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COURSE INTRODUCTION
 
 
This course is on the Data and File Structures. 
 
Data structures are building blocks of a program. They are like pillars of a  huge 
structure. If a program is built using improper data structures, then the program may 
not work as expected always. It is very much important to use right data structures for 
a program.  
 
When the software is developed, it is very important to consider space and time 
complexities as essential parameters that are to be met by it. Software may be 
developed, but, it may take a longer time to produce output and hence, it may not be 
used. The same is the case with respect to space. A program should not occupy more 
than a specific amount of memory. Both these parameters are technically termed as 
Time and Space complexities. A program/algorithm is analysed for its space and time 
complexities. The most common basic data structure is Array. Arrays can store the 
elements which are of same data type. Arrays can be single or multi-dimensional. The 
representations of arrays inside the memory are not uniform. The other data structure 
that was discussed in this course is Lists. A list can be represented using arrays or 
pointers. If pointers are used, then, the operations on the list such as Insertion, 
Deletion etc. will become easy. Also, the time complexity of such programs is less 
when compared to programs which represent lists using arrays. Different types of lists 
are also covered in the course. 
 
Data structures enable a programmer to structure a program in such a way that the 
data are represented in the same way (of course, to the extent possible) as they are 
represented in real life. A Stack is a last-in-first-out data structure. It means that the 
latest element which entered the Stack will be the first to leave. A Stack can be 
represented using Arrays or Linked lists. Both the representations are discussed in this 
course. Also, the topic of multiple stacks is covered. A queue is a first-in-first-out data 
structure. It means that the first element that entered the queue will be the first to leave 
it.  A queue can be implemented using arrays or pointers. However, a lot of flexibility 
is associated with a queue implemented using pointers. Also, the topic of Dequeue is 
covered in this course. The most important data structure is Tree. A Tree is having a 
large number of applications in real life. Both Binary Trees and Trees are discussed. 
The different ways of traversing a Tree are also covered in this course. 
 
Binary search Trees, AVL Trees and B-Trees are advanced versions of binary Trees. 
There are two types of Graphs, namely, those whose paths are directed and those 
whose paths are not directed. The issue of representing a Graph in such a way that its 
connectivity is not disturbed is discussed. Also, Dijkstra’s algorithm which computes 
the shortest path  between two vertices, Kruskal’s and Prim’s algorithms which are 
used to compute the minimum cost spanning Trees are also discussed in this course. 
The most frequent operation that is performed in most of the software is Searching. 
This topic is dealt through the discussion of various search algorithms in this course. 
 
Another frequent operation that is performed in most of the software is Sorting. 
Different sorting algorithms such as Quick sort, Heap Sort, Bubble Sort and Merge 
Sort are discussed. In this course, the topic of File structures is also discussed. 
Different types of File organizations are discussed. Finally, some of the advanced data 
structures such as Splay Trees, Red-black Trees and AA Trees are also discussed in 
this course.  
 
There are a large number of programs in this course. Students are advised to simulate 
the programs by hand before trying to execute them on the machine. All programs 
may not readily execute on the machine. Hence, it is important to simulate every 
program by hand, make necessary modifications and then execute the program. It is 



always suggested that students should write programs on their own and should not 
copy any portion of the program that is existent in the course. 
 
This course consists of 4 blocks and is organised in the following manner: 
 
Block-1 discusses the matters related to analysis of algorithms and basic data 
structures such as Arrays and Lists. Representation of arrays and different types of 
lists are also discussed. 
 
Block-2 focuses on Stacks, Queues and Trees.  Different ways of representing Stacks 
and Queues are discussed in this block. Also, different ways of traversing a Tree are 
also covered. 
 
Block-3 deals with Advanced Trees, Graphs and Search algorithms. AVL Trees are B-
Trees  covered in this block. Also, different algorithms to compute the minimum cost 
spanning Trees, shortest paths etc. are dealt with. In this block, different techniques 
used for searching such as Binary search are also discussed. 
 
Block-4 is the final block of this course. In this block, different techniques used for 
sorting such as Bubble sort, Quick sort, Heap sort and Merge sort are discussed. The 
topic of File structures is also discussed. Finally, advanced data structures such as 
Red-black Trees, AA-Trees are also discussed. 



BLOCK INTRODUCTION 
 
 
This block introduces learner to Algorithms and basic Data structures. 
 
There are two limits in this world which cannot be extended. They are, Time and 
Space.  Every program occupies some space and takes some time to execute. The 
word some is highly ambiguous as the space and time should be within specific limits 
for a program should be useful. It is not important to write a program which produces 
output as expected, but, it is very important to write a program which produces output 
as expected within a specific time and doesn’t consume space more than a specific 
limit. It is not uncommon to write programs which produce output as desired, but, 
they take enormous time to execute and thus may not be used by any body in real life. 
Of course, there is no need to get surprised when we find such programs in real life 
and there is no better code which does the same within the tolerable time! This is the 
reason for analysing a program after it was written correctly. The analysis consists of 
two elements, namely, time and space. It is some times possible to write the same 
program using different logic which consumes better time and space. We discuss the 
subject of analysis of algorithms in Unit-1 of this Block. 
 
One of the basic data structures of a program is Array. We discuss the same in Unit-2 
of this Block. Array is a data structure which can represent a collection of elements of 
same data type. There are enormous applications of Arrays in real life. We can view 
an Array as a row of elements (for example, a row of males/females/human beings) of 
same type. Such a row can be treated as a single dimensional array. An array can be of 
any dimensions. It can be two dimensional, three dimensional etc. The right 
dimension that has to be used depends on the application in place. Though, an array 
can be of different dimensions and humans are having a specific view about the 
representation of arrays (particularly, one and two dimensional arrays), the real 
representation inside the memory may be different from that of a user’s view. This 
topic is also covered in this unit. 
 
One common data structure in Computer science is List which is the subject of Unit-3. 
It is not uncommon in real life to use lists for a variety of purposes and this particular 
data structure is developed keeping in view of the vast applications of Lists in real 
life. Some examples of Lists are list of passengers, list of stations, list of courses etc. 
A list can be represented in different ways. Some representations will rob the list of 
the flexibility. Some representations support flexibility for operations like insertion, 
deletion of elements from list etc. There are different types of lists. In this unit, we 
shall discuss the Singly linked lists, Doubly linked lists, Circular lists etc. 
 
This block consists of  three units and is organized as follows: 
 
Unit-1 deals with Analysis of algorithms. Both space and time complexity are covered 
in this unit. 
 
Unit-2 deals with the basic data structure Arrays. Single dimensional and Multi 
dimensional arrays are covered. Also, different representations of Arrays in memory 
are discussed. 
 
Unit-3  deals with the data structure Lists. Lists using arrays and pointers are 
demonstrated. Also, different types of linked lists are covered in this unit. 
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UNIT 1 ANALYSIS OF ALGORITHMS 
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1.0   INTRODUCTION 

A common person’s belief is that a computer can do anything. This is far from truth. 
In reality, computer can perform only certain predefined instructions. The formal 
representation of this model as a sequence of instructions is called an algorithm, and 
coded algorithm, in a specific computer language is called a program. Analysis of 
algorithms has been an area of research in computer science; evolution of very high 
speed computers has not diluted the need for the design of time-efficient algorithms. 
 
