

 Indira Gandhi
 National Open University
 School of Computer and
 Information Sciences

MCS-021
DATA AND

FILE STRUCTURES

Block

1
INTRODUCTION TO ALGORITHMS AND
DATA STRUCTURES
UNIT 1

Analysis of Algorithms 7

UNIT 2
Arrays 23

UNIT 3
Lists 33

Programme / Course Design Committee

Prof. Sanjeev K. Aggarwal, IIT, Kanpur

Prof. M. Balakrishnan, IIT, Delhi

Prof. Harish Karnick, IIT, Kanpur

Prof. C. Pandurangan, IIT, Madras

Dr. Om Vikas, Sr. Director,
 Ministry of ICT, Delhi

Prof. P. S. Grover, Sr. Consultant
 SOCIS, IGNOU

Faculty of School of Computer and
Information Sciences
Shri Shashi Bhushan
Shri Akshay Kumar
Shri M.P.Mishra
Prof. Manohar Lal
Shri Naveen Kumar
Shri V.V. Subrahmanyam
Shri P. Venkata Suresh

Block Preparation Team

Shri G.V.S.S.S.Srinivas (Content Editor)
Technical Manager
HCL Technologies

Shri N.Madan Mohan Babu
Deputy Manager
NSIC-TSC
New Delhi

Ms.Pankaj Lathar
Dept. of Computer Science
Maharaja Surajmal Institute
New Delhi

Shri Akshay Kumar Purohit
Deputy Director (IT)
Bureau of Indian Standards
New Delhi

Shri P. Venkata Suresh
SOCIS, IGNOU

Prof. M.R.Dua (Language Editor)
New Delhi

Course Coordinator : P. Venkata Suresh

Block Production Team

Shri T. R. Manoj, Section Officer (Pub.) and H. K Som, Consultant, SOCIS
CRC prepared by Shri A. N. Kispotta

April, 2005

©Indira Gandhi National Open University, 2005

ISBN −81-266-1727-6

All rights reserved. No part of this work may be reproduced in any form, by mimeograph or any other means, without
permission in writing from the Indira Gandhi National Open University.

Further information on the Indira Gandhi National Open University courses may be obtained from the University’s
office at Maidan Garhi, New Delhi-110 068.

Printed and published on behalf on the Indira Gandhi National Open University, New Delhi by The Director, SOCIS.

Printed at:

COURSE INTRODUCTION

This course is on the Data and File Structures.

Data structures are building blocks of a program. They are like pillars of a huge
structure. If a program is built using improper data structures, then the program may
not work as expected always. It is very much important to use right data structures for
a program.

When the software is developed, it is very important to consider space and time
complexities as essential parameters that are to be met by it. Software may be
developed, but, it may take a longer time to produce output and hence, it may not be
used. The same is the case with respect to space. A program should not occupy more
than a specific amount of memory. Both these parameters are technically termed as
Time and Space complexities. A program/algorithm is analysed for its space and time
complexities. The most common basic data structure is Array. Arrays can store the
elements which are of same data type. Arrays can be single or multi-dimensional. The
representations of arrays inside the memory are not uniform. The other data structure
that was discussed in this course is Lists. A list can be represented using arrays or
pointers. If pointers are used, then, the operations on the list such as Insertion,
Deletion etc. will become easy. Also, the time complexity of such programs is less
when compared to programs which represent lists using arrays. Different types of lists
are also covered in the course.

Data structures enable a programmer to structure a program in such a way that the
data are represented in the same way (of course, to the extent possible) as they are
represented in real life. A Stack is a last-in-first-out data structure. It means that the
latest element which entered the Stack will be the first to leave. A Stack can be
represented using Arrays or Linked lists. Both the representations are discussed in this
course. Also, the topic of multiple stacks is covered. A queue is a first-in-first-out data
structure. It means that the first element that entered the queue will be the first to leave
it. A queue can be implemented using arrays or pointers. However, a lot of flexibility
is associated with a queue implemented using pointers. Also, the topic of Dequeue is
covered in this course. The most important data structure is Tree. A Tree is having a
large number of applications in real life. Both Binary Trees and Trees are discussed.
The different ways of traversing a Tree are also covered in this course.

Binary search Trees, AVL Trees and B-Trees are advanced versions of binary Trees.
There are two types of Graphs, namely, those whose paths are directed and those
whose paths are not directed. The issue of representing a Graph in such a way that its
connectivity is not disturbed is discussed. Also, Dijkstra’s algorithm which computes
the shortest path between two vertices, Kruskal’s and Prim’s algorithms which are
used to compute the minimum cost spanning Trees are also discussed in this course.
The most frequent operation that is performed in most of the software is Searching.
This topic is dealt through the discussion of various search algorithms in this course.

Another frequent operation that is performed in most of the software is Sorting.
Different sorting algorithms such as Quick sort, Heap Sort, Bubble Sort and Merge
Sort are discussed. In this course, the topic of File structures is also discussed.
Different types of File organizations are discussed. Finally, some of the advanced data
structures such as Splay Trees, Red-black Trees and AA Trees are also discussed in
this course.

There are a large number of programs in this course. Students are advised to simulate
the programs by hand before trying to execute them on the machine. All programs
may not readily execute on the machine. Hence, it is important to simulate every
program by hand, make necessary modifications and then execute the program. It is

always suggested that students should write programs on their own and should not
copy any portion of the program that is existent in the course.

This course consists of 4 blocks and is organised in the following manner:

Block-1 discusses the matters related to analysis of algorithms and basic data
structures such as Arrays and Lists. Representation of arrays and different types of
lists are also discussed.

Block-2 focuses on Stacks, Queues and Trees. Different ways of representing Stacks
and Queues are discussed in this block. Also, different ways of traversing a Tree are
also covered.

Block-3 deals with Advanced Trees, Graphs and Search algorithms. AVL Trees are B-
Trees covered in this block. Also, different algorithms to compute the minimum cost
spanning Trees, shortest paths etc. are dealt with. In this block, different techniques
used for searching such as Binary search are also discussed.

Block-4 is the final block of this course. In this block, different techniques used for
sorting such as Bubble sort, Quick sort, Heap sort and Merge sort are discussed. The
topic of File structures is also discussed. Finally, advanced data structures such as
Red-black Trees, AA-Trees are also discussed.

BLOCK INTRODUCTION

This block introduces learner to Algorithms and basic Data structures.

There are two limits in this world which cannot be extended. They are, Time and
Space. Every program occupies some space and takes some time to execute. The
word some is highly ambiguous as the space and time should be within specific limits
for a program should be useful. It is not important to write a program which produces
output as expected, but, it is very important to write a program which produces output
as expected within a specific time and doesn’t consume space more than a specific
limit. It is not uncommon to write programs which produce output as desired, but,
they take enormous time to execute and thus may not be used by any body in real life.
Of course, there is no need to get surprised when we find such programs in real life
and there is no better code which does the same within the tolerable time! This is the
reason for analysing a program after it was written correctly. The analysis consists of
two elements, namely, time and space. It is some times possible to write the same
program using different logic which consumes better time and space. We discuss the
subject of analysis of algorithms in Unit-1 of this Block.

One of the basic data structures of a program is Array. We discuss the same in Unit-2
of this Block. Array is a data structure which can represent a collection of elements of
same data type. There are enormous applications of Arrays in real life. We can view
an Array as a row of elements (for example, a row of males/females/human beings) of
same type. Such a row can be treated as a single dimensional array. An array can be of
any dimensions. It can be two dimensional, three dimensional etc. The right
dimension that has to be used depends on the application in place. Though, an array
can be of different dimensions and humans are having a specific view about the
representation of arrays (particularly, one and two dimensional arrays), the real
representation inside the memory may be different from that of a user’s view. This
topic is also covered in this unit.

One common data structure in Computer science is List which is the subject of Unit-3.
It is not uncommon in real life to use lists for a variety of purposes and this particular
data structure is developed keeping in view of the vast applications of Lists in real
life. Some examples of Lists are list of passengers, list of stations, list of courses etc.
A list can be represented in different ways. Some representations will rob the list of
the flexibility. Some representations support flexibility for operations like insertion,
deletion of elements from list etc. There are different types of lists. In this unit, we
shall discuss the Singly linked lists, Doubly linked lists, Circular lists etc.

This block consists of three units and is organized as follows:

Unit-1 deals with Analysis of algorithms. Both space and time complexity are covered
in this unit.

Unit-2 deals with the basic data structure Arrays. Single dimensional and Multi
dimensional arrays are covered. Also, different representations of Arrays in memory
are discussed.

Unit-3 deals with the data structure Lists. Lists using arrays and pointers are
demonstrated. Also, different types of linked lists are covered in this unit.

Analysis of
Algorithms

UNIT 1 ANALYSIS OF ALGORITHMS

Structure Page Nos.

1.0 Introduction 7
1.1 Objectives 7
1.2 Mathematical Background 8
1.3 Process of Analysis 12
1.4 Calculation of Storage Complexity 18
1.5 Calculation of Time Complexity 19
1.6 Summary 21
1.7 Solutions/Answers 22
1.8 Further Readings 22

1.0 INTRODUCTION

A common person’s belief is that a computer can do anything. This is far from truth.
In reality, computer can perform only certain predefined instructions. The formal
representation of this model as a sequence of instructions is called an algorithm, and
coded algorithm, in a specific computer language is called a program. Analysis of
algorithms has been an area of research in computer science; evolution of very high
speed computers has not diluted the need for the design of time-efficient algorithms.

Complexity theory in computer science is a part of theory of computation dealing with
the resources required during computation to solve a given problem. The most
common resources are time (how many steps (time) does it take to solve a problem)
and space (how much memory does it take to solve a problem). It may be noted that
complexity theory differs from computability theory, which deals with whether a
problem can be solved or not through algorithms, regardless of the resources
required.

Analysis of Algorithms is a field of computer science whose overall goal is
understand the complexity of algorithms. While an extremely large amount of
research work is devoted to the worst-case evaluations, the focus in these pages is
methods for average-case. One can easily grasp that the focus has shifted from
computer to computer programming and then to creation of an algorithm. This is
algorithm design, heart of problem solving.

1.1 OBJECTIVES

After going through this unit, you should be able to:

• understand the concept of algorithm;

• understand the mathematical foundation underlying the analysis of algorithm;

• to understand various asymptotic notations, such as Big O notation, theta

notation and omega (big O, Θ, Ω) for analysis of algorithms;

• understand various notations for defining the complexity of algorithm;

• define the complexity of various well known algorithms, and

• learn the method to calculate time complexity of algorithm.

7

Introduction to
Algorithms and Data
Structures

1.2 MATHEMATICAL BACKGROUND
To analyse an algorithm is to determine the amount of resources (such as time and
storage) that are utilized by to execute. Most algorithms are designed to work with
inputs of arbitrary length.

Algorithm analysis is an important part of a broader computational complexity theory,
which provides theoretical estimates for the resources needed by any algorithm which
solves a given computational problem. These estimates provide an insight into
reasonable directions of search for efficient algorithms.

