

have?
4) Prove that if T is a full m-ary tree with v vertices, then T has ((m-1)v+1)/m

leaves.

6.5 BINARY TREES

A binary tree is a special tree where each non-leaf node can have atmost two child
nodes. Most important types of trees which are used to model yes/no, on/off,
higher/lower, i.e., binary decisions are binary trees.

Recursive Definition: A binary tree is either empty or a node that has left and right
sub-trees that are binary trees. Empty trees are represented as boxes (but we will
almost always omit the boxes).

In a formal way, we can define a binary tree as a finite set of nodes which is either
empty or partitioned in to sets of T0, Tl, Tr , where T0 is the root and Tl and Tr are left
and right binary trees, respectively.

 38

Stacks, Queues
and Trees

Properties of a binary tree

• If a binary tree contains n nodes, then it contains exactly n – 1 edges;
• A Binary tree of height h has 2h – 1nodes or less.
• If we have a binary tree containing n nodes, then the height of the tree is at most

n and at least ceiling log2(n + 1).
• If a binary tree has n nodes at a level l then, it has at most 2n nodes at a level

l+1
• The total number of nodes in a binary tree with depth d (root has depth zero) is

 N = 20 + 21 + 22 + …….+ 2d = 2d+1 - 1

Full Binary Trees: A binary tree of height h which had 2h –1 elements is called a Full
Binary Tree.

Complete Binary Trees: A binary tree whereby if the height is d, and all levels,
except possibly level d, are completely full. If the bottom level is incomplete, then it
has all nodes to the left side. That is the tree has been filled in the level order from left
to right.

6.6 IMPLEMENTATION OF A BINARY TREE

Like general tree, binary trees are implemented through linked lists. A typical node in
a Binary tree has a structure as follows (refer to Figure 6.10):

struct NODE
 {
 struct NODE *leftchild;
 int nodevalue; /* this can be of any data type */
 struct NODE *rightchild;
 };

The ‘left child’and ‘right
child’ are pointers to another
tree-node. The “leaf node”
(not shown) here will have
NULL values for these
pointers.

 left child value right child

 Figure 6.10 : Node structure of a binary tree

The binary tree creation follows a very simple principle. For the new element to be
added, compare it with the current element in the tree. If its value is less than the
current element in the tree, then move towards the left side of that element or else to
its right. If there is no sub tree on the left, then make your new element as the left
child of that current element or else compare it with the existing left child and follow
the same rule. Exactly, the same has to done for the case when your new element is
greater than the current element in the tree but this time with the right child. Though
this logic is followed for the creation of a Binary tree, this logic is often suitable to
search for a key value in the binary tree.

Algorithm for the implementation of a Binary tree:

Step-1: If value of new element < current element, then go to step-2 or else step -3
Step-2: If the current element does not have a left sub-tree, then make your new

 39

Trees element the left child of the current element; else make the existing left child
as your current element and go to step-1

Step-3: If the current element does not have a right sub-tree, then make your new
element the right child of the current element; else make the existing right
child as your current element and go to step-1

Program 6.1 depicts the segment of code for the creation of a binary tree.

struct NODE
{
 struct NODE *left;
 int value;
 struct NODE *right;
};

create_tree(struct NODE *curr, struct NODE *new)
{
 if(new->value <= curr->value)
 {
 if(curr->left != NULL)
 create_tree(curr->left, new);
 else
 curr->left = new;
 }
 else
 {
 if(curr->right != NULL)
 create_tree(curr->right, new);
 else
 curr->right = new;
 }
}

Program 6.1 : Binary tree creation

Array-based representation of a Binary Tree
Consider a complete binary tree T having n nodes where each node contains an item
(value). Label the nodes of the complete binary tree T from top to bottom and from
left to right 0, 1, ..., n-1. Associate with T the array A where the ith entry of A is the
item in the node labelled i of T, i = 0, 1, ..., n-1. Figure 6.11 depicts the array
representation of a Binary tree of Figure 6.16.
Given the index i of a node, we can easily and efficiently compute the index of its
parent and left and right children:
Index of Parent: (i – 1)/2, Index of Left Child: 2i + 1, Index of Right Child: 2i + 2.