Complexity theory in computer science is a part of theory of computation dealing with 
the resources required during computation to solve a given problem. The most 
common resources are time (how many steps (time) does it take to solve a problem) 
and space (how much memory does it take to solve a problem). It may be noted that 
complexity theory differs from computability theory, which deals with whether a 
problem can be solved or not through algorithms, regardless of the resources  
required. 
 
Analysis of Algorithms is a field of computer science whose overall goal is 
understand the complexity of algorithms. While an extremely large amount of 
research work is devoted to the worst-case evaluations, the focus in these pages is 
methods for average-case.  One can easily grasp that the focus has shifted from 
computer to computer programming and then to creation of an algorithm. This is 
algorithm design, heart of problem solving. 
 

1.1 OBJECTIVES 

After going through this unit, you should be able to:  
 
• understand the concept of algorithm; 
 
• understand the mathematical foundation underlying the analysis of algorithm; 
 
• to understand various asymptotic notations, such as Big O notation, theta 

notation and omega (big O, Θ, Ω ) for analysis of algorithms; 
 
• understand various notations for defining the complexity of algorithm; 
 
• define the complexity of various well known algorithms,  and 
 
• learn  the method to calculate time complexity of algorithm. 
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1.2  MATHEMATICAL BACKGROUND 
To analyse an algorithm is to determine the amount of resources (such as time and 
storage) that are utilized by to execute. Most algorithms are designed to work with 
inputs of arbitrary length.  
 
Algorithm analysis is an important part of a broader computational complexity theory, 
which provides theoretical estimates for the resources needed by any algorithm which 
solves a given computational problem. These estimates provide an insight into 
reasonable directions of search for efficient algorithms. 
 
Definition of Algorithm 
 
Algorithm should have the following five characteristic features: 

1. Input  
2. Output  
3. Definiteness  
4. Effectiveness  
5. Termination. 
  

Therefore, an algorithm can be defined as a sequence of definite and effective 
instructions, which terminates with the production of correct output from the given 
input. 
 
 
Complexity classes 
 
All decision problems fall into sets of comparable complexity, called complexity 
classes. 
 
The complexity class P is the set of decision problems that can be solved by a 
deterministic machine in polynomial time. This class corresponds to set of problems 
which can be effectively solved in the worst cases. We will consider algorithms 
belonging to this class for analysis of time complexity. Not all algorithms in these 
classes make practical sense as many of them have higher complexity. These are 
discussed later.  
 
The complexity class NP is a set of decision problems that can be solved by a non-
deterministic machine in polynomial time. This class contains many problems like 
Boolean satisfiability problem, Hamiltonian path problem and the Vertex cover 
problem.  
 
 
What is Complexity? 
 
Complexity refers to the rate at which the required storage or consumed time grows as 
a function of the problem size. The absolute growth depends on the machine used to 
execute the program, the compiler used to construct the program, and many other 
factors. We would like to have a way of describing the inherent complexity of a 
program (or piece of a program), independent of machine/compiler considerations. 
This means that we must not try to describe the absolute time or storage needed. We 
must instead concentrate on a “proportionality” approach, expressing the complexity 
in terms of its relationship to some known function. This type of analysis is known as 
asymptotic analysis.  It may be noted that we are dealing with complexity of an 
algorithm not that of a problem. For example, the simple problem could have high 
order of time complexity and vice-versa. 

 8 
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Asymptotic Analysis 
 
Asymptotic analysis is based on the idea that as the problem size grows, the 
complexity can be described as a simple proportionality to some known function. This 
idea is incorporated in the “Big O”,  “Omega”  and “Theta”  notation for asymptotic 
performance. 
  
The notations like “Little Oh”  are similar in spirit to “Big Oh” ;  but are rarely used in 
computer science for asymptotic analysis. 
 
Tradeoff between space and time complexity 
 
We may sometimes seek a tradeoff between space and time complexity. For example, 
we may have to choose a data structure that requires a lot of storage in order to reduce 
the computation time. Therefore, the programmer must make a judicious choice from 
an informed point of view. The programmer must have some verifiable basis based on 
which a data structure or algorithm can be selected Complexity analysis provides such 
a basis.  
 
We will learn about various techniques to bind the complexity function. In fact, our 
aim is not to count the exact number of steps of a program or the exact amount of time 
required for executing an algorithm. In theoretical analysis of algorithms, it is 
common to estimate their complexity in asymptotic sense, i.e., to estimate the 
complexity function for reasonably large length of input ‘n’. Big O notation, omega 
notation Ω and theta notation Θ are used for this purpose. In order to measure the 
performance of an algorithm underlying the computer program, our approach would 
be based on a concept called asymptotic measure of complexity of algorithm.  There 
are notations like big O, Θ, Ω for asymptotic measure of growth functions of 
algorithms. The most common being big-O notation. The asymptotic analysis of 
algorithms is often used because time taken to execute an algorithm varies with the 
input ‘n’ and other factors which may differ from computer to computer and from run 
to run. The essences of these asymptotic notations are to bind the growth function of 
time complexity with a function for sufficiently large input. 
 
The Θ-Notation (Tight Bound) 
 
This notation bounds a function to within constant factors. We say f(n) = Θ(g(n)) if 
there exist positive constants n0, c1 and c2 such that to the right of n0 the value of f(n) 
always lies between c1g(n) and c2g(n), both inclusive. The Figure 1.1 gives an idea 
about function f(n) and g(n) where f(n) =  Θ(g(n)) . We will say that the function g(n) 
is asymptotically tight bound for f(n). 
 

  
 

 
Figure 1.1 : Plot of  f(n) =  Θ(g(n)) 
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For example, let us show that the function f(n) = 
3
1

n2  − 4n = Θ(n2). 

Now, we have to find three positive constants, c 1, c 2 and no   such that  

c1n2 ≤  
3
1

 n2 – 4n  ≤   c2 n2   for all n ≥    no  

⇒  c1 ≤   
3
1
−  

n
4

 ≤  c2     

 
By choosing  no = 1 and  c2 ≥  1/3  the right hand inequality holds true. 
 
Similarly,  by selecting no = 13 c1 ≤   1/39, the right hand inequality holds true. 
So, for c1 = 1/39 , c2 = 1/3 and no ≥  13, it follows that 1/3 n2 – 4n = Θ (n2). 
 
Certainly, there are other choices for c1, c2 and no.  Now we may show that the 
function f(n) = 6n3    ≠  Θ (n2). 
 
To prove this, let us assume that c3 and no exist such that 
6n3    ≤  c3n2   for n ≥  no, But this fails for sufficiently large n. Therefore 6n3    ≠  Θ (n2). 
 
The big O notation (Upper Bound)  

This notation gives an upper bound for a function to within a constant factor. Figure 
1.2 shows the plot of  f(n) = O(g(n)) based on big O notation. We write f(n) = O(g(n)) 
if there are positive constants n0 and c such that to the right of n0, the value of f(n) 
always lies on or below cg(n).  

   
 

     Figure 1.2: Plot of  f(n) = O(g(n)) 
 

Mathematically for a given function g(n), we denote a set of functions by O(g(n)) by 
the following notation: 
 
O(g(n)) = {f(n) :  There exists a positive constant c and n0 such that 0 ≤  f(n) ≤ cg(n)  
for all n ≥ n0 } 
 
Clearly, we use O-notation to define the upper bound on a function by using a 
constant factor c. 
 