Definition of Algorithm

Algorithm should have the following five characteristic features:

1. Input
2. Output
3. Definiteness
4. Effectiveness
5. Termination.

Therefore, an algorithm can be defined as a sequence of definite and effective
instructions, which terminates with the production of correct output from the given
input.

Complexity classes

All decision problems fall into sets of comparable complexity, called complexity
classes.

The complexity class P is the set of decision problems that can be solved by a
deterministic machine in polynomial time. This class corresponds to set of problems
which can be effectively solved in the worst cases. We will consider algorithms
belonging to this class for analysis of time complexity. Not all algorithms in these
classes make practical sense as many of them have higher complexity. These are
discussed later.

The complexity class NP is a set of decision problems that can be solved by a non-
deterministic machine in polynomial time. This class contains many problems like
Boolean satisfiability problem, Hamiltonian path problem and the Vertex cover
problem.

What is Complexity?

Complexity refers to the rate at which the required storage or consumed time grows as
a function of the problem size. The absolute growth depends on the machine used to
execute the program, the compiler used to construct the program, and many other
factors. We would like to have a way of describing the inherent complexity of a
program (or piece of a program), independent of machine/compiler considerations.
This means that we must not try to describe the absolute time or storage needed. We
must instead concentrate on a “proportionality” approach, expressing the complexity
in terms of its relationship to some known function. This type of analysis is known as
asymptotic analysis. It may be noted that we are dealing with complexity of an
algorithm not that of a problem. For example, the simple problem could have high
order of time complexity and vice-versa.

 8

Analysis of
Algorithms

Asymptotic Analysis

Asymptotic analysis is based on the idea that as the problem size grows, the
complexity can be described as a simple proportionality to some known function. This
idea is incorporated in the “Big O”, “Omega” and “Theta” notation for asymptotic
performance.

The notations like “Little Oh” are similar in spirit to “Big Oh” ; but are rarely used in
computer science for asymptotic analysis.

Tradeoff between space and time complexity

We may sometimes seek a tradeoff between space and time complexity. For example,
we may have to choose a data structure that requires a lot of storage in order to reduce
the computation time. Therefore, the programmer must make a judicious choice from
an informed point of view. The programmer must have some verifiable basis based on
which a data structure or algorithm can be selected Complexity analysis provides such
a basis.

We will learn about various techniques to bind the complexity function. In fact, our
aim is not to count the exact number of steps of a program or the exact amount of time
required for executing an algorithm. In theoretical analysis of algorithms, it is
common to estimate their complexity in asymptotic sense, i.e., to estimate the
complexity function for reasonably large length of input ‘n’. Big O notation, omega
notation Ω and theta notation Θ are used for this purpose. In order to measure the
performance of an algorithm underlying the computer program, our approach would
be based on a concept called asymptotic measure of complexity of algorithm. There
are notations like big O, Θ, Ω for asymptotic measure of growth functions of
algorithms. The most common being big-O notation. The asymptotic analysis of
algorithms is often used because time taken to execute an algorithm varies with the
input ‘n’ and other factors which may differ from computer to computer and from run
to run. The essences of these asymptotic notations are to bind the growth function of
time complexity with a function for sufficiently large input.

The Θ-Notation (Tight Bound)

This notation bounds a function to within constant factors. We say f(n) = Θ(g(n)) if
there exist positive constants n0, c1 and c2 such that to the right of n0 the value of f(n)
always lies between c1g(n) and c2g(n), both inclusive. The Figure 1.1 gives an idea
about function f(n) and g(n) where f(n) = Θ(g(n)) . We will say that the function g(n)
is asymptotically tight bound for f(n).

Figure 1.1 : Plot of f(n) = Θ(g(n))

9

Introduction to
Algorithms and Data
Structures

For example, let us show that the function f(n) =
3
1

n2 − 4n = Θ(n2).

Now, we have to find three positive constants, c 1, c 2 and no such that

c1n2 ≤
3
1

 n2 – 4n ≤ c2 n2 for all n ≥ no

⇒ c1 ≤
3
1
−

n
4

 ≤ c2

By choosing no = 1 and c2 ≥ 1/3 the right hand inequality holds true.

Similarly, by selecting no = 13 c1 ≤ 1/39, the right hand inequality holds true.
So, for c1 = 1/39 , c2 = 1/3 and no ≥ 13, it follows that 1/3 n2 – 4n = Θ (n2).

Certainly, there are other choices for c1, c2 and no. Now we may show that the
function f(n) = 6n3 ≠ Θ (n2).

To prove this, let us assume that c3 and no exist such that
6n3 ≤ c3n2 for n ≥ no, But this fails for sufficiently large n. Therefore 6n3 ≠ Θ (n2).

The big O notation (Upper Bound)

This notation gives an upper bound for a function to within a constant factor. Figure
1.2 shows the plot of f(n) = O(g(n)) based on big O notation. We write f(n) = O(g(n))
if there are positive constants n0 and c such that to the right of n0, the value of f(n)
always lies on or below cg(n).

 Figure 1.2: Plot of f(n) = O(g(n))

Mathematically for a given function g(n), we denote a set of functions by O(g(n)) by
the following notation:

O(g(n)) = {f(n) : There exists a positive constant c and n0 such that 0 ≤ f(n) ≤ cg(n)
for all n ≥ n0 }

Clearly, we use O-notation to define the upper bound on a function by using a
constant factor c.

We can see from the earlier definition of Θ that Θ is a tighter notation than big-O
notation.

f(n) = an + c is O(n) is also O(n2), but O (n) is asymptotically tight whereas O(n2) is
notation.

 10

Analysis of
Algorithms

Whereas in terms of Θ notation, the above function f(n) is Θ (n). As big-O notation is
upper bound of function, it is often used to describe the worst case running time of
algorithms.
The Ω-Notation (Lower Bound)

This notation gives a lower bound for a function to within a constant factor. We write
f(n) = Ω(g(n)), if there are positive constants n0 and c such that to the right of n0, the
value of f(n) always lies on or above cg(n). Figure 1.3 depicts the plot of
f(n) = Ω(g(n)).

Figure 1.3: Plot of f(n) = Ω(g(n))

Mathematically for a given function g(n), we may define Ω(g(n)) as the set of
functions.

Ω(g(n)) = { f(n) : there exists a constant c and n0 ≥ 0 such that 0 ≤ cg(n) ≤ f(n) for all
n ≥ n0 }.

Since Ω notation describes lower bound, it is used to bound the best case running time
of an algorithm.

Asymptotic notation

Let us define a few functions in terms of above asymptotic notation.

Example: f(n) = 3n3 + 2n2 + 4n + 3
 = 3n3 + 2n2 + O (n), as 4n + 3 is of O (n)
 = 3n3+ O (n2), as 2n2 + O (n) is O (n2)
 = O (n3)

Example: f(n) = n² + 3n + 4 is O(n²), since n² + 3n + 4 < 2n² for all n > 10.
By definition of big-O, 3n + 4 is also O(n²), too, but as a convention, we use the
tighter bound to the function, i.e., O(n).

Here are some rules about big-O notation:

1. f(n) = O(f(n)) for any function f. In other words, every function is bounded by
itself.

2. aknk + ak−1nk−1 + · · · + a1n + a0 = O(nk) for all k ≥ 0 and for all a0, a1, . . . , ak ∈ R.
In other words, every polynomial of degree k can be bounded by the function nk.
Smaller order terms can be ignored in big-O notation.

3. Basis of Logarithm can be ignored in big-O notation i.e. loga n = O(logb n) for
any bases a, b. We generally write O(log n) to denote a logarithm n to any base.
 11

Introduction to
Algorithms and Data
Structures

4. Any logarithmic function can be bounded by a polynomial i.e. logb n = O(nc)
for any b (base of logarithm) and any positive exponent c > 0.

5. Any polynomial function can be bounded by an exponential function i.e.
nk = O (bn.).

6. Any exponential function can be bound by the factorial function. For example,

an = O(n!) for any base a.

 Check Your Progress 1

1) The function 9n+12 and 1000n+400000 are both O(n). True/False

2) If a function f(n) = O(g(n)) and h(n) = O(g(n)), then f(n)+h(n) = O(g(n)).

 True/False

3) If f(n) = n2 + 3n and g(n) = 6000n + 34000 then O(f(n)) < O (g(n).)
 True/False

4) The asymptotic complexity of algorithms depends on hardware and other
factors. True/False

5) Give simplified big-O notation for the following growth functions:

• 30n2
• 10n3 + 6n2
• 5nlogn + 30n
• log n + 3n
• log n + 32

……………………………………………………………………………………………………

……………………………………………………………………………………………………

……………………………………………………………………………………………………

……………………………………………………………………………………………………

1.3 PROCESS OF ANALYSIS

The objective analysis of an algorithm is to find its efficiency. Efficiency is dependent
on the resources that are used by the algorithm. For example,

• CPU utilization (Time complexity)
• Memory utilization (Space complexity)
• Disk usage (I/O)
• Network usage (bandwidth).

There are two important attributes to analyse an algorithm. They are:

Performance: How much time/memory/disk/network bandwidth is actually used when
a program is run. This depends on the algorithm, machine, compiler, etc.

Complexity: How do the resource requirements of a program or algorithm scale (the
growth of resource requirements as a function of input). In other words, what happens
to the performance of an algorithm, as the size of the problem being solved gets larger
and larger? For example, the time and memory requirements of an algorithm which

 12

Analysis of
Algorithms

computes the sum of 1000 numbers is larger than the algorithm which computes the
sum of 2 numbers.

Time Complexity: The maximum time required by a Turing machine to execute on any
input of length n.

Space Complexity: The amount of storage space required by an algorithm varies with
the size of the problem being solved. The space complexity is normally expressed as
an order of magnitude of the size of the problem, e.g., O(n2) means that if the size of
the problem (n) doubles then the working storage (memory) requirement will become
four times.

Determination of Time Complexity

The RAM Model

The random access model (RAM) of computation was devised by John von Neumann
to study algorithms. Algorithms are studied in computer science because they are
independent of machine and language.

We will do all our design and analysis of algorithms based on RAM model of
computation:

• Each “simple” operation (+, -, =, if, call) takes exactly 1 step.
• Loops and subroutine calls are not simple operations, but depend upon the size of

the data and the contents of a subroutine.
• Each memory access takes exactly 1 step.

The complexity of algorithms using big-O notation can be defined in the following
way for a problem of size n:

• Constant-time method is “order 1” : O(1). The time required is constant

independent of the input size.
• Linear-time method is “order n”: O(n). The time required is proportional to the

input size. If the input size doubles, then, the time to run the algorithm also
doubles.

• Quadratic-time method is “order N squared”: O(n2). The time required is
proportional to the square of the input size. If the input size doubles, then, the
time required will increase by four times.

The process of analysis of algorithm (program) involves analyzing each step of the
algorithm. It depends on the kinds of statements used in the program.