Node # Item Left child Right child
0 A 1 2
1 B 3 4
2 C -1 -1
3 D 5 6
4 E 7 8
5 G -1 -1
6 H -1 -1
7 I -1 -1
8 J -1 -1
9 ? ? ?

Figure 6.11 : Array Representation of a Binary Tree

 40

Stacks, Queues
and Trees

First column represents index of node, second column consist of the item stored in the
node and third and fourth columns indicate the positions of left and right children
(–1 indicates that there is no child to that particular node.)

6.7 BINARY TREE TRAVERSALS

We have already discussed about three tree traversal methods in the previous section
on general tree. The same three different ways to do the traversal – preorder, inorder
and postorder are applicable to binary tree also.

Let us discuss the inorder binary tree traversal for following binary tree (refer to
Figure 6.12):

We start from the root i.e. * We are supposed to visit its left sub-tree then visit the
node itself and its right sub-tree. Here, root has a left sub-tree rooted at +. So, we
move to + and check for its left sub-tree (we are suppose repaeat this for every node).
Again, + has a left sub-tree rooted at 4. So, we have to check for 4's left sub-tree now,
but 4 doesn't have any left sub-tree and thus we will visit node 4 first (print in our
case) and check for its right sub-tree. As 4 doesn't have any right sub-tree, we'll go
back and visit node +; and check for the right sub-tree of +. It has a right sub-tree
rooted at 5 and so we move to 5. Well, 5 doesn't have any left or right sub-tree. So, we
just visit 5 (print 5)and track back to +. As we have already visited + so we track back
to * . As we are yet to visit the node itself and so we visit * before checking for the
right sub-tree of *, which is 3. As 3 does not have any left or right sub-trees, we visit
3.
So, the inorder traversal results in 4 + 5 * 3

*

3+

4 5

Figure 6.12 : A binary tree

The preoreder and postorder travers
general thing we have seen in all th
is inherently recursive in nature.

6.7.1 Recursive Implementat

There are three classic ways of recu
the left and right sub-trees are visite
when the element in the root is vi

Program 6.2, Program 6.3 and Prog
traversals of a Binary tree.

struct NODE
{
Algorithm: Inorder
Step-1: For the current node, check whether it has a left

child. If it has, then go to step-2 or
 else go to step-3
Step-2: Repeat step-1 for this left child
Step-3: Visit (i.e. printing the node in our case) the

current node
Step-4: For the current node check whether it has a right

child. If it has, then go to step-5
Step-5: Repeat step-1 for this right child

als are similar to that of a general binary tree. The
ese tree traversals is that the traversal mechanism

ion of Binary Tree Traversals

rsively traversing a binary tree. In each of these,
d recursively and the distinguishing feature is

sited or processed.

ram 6.4 depict the inorder, preorder and postorder

 41

Trees struct NODE *left;
 int value; /* can be of any type */
 struct NODE *right;
};

inorder(struct NODE *curr)
{
 if(curr->left != NULL) inorder(curr->left);
 printf("%d", curr->value);

 if(curr->right != NULL) inorder(curr->right);

}

Program 6.2 : Inorder traversal of a binary tree

struct NODE
{
 struct NODE *left;
 int value; /* can be of any type */
 struct NODE *right;
};

preorder(struct NODE *curr)
{
 printf("%d", curr->value);
 if(curr->left != NULL) preorder(curr->left);
 if(curr->right != NULL) preorder(curr->right);

}

Program 6.3 : Preorder traversal of a binary tree

struct NODE
{
 struct NODE *left;
 int value; /* can be of any type */
 struct NODE *right;
};

postorder(struct NODE *curr)
{
 if(curr->left != NULL) postorder(curr->left);
 if(curr->right != NULL) postorder(curr->right);

printf("%d", curr->value);

}

Program 6.4 : Postorder traversal of a binary tree

In a preorder traversal, the root is visited first (pre) and then the left and right sub-
trees are traversed. In a postorder traversal, the left sub-tree is visited first, followed
by right sub-tree which is then followed by root. In an inorder traversal, the left sub-
tree is visited first, followed by root, followed by right sub-tree.