We can see from the earlier definition of Θ that Θ is a tighter notation than big-O 
notation.  
 
f(n) = an + c is O(n) is also O(n2), but O (n) is asymptotically tight whereas O(n2) is 
notation. 

 10 
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Whereas in terms of Θ notation, the above function f(n) is Θ (n). As big-O notation is 
upper bound of function, it is often used to describe the worst case running time of 
algorithms. 
The Ω-Notation (Lower Bound)  
 
This notation gives a lower bound for a function to within a constant factor. We write 
f(n) = Ω(g(n)), if there are positive constants n0 and c such that to the right of n0, the 
value of f(n) always lies on or above cg(n). Figure 1.3 depicts the plot of 
f(n) = Ω(g(n)).  
 

     
 

Figure 1.3: Plot of  f(n) = Ω(g(n)) 
 
Mathematically for a given function g(n), we may define Ω(g(n)) as the set of 
functions. 
 
Ω(g(n)) = { f(n) : there exists a constant c and n0 ≥ 0 such that 0 ≤  cg(n)  ≤ f(n) for all 
n ≥ n0 }. 
 
Since Ω notation describes lower bound, it is used to bound the best case running time 
of an algorithm. 
 

Asymptotic notation 
 
Let us define a few functions in terms of above asymptotic notation. 

 
Example: f(n) = 3n3 + 2n2 + 4n + 3 
          = 3n3 + 2n2 + O (n), as 4n + 3 is of O (n) 
                    = 3n3+ O (n2), as 2n2 + O (n)    is O (n2) 
                      = O (n3)  

Example: f(n) =  n² + 3n + 4 is O(n²), since n² + 3n + 4 < 2n² for all n > 10.  
By definition of big-O, 3n + 4 is also O(n²), too, but as a convention, we use the 
tighter bound to the function, i.e., O(n). 
 
Here are some rules about big-O notation: 

1. f(n) = O(f(n)) for any function f. In other words, every function is bounded by 
itself. 
 

2. aknk + ak−1nk−1 + · · · + a1n + a0 = O(nk) for all k ≥ 0 and for all a0, a1, . . . , ak ∈ R. 
In other words, every polynomial of degree k can be bounded by the function nk. 
Smaller order terms can be ignored in big-O notation. 
 

3. Basis of Logarithm can be ignored in big-O notation i.e. loga n = O(logb n) for 
any bases a, b. We generally write O(log n) to denote a logarithm n to any base.  
 11
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4. Any logarithmic function can be bounded by a polynomial i.e. logb n = O(nc) 
for any b (base of logarithm) and any positive exponent c > 0. 
 

5. Any polynomial function can be bounded by an exponential function i.e.           
nk = O (bn.). 

 
6.      Any exponential function can be bound by the factorial function. For example, 

an = O(n!) for any base a.  
 

 Check Your Progress 1                                    
 
1) The function 9n+12 and 1000n+400000 are both O(n).    True/False 
 
2) If a function f(n) = O(g(n)) and h(n) = O(g(n)), then f(n)+h(n) = O(g(n)).     

  True/False 

3) If f(n) = n2 + 3n and g(n) = 6000n + 34000 then O(f(n)) < O (g(n).)    
  True/False 

4) The asymptotic complexity of algorithms depends on hardware and other 
factors.           True/False  

 
5) Give simplified big-O notation for the following growth functions: 
 

• 30n2 
• 10n3 + 6n2 
• 5nlogn + 30n 
• log n + 3n 
• log n + 32 

 
…………………………………………………………………………………………………… 
 
…………………………………………………………………………………………………… 
 
…………………………………………………………………………………………………… 
 
…………………………………………………………………………………………………… 
 

1.3      PROCESS OF ANALYSIS 
 
The objective analysis of an algorithm is to find its efficiency. Efficiency is dependent 
on the resources that are used by the algorithm. For example,   

• CPU utilization (Time complexity) 
• Memory utilization (Space complexity) 
• Disk usage (I/O) 
• Network usage (bandwidth). 

There are two important attributes to analyse an algorithm. They are: 

Performance: How much time/memory/disk/network bandwidth is actually used when 
a program is run. This depends on the algorithm, machine, compiler, etc.  

Complexity: How do the resource requirements of a program or algorithm scale (the 
growth of resource requirements as a function of input). In other words, what happens 
to the performance of an algorithm, as the size of the problem being solved gets larger 
and larger? For example, the time and memory requirements of an algorithm which 

 12 
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computes the sum of 1000 numbers is larger than the algorithm which computes the 
sum of 2 numbers. 

Time Complexity: The maximum time required by a Turing machine to execute on any 
input of length n.  
 
Space Complexity: The amount of storage space required by an algorithm varies with 
the size of the problem being solved.  The space complexity is normally expressed as 
an order of magnitude of the size of the problem, e.g., O(n2) means that if the size of 
the problem (n) doubles then the working storage (memory) requirement will become 
four times.  
 
Determination of Time Complexity 

The RAM Model 

The random access model (RAM) of computation was devised by John von Neumann 
to study  algorithms. Algorithms are studied  in computer science because they are 
independent of machine and language.  

We will do all our design and analysis of algorithms based on RAM model of 
computation:     

• Each “simple” operation (+, -, =, if, call) takes exactly 1 step.  
• Loops and subroutine calls are not simple operations, but depend upon the size of 

the data and the contents of a subroutine.  
• Each memory access takes exactly 1 step.  

The complexity of algorithms using big-O notation can be defined in the following 
way for a problem of size n:  
 
• Constant-time method is “order 1” : O(1). The time required is constant 

independent of the input size.  
• Linear-time method is “order n”: O(n). The time required is proportional to the 

input size. If the input size doubles, then, the time to run the algorithm also 
doubles. 

• Quadratic-time method is “order N squared”: O(n2). The time required is 
proportional to the square of the input size. If the input size doubles, then, the 
time required will increase by four times.   

 
The process of analysis of algorithm (program) involves analyzing each step of the 
algorithm. It depends on the kinds of statements used in the program. 
 
Consider the following example:  

Example 1: Simple sequence of statements 

Statement 1; 
Statement 2; 
  ... 
  ... 
Statement k; 

The total time can be found out by adding the times for all statements:  

Total time = time(statement 1) + time(statement 2) + ... + time(statement k). 

13
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It may be noted that time required by each statement will greatly vary depending on 
whether each statement is simple (involves only basic operations) or otherwise.  
Assuming that each of the above statements involve only basic operation, the time for 
each simple statement is constant and the total time is also constant: O(1). 

Example 2: if-then-else statements 

 In this example, assume the statements are simple unless noted otherwise.  

if-then-else statements  

if (cond) { 
    sequence of statements 1 
} 
else { 
    sequence of statements 2 
} 

In this, if-else statement, either sequence 1 will execute, or sequence 2 will execute 
depending on the boolean condition. The worst-case time in this case is the slower of 
the two possibilities. For example, if sequence 1 is O(N2) and sequence 2 is O(1), then 
the worst-case time for the whole if-then-else statement would be O(N2).  