Consider the following example:

Example 1: Simple sequence of statements

Statement 1;
Statement 2;
 ...
 ...
Statement k;

The total time can be found out by adding the times for all statements:

Total time = time(statement 1) + time(statement 2) + ... + time(statement k).

13

Introduction to
Algorithms and Data
Structures

It may be noted that time required by each statement will greatly vary depending on
whether each statement is simple (involves only basic operations) or otherwise.
Assuming that each of the above statements involve only basic operation, the time for
each simple statement is constant and the total time is also constant: O(1).

Example 2: if-then-else statements

 In this example, assume the statements are simple unless noted otherwise.

if-then-else statements

if (cond) {
 sequence of statements 1
}
else {
 sequence of statements 2
}

In this, if-else statement, either sequence 1 will execute, or sequence 2 will execute
depending on the boolean condition. The worst-case time in this case is the slower of
the two possibilities. For example, if sequence 1 is O(N2) and sequence 2 is O(1), then
the worst-case time for the whole if-then-else statement would be O(N2).

Example 3: for loop

for (i = 0; i < n; i + +) {
sequence of statements
}

Here, the loop executes n times. So, the sequence of statements also executes n times.
Since we assume the time complexity of the statements are O(1), the total time for the
loop is n * O(1), which is O(n). Here, the number of statements does not matter as it
will increase the running time by a constant factor and the overall complexity will be
same O(n).

Example 4:nested for loop

 for (i = 0; i < n; i + +) {
 for (j = 0; j < m; j + +) {

 sequence of statements
 }

 }
Here, we observe that, the outer loop executes n times. Every time the outer loop
executes, the inner loop executes m times. As a result of this, statements in the inner
loop execute a total of n * m times. Thus, the time complexity is O(n * m). If we
modify the conditional variables, where the condition of the inner loop is j < n instead
of j < m (i.e., the inner loop also executes n times), then the total complexity for the
nested loop is O(n2).

Example 4: Now, consider a function that calculates partial sum of an integer n.

int psum(int n)
 {
 int i, partial_sum;

 14

Analysis of
Algorithms

 partial_sum = 0; /* Line 1 */
 for (i = 1; i <= n; i++) { /* Line 2 */
 partial_sum = partial_sum + i*i; /* Line 3 */
 }
 return partial_sum; /* Line 4 */
}

This function returns the sum from i = 1 to n of i squared, i.e. psum = 12 + 22+ 32

 + …………. + n2 . As we have to determine the running time for each statement in this
program, we have to count the number of statements that are executed in this
procedure. The code at line 1 and line 4 are one statement each. The for loop on line 2
are actually 2n+2 statements:

• i = 1; statement : simple assignment, hence one statement.

• i <= n; statement is executed once for each value of i from 1 to n+1 (till the
condition becomes false). The statement is executed n+1 times.

• i++ is executed once for each execution of the body of the loop. This is
executed n times.

Thus, the sum is 1+ (n+1) + n+1 = 2n+ 3 times.

In terms of big-O notation defined above, this function is O(n), because if we choose
c=3, then we see that cn > 2n+3. As we have already noted earlier, big-O notation
only provides a upper bound to the function, it is also O(nlog(n)) and O(n2), since
n2 > nlog(n) > 2n+3. However, we will choose the smallest function that describes
the order of the function and it is O(n).

By looking at the definition of Omega notation and Theta notation, it is also clear that
it is of Θ(n), and therefore Ω(n) too. Because if we choose c=1, then we see that
cn < 2n+3, hence Ω(n) . Since 2n+3 = O(n), and 2n+3 = Ω(n), it implies that
2n+3 = Θ(n) , too.

It is again reiterated here that smaller order terms and constants may be ignored while
describing asymptotic notation. For example, if f(n) = 4n+6 instead of f(n) = 2n +3 in
terms of big-O, Ω and Θ, this does not change the order of the function. The function
f(n) = 4n+6 = O(n) (by choosing c appropriately as 5); 4n+6 = Ω(n) (by choosing
c = 1), and therefore 4n+6 = Θ(n). The essence of this analysis is that in these
asymptotic notation, we can count a statement as one, and should not worry about
their relative execution time which may depend on several hardware and other
implementation factors, as long as it is of the order of 1, i.e. O(1).

Exact analysis of insertion sort:

Let us consider the following pseudocode to analyse the exact runtime complexity of
insertion sort.

Line Pseudocode Cost
factor

No. of
iterations

1 For j=2 to length [A] do c1 (n−1) + 1
2 { key = A[j] c2 (n−1)
3 i = j − 1 c3 (n−1)
4 while (i > 0) and (A[i] > key) do c4

∑
=

n

2j
jT

n

5 { A[i+1] = A[I] c4
∑
=

−
2j

j 1T
15

Introduction to
Algorithms and Data
Structures

6 i = I –1 } c5
∑
=

−
n

2j
j 1T

7 A[I+1] = key } c6 n−1

 }

Tj is the time taken to execute the statement during jth iteration.

The statement at line 4 will execute Tj number of times.

The statements at lines 5 and 6 will execute Tj − 1 number of times (one step less)
each

Line 7 will excute (n−1) times

So, total time is the sum of time taken for each line multiplied by their cost factor.

T (n) = c1n + c2(n −1) + c3(n−1) + c4 + c5 − 1 + c6 − 1 + c7 (n−1) ∑
=

n

j
jT

2
∑
=

n

j
jT

2
∑
=

n

j
jT

2

Three cases can emerge depending on the initial configuration of the input list. First,
the case is where the list was already sorted, second case is the case wherein the list is
sorted in reverse order and third case is the case where in the list is in random order
(unsorted). The best case scenario will emerge when the list is already sorted.

Worst Case: Worst case running time is an upper bound for running time with any
input. It guarantees that, irrespective of the type of input, the algorithm will not take
any longer than the worst case time.

Best Case : It guarantees that under any cirumstances the running time of algorithms
will at least take this much time.

Average case : This gives the average running time of algorithm. The running time for
any given size of input will be the average number of operations over all problem
instances for a given size.

Best Case : If the list is already sorted then A[i] <= key at line 4. So, rest of the lines
in the inner loop will not execute. Then,

T (n) = c1n + c2(n −1) + c3(n −1) + c4 (n −1) = O (n), which indicates that the time
complexity is linear.

Worst Case: This case arises when the list is sorted in reverse order. So, the boolean
condition at line 4 will be true for execution of line 1.

So, step line 4 is executed = n(n+1)/2 − 1 times ∑
=

n

j
j

2

T (n) = c1n + c2(n −1) + c3(n −1) + c4 (n(n+1)/2 − 1) + c5(n(n −1)/2) + c6(n(n−1)/2)
+ c7 (n −1)

= O (n2).

Average case : In most of the cases, the list will be in some random order. That is, it
neither sorted in ascending or descending order and the time complexity will lie some
where between the best and the worst case.

 16
T (n) best < T(n) Avg. < T(n) worst

Analysis of
Algorithms

Figure 1.4 depicts the best, average and worst case run time complexities of
algorithms.

Time

Input size

Best case

Average case

Worst case

Figure 1.4 : Best, Average and Worst case scenarios

 Check Your Progress 2

1) The set of algorithms whose order is O (1) would run in the same time. True/False

2) Find the complexity of the following program in big O notation:

printMultiplicationTable(int max){

for(int i = 1 ; i <= max ; i + +)
{
for(int j = 1 ; j <= max ; j + +)

cout << (i * j) << “ “ ;
cout << endl ;

} //for
………………………………………………………………………………………

3) Consider the following program segment:

for (i = 1; i <= n; i *= 2)
 {
 j = 1;
 }

What is the running time of the above program segment in big O
notation?

…………………………………………………………………………………………

4) Prove that if f(n) = n2 + 2n + 5 and g(n) = n2 then f(n) = O (g(n)).

5) How many times does the following for loop will run

for (i=1; i<= n; i*2)
 k = k + 1;
end;

1.4 CALCULATION OF STORAGE
COMPLEXITY

As memory is becoming more and more cheaper, the prominence of runtime
complexity is increasing. However, it is very much important to analyse the amount of
memory used by a program. If the running time of algorithms is not good then it will

17

Introduction to
Algorithms and Data
Structures

take longer to execute. But, if it takes more memory (the space complexity is more)
beyond the capacity of the machine then the program will not execute at all. It is
therefore more critical than run time complexity. But, the matter of respite is that
memory is reutilized during the course of program execution.

We will analyse this for recursive and iterative programs.

For an iterative program, it is usually just a matter of looking at the variable
declarations and storage allocation calls, e.g., number of variables, length of an array
etc.

The analysis of recursive program with respect to space complexity is more
complicated as the space used at any time is the total space used by all recursive calls
active at that time.

Each recursive call takes a constant amount of space and some space for local
variables and function arguments, and also some space is allocated for remembering
where each call should return to. General recursive calls use linear space. That is, for
n recursive calls, the space complexity is O(n).

Consider the following example: Binary Recursion (A binary-recursive routine
(potentially) calls itself twice).

1. If n equals 0 or 1, then return 1
2. Recursively calculate f (n−1)
3. Recursively calculate f (n−2)
4. Return the sum of the results from steps 2 and 3.

Time Complexity: O(exp n)
Space Complexity: O(exp n)

Example: Find the greatest common divisor (GCD) of two integers, m and n.
The algorithm for GCD may be defined as follows:

While m is greater than zero:
 If n is greater than m, swap m and n.
 Subtract n from m.

n is the GCD

Code in C

int gcd(int m, int n)
/* The precondition are : m>0 and n>0. Let g = gcd(m,n). */
 { while(m > 0)
 {
 if(n > m)
 { int t = m; m = n; n = t; } /* swap m and n*/
 /* m >= n > 0 */
 m − = n;
 }
 return n;
 }

The space-complexity of the above algorithm is a constant. It just requires space for
three integers m, n and t. So, the space complexity is O(1).

 18

Analysis of
Algorithms

The time complexity depends on the loop and on the condition whether m>n or not.
The real issue is, how many iterations take place? The answer depends on both m and
n.

Best case: If m = n, then there is just one iteration. O(1)
Worst case : If n = 1,then there are m iterations; this is the worst-case
(also equivalently, if m = 1 there are n iterations) O(n).

The space complexity of a computer program is the amount of memory required for its
proper execution. The important concept behind space required is that unlike time,
space can be reused during the execution of the program. As discussed, there is often a
trade-off between the time and space required to run a program.

In formal definition, the space complexity is defined as follows:

Space complexity of a Turing Machine: The (worst case) maximum length of the tape
required to process an input string of length n.

In complexity theory, the class PSPACE is the set of decision problems that can be
solved by a Turing machine using a polynomial amount of memory, and unlimited
time.

 Check Your Progress 3

1) Why space complexity is more critical than time complexity?

……………………………………………………………………………………

……………………………………………………………………………………

2) What is the space complexity of Euclid Algorithm?