 42

Stacks, Queues
and Trees

6.7.2 Non-recursive implementation of binary tree traversals

As we have seen, as the traversal mechanisms were inherently recursive, the
implementation was also simple through a recursive procedure. However, in the case
of a non-recursive method for traversal, it has to be an iterative procedure; meaning,
all the steps for the traversal of a node have to be under a loop so that the same can be
applied to all the nodes in the tree.

Algorithm : Non-recursive preorder binary tree traversal

Stack S
push root onto S
repeat until S is empty
{
 v = pop S
 if v is not NULL
 visit v
 push v’s right child onto S
 push v’s left child onto S

 }

Program 6.5 depicts the program segment for the implementation of non-
recursive preorder traversal.

/* preorder traversal of a binary tree, implemented using a stack */
void preorder(binary_tree_type *tree)
{
 stack_type *stack;
 stack = create_stack();
 push(tree, stack); /* push the first element of the tree to the stack */
 while (!empty(stack))
 {
 tree = pop(stack);
 visit(tree);
 push(tree->right, stack); /* push right child to the stack */
 push(tree->left, stack); /* push left child to the stack */
 }

 }

Program 6.5: Non-recursive implementation of preorder traversal

In the worst case, for preorder traversal, the stack will grow to size n/2, where n is
number of nodes in the tree. Another method of traversing binary tree non-recursively
which does not use stack requires pointers to the parent node (called threaded binary
tree).

A threaded binary tree is a binary tree in which every node that does not have a right
child has a THREAD (a third link) to its INORDER successor. By doing this
threading we avoid the recursive method of traversing a tree and use of stack, which
makes use of a lot of memory and time.

A node structure of threaded binary is :

The node structure for a threaded binary tree varies a bit and its like this –
struct NODE
{

Trees struct NODE *leftchild;
 int node_value;
 struct NODE *rightchild;
 struct NODE *thread; /* third pointer to it’s inorder successor */
}

6.8 APPLICATIONS

Trees are used enormously in computer programming. These can be used for
improving database search times (binary search trees, 2-3 trees, AVL trees, red-black
trees), Game programming (minimax trees, decision trees, pathfinding trees),
3D graphics programming (quadtrees, octrees), Arithmetic Scripting languages
(arithmetic precedence trees), Data compression (Huffman trees), and file systems (B-
trees, sparse indexed trees, tries). Figure 6.13 depicts a tic-tac-toe game tree showing
various stages of game.

 in game losses losses

Figure 6.13 : A tic-tac-toe game tree showing va

In all of the above scenario except the first one, the player
looses in subsequent moves.

The General tree (also known as Linked Trees) is a generi
node, and every node in the tree can have an unlimited nu
popular use of this kind of tree is in Family Tree program
many games use these types of trees for decision-making
for tic-tac-toe. A computer program might need to make
that happened.

But this is just a simple tree for demonstration. A more co
would definitely have a lot more options. The interesting
decision-making is that the options are cut down for every
down, greatly simplifying the subsequent moves and impr
AI program makes a decision.

The big problem with tree based level progressions, howe
tree can get too large and complex as the number of move
Imagine a game offering just two choices for every move
of each level in a ten level game. This would require a tre
created.
losses
rious stages of gam

 (playing with X

c tree that has o
mber of child no
s. In game progr
processes as sho
a decision based

mplex AI decisi
thing about using
 level of the tree
oving the speed

ver, is that some
s (level in a tree
to the next level
e of 1023 nodes
losses
 43

e

) ultimately

ne root
des. One
amming,
wn above
 on an event

on tree
 a tree for
 as we go

 at which the

times the
) increases.
 at the end
to be

 44

Stacks, Queues
and Trees

Binary trees are used for searching keys. Such trees are called Binary Search
trees(refer to Figure 6.14).

A Binary Search Tree (BST) is a binary tree with the following properties:

1. The key of a node is always greater than the keys of the nodes in its left sub-tree
2. The key of a node is always smaller than the keys of the nodes in its right sub-tree

 root

15 18 11

16
10

14

8

 Figure 6.14 : A binary search tree (BST)

It may be seen that when nodes of a BST are traversed by inorder traversal, the keys
appear in sorted order:

inorder(root)
{
inorder(root.left)
print(root.key)
inorder(root.right)
}

Binary Trees are also used for evaluating expressions.
A binary tree can be used to represent and evaluate arithmetic expressions.