Example 3: for loop 

for (i = 0; i < n; i + +) { 
sequence of statements 
} 

Here, the loop executes n times. So, the sequence of statements also executes n times. 
Since we assume the time complexity of the statements are O(1), the total time for the  
loop is n * O(1), which is O(n). Here, the number of statements does not matter as it 
will increase the running time by a constant factor and the overall complexity will be 
same O(n).  

Example 4:nested  for loop 

  for (i = 0; i < n; i + +) { 
          for (j = 0; j < m; j + +) { 

      sequence of statements 
 } 

                                    } 
Here, we observe that, the outer loop executes n times. Every time the outer loop 
executes, the inner loop executes m times. As a result of this, statements in the inner 
loop execute a total of n * m times. Thus, the time complexity is O(n * m). If we 
modify the conditional variables, where the condition of the inner loop is j < n instead 
of j < m  (i.e., the inner loop also executes n times), then the total complexity for the 
nested loop is O(n2).  
 
Example 4:  Now, consider a function that calculates partial sum of an integer n. 

 
int psum(int n) 
     { 
          int i, partial_sum; 
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          partial_sum = 0;                               /* Line 1 */ 
          for (i = 1; i <= n; i++) {                   /* Line 2 */ 
               partial_sum  = partial_sum  +  i*i;            /* Line 3 */ 
                                             } 
  return partial_sum;                                     /* Line 4 */ 
} 

This function returns the sum from i = 1 to n of i squared, i.e. psum = 12 + 22+ 32  

 + ………….  + n2 .  As we have to determine the running time for each statement in this 
program,  we have to count the number of statements that are executed in this 
procedure. The code at line 1 and line 4 are one statement each. The for loop on line 2 
are actually 2n+2 statements:  

• i = 1; statement : simple assignment, hence one statement. 

• i <= n; statement is executed once for each value of i from 1 to n+1 (till the 
condition becomes false).  The statement is executed n+1 times.  

• i++ is executed once for each execution of the body of the loop. This is 
executed n times.  

Thus, the sum is 1+ (n+1) + n+1 = 2n+ 3 times.  
 
In terms of big-O notation defined above, this function is O(n), because if we choose 
c=3, then we see that cn > 2n+3. As we have already noted earlier, big-O notation 
only provides a upper bound to the function, it is also O(nlog(n)) and O(n2),  since     
n2 > nlog(n) > 2n+3.  However, we will choose the smallest function that describes 
the order of the function and it is O(n). 
  
By looking at the definition of Omega notation and Theta notation, it is also clear that 
it is of Θ(n), and therefore Ω(n) too. Because if we choose c=1, then we see that        
cn < 2n+3, hence Ω(n) . Since 2n+3 = O(n), and 2n+3 = Ω(n), it  implies that      
2n+3 = Θ(n) , too.  
 
It is again reiterated here that smaller order terms and constants may be ignored while  
describing asymptotic notation. For example,  if f(n) = 4n+6 instead of f(n) = 2n +3 in 
terms of big-O, Ω and Θ, this does not change the order of the function. The function 
f(n) = 4n+6 = O(n) (by choosing c appropriately as 5); 4n+6 = Ω(n) (by choosing      
c = 1), and therefore 4n+6 =  Θ(n).  The essence of this analysis is that in these 
asymptotic notation, we can count a statement as one, and should not worry about 
their relative execution time which may depend on several hardware and other 
implementation factors, as long as it is of the order of 1, i.e. O(1).  
 
Exact analysis of insertion sort:  

Let us consider the following pseudocode to analyse the exact runtime complexity of 
insertion sort.  

Line Pseudocode Cost 
factor 

No. of 
iterations 

1 For j=2 to length [A] do c1 (n−1) + 1 
2 { key = A[j] c2 (n−1) 
3 i = j − 1 c3 (n−1) 
4 while (i > 0) and (A[i] > key)  do c4 

∑
=

n

2j
jT

n

 

5 { A[i+1] = A[I] c4 
∑
=

−
2j

j 1T  
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6 i = I –1 } c5 
∑
=

−
n

2j
j 1T  

7 A[I+1] = key } c6 n−1 

 } 

Tj    is the time taken to execute the statement during  jth iteration. 

The statement at line 4 will execute Tj number of times.  
 
The statements at lines 5 and 6 will execute Tj − 1 number of times (one step less) 
each  

Line 7 will excute (n−1) times 

So, total time is the sum of time taken for each line multiplied by their cost factor. 

T (n) = c1n + c2(n −1) + c3(n−1) +  c4  + c5 − 1 + c6 − 1  + c7 (n−1) ∑
=

n

j
jT

2
∑
=

n

j
jT

2
∑
=

n

j
jT

2

Three cases can emerge depending on the initial configuration of the input list. First, 
the case is where the list was already sorted, second case is the case wherein the list is 
sorted in reverse order and third case is the case where in the list is in random order  
(unsorted). The best case scenario will emerge when the list is already sorted. 
 
Worst Case: Worst case running time is an upper bound for running time with any 
input. It guarantees that, irrespective of the type of input, the algorithm will not take 
any longer than the worst case time. 

Best Case : It guarantees that under any cirumstances the running time of algorithms 
will at least take this much time. 

Average case : This gives the average running time of algorithm. The running time for 
any given size of input will be the average number of operations over all problem 
instances for a given size. 

Best Case :  If the list is already sorted then A[i] <= key at line 4. So, rest of the lines 
in the inner loop will not execute. Then,  

T (n) =  c1n + c2(n −1) + c3(n −1) +  c4 (n −1)  = O (n), which indicates that the time 
complexity is linear.  

Worst Case: This case arises when the list is sorted in reverse order.  So, the boolean  
condition at line 4 will be true for execution of line 1.  

So, step line 4 is executed   = n(n+1)/2  − 1 times  ∑
=

n

j
j

2

T (n) = c1n + c2(n −1) + c3(n −1) +  c4 (n(n+1)/2 − 1) + c5(n(n −1)/2)  + c6(n(n−1)/2)  
+ c7 (n −1) 

= O (n2). 

Average case : In most of the cases, the list will be in some random order. That is, it 
neither sorted in ascending or descending order and the time complexity will lie some 
where between the best and the worst case. 
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Figure 1.4 depicts the best, average and worst case run time complexities of 
algorithms. 

 

 

 

 

 

 

 

Time 

Input size 

Best case 

Average case

Worst case 

Figure  1.4 : Best, Average and Worst case scenarios 

 Check Your Progress 2                                     
 
1)    The set of algorithms whose order is O (1) would run in the same time.  True/False 
     
2)    Find the complexity of the following program in big O notation: 

 
printMultiplicationTable(int max){ 

for(int i = 1 ; i <= max ; i + +)     
{ 
for(int j = 1 ; j <= max ; j + +) 

cout << (i * j) << “ “ ; 
cout << endl ; 

}  //for 
……………………………………………………………………………………… 
 
3) Consider the following program segment: 

for (i = 1; i <= n; i *= 2) 
   { 
     j = 1; 
    } 
 
What is the running time of the above program segment in big O 
notation? 

………………………………………………………………………………………… 

4) Prove that if   f(n) = n2 + 2n + 5 and g(n) = n2 then f(n) = O (g(n)). 
 