……………………………………………………………………………………

……………………………………………………………………………………

1.5 CALCULATION OF TIME COMPLEXITY

Example 1: Consider the following of code :

x = 4y + 3
z = z + 1
p = 1
As we have seen, x, y, z and p are all scaler variables and the running time is constant
irrespective of the value of x,y,z and p. Here, we emphasize that each line of code may
take different time, to execute, but the bottom line is that they will take constant
amount of time. Thus, we will describe run time of each line of code as O(1).

Example 2: Binary search

Binary search in a sorted list is carried out by dividing the list into two parts based on
the comparison of the key. As the search interval halves each time, the iteration takes
place in the search. The search interval will look like following after each iteration
N, N/2, N/4, N/8 , 8, 4, 2, 1
The number of iterations (number of elements in the series) is not so evident from the
above series. But, if we take logs of each element of the series, then

log2 N , log2 N −1, log2 N−2, log2 N−3,, 3, 2, 1, 0

19

Introduction to
Algorithms and Data
Structures

As the sequence decrements by 1 each time the total elements in the above series are
log2 N + 1. So, the number of iterations is log2 N + 1 which is of the order of
O(log2N).

Example 3: Travelling Salesman problem
Given: n connected cities and distances between them

Find: tour of minimum length that visits every city.

Solutions: How many tours are possible?
n*(n −1)...*1 = n!

Because n! > 2(n-1)
So n! = Ω (2n) (lower bound)

As of now, there is no algorithm that finds a tour of minimum length as well as covers
all the cities in polynomial time. However, there are numerous very good heuristic
algorithms.

The complexity Ladder:

• T(n) = O(1). This is called constant growth. T(n) does not grow at all as a
function of n, it is a constant. For example, array access has this characteristic.
A[i] takes the same time independent of the size of the array A.

• T(n) = O(log2 (n)). This is called logarithmic growth. T(n) grows proportional to
the base 2 logarithm of n. Actually, the base of logarithm does not matter. For
example, binary search has this characteristic.

• T(n) = O(n). This is called linear growth. T(n) grows linearly with n. For
example, looping over all the elements in a one-dimensional array of n elements
would be of the order of O(n).

• T(n) = O(n log (n). This is called nlogn growth. T(n) grows proportional to n
times the base 2 logarithm of n. Time complexity of Merge Sort has this
characteristic. In fact, no sorting algorithm that uses comparison between
elements can be faster than n log n.

• T(n) = O(nk). This is called polynomial growth. T(n) grows proportional to the
k-th power of n. We rarely consider algorithms that run in time O(nk) where k is
bigger than 2 , because such algorithms are very slow and not practical. For
example, selection sort is an O(n2) algorithm.

• T(n) = O(2n) This is called exponential growth. T(n) grows exponentially.
Exponential growth is the most-danger growth pattern in computer science.
Algorithms that grow this way are basically useless for anything except for very
small input size.

Table 1.1 compares various algorithms in terms of their complexities.

Table 1.2 compares the typical running time of algorithms of different orders.

The growth patterns above have been listed in order of increasing size.

That is, O(1) < O(log(n)) < O(n log(n)) < O(n2) < O(n3), ... , O(2n).

Notation Name Example
O(1) Constant Constant growth. Does

 20

Analysis of
Algorithms

not grow as a function
of n. For example,
accessing array for
one element A[i]

O(log n) Logarithmic Binary search
O(n) Linear Looping over n

elements, of an array
of size n (normally).

O(n log n) Sometimes called
“linearithmic”

Merge sort

O(n2) Quadratic Worst time case for
insertion sort, matrix
multiplication

O(nc) Polynomial,
sometimes
“geometric”

O(cn) Exponential
O(n!) Factorial

 Table 1.1 : Comparison of various algorithms and their complexities

 Logarithmic: Linear: Quadratic: Exponential:
 Array size log2N N N2 2N

 8 3 8 64 256
 128 7 128 16,384 3.4*1038
 256 8 256 65,536 1.15*1077
 1000 10 1000 1 million 1.07*10301
 100,000 17 100,000 10 billion

Table 1.2: Comparison of typical running time of algorithms of different orders

1.6 SUMMARY

Computational complexity of algorithms are generally referred to by space complexity
(space required for running program) and time complexity (time required for running
the program). In the field of computer of science, the concept of runtime complexity
has been studied vigorously. Enough research is being carried out to find more
efficient algorithms for existing problems. We studied various asymptotic notation, to
describe the time complexity and space complexity of algorithms, namely the big-O,
Omega and Theta notations. These asymptotic orders of time and space complexity
describe how best or worst an algorithm is for a sufficiently large input.

We studied about the process of calculation of runtime complexity of various
algorithms. The exact analysis of insertion sort was discussed to describe the best
case, worst case and average case scenario.

1.7 SOLUTIONS / ANSWERS

Check Your Progress 1
1) True 21

http://en.wikipedia.org/wiki/Quadratic
http://en.wikipedia.org/wiki/Geometric_progression

 22

Introduction to
Algorithms and Data
Structures

2) True
3) False
4) False
5) O(n2), O(n3), O(n log n), O(log n),O(log n)

Check Your Progress 2

1) True
2) O(max*(2*max))=O(2*max*max) = O(2 * n * n) = O(2n2) = O(n2)
3) O(log(n))
5) log n

Check Your Progress 3

1) If the running time of algorithms is not good, then it will take longer to execute.

But, if it takes more memory (the space complexity is more) beyond the capacity
of the machine then the program will not execute.

2) O(1).

1.8 FURTHER READINGS

1. Fundamentals of Data Structures in C++; E.Horowitz, Sahni and D.Mehta;

Galgotia Publications.

2. Data Structures and Program Design in C; Kruse, C.L.Tonodo and B.Leung;
Pearson Education.

Reference Websites

http://en.wikipedia.org/wiki/Big_O_notation
http://www.webopedia.com

http://en.wikipedia.org/wiki/Big_O_notation
http://www.webopedia.com/

Arrays

UNIT 2 ARRAYS

Structure Page Nos.

2.0 Introduction 23
2.1 Objectives 24
2.2 Arrays and Pointers 24
2.3 Sparse Matrices 25
2.4 Polynomials 28
2.5 Representation of Arrays 30

2.5.1 Row Major Representation
2.5.2 Column Major Representation

2.6 Applications 31
2.7 Summary 32
2.8 Solutions/Answers 32
2.9 Further Readings 32

2.0 INTRODUCTION

This unit introduces a data structure called Arrays. The simplest form of array is a
one-dimensional array that may be defined as a finite ordered set of homogeneous
elements, which is stored in contiguous memory locations. For example, an array may
contain all integers or all characters or any other data type, but may not contain a mix
of data types.

The general form for declaring a single dimensional array is:

data_type array_name[expression];

where data_type represents data type of the array. That is, integer, char, float etc.
array_name is the name of array and expression which indicates the number of
elements in the array.

For example, consider the following C declaration:

 int a[100];

It declares an array of 100 integers.

The amount of storage required to hold an array is directly related to its type and size.
For a single dimension array, the total size in bytes required for the array is computed
as shown below.

 Memory required (in bytes) = size of (data type) X length of array

The first array index value is referred to as its lower bound and in C it is always 0 and
the maximum index value is called its upper bound. The number of elements in the
array, called its range is given by upper bound-lower bound.

We store values in the arrays during program execution. Let us now see the process
of initializing an array while declaring it.

 int a[4] = {34,60,93,2};
 int b[] = {2,3,4,5};
 float c[] = {-4,6,81,− 60};

We conclude the following facts from these examples:

 23

Introduction to
Algorithms and Data
Structures

(i) If the array is initialized at the time of declaration, then the dimension of the
array is optional.

(ii) Till the array elements are not given any specific values, they contain garbage
values.

2.1 OBJECTIVES

After going through this unit, you will be able to:

• use Arrays as a proper data structure in programs;
• know the advantages and disadvantages of Arrays;
• use multidimensional arrays, and
• know the representation of Arrays in memory.

2.2 ARRAYS AND POINTERS

C compiler does not check the bounds of arrays. It is your job to do the necessary
work for checking boundaries wherever needed.

One of the most common arrays is a string, which is simply an array of characters
terminated by a null character. The value of the null character is zero. A string
constant is a one-dimensional array of characters terminated by a null character(\0).

For example, consider the following:

 char message[]= {‘e’, ‘x’, ‘a’, ‘m’, ‘p’, ‘l’,’e’,’\0’};

Also, consider the following string which is stored in an array:

 “sentence\n”

Figure 2.1 shows the way a character array is stored in memory. Each character in the
array occupies one byte of memory and the last character is always ‘\0’. Note that ‘\0’
and ‘0’ are not the same. The elements of the character array are stored in contiguous
memory locations.

s e n t e n c e \n \0

Figure 2.1: String in Memory

C concedes a fact that the user would use strings very often and hence provides a short
cut for initialization of strings.

For example, the string used above can also be initialized as

 char name[] = “sentence\n”;

Note that, in this declaration ‘\0’ is not necessary. C inserts the null character
automatically.

Multidimensional arrays are defined in the same manner as one-dimensional arrays,
except that a separate pair of square brackets is required for each subscript. Thus a
two-dimensional array will require two pairs of square brackets, a three-dimensional
array will require three pairs of square brackets and so on.

24

Arrays The format of declaration of a multidimensional array in C is given below:

 data_type array_name [expr 1] [expr 2] …. [expr n];

where data_type is the type of array such as int, char etc., array_name is the name of
array and expr 1, expr 2, ….expr n are positive valued integer expressions.

The schematic of a two-dimensional array of size 3 × 5 is shown in Figure 2.2.

Row 0 a[0][0] a[0][1] a[0][2] a[0][3] A[0][4]

Row 1 a[1][0] a[1][1] a[1][2] a[1][3] A[1][4]

Row 3 a[2][0] a[2][1] a[2][2] a[2][3] A[2][4]

Figure 2.2: Schematic of a Two-Dimensional Array

In the case of a two-dimensional array, the following formula yields the number of
bytes of memory needed to hold it:

 bytes = size of 1st index × size of 2nd index × size of (base type)

The pointers and arrays are closely related. As you know, an array name without an
index is a pointer to the first element in the array.

Consider the following array:

 char p[10];

p and &p[0] are identical because the address of the first element of an array is the
same as the address of the array. So, an array name without an index generates a
pointer. Conversely a pointer can be indexed as if it were declared to be an array.

For example, consider the following program fragment:

 int *x, a [10];
 x = a;
 x[5] = 100;
 * (x+5) = 100;

Both assignment statements place the value 100 in the sixth element of a. Furthermore
the (0,4) element of a two-dimensional array may be referenced in the following two
ways: either by array indexing a[0][4], or by the pointer *((int *) a+4).

 In general, for any two-dimensional array a[j][k] is equivalent to:

*((base type *)a + (j * rowlength)*k)

2.3 SPARSE MATRICES

Matrices with good number of zero entries are called sparse matrices.

 25

Introduction to
Algorithms and Data
Structures

Consider the following matrices of Figure 2.3.