1. If a node is a leaf, then the element in it specifies the value.
2. If it is not a leaf, then evaluate the children and combine them according to

the operation specified by the element.

Figure 6.15 depicts a tree which is used to evaluate expressions.

6 851

─*

+

 Figure 6.15 : Expression tree for 1 * 5 + 8 - 6

 45

Trees Check Your Progress 2

I J H G

E
D

B C

A

Figure 6.16 : A binary tree

1) With reference to Figure 6.16, find
 a) the leave nodes in the binary tree

b) sibling of J
c) Parent node of G
d) depth of the binary tree
e) level of node J

2) Give preorder, post order, inorder and level order traversal of above binary tree
3) Give array representation of the binary tree of Figure 6.12
4) Show that in a binary tree of N nodes, there are N+1 children with both the links

as null (leaf node).

6.9 SUMMARY

Tree is one of the most widely used data structure employed for representing various
problems. We studied tree as a special case of an acyclic graph. However, rooted trees
are most prominent of all trees. We discussed definition and properties of general
trees with their applications. Various tree traversal methods are also discussed.

Binary tree are the special case of trees which have at most two children. Binary trees
are mostly implemented using link lists. Various tree traversal mechanisms include
inorder, preorder and post order. These tree traversals can be implemented using
recursive procedures and non-recursive procedures. Binary trees have wider
applications in two way decision making problems which use yes/no, true/false etc.

6.10 SOLUTIONS / ANSWERS

Check Your Progress 1

1) If a tree has e edges and n vertices, then e=n – 1. Hence, if a tree has 45 edges,
then it has 46 vertices.

2) A full 4-ary tree with 100 leaves has i=(100 – 1)/(4 – 1)=33 internal vertices.

3) A full 3-ary tree with 100 internal vertices has l = (3 – 1)*100+ 1=201 leaves

 46

Stacks, Queues
and Trees

Check Your Progress 2

1) Answers
a. G,H,I and J
b. I
c. D
d. 4
e. 4

2) Preorder : ABDCHEIJC Postorder : GHDIJEBCA Inorder : GDHBIEFAC
level-order: ABCDEGHIJ

3) Array representation of the tree in Figure 6.12

Index of
Node

Item Left child Right
child

0 * 1 2
1 + 3 4
2 3 -1 -1
3 4 -1 -1
4 5 -1 -1
5 ? ? ?

6.11 FURTHER READINGS

1. Fundamentals of Data Structures in C++ by E.Horowitz, Sahni and D.Mehta; Galgotia

Publications.
2. Data Structures and Program Design in C by Kruse, C.L.Tonodo and B.Leung; Pearson

Education.

Reference websites

http://www.csee.umbc.edu
http://www.cse.ucsc.edu
http://www.webopedia.com

http://www.csee.umbc.edu/
http://www.cse.ucsc.edu/
http://www.webopedia.com/

	MCS-021 Stacks, Queues and Trees
	Index
	Credit Page
	Block Introduction
	UNIT 4 Stacks
	4.0 Introduction
	4.1 Objectives
	4.2 Abstract Data Type-Strack
	4.3 Implementation of Stack
	4.4 Algorithmic Implementation of Multiples Stacks
	4.5 Applications
	4.6 Summary
	4.7 Solutions
	4.8 Further Readings

	UNIT 5 Queues
	5.0 Introduction
	5.1 Objectives
	5.2 Abstract Data Type-Queue
	5.3 Implementation of Queue
	5.4 Implementation of Multiple Queues
	5.5 Implementation of Circular Queues
	5.6 Implementation of Dequeue
	5.7 Summary
	5.8 Solutions
	5.9 Further Readings

	UNIT 6 Trees
	6.0 Introduction
	6.1 Objectives
	6.2 Abstract Data Type-Trees
	6.3 Implementation of Trees
	6.4 Tree Traversals
	6.5 Binary Trees
	6.6 Implementation of Binary Tree
	6.7 Binary Tree Traversals
	6.8 Applications
	6.9 Summary
	6.10 Solutions