5) How many times does the following for loop will run 
 

for (i=1; i<= n; i*2) 
      k = k + 1; 
end; 

1.4   CALCULATION OF STORAGE 
COMPLEXITY 

 
As memory is becoming more and more cheaper, the prominence of runtime 
complexity is increasing. However, it is very much important to analyse the amount of 
memory used by a program. If the running time of algorithms is not good then it will 
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take longer to execute. But, if it takes more memory (the space complexity is more) 
beyond the capacity of the machine then the program will not execute at all. It is 
therefore more critical than run time complexity. But, the matter of respite is that 
memory is reutilized during the course of program execution. 
 
We will analyse this for recursive and iterative programs.  
 
For an iterative program, it is usually just a matter of looking at the variable 
declarations and storage allocation calls, e.g., number of variables, length of an array 
etc. 
 
The analysis of recursive program with respect to space complexity is more 
complicated as the space used at any time is the total space used by all recursive calls 
active at that time. 
  
Each recursive call takes a constant amount of space and some space for local 
variables and function arguments, and also some space is allocated for remembering 
where each call should return to. General recursive calls use linear space. That is, for 
n recursive calls, the space complexity is O(n).  
 
Consider the following example: Binary Recursion (A binary-recursive routine 
(potentially) calls itself twice). 
 
1.   If n equals 0 or 1, then return 1  
2.   Recursively calculate f (n−1)  
3.   Recursively calculate f (n−2)  
4.   Return the sum of the results from steps 2 and 3. 
 
Time Complexity:  O(exp n) 
Space Complexity:  O(exp n)  

Example: Find the greatest common divisor (GCD) of two integers, m and n. 
The algorithm for GCD may be defined as follows:  

While m is greater than zero: 
   If n is greater than m, swap m and n. 
   Subtract n from m. 

n is the GCD 
 
Code in C  

 

int gcd(int m, int n) 
/* The precondition are : m>0 and n>0.  Let g = gcd(m,n). */ 
 { while( m > 0 ) 
    {  
     if( n > m ) 
       { int t = m; m = n; n = t; } /* swap  m and n*/ 
      /* m >= n > 0 */ 
      m − = n; 
    } 
   return n; 
 } 

The space-complexity of the above algorithm is a constant. It just requires space for 
three integers m, n and t. So, the space complexity is O(1).  
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The time complexity depends on the loop and on the condition whether m>n or not. 
The real issue is, how many iterations take place? The answer depends on both m and 
n.  

Best case: If m = n, then there is just one iteration. O(1) 
Worst case : If n = 1,then there are m iterations; this is the worst-case                     
(also equivalently, if m = 1 there are n iterations) O(n). 

The space complexity of a computer program is the amount of memory required for its 
proper execution. The important concept behind space required is that unlike time, 
space can be reused during the execution of the program. As discussed, there is often a 
trade-off between the time and space required to run a program. 
 
In formal definition, the space complexity is defined as follows: 
 
Space complexity of a Turing Machine: The (worst case) maximum length of the tape 
required to process an input string of length n. 
 
In complexity theory, the class PSPACE is the set of decision problems that can be 
solved by a Turing machine using a polynomial amount of memory, and unlimited 
time. 
 

 Check Your Progress 3 
 
1) Why space complexity is more critical than time complexity? 

……………………………………………………………………………………

…………………………………………………………………………………… 

2) What is the space complexity of Euclid Algorithm? 

……………………………………………………………………………………

…………………………………………………………………………………… 

1.5  CALCULATION OF TIME COMPLEXITY 
 
Example 1: Consider the following of code : 
 
x = 4y + 3 
z = z + 1 
p = 1 
As we have seen, x, y, z and p are all scaler variables and the running time is constant 
irrespective of the value of x,y,z and p. Here, we emphasize that each line of code may 
take different time, to execute, but the bottom line is that they will take constant 
amount of time. Thus, we will describe run time of each line of code as O(1). 
 
Example 2: Binary search 
 
Binary search in a sorted list is carried out by dividing the list into two parts based on 
the comparison of the key. As the search interval  halves each time, the iteration takes 
place in the search. The search  interval will look like following after each iteration 
N, N/2,   N/4, N/8 , ..........  8, 4, 2, 1 
The number of iterations (number of elements in the series) is not so evident from the 
above series. But, if we take logs of each element of the series, then 
 
log2 N , log2 N −1,  log2 N−2, log2 N−3, .........., 3, 2, 1, 0 
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As the sequence decrements by 1 each time the total elements in the above series are 
log2 N + 1. So, the number of iterations is log2 N + 1 which is of the order of 
O(log2N).  
 
Example 3: Travelling Salesman problem  
Given: n connected cities and distances between them 
 
Find: tour of minimum length that visits every city. 
 
Solutions: How many tours are possible? 
n*(n −1)...*1 = n! 
 
Because  n! > 2(n-1)  
So n! = Ω (2n) (lower bound) 
 
As of now, there is no algorithm that finds a tour of minimum length as well as covers 
all the cities in polynomial time.  However, there are numerous very good heuristic 
algorithms. 
 
The complexity Ladder: 

• T(n) = O(1). This is called constant growth. T(n) does not grow at all as a 
function of n, it is a constant. For example, array access has this characteristic. 
A[i] takes the same time independent of the size of the array A.  
 

• T(n) = O(log2 (n)). This is called logarithmic growth. T(n) grows proportional to 
the base 2 logarithm of n. Actually, the base of logarithm does not matter. For 
example, binary search has this characteristic.  
 

• T(n) = O(n). This is called linear growth. T(n) grows linearly with n. For 
example, looping over all the elements in a one-dimensional array of n elements 
would be of the order of O(n).  
 

• T(n) = O(n log (n). This is called nlogn growth. T(n) grows proportional to n 
times the base 2 logarithm of n.  Time complexity of Merge Sort has this 
characteristic. In fact, no sorting algorithm that uses comparison between 
elements can be faster than n log n.  
 

• T(n) = O(nk). This is called polynomial growth. T(n) grows proportional to the 
k-th power of n. We rarely consider algorithms that run in time O(nk) where k is 
bigger than 2 , because such algorithms are very slow and not practical. For 
example, selection sort is an O(n2) algorithm.  
 

• T(n) = O(2n) This is called exponential growth. T(n) grows exponentially. 
Exponential growth is the most-danger growth pattern in computer science. 
Algorithms that grow this way are basically useless for anything except for very 
small input size.  

Table 1.1 compares various algorithms in terms of their complexities. 

Table 1.2 compares the typical running time of algorithms of different orders. 

The growth patterns above have been listed in order of increasing size.  

That is,       O(1)  <   O(log(n))  <  O(n log(n)) < O(n2)   <  O(n3), ... , O(2n).  

Notation Name Example 
O(1) Constant Constant growth. Does 
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not grow as a function 
of n. For example, 
accessing array for 
one element A[i] 

O(log n) Logarithmic Binary search  
O(n) Linear Looping over n 

elements, of an array 
of size n (normally). 