 4 5 −3
 3 −5 1 4 3
 1 0 6 9 −3 6
 −7 8 −1 3 2 4 -7
 5 −2 0 2 −8 3 -1 0
 6 -5 8
 3 -1

(a) (b)

Figure 2.3: (a) Triangular Matrix (b) Tridiagonal Matrix

A triangular matrix is a square matrix in which all the elements either above or below
the main diagonal are zero. Triangular matrices are sparse matrices. A tridiagonal
matrix is a square matrix in which all the elements except for the main diagonal,
diagonals on the immediate upper and lower side are zeroes. Tridiagonal matrices are
also sparse matrices.

Let us consider a sparse matrix from storage point of view. Suppose that the entire
sparse matrix is stored. Then, a considerable amount of memory which stores the
matrix consists of zeroes. This is nothing but wastage of memory. In real life
applications, such wastage may count to megabytes. So, an efficient method of storing
sparse matrices has to be looked into.

Figure 2.4 shows a sparse matrix of order 7 × 6.

 0 1 2 3 4 5

0 0 0 0 5 0 0

1 0 4 0 0 0 0

2 0 0 0 0 9 0

3 0 3 0 2 0 0

4 1 0 2 0 0 0

5 0 0 0 0 0 0

6 0 0 8 0 0 0

 Figure 2.4: Representation of a sparse matrix of order 7 × 6

A common way of representing non zero elements of a sparse matrix is the 3-tuple
form. The first row of sparse matrix always specifies the number of rows, number of
columns and number of non zero elements in the matrix. The number 7 represents the
total number of rows sparse matrix. Similarly, the number 6 represents the total
number of columns in the matrix. The number 8 represents the total number of non
zero elements in the matrix. Each non zero element is stored from the second row,
with the 1st and 2nd elements of the row, indicating the row number and column
number respectively in which the element is present in the original matrix. The 3rd
element in this row stores the actual value of the non zero element. For example, the
3- tuple representation of the matrix of Figure 2.4 is shown in Figure 2.5.

26

Arrays 7, 7, 9

0, 3, 5
1, 1, 4
2, 4, 9
3, 1, 3
3, 3, 2
4, 0, 1
4, 2, 2

 6, 2, 8

Figure 2.5: 3-tuple representation of Figure 2.4

The following program 1.1 accepts a matrix as input, which is sparse and prints the
corresponding 3-tuple representations.

Program 1.1

/* The program accepts a matrix as input and prints the 3-tuple representation
of it*/

#include<stdio.h>

void main()
{
 int a[5][5],rows,columns,i,j;

printf("enter the order of the matrix. The order should be less than 5 × 5:\n");
 scanf("%d %d",&rows,&columns);
 printf("Enter the elements of the matrix:\n");

for(i=0;i<rows;i++)
 for(j=0;j<columns;j++)

 { scanf("%d",&a[i][j]);
 }
 printf(“The 3-tuple representation of the matrix is:\n”);

for(i=0;i<rows;i++)
 for(j=0;j<columns;j++)
 {
 if (a[i][j]!=0)
 {
 printf("%d %d %d\n", (i+1),(j+1),a[i][j]);
 }
 }
}
Output:
enter the order of the matrix. The order should be less than 5 × 5:
3 3
Enter the elements of the matrix:
1 2 3
0 1 0
0 0 4
The 3-tuple representation of the matrix is:
1 1 1
1 2 2
1 3 3
2 2 1
3 3 4

 27

Introduction to
Algorithms and Data
Structures

The program initially prompted for the order of the input matrix with a warning that
the order should not be greater than 5 × 5. After accepting the order, it prompts for the
elements of the matrix. After accepting the matrix, it checks each element of the
matrix for a non zero. If the element is non zero, then it prints the row number and
column number of that element along with its value.

 Check Your Progress 1

1) If the array is _______ at the time of declaration, then the dimension of the
array is optional.

2) A sparse matrix is a matrix which is having good number of _____ elements.

3) At maximum, an array can be a two-dimensional array. True/False

2.4 POLYNOMIALS

Polynomials like 5x4 + 2x3 + 7x2 + 10x – 8 can be represented using arrays.
Arithmetic operations like addition and multiplication of polynomials are common
and most often, we need to write a program to implement these operations.

The simplest way to represent a polynomial of degree ‘n’ is to store the coefficient of
(n+1) terms of the polynomial in an array. To achieve this, each element of the array
should consist of two values, namely, coefficient and exponent. While maintaining the
polynomial, it is assumed that the exponent of each successive term is less than that of
the previous term. Once we build an array to represent a polynomial, we can use such
an array to perform common polynomial operations like addition and multiplication.

Program 1.2 accepts two polynomials as input and adds them.

Program 1.2

/* The program accepts two polynomials as input and prints the resultant
polynomial due to the addition of input polynomials*/

#include<stdio.h>

void main()
{
 int poly1[6][2],poly2[6][2],term1,term2,match,proceed,i,j;

 printf("Enter the number of terms in the first polynomial. They should be less
than 6:\n");
 scanf("%d",&term1);
 printf("Enter the number of terms in the second polynomial. They should be
less than 6:\n");
 scanf("%d",&term2);
 printf("Enter the coefficient and exponent of each term of the first
polynomial:\n");
 for(i=0;i<term1;i++)
 {scanf("%d %d",&poly1[i][0],&poly1[i][1]);
 }

 printf("Enter the coefficient and exponent of each term of the second
polynomial:\n");
 for(i=0;i<term2;i++)
 {scanf("%d %d",&poly2[i][0],&poly2[i][1]);

28

Arrays }

 printf(“The resultant polynomial due to the addition of the input two
polynomials:\n”);

 for(i=0;i<term1;i++)
 {
 match=0;
 for(j=0;j<term2;j++)

 { if (match==0)

 if(poly1[i][1]==poly2[j][1])
 { printf("%d %d\n",(poly1[i][0]+poly2[j][0]), poly1[i][1]);
 match=1;

 }
 }
 }

for(i=0;i<term1;i++)
{ proceed=1;

 for(j=0;j<term2;j++)
 { if(proceed==1)
 if(poly1[i][1]!=poly2[j][1])
 proceed=1;
 else
 proceed=0;

 }
 if (proceed==1)
 printf("%d %d\n",poly1[i][0],poly1[i][1]);

 }

for(i=0;i<term2;i++)
{ proceed=1;

 for(j=0;j<term1;j++)
 { if(proceed==1)
 if(poly2[i][1]!=poly1[j][1])
 proceed=1;
 else
 proceed=0;

 }
 if (proceed==1)
 printf("%d %d",poly2[i][0],poly2[i][1]);
 }

}
Output:

Enter the number of terms in the first polynomial.They should be less than 6 : 5.
Enter the number of terms in the second polynomial.They should be less than 6 : 4.
Enter the coefficient and exponent of each term of the first polynomial:
1 2
2 4
3 6

 29

Introduction to
Algorithms and Data
Structures

1 8
5 7

Enter the coefficient and exponent of each term of the second polynomial:
5 2
6 9
3 6
5 7

The resultant polynomial due to the addition of the input two polynomials:
6 2
6 6
10 7
2 4
1 8
6 9

The program initially prompted for the number of terms of the two polynomials.
Then, it prompted for the entry of the terms of the two polynomials one after another.
Initially, it adds the coefficients of the corresponding terms of both the polynomials
whose exponents are the same. Then, it prints the terms of the first polynomial who
does not have corresponding terms in the second polynomial with the same exponent.
Finally, it prints the terms of the second polynomial who does not have corresponding
terms in the first polynomial.

2.5 REPRESENTATION OF ARRAYS

It is not uncommon to find a large number of programs which process the elements of
an array in sequence. But, does it mean that the elements of an array are also stored in
sequence in memory. The answer depends on the operating system under which the
program is running. However, the elements of an array are stored in sequence to the
extent possible. If they are being stored in sequence, then how are they sequenced. Is
it that the elements are stored row wise or column wise? Again, it depends on the
operating system. The former is called row major order and the later is called column
major order.

2.5.1 Row Major Representation

The first method of representing a two-dimensional array in memory is the row major
representation. Under this representation, the first row of the array occupies the first
set of the memory location reserved for the array, the second row occupies the next
set, and so forth.

The schematic of row major representation of an Array is shown in Figure 2.6.
Let us consider the following two-dimensional array:

 a b c d
 e f g h
 i j k l

To make its equivalent row major representation, we perform the following process:

Move the elements of the second row starting from the first element to the memory
location adjacent to the last element of the first row. When this step is applied to all
the rows except for the first row, you have a single row of elements. This is the Row
major representation.

30

Arrays By application of above mentioned process, we get {a, b, c, d, e, f, g, h, i, j, k, l }

Row 0 Row 1 Row 2 ….. Row i

Figure 2.6: Schematic of a Row major representation of an Array

2.5.2 Column Major Representation

The second method of representing a two-dimensional array in memory is the column
major representation. Under this representation, the first column of the array occupies
the first set of the memory locations reserved for the array. The second column
occupies the next set and so forth. The schematic of a column major representation is
shown in Figure 2.7.

Consider the following two-dimensional array:

 a b c d
 e f g h
 i j k l

To make its equivalent column major representation, we perform the following
process:

Transpose the elements of the array. Then, the representation will be same as that of
the row major representation.

By application of above mentioned process, we get {a, e, i, b, f, j, c, g, k, d, h, i}

Col 0 Col 1 Col 2 ….. Col i

Figure 2.7: Schematic of a Column major representation of an Array

 Check Your Progress 2

1) An array can be stored either__________or _________.

2) In __________, the elements of array are stored row wise.

3) In __________, the elements of array are stored column wise.

2.6 APPLICATIONS

Arrays are simple, but reliable to use in more situations than you can count. Arrays are
used in those problems when the number of items to be solved is fixed. They are easy
to traverse, search and sort. It is very easy to manipulate an array rather than other
subsequent data structures. Arrays are used in those situations where in the size of
array can be established before hand. Also, they are used in situations where the
insertions and deletions are minimal or not present. Insertion and deletion operations
will lead to wastage of memory or will increase the time complexity of the program
due to the reshuffling of elements.

 31

32

Introduction to
Algorithms and Data
Structures 2.7 SUMMARY

In this unit, we discussed the data structure arrays from the application point of view
and representation point of view. Two applications namely representation of a sparse
matrix in a 3-tuple form and addition of two polynomials are given in the form of
programs. The format for declaration and utility of both single and two-dimensional
arrays are covered. Finally, the most important issue of representation was discussed.
As part of it, row major and column major orders are discussed.

2.8 SOLUTIONS / ANSWERS

Check Your Progress 1

1) Initialized
2) Zero
3) False

Check Your Progress 2

1) Row wise, column wise
2) Row major representation
3) Column major representation

2.9 FURTHER READINGS

Reference Books

1. Data Structures using C and C++, Yedidyah Langsam, Moshe J.Augenstein,
Aaron M Tanenbaum, Second Edition, PHI Publications.

2. Data Structures, Seymour Lipscutz, Schaum’s outline series, McGraw Hill

Reference Websites

http://www.webopedia.com

33

Lists

UNIT 3 LISTS

Structure Page Nos.