O(n log n) Sometimes called 
“linearithmic” 

Merge sort 

O(n2) Quadratic Worst time case for 
insertion sort, matrix 
multiplication 

O(nc) Polynomial, 
sometimes  
“geometric” 

 

O(cn) Exponential  
O(n!) Factorial  

      
 Table 1.1 : Comparison of various algorithms and their complexities 

 
 
                Logarithmic:     Linear:              Quadratic:      Exponential: 
     Array size      log2N              N                         N2                       2N    
        
                  8                 3                       8                     64                256 
              128                 7                   128               16,384                  3.4*1038 
              256                 8                   256               65,536               1.15*1077 
            1000               10                 1000            1 million            1.07*10301 
       100,000               17            100,000           10 billion                 ........ 
 

 
Table 1.2: Comparison of typical running time of algorithms of different orders 

 
 
 

1.6  SUMMARY 
 
Computational complexity of algorithms are generally referred to by space complexity 
(space required for running program) and time complexity (time required for running 
the program). In the field of computer of science, the concept of runtime complexity 
has been studied vigorously.  Enough research is being carried out to find more 
efficient algorithms for existing problems. We studied various asymptotic notation, to 
describe the time complexity and space complexity of algorithms, namely the big-O, 
Omega and Theta notations.  These asymptotic orders of time and space complexity 
describe how best or worst an algorithm is for a sufficiently large input. 
 
We studied about the process of calculation of runtime complexity of various 
algorithms. The exact analysis of insertion sort was discussed to describe the best 
case, worst case and average case scenario. 
 
 
 

1.7  SOLUTIONS / ANSWERS 
 

Check Your Progress 1 
1) True 21

http://en.wikipedia.org/wiki/Quadratic
http://en.wikipedia.org/wiki/Geometric_progression
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2) True 
3) False 
4) False 
5)      O(n2),  O(n3), O(n log n), O(log n),O(log n) 

 
Check Your Progress 2 

 
1)   True 
2)   O(max*(2*max))=O(2*max*max) = O(2 * n * n) = O( 2n2 ) = O( n2 ) 
3)   O(log(n)) 
5)   log n 

 
Check Your Progress 3 
 
1)   If the running time of algorithms is not good, then it will take longer to execute. 

But, if it takes more memory (the space complexity is more) beyond the capacity 
of the machine then the program will not execute. 

2)   O(1). 
 

 

1.8  FURTHER READINGS 
 
1. Fundamentals of Data Structures in C++; E.Horowitz, Sahni and D.Mehta; 

Galgotia Publications. 

2. Data Structures and Program Design in C; Kruse, C.L.Tonodo and B.Leung; 
Pearson Education.  
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2.0 INTRODUCTION 

This unit introduces a data structure called Arrays. The simplest form of array is a 
one-dimensional array that may be defined as a finite ordered set of homogeneous 
elements, which is stored in contiguous memory locations. For example, an array may 
contain all integers or all characters or any other data type, but may not contain a mix 
of data types. 
 
The general form for declaring a single dimensional array is:  

data_type array_name[expression]; 
 
where data_type represents data type of the array. That is, integer, char, float etc. 
array_name is the name of array and expression which indicates the number of 
elements in the array. 
 
For example, consider the following C declaration: 

 int   a[100]; 
 
It declares an array of 100 integers. 
 
The amount of storage required to hold an array is directly related to its type and size. 
For a single dimension array, the total size in bytes required for the array is computed 
as shown below. 

 Memory required (in bytes) = size of (data type) X length of array 
 
The first array index value is referred to as its lower bound and in C it is always 0 and 
the maximum index value is called its upper bound. The number of elements in the 
array, called its range is given by upper bound-lower bound. 
 
We store  values in the arrays during program execution. Let us now see the process 
of initializing an array while declaring it. 

  int a[4] = {34,60,93,2}; 
  int b[] = {2,3,4,5}; 
  float c[] = {-4,6,81,− 60}; 
 
We conclude the following facts from these examples: 
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(i) If the array is initialized at the time of declaration, then the dimension of the 
array is optional. 

(ii) Till the array elements are not given any specific values, they contain garbage 
values. 

 

2.1 OBJECTIVES 

After going through this unit, you will be able to: 

• use Arrays as a proper data structure in programs; 
• know the advantages and disadvantages of Arrays; 
• use multidimensional arrays, and 
• know the representation of Arrays in memory. 
 

2.2 ARRAYS AND POINTERS 

C compiler does not check the bounds of arrays.  It is your job to do the necessary 
work for checking boundaries wherever needed.  
 
One of the most common arrays is a string, which is simply an array of characters 
terminated by a null character. The value of the null character is zero.  A string 
constant is a one-dimensional array of characters terminated by a null character(\0).  
 
For example, consider the following: 

  char message[ ]= {‘e’, ‘x’, ‘a’, ‘m’, ‘p’, ‘l’,’e’,’\0’}; 
 
Also, consider the following string which is stored in an array: 

   “sentence\n” 

Figure 2.1 shows the way a character array is stored in memory. Each character in the 
array occupies one byte of memory and the last character is always ‘\0’. Note that ‘\0’ 
and ‘0’ are not the same. The elements of the character array are stored in contiguous 
memory locations. 
     
s e n t e n c e \n \0 

 

Figure 2.1: String in Memory 
 
C concedes a fact that the user would use strings very often and hence provides a short 
cut for initialization of strings.  
 
For example, the string used above can also be initialized as 

  char name[ ] = “sentence\n”; 
 
Note that, in this declaration ‘\0’ is not necessary. C inserts the null character 
automatically. 
 
Multidimensional arrays are defined in the same manner as one-dimensional arrays, 
except that a separate pair of square brackets is required for each subscript.  Thus a 
two-dimensional array will require two pairs of square brackets, a three-dimensional 
array will require three pairs of square brackets and so on. 
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 data_type array_name [expr 1] [expr 2] …. [expr n]; 
 
where data_type is the type of array such as int, char etc., array_name is the name of 
array and expr 1, expr 2, ….expr n are positive valued integer expressions. 
 
  
The schematic of a two-dimensional array of size 3 × 5 is shown in Figure 2.2. 
  

Row 0  a[0][0] a[0][1] a[0][2] a[0][3] A[0][4] 
 

Row 1  a[1][0] a[1][1] a[1][2] a[1][3] A[1][4] 
 

Row 3  a[2][0] a[2][1] a[2][2] a[2][3] A[2][4] 

 
Figure 2.2: Schematic of a Two-Dimensional Array 

 
 
In the case of a two-dimensional array, the following formula yields the number of 
bytes of memory needed to hold it: 

 bytes = size of 1st index × size of 2nd index × size of (base type) 
 
The pointers and arrays are closely related.  As you know, an array name without an 
index is a pointer to the first element in the array. 
 
Consider the following array: 

 char p[10]; 
 
p and &p[0] are identical because the address of the first element of an array is the 
same as the address of the array. So, an array name without an index generates a 
pointer. Conversely a pointer can be indexed as if it were declared to be an array.  
 
For example, consider the following program fragment: 

 int *x, a [10]; 
 x = a; 
 x[5] = 100; 
         * (x+5) = 100; 
 
Both assignment statements place the value 100 in the sixth element of a. Furthermore 
the (0,4) element of a two-dimensional array may be referenced in the following two 
ways: either by array indexing a[0][4], or by the pointer *((int *) a+4). 
 