3.0 Introduction 33
3.1 Objectives 33
3.2 Abstract Data Type-List 33
3.3 Array Implementation of Lists 34
3.4 Linked Lists-Implementation 38
3.5 Doubly Linked Lists-Implementation 44
3.6 Circularly Linked Lists-Implementation 46
3.7 Applications 54
3.8 Summary 56
3.9 Solutions/Answers 56
3.10 Further Readings 56

3.0 INTRODUCTION
In the previous unit, we have discussed arrays. Arrays are data structures of fixed size.
Insertion and deletion involves reshuffling of array elements. Thus, array
manipulation is time-consuming and inefficient. In this unit, we will see abstract data
type-lists, array implementation of lists and linked list implementation, Doubly and
Circular linked lists and their applications. In linked lists, items can be added or
removed easily to the end or beginning or even in the middle.

3.1 OBJECTIVES

After going through this unit, you will be able to:

• define and declare Lists;
• understand the terminology of Singly linked lists;
• understand the terminology of Doubly linked lists;
• understand the terminology of Circularly linked lists, and
• use the most appropriate list structure in real life situations.

3.2 ABSTRACT DATA TYPE-LIST
Abstract Data Type (ADT) is a useful tool for specifying the logical properties of data
type. An ADT is a collection of values and a set of operations on those values.
Mathematically speaking, “a TYPE is a set, and elements of set are Values of that
type”.

ADT List

A list of elements of type T is a finite sequence of elements of type T together with
the operations of create, update, delete, testing for empty, testing for full, finding the
size, traversing the elements.

In defining Abstract Data Type, we are not concerned with space or time efficiency as
well as about implementation details. The elements of a list may be integers,
characters, real numbers and combination of multiple data types.

Consider a real world problem, where we have a company and we want to store the
details of employees. To store this, we need a data type which can store the type
details containing names of employee, date of joining, etc. The list of employees may

34

Introduction to
Algorithms and
Data Structures

increase depending on the recruitment and may decrease on retirements or termination
of employees. To make it very simple and for understanding purposes, we are taking
the name of employee field and ignoring the date of joining etc. The operations we
have to perform on this list of employees are creation, insertion, deletion, visiting, etc.
We define employee_list as

typedef struct
{

char name[20];
……………….

 ………………….
} emp_list;

Operations on emp_list can be defined as
Create_emplist (emp_list * emp_list)
{
/* Here, we will be writing create function by taking help of ‘C’ programming
language. */
 }
The list has been created and name is a valid entry in emplist, and position p
specifies the position in the list where name has to inserted
insert_emplist (emp_list * emp_list , char *name, int position)
{
/* Here, we will be writing insert function by taking help of ‘C’ programming
language. */
}
delete_emplist (emp_list * emp_list, char *name)
{
/* Here, we will be writing delete function by taking help of ‘C’ programming
language. */
}
visit_emplist (emp_list * emp_list)
{
/* Here, we will be writing visit function by taking help of ‘C’ programming
language. */
}

The list can be implemented in two ways: the contiguous (Array) implementation and
the linked (pointer) implementation. In contiguous implementation, the entries in the
list are stored next to each other within an array. The linked list implementation uses
pointers and dynamic memory allocation. We will be discussing array and linked list
implementation in our next section.

3.3 ARRAY IMPLEMENTATION OF LISTS

In the array implementation of lists, we will use array to hold the entries and a
separate counter to keep track of the number of positions are occupied. A structure
will be declared which consists of Array and counter.

typedef struct
{
 int count;
 int entry[100];
}list;
For simplicity, we have taken list entry as integer. Of course, we can also take list
entry as structure of employee record or student record, etc.

35

Lists
Count 1 2 3 4 5 6 7 8

11

22 33 44 55 66 77

Insertion

In the array implementation of lists, elements are stored in continuous locations. To
add an element to the list at the end, we can add it without any problem. But, suppose
if we want to insert the element at the beginning or middle of the list, then we have to
rewrite all the elements after the position where the element has to be inserted. We
have to shift (n)th element to (n+1)th position, where ‘n’ is number of elements in
the list. The (n–1)th element to (n)th position and this will continue until the (r) th
element to (r + 1)th position, where ‘r’ is the position of insertion. For doing this, the
count will be incremented.

From the above example, if we want to add element ‘35’ after element ‘33’. We
have to shift 77 to 8th position, 66 to 7th position, so on, 44 to 5th position.

Before Insertion

Count 1 2 3 4 5 6 7

11

22 33 44 55 66 77

Step 1
Count 1 2 3 4 5 6 7 8

11

22 33 44 55 66 77 77

Step 2
Count 1 2 3 4 5 6 7 8

11

22 33 44 55 66 66 77

Step 3
Count 1 2 3 4 5 6 7 8

11

22 33 44 55 55 66 77

Step 4
Count 1 2 3 4 5 6 7 8

11

22 33 44 44 55 66 77

Step 5
Count 1 2 3 4 5 6 7 8

11

22 33 35 44 55 66 77

Program 3.1 will demonstrate the insertion of an element at desired position

/* Inserting an element into contiguous list (Linear Array) at specified position */
/* contiguous_list.C */
include<stdio.h>
/* definition of linear list */
typedef struct
{
 int data[10];
 int count;
}list;
/*prototypes of functions */
void insert(list *, int, int);
void create(list *);

36

Introduction to
Algorithms and
Data Structures

void traverse(list *);

/* Definition of the insert funtion */

void insert(list *start, int position, int element)
{
 int temp = start->count;
 while(temp >= position)
 {
 start->data[temp+1] = start->data[temp];
 temp --;
 }

 start->data[position] = element;
 start->count++ ;
}

/* definition of create function to READ data values into the list */

void create(list *start)
{
 int i=0, test=1;
 while(test)
 {
 fflush(stdin);
 printf("\n input value value for: %d:(zero to come out) ", i);
 scanf("%d", &start->data[i]);

 if(start->data[i] == 0)
 test=0;
 else
 i++;
 }
 start->count=i;
}

/* OUTPUT FUNCTION TO PRINT ON THE CONSOLE */

void traverse(list *start)
{
 int i;
 for(i = 0; i< start->count; i++)
 {
 printf("\n Value at the position: %d: %d ", i, start->data[i]);
 }
}

/* main function */

void main()
{
 int position, element;
 list l;
 create(&l);
 printf("\n Entered list as follows:\n");
 fflush(stdin);
 traverse(&l);

37

Lists fflush(stdin);
 printf("\n input the position where you want to add a new data item:");
 scanf("%d", &position);
 fflush(stdin);
 printf("\n input the value for the position:");
 scanf("%d", &element);
 insert(&l, position, element);
 traverse(&l);
}

Program 3.1: Insertion of an element into a linear array.

Deletion

To delete an element in the list at the end, we can delete it without any problem. But,
suppose if we want to delete the element at the beginning or middle of the list, then,
we have to rewrite all the elements after the position where the element that has to be
deleted exists. We have to shift (r+1)th element to rth position , where ‘r’ is position
of deleted element in the list, the (r + 2)th element to (r + 1)th position, and this will
continue until the (n)th element to (n–1)th position, where n is the number of
elements in the list. And then the count is decremented.

From the above example, if we want to delete an element ‘44’ from list. We have to
shift 55 to 4th position, 66 to 5th position, 77 to 6th position.

Before deletion

Count 1 2 3 4 5 6 7

11

22 33 44 55 66 77

Step 1
Count 1 2 3 4 5 6 7

11

22 33 55 55 66 77

Step 2
Count 1 2 3 4 5 6 7

11

22 33 55 66 66 77

Step 3
Count 1 2 3 4 5 6

11

22 33 55 66 77

Program 3.2 will demonstrate deletion of an element from the linear array

/* declaration of delete_list function */
void delete_list(list *, int);

/* definition of delete_list function*/
/* the position of the element is given by the user and the element is deleted from the
list*/
void delete_list(list *start, int position)
{
 int temp = position;
 printf("\n information which we have to delete: %d",l->data[position]);

 while(temp <= start->count-1)

38

Introduction to
Algorithms and
Data Structures

 {
 start->data[temp] = start->data[temp+1];
 temp ++;
 }
 start->count = start->count - 1 ;
}

/* main function */
void main()
{

………………..
 ……………….

printf("\n input the position of element you want to delete:");

 scanf("%d", &position);
 fflush(stdin);
 delete_list(&l, position);
 traverse(&l);
}

Program 3.2: Deletion of an element from the linear array

3.4 LINKED LISTS - IMPLEMENTATION

The Linked list is a chain of structures in which each structure consists of data as well
as pointer, which stores the address (link) of the next logical structure in the list.

A linked list is a data structure used to maintain a dynamic series of data. Think of a
linked list as a line of bogies of train where each bogie is connected on to the next
bogie. If you know where the first bogie is, you can follow its link to the next one. By
following links, you can find any bogie of the train. When you get to a bogie that isn’t
holding (linked) on to another bogie, you know you are at the end.

Linked lists work in the same way, except programmers usually refer to nodes instead
of bogies. A single node is defined in the same way as any other user defined type or
object, except that it also contains a pointer to a variable of the same type as itself.

We will be seeing how the linked list is stored in the memory of the computer. In the
following Figure 3.1, we can see that start is a pointer which is pointing to the node
which contains data as madan and the node madan is pointing to the node mohan and
the last node babu is not pointing to any node. 1000,1050,1200 are memory addresses.

madan mohan babu null 1050 1200 1000

 start 1000 1050 1200

Figure 3.1: A Singly linked list

Consider the following definition:
typedef struct node
{
 int data;
 struct node *next;
} list;

39

Lists Once you have a definition for a list node, you can create a list simply by declaring a
pointer to the first element, called the “head”. A pointer is generally used instead of a
regular variable. List can be defined as

list *head;

It is as simple as that! You now have a linked list data structure. It isn’t altogether
useful at the moment. You can see if the list is empty. We will be seeing how to
declare and define list-using pointers in the following program 3.3.
#include <stdio.h>

typedef struct node
{
 int data;
 struct node *next;
} list;

int main()
{
 list *head = NULL; /* initialize list head to NULL */
 if (head == NULL)
 {
 printf("The list is empty!\n");
 }
}

Program 3.3: Creation of a linked list

In the next example (Program 3.4), we shall look to the process of addition of new
nodes to the list with the function create_list().
#include<stdio.h>
#include<stdlib.h>
#define NULL 0

struct linked_list
{
 int data;
 struct linked_list *next;
};
typedef struct linked_list list;

void main()
{
 list *head;
 void create(list *);
 int count(list *);
 void traverse(list *);
 head=(list *)malloc(sizeof(list));
 create(head);
 printf(" \n traversing the list \n");
 traverse(head);
 printf("\n number of elements in the list %d \n", count(head));
}

void create(list *start)
{
 printf("inputthe element -1111 for coming oout of the loop\n");
 scanf("%d", &start->data);

40

Introduction to
Algorithms and
Data Structures

 if(start->data == -1111)
 start->next=NULL;
 else
 {
 start->next=(list*)malloc(sizeof(list));
 create(start->next);
 }
}

void traverse(list *start)
{
 if(start->next!=NULL)
 {
 printf("%d --> ", start->data);
 traverse(start->next);
 }
}

int count(list *start)

{
 if(start->next == NULL)
 return 0;
 else
 return (1+count(start->next));
}

Program 3.4: Insertion of elements into a Linked list

ALGORITHM (Insertion of element into a linked list)

Step 1 Begin
Step 2 if the list is empty or a new element comes before the start (head)

element, then insert the new element as start element.
Step 3 else, if the new element comes after the last element, then insert the

new element as the end element.
Step 4 else, insert the new element in the list by using the find function, find

function returns the address of the found element to the insert_list
function.