 In general, for any two-dimensional array a[j][k] is equivalent to:  

*((base type *)a + (j * rowlength)*k)   
 
 

2.3 SPARSE MATRICES  

Matrices with good number of zero entries are called sparse matrices.  
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Consider the following matrices of Figure 2.3. 
 
 
 
 4    5   −3 
 3    −5     1       4 3 
 1      0   6              9      −3      6 
 −7    8 −1 3                       2      4      -7 
 5    −2   0 2 −8            3     -1    0 
                                6 -5   8 
            3 -1 
           
 

 
(a) (b) 

 
Figure 2.3: (a) Triangular Matrix (b) Tridiagonal Matrix 

 
A triangular matrix is a square matrix in which all the elements either above or below 
the main diagonal are zero. Triangular matrices are sparse matrices. A tridiagonal 
matrix is a square matrix in which all the elements except for the main diagonal, 
diagonals on the immediate upper and lower side are zeroes. Tridiagonal matrices are 
also sparse matrices.  
 
Let us consider a sparse matrix from storage point of view. Suppose that the entire 
sparse matrix is stored. Then, a considerable amount of memory which stores the 
matrix consists of zeroes. This is nothing but wastage of memory. In real life 
applications, such wastage may count to megabytes. So, an efficient method of storing 
sparse matrices has to be looked into.  
 
Figure 2.4 shows a sparse matrix of order 7 × 6. 
 

 0 1 2 3 4 5 

0 0 0 0 5 0 0 

1 0 4 0 0 0 0 

2 0 0 0 0 9 0 

3 0 3 0 2 0 0 

4 1 0 2 0 0 0 

5 0 0 0 0 0 0 

6 0 0 8 0 0 0 
 

          Figure 2.4: Representation of a sparse matrix of order 7 × 6 
 
A common way of representing non zero elements of a sparse matrix is the 3-tuple 
form. The first row of sparse matrix always specifies the number of rows, number of 
columns and number of non zero elements in the matrix. The number 7 represents the 
total number of rows sparse matrix. Similarly, the number 6 represents the total 
number of columns in the matrix. The number 8 represents the total number of non 
zero elements in the matrix. Each non zero element is stored from the second row, 
with the 1st and 2nd elements of the row, indicating the row number and column 
number respectively in which the element is present in the original matrix. The 3rd 
element in this row stores the actual value of the non zero element. For example, the  
3- tuple representation of the matrix of Figure 2.4 is shown in Figure 2.5. 
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0, 3, 5 
1, 1, 4 
2, 4, 9 
3, 1, 3 
3, 3, 2 
4, 0, 1 
4, 2, 2 

   6,          2,          8 
 

Figure 2.5: 3-tuple representation of Figure 2.4 
 
The following program 1.1 accepts a matrix as input, which is sparse and prints the 
corresponding 3-tuple representations. 
 
Program 1.1  
 
/* The program accepts a matrix as input and prints the 3-tuple representation 
of it*/ 
 
#include<stdio.h> 
 
void main() 
{ 
 int a[5][5],rows,columns,i,j; 
  

printf("enter the order of the matrix. The order should be less than 5 × 5:\n"); 
 scanf("%d %d",&rows,&columns); 
 printf("Enter the elements of the matrix:\n"); 
  

for(i=0;i<rows;i++) 
    for(j=0;j<columns;j++) 
  

   { scanf("%d",&a[i][j]); 
    } 
                 printf(“The 3-tuple representation of the matrix is:\n”); 
  

for(i=0;i<rows;i++) 
  for(j=0;j<columns;j++) 
  { 
   if (a[i][j]!=0) 
   { 
    printf("%d     %d        %d\n", (i+1),(j+1),a[i][j]); 
   } 
  } 
} 
Output: 
enter the order of the matrix. The order should be less than 5 × 5: 
3 3 
Enter the elements of the matrix: 
1 2 3 
0 1 0 
0 0 4 
The 3-tuple representation of the matrix is: 
1     1        1 
1     2        2 
1     3        3 
2     2        1 
3     3        4 
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The program initially prompted for the order of the input matrix with a warning that 
the order should not be greater than 5 × 5. After accepting the order, it prompts for the 
elements of the matrix. After accepting the matrix, it checks each element of the 
matrix for a non zero. If the element is non zero, then it prints the row number and 
column number of that element along with its value.  
 

 Check Your Progress 1 

1) If the array is _______ at the time of declaration, then the dimension of the 
array is optional. 

 
2) A sparse matrix is a matrix which is having good number of _____ elements. 
 
3) At maximum, an array can be a two-dimensional array.    True/False 
 

2.4 POLYNOMIALS 

Polynomials like 5x4 + 2x3 + 7x2  + 10x – 8 can be represented using arrays. 
Arithmetic operations like addition and multiplication of polynomials are common 
and most often, we need to write a program to implement these operations. 
 
The simplest way to represent a polynomial of degree ‘n’ is to store the coefficient of 
(n+1) terms of the polynomial in an array. To achieve this, each element of the array 
should consist of two values, namely, coefficient and exponent. While maintaining the 
polynomial, it is assumed that the exponent of each successive term is less than that of 
the previous term. Once we build an array to represent a polynomial, we can use such 
an array to perform common polynomial operations like addition and multiplication. 
 
Program 1.2 accepts two polynomials as input and adds them. 
 
Program 1.2  

/* The program accepts two polynomials as input and prints the resultant 
polynomial due to the addition of input polynomials*/ 
 
#include<stdio.h> 
 
void main() 
{ 
 int poly1[6][2],poly2[6][2],term1,term2,match,proceed,i,j; 
 
 printf("Enter the number of terms in the first polynomial. They should be less 
than 6:\n"); 
 scanf("%d",&term1); 
 printf("Enter the number of terms in the second polynomial. They should be 
less than 6:\n"); 
 scanf("%d",&term2); 
 printf("Enter the coefficient and exponent of each term of the first 
polynomial:\n"); 
 for(i=0;i<term1;i++) 
 {scanf("%d %d",&poly1[i][0],&poly1[i][1]); 
 } 
 
    printf("Enter the coefficient and exponent of each term of the second 
polynomial:\n"); 
    for(i=0;i<term2;i++) 
 {scanf("%d %d",&poly2[i][0],&poly2[i][1]); 

28

 



 
Arrays  } 

    printf(“The resultant polynomial due to the addition of the input two 
polynomials:\n”); 
  
 for(i=0;i<term1;i++) 
 { 
  match=0; 
  for(j=0;j<term2;j++) 
 
  { if (match==0) 
 
   if(poly1[i][1]==poly2[j][1]) 
   { printf("%d    %d\n",(poly1[i][0]+poly2[j][0]), poly1[i][1]); 
     match=1; 
 
   } 
  } 
 } 
 
for(i=0;i<term1;i++) 
{  proceed=1; 
 
  for(j=0;j<term2;j++) 
  {  if(proceed==1) 
   if(poly1[i][1]!=poly2[j][1]) 
    proceed=1; 
   else 
    proceed=0; 
     
   } 
  if (proceed==1) 
   printf("%d %d\n",poly1[i][0],poly1[i][1]); 
   
 } 
 
for(i=0;i<term2;i++) 
{  proceed=1; 
   
  for(j=0;j<term1;j++) 
  {  if(proceed==1) 
   if(poly2[i][1]!=poly1[j][1]) 
    proceed=1; 
   else 
    proceed=0; 
    