Step 5 End.

Figure 3.2 depicts the scenario of a linked list of two elements and a new element
which has to be inserted between them. Figure 3.3 depicts the scenario of a linked list
after insertion of a new element into the linked list of Figure 3.2.

Before insertion

f

new element
NULL

f next

NULL

41

Lists

Figure 3.2: A linked list of two elements and an element that is to be inserted

After insertion

f next

new element

NULL

Figure 3.3: Insertion of a new element into linked list

Program 3.5 depicts the code for the insertion of an element into a linked list by
searching for the position of insertion with the help of a find function.

INSERT FUNCTION

/*prototypes of insert and find functions */
list * insert_list(list *);
list * find(list *, int);
/*definition of insert function */
list * insert_list(list *start)
{
 list *n, *f;
 int key, element;
 printf("enter value of new element");
 scanf("%d", &element);
 printf("eneter value of key element");
 scanf("%d",&key);
 if(start->data ==key)
 {
 n=(list *)mallo(sizeof(list));
 n->data=element;
 n->next = start;
 start=n;
 }
 else
 {
 f = find(start, key);

42

Introduction to
Algorithms and
Data Structures

 if(f == NULL)
 printf("\n key is not found \n");
 else
 {
 n=(list*)malloc(sizeof(list));
 n->data=element;
 n->next=f->next;
 f->next=n;
 }
 }
 return(start);
}
/*definition of find function */
list * find(list *start, int key)
{
 if(start->next->data == key)
 return(start);
 if(start->next->next == NULL)
 return(NULL);
 else
 find(start->next, key);
}

void main()
{
 list *head;
 void create(list *);
 int count(list *);
 void traverse(list *);
 head=(list *)malloc(sizeof(list));
 create(head);
 printf(" \n traversing the created list \n");
 traverse(head);
 printf("\n number of elements in the list %d \n", count(head));
 head=insert_list(head);
 printf(" \n traversing the list after insert \n");
 traverse(head);
}

Program 3.5: Insertion of an element into a linked list at a specific position

ALGORITHM (Deletion of an element from the linked list)

Step 1 Begin
Step 2 if the list is empty, then element cannot be deleted
Step 3 else, if element to be deleted is first node, then make the start (head) to point

to the second element.
Step 4 else, delete the element from the list by calling find function and returning the

found address of the element.
Step 5 End

Figure 3.4 depicts the process of deletion of an element from a linked list.
After Deletion

 f next

43

Lists

 key node

f

Figure 3.4: Deletion of an element from the linked list (Dotted line depicts the link prior to
deletion)

Program 3.6 depicts the deletion of an element from the linked list. It includes a
function which specifically searches for the element to be deleted.

DELETE_LIST FUNCTION

/* prototype of delete_function */
list *delete_list(list *);
list *find(list *, int);

/*definition of delete_list */
list *delete_list(list *start)
{
 int key; list * f, * temp;
 printf(“\n enter the value of element to be deleted \n”);
 scanf(“%d”, &key);
 if(start->data == key)
 {
 temp=start->next;
 free(start);
 start=temp;
 }
 else
 {
 f = find(start,key);
 if(f==NULL)
 printf(“\n key not fund”);
 else
 {
 temp = f->next->next;
 free(f->next);
 f->next=temp;
 }
 }
 return(start);
}
void main()
{

 list *head;
 void create(list *);
 int count(list *);
 void traverse(list *);
 head=(list *)malloc(sizeof(list));
 create(head);

44

Introduction to
Algorithms and
Data Structures

 printf(“ \n traversing the created list \n”);
 traverse(head);
 printf(“\n number of elements in the list %d \n”, count(head));
 head=insert(head);
 printf(“ \n traversing the list after insert \n”);
 traverse(head);
 head=delete_list(head);
 printf(“ \n traversing the list after delete_list \n”);
 traverse(head);
}

Program 3.6: Deletion of an element from the linked list by searching for element that is to be deleted

3.5 DOUBLY LINKED LISTS-IMPLEMENTATION

In a singly linked list, each element contains a pointer to the next element. We have
seen this before. In single linked list, traversing is possible only in one direction.
Sometimes, we have to traverse the list in both directions to improve performance of
algorithms. To enable this, we require links in both the directions, that is, the element
should have pointers to the right element as well as to its left element. This type of list
is called doubly linked list.

NULL

DATA

RIGHT
LINK

 LEFT
LINK

DATA

RIGHT
LINK

 LEFT
LINK

DATA

NULL

Figure 3.5: A Doubly Linked List

Doubly linked list (Figure 3.5) is defined as a collection of elements, each element
consisting of three fields:

• pointer to left element,
• data field, and
• pointer to right element.

Left link of the leftmost element is set to NULL which means that there is no left
element to that. And, right link of the rightmost element is set to NULL which means
that there is no right element to that.

ALGORITHM (Creation)

Step 1 begin
Step 2 define a structure ELEMENT with fields
 Data
 Left pointer
 Right pointer
Step 3 declare a pointer by name head and by using (malloc()) memory

allocation function allocate space for one element and store the
address in head pointer

 Head = (ELEMENT *) malloc(sizeof(ELEMENT))

Step 4 read the value for head->data
 head->left = NULL
 head->right = (ELEMENT *) malloc(size of (ELEMENT))
Step 5 repeat step3 to create required number of elements

45

Lists Step 6 end

Program 3.7 depicts the creation of a Doubly linked list.

/* CREATION OF A DOUBLY LINKED LIST */
/* DBLINK.C */

include <stdio.h>
include <malloc.h>

struct dl_list
{
 int data;
 struct dl_list *right;
 struct dl_list *left;
};
typedef struct dl_list dlist;

void dl_create (dlist *);
void traverse (dlist *);

/* Function creates a simple doubly linked list */

void dl_create(dlist *start)
{
 printf("\n Input the values of the element -1111 to come out : ");
 scanf("%d", &start->data);
 if(start->data != -1111)
 {
 start->right = (dlist *) malloc(sizeof(dlist));
 start->right->left = start;
 start->right->right = NULL;
 dl_create(start->right);
 }
 else
 start->right = NULL;
}

/* Display the list */

void traverse (dlist *start)
{
 printf("\n traversing the list using right pointer\n");
 do {
 printf(" %d = ", start->data);
 start = start->right;
 } while (start->right); /* Show value of last start only one time */

 printf("\n traversing the list using left pointer\n");
 start=start->left;
 do
 {
 printf(" %d =", start->data);
 start = start->left;
 }while(start->right);
}

46

Introduction to
Algorithms and
Data Structures

void main()
{
 dlist *head;
 head = (dlist *) malloc(sizeof(dlist));
 head->left=NULL;
 head->right=NULL;
 dl_create(head);
 printf("\n Created doubly linked list is as follows");
 traverse(head);
}

Program 3.7: Creation of a Doubly Linked List

OUTPUT

Input the values of the element -1111 to come out :
1
Input the values of the element -1111 to come out :
2
Input the values of the element -1111 to come out :
3
Input the values of the element -1111 to come out :
-1111
Created doubly linked list is as follows
traversing the list using right pointer
1 = 2 = 3 =
traversing the list using left pointer
3 = 2 = 1 =

3.6 CIRCULARLY LINKED LISTS
IMPLEMENTATION

A linked list in which the last element points to the first element is called
CIRCULAR linked list. The chains do not indicate first or last element; last element
does not contain the NULL pointer. The external pointer provides a reference to
starting element.

The possible operations on a circular linked list are:

• Insertion,
• Deletion, and
• Traversing

Figure 3.6 depicts a Circular linked list.

Figure 3.6: A Circular Linked List

head

47

Lists

 Figure 3.6 : A Circular Linked List

Program 3.8 depicts the creation of a Circular linked list.
#include<stdio.h>
#include<stdlib.h>
#define NULL 0

struct linked_list
{
 int data;
 struct linked_list *next;
};
typedef struct linked_list clist;

clist *head, *s;

void main()
{
 void create_clist(clist *);
 int count(clist *);
 void traverse(clist *);
 head=(clist *)malloc(sizeof(clist));
 s=head;
 create_clist(head);
 printf(" \n traversing the created clist and the starting address is %u \n",

head);
 traverse(head);
 printf("\n number of elements in the clist %d \n", count(head));
}

void create_clist(clist *start)
{
 printf("input the element -1111 for coming out of the loop\n");
 scanf("%d", &start->data);
 if(start->data == -1111)
 start->next=s;
 else
 {
 start->next=(clist*)malloc(sizeof(clist));
 create_clist(start->next);
 }
}

void traverse(clist *start)
{

48

Introduction to
Algorithms and
Data Structures

 if(start->next!=s)
 {
 printf("data is %d \t next element address is %u\n", start->data, start-
>next);
 traverse(start->next);
 }
 if(start->next == s)
 printf("data is %d \t next element address is %u\n",start->data, start-
>next);
}

int count(clist *start)
{
 if(start->next == s)
 return 0;
 else
 return(1+count(start->next));
}

Program 3.8: Creation of a Circular linked list

ALGORITHM (Insertion of an element into a Circular Linked List)

Step 1 Begin

Step 2 if the list is empty or new element comes before the start (head)

element, then insert the new element as start element.

Step 3 else, if the new element comes after the last element, then insert the

new element at the end element and adjust the pointer of last element
to the start element.

Step 4 else, insert the new element in the list by using the find function. find

function returns the address of the found element to the insert_list
function.

Step 5 End.

If new item is to be inserted after an existing element, then, call the find function
recursively to trace the ‘key’ element. The new element is inserted before the ‘key’
element by using above algorithm.

Figure 3.7 depicts the Circular linked list with a new element that is to be inserted.

Figure 3.8 depicts a Circular linked list with the new element inserted between first
and second nodes of Figure 3.7.

f next

f

Lists

f

new element
NULL

f next

Program 3.9 depicts the code for insertion of a node into a Circular linked list.

#include<stdio.h>
#include<stdlib.h>
#define NULL 0
struct linked_list
{
 int data;
 struct linked_list *next;
};
typedef struct linked_list clist;
clist *head, *s;
/* prototype of find and insert functions */
clist * find(clist *, int);
clist * insert_clist(clist *);
/*definition of insert_clist function */
clist * insert_clist(clist *start) {
 clist *n, *n1;
 int key, x;
 printf("enter value of new element");
 scanf("%d", &x);
 printf("eneter value of key element");
 scanf("%d",&key);
 if(start->data ==key)
 {

Figure 3.8: A Circular Linked List after insertion of the new element between first and second nodes
 (Dotted lines depict the links prior to insertion)
49

50

Introduction to
Algorithms and
Data Structures

 n=(clist *)malloc(sizeof(clist));
 n->data=x;
 n->next = start;
 start=n;
 }
 else
 {
 n1 = find(start, key);
 if(n1 == NULL)
 printf("\n key is not found\n");
 else
 {
 n=(clist*)malloc(sizeof(clist));
 n->data=x;
 n->next=n1->next;
 n1->next=n;
 }
 }
 return(start);
}
/*definition of find function */
clist * find(clist *start, int key)
{
 if(start->next->data == key)
 return(start);
 if(start->next->next == NULL)
 return(NULL);
 else
 find(start->next, key);
}
void main()
{
 void create_clist(clist *);
 int count(clist *);
 void traverse(clist *);
 head=(clist *)malloc(sizeof(clist));
 s=head;
 create_clist(head);
 printf(" \n traversing the created clist and the starting address is %u \n",
head);
 traverse(head);
 printf("\n number of elements in the clist %d \n", count(head));
 head=insert_clist(head);
 printf("\n traversing the clist after insert_clist and starting address is %u
\n",head);
 traverse(head);
}
void create_clist(clist *start)
{
 printf("inputthe element -1111 for coming oout of the loop\n");
 scanf("%d", &start->data);
 if(start->data == -1111)
 start->next=s;
 else
 {
 start->next=(clist*)malloc(sizeof(clist));
 create_clist(start->next);

51

Lists }
}

void traverse(clist *start)
{
 if(start->next!=s)
 {
 printf("data is %d \t next element address is %u\n", start->data, start-
>next);
 traverse(start->next);
 }
 if(start->next == s)
 printf("data is %d \t next element address is %u\n",start->data, start-
>next);
}
int count(clist *start)
{
 if(start->next == s)
 return 0;
 else
 return(1+count(start->next));
}

Program 3.9 Insertion of a node into a Circular Linked List

Figure 3.9 depicts a Circular linked list from which an element was deleted.

ALGORITHM (Deletion of an element from a Circular Linked List)

Step 1 Begin
Step 2 if the list is empty, then element cannot be deleted.
Step 3 else, if element to be deleted is first node, then make the start (head) to point

to the second element.
Step 4 else, delete the element from the list by calling find function and returning

the found address of the element.
Step 5 End.

 f

 f next

Figure 3.9 A Circular Linked List from which an element was deleted

 (Dotted line shows the linked that existed prior to deletion)
Program 3.10 depicts the code for the deletion of an element from the Circular linked
list.

#include<stdio.h>
#include<stdlib.h>
#define NULL 0

struct linked_list
{
 int data;
 struct linked_list *next;
};

52

Introduction to
Algorithms and
Data Structures

typedef struct linked_list clist;
clist *head, *s;

/* prototype of find and delete_function*/
clist * delete_clist(clist *);
clist * find(clist *, int);

/*definition of delete_clist */
clist *delete_clist(clist *start)
{
 int key; clist * f, * temp;
 printf("\n enter the value of element to be deleted \n");
 scanf("%d", &key);
 if(start->data == key)
 {
 temp=start->next;
 free(start);
 start=temp;
 }
 else
 {
 f = find(start,key);
 if(f==NULL)
 printf("\n key not fund");
 else
 {
 temp = f->next->next;
 free(f->next);
 f->next=temp;
 }
 }
 return(start);
}
/*definition of find function */
clist * find(clist *start, int key)
{
 if(start->next->data == key)
 return(start);
 if(start->next->next == NULL)
 return(NULL);
 else
 find(start->next, key);
}

void main()
{
 void create_clist(clist *);
 int count(clist *);
 void traverse(clist *);
 head=(clist *)malloc(sizeof(clist));
 s=head;
 create_clist(head);
 printf(" \n traversing the created clist and the starting address is %u \n",
 head);
 traverse(head);
 printf("\n number of elements in the clist %d \n", count(head));
 head=delete_clist(head);

Lists printf(" \n traversing the clist after delete_clistand starting address is %u
 \n",head);
 traverse(head);
}
void create_clist(clist *start)
{
 printf("inputthe element -1111 for coming oout of the loop\n");
 scanf("%d", &start->data);
 if(start->data == -1111)
 start->next=s;
 else
 {
 start->next=(clist*)malloc(sizeof(clist));
 create_clist(start->next);
 }
}

void traverse(clist *start)
{
 if(start->next!=s)
 {
 printf("data is %d \t next element address is %u\n", start->data, start-
>next);
 traverse(start->next);
 }
 if(start->next == s)
 printf("data is %d \t next element address is %u\n",start->data, start-
>next);
}

int count(clist *start)
{
 if(start->next == s)
 return 0;
 else
 return(1+count(start->next));
}

Program 3.10: Deletion of an element from the circular linked list

3.7 APPLICATIONS

Lists are used to maintain POLYNOMIALS in the memory. For example, we have a
function f(x)= 7x5 + 9x4 – 6x³ + 3x². Figure 3.10 depicts the representation of a
Polynomial using a singly linked list. 1000,1050,1200,1300 are memory addresses.

 7 5 1050 9 4 1200 130031000 −6 2

 Start 1000 1050 1200 1300

Figure 3.10: Representation of a Polynomial using a singly linked list

3

53

54

Introduction to
Algorithms and
Data Structures

Polynomial contains two components, coefficient and an exponent, and ‘x’ is a formal
parameter. The polynomial is a sum of terms, each of which consists of coefficient
and an exponent. In computer, we implement the polynomial as list of structures
consisting of coefficients and an exponents.

Program 3.11 accepts a Polynomial as input. It uses linked list to represent the
Polynomial. It also prints the input polynomial along with the number of nodes in it.

/* Representation of Polynomial using Linked List */
include <stdio.h>
include <malloc.h>
struct link
{
 char sign;
 int coef;
 int expo;
 struct link *next;
};
typedef struct link poly;
void insertion(poly *);
void create_poly(poly *);
void display(poly *);
/* Function create a ploynomial list */
void create_poly(poly *start)
{
 char ch;
 static int i;
 printf("\n Input choice n for break: ");
 ch = getchar();
 if(ch != 'n')
 {
 printf("\n Input the sign: %d: ", i+1);
 scanf("%c", &start->sign);
 printf("\n Input the coefficient value: %d: ", i+1);
 scanf("%d", &start->coef);
 printf("\n Input the exponent value: %d: ", i+1);
 scanf("%d", &start->expo);
 fflush(stdin);
 i++;
 start->next = (poly *) malloc(sizeof(poly));
 create_poly(start->next);
 }
 else
 start->next=NULL;
}
/* Display the polynomial */
void display(poly *start)
{
 if(start->next != NULL)
 {
 printf(" %c", start->sign);
 printf(" %d", start->coef);
 printf("X^%d", start->expo);
 display(start->next);
 }
}
/* counting the number of nodes */

55

Lists int count_poly(poly *start)
{
 if(start->next == NULL)
 return 0;
 else
 return(1+count_poly(start->next));
}
/* Function main */
void main()
{ poly *head = (poly *) malloc(sizeof(poly));

create_poly(head);
 printf("\n Total nodes = %d \n", count_poly(head));
 display(head); }

Program 3.11: Representation of Polynomial using Linked list

 Check Your Progress

1) Write a function to print the memory location(s) which are used to store the

data in a single linked list ?

…………………………………………………………………………………………

……………..……………………………………………………………………………

.

2) Can we use doubly linked list as a circular linked list? If yes, Explain.

………………………………………………………………………………………….

……….…………………………………………………………………………………

3) Write the differences between Doubly linked list and Circular linked list.

..…………………………………………………………………………………………

………………………….……….……………………………………………………...

4) Write a program to count the number of items stored in a single linked list.

..…………………………………………………………………………………………

………………………………………………………………………………………….

5) Write a function to check the overflow condition of a list represented by an
array.
…………………………………………………………………………………………

…………………………………………………………………………………………

3.8 SUMMARY

The advantage of Lists over Arrays is flexibility. Over flow is not a problem until the
computer memory is exhausted. When the individual records are quite large, it may be
difficult to determine the amount of contiguous storage that might be in need for the
required arrays. With dynamic allocation, there is no need to attempt to allocate in
advance. Changes in list, insertion and deletion can be made in the middle of the list,
more quickly than in the contiguous lists.

The drawback of lists is that the links themselves take space which is in addition to
the space that may be needed for data. One more drawback of lists is that they are not
suited for random access. With lists, we need to traverse a long path to reach a
desired node.

56

Introduction to
Algorithms and
Data Structures

3.9 SOLUTIONS/ANSWERS

 1) void print_location(struct node *head)
 {
 temp=head;
 while(temp->next !=NULL)
 {
 printf("%u", temp);
 temp=temp->next;
 }
 printf("%u", temp);
 }
 4) void count_items(struct node *head)
 {
 int count=0;

 temp=head;
 while(temp->next !=NULL)
 {
 count++;
 }
 count++;
 pintf("total items = %d", count);
 }
5) void Is_Overflow(int max_size, int last_element_position)
 {
 if(last_element_position == max_size)
 printf("List Overflow");
 else
 printf("not Overflow");
 }

3.10 FURTHER READINGS

1. Fundamentals of Data Structures in C++ by E.Horowitz, Sahni and D.Mehta;
Galgotia Publications

2. Data Structures and Program Design in C by Kruse, C.L.Tonodo and B.Leung;
Pearson Education

Reference Websites
http://www.webopedia.com
http://www.ieee.org
.

http://www.webopedia.com/
http://www.ieee.org/

	MCS-021 Introduction to Algorithms and Data Structures
	Index
	Credit Page
	Course Introduction
	Block Introduction
	UNIT 1 Analysis of Algorithms
	1.0 Introduction
	1.1 Objectives
	1.2 Mathematical Background
	1.3 Process of Analysis
	1.4 Calculation of Storage Complexity
	1.5 Calculation of Time Complexity
	1.6 Summary
	1.7 Solutions
	1.8 Further Readings

	UNIT 2 ARRAYS
	2.0 Introduction
	2.1 Objectives
	2.2 Arrays and Pointers
	2.3 Sparse Matrices
	2.4 Polynomials
	2.5 Representation of Arrays
	2.6 Applications
	2.7 Summary
	2.8 Solutions
	2.9 Further Readings

	UNIT 3 Lists
	3.0 Introduction
	3.1 Objectives
	3.2 Abstract Data Type-List
	3.3 Array Implementation of Lists
	3.4 Linked Lists
	3.5 Doubly Linked Lists- Implementation
	3.6 Circularly Linked Lists Implementation
	3.7 Application
	3.8 Summary
	3.9 Solutions
	3.10 Further Readinds