   } 
  if (proceed==1) 
   printf("%d %d",poly2[i][0],poly2[i][1]); 
  } 
  
} 
Output: 

Enter the number of terms in the first polynomial.They should be less than 6 : 5. 
Enter the number of terms in the second polynomial.They should be less than 6 : 4. 
Enter the coefficient and exponent of each term of the first polynomial: 
1 2 
2 4 
3 6 
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1 8 
5 7 
 
Enter the coefficient and exponent of each term of the second polynomial: 
5 2 
6 9 
3 6 
5 7 
 
The resultant polynomial due to the addition of the input two polynomials: 
6 2 
6 6 
10 7 
2 4 
1 8 
6 9 
  
The program initially prompted for the number of terms of the two polynomials. 
Then, it prompted for the entry of the terms of the two polynomials one after another. 
Initially, it adds the coefficients of the corresponding terms of both the polynomials 
whose exponents are the same. Then, it prints the terms of the first polynomial who 
does not have corresponding terms in the second polynomial with the same exponent. 
Finally, it prints the terms of the second polynomial who does not have corresponding 
terms in the first polynomial. 
 

2.5 REPRESENTATION OF ARRAYS 

It is not uncommon to find a large number of programs which process the elements of 
an array in sequence. But, does it mean that the elements of an array are also stored in 
sequence in memory. The answer depends on the operating system under which the 
program is running. However, the elements of an array are stored in sequence to the 
extent possible. If they are being stored in sequence, then how are they sequenced. Is 
it that the elements are stored row wise or column wise? Again, it depends on the 
operating system. The former is called row major order and the later is called column 
major order. 
 

2.5.1 Row Major Representation 

The first method of representing a two-dimensional array in memory is the row major 
representation. Under this representation, the first row of the array occupies the first 
set of the memory location reserved for the array, the second row occupies the next 
set,  and so forth.  
 
The schematic of row major representation of an Array is shown in Figure 2.6. 
Let us consider the following two-dimensional array: 

    a    b   c    d 
    e    f    g    h 
    i     j    k    l 
 
To make its equivalent row major representation, we perform the following process: 

Move the elements of the second row starting from the first element to the memory 
location adjacent to the last element of the first row. When this step is applied to all 
the rows except for the first row, you have a single row of elements. This is the Row 
major representation.  
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Arrays By application of above mentioned process, we get {a, b, c, d, e, f, g, h, i, j, k, l } 

 
 
  

Row 0     Row 1    Row 2         …..       Row i 

 
Figure 2.6: Schematic of a Row major representation of an Array 

 
2.5.2 Column Major Representation 

The second method of representing a two-dimensional array in memory is the column 
major representation. Under this representation, the first column of the array occupies 
the first set of the memory locations reserved for the array. The second column 
occupies the next set and so forth. The schematic of a column major representation is 
shown in Figure 2.7. 
 
Consider the following two-dimensional array: 

    a   b  c  d 
    e   f   g  h 
    i    j   k   l 
 
To make its equivalent column major representation, we perform the following 
process: 

Transpose the elements of the array. Then, the representation will be same as that of 
the row major representation. 
 
By application of above mentioned process, we get {a, e, i, b, f, j, c, g, k, d, h, i} 
 
 
 

 

Col 0     Col 1         Col 2         …..       Col i 

Figure 2.7: Schematic of a Column major representation of an Array 
 

 Check Your Progress 2 

1) An array can be stored either__________or _________. 

2) In __________, the elements of array are stored row wise. 

3) In __________, the elements of array are stored column wise. 

 

2.6 APPLICATIONS     

Arrays are simple, but reliable to use in more situations than you can count. Arrays are 
used in those problems when the number of items to be solved is fixed. They are easy 
to traverse, search and sort. It is very easy to manipulate an array rather than other 
subsequent data structures. Arrays are used in those situations where in the size of 
array can be established before hand. Also, they are used in situations where the 
insertions and deletions are minimal or not present. Insertion and deletion operations 
will lead to wastage of memory or will increase the time complexity of the program 
due to the reshuffling of elements. 
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In this unit, we discussed the data structure arrays from the application point of view 
and representation point of view. Two applications namely representation of a sparse 
matrix in a 3-tuple form and addition of two polynomials are given in the form of 
programs. The format for declaration and utility of both single and two-dimensional 
arrays are covered. Finally, the most important issue of representation was discussed. 
As part of it, row major and column major orders are discussed. 
 

2.8 SOLUTIONS / ANSWERS 

Check Your Progress 1 

1) Initialized 
2) Zero 
3) False 
 
Check Your Progress 2 

1) Row wise, column wise 
2) Row major representation 
3) Column major representation 
 

2.9 FURTHER READINGS 

Reference Books 

1. Data Structures using C and C++, Yedidyah Langsam, Moshe J.Augenstein, 
Aaron M Tanenbaum, Second Edition, PHI Publications. 

2. Data Structures, Seymour Lipscutz, Schaum’s outline series, McGraw Hill 
 
 
Reference Websites 

http://www.webopedia.com 
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3.0 INTRODUCTION 
In the previous unit, we have discussed arrays. Arrays are data structures of fixed size. 
Insertion and deletion involves reshuffling of array elements. Thus, array 
manipulation is time-consuming and inefficient. In this unit, we will see abstract data 
type-lists, array implementation of lists and linked list implementation, Doubly and 
Circular linked lists and their applications. In linked lists, items can be added or 
removed easily to the end or beginning or even in the middle.  
 

3.1    OBJECTIVES 
 
After going through this unit, you will be able to: 

• define and declare Lists; 
• understand the terminology of Singly linked lists; 
• understand the terminology of Doubly linked lists; 
• understand the terminology of Circularly linked lists, and 
• use the most appropriate list structure in real life situations. 
 

3.2   ABSTRACT DATA TYPE-LIST 
Abstract Data Type (ADT) is a useful tool for specifying the logical properties of data 
type. An ADT is a collection of values and a set of operations on those values. 
Mathematically speaking, “a TYPE is a set, and elements of set are Values of that 
type”. 

ADT List 

A list of elements of type T is a finite sequence of elements of type T together with 
the operations of create, update, delete, testing for empty, testing for full, finding the 
size, traversing the elements. 

In defining Abstract Data Type, we are not concerned with space or time efficiency as 
well as about implementation details. The elements of a list may be integers, 
characters, real numbers and combination of multiple data types. 
 
Consider a real world problem, where we have a company and we want to store the 
details of employees. To store this, we need a data type which can store the type 
details containing names of employee, date of joining, etc.  The list of employees may 
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increase depending on the recruitment and may decrease on retirements or termination 
of employees. To make it very simple and for understanding purposes, we are taking 
the name of employee field and ignoring the date of joining etc. The operations we 
have to perform on this list of employees are creation, insertion, deletion, visiting, etc. 
We define employee_list as 

typedef struct 
{ 

char    name[20]; 
……………….   

 …………………. 
}  emp_list; 
 
Operations on emp_list can be defined as  
Create_emplist (emp_list    * emp_list ) 
{ 
/* Here, we will be writing create function by taking help of ‘C’ programming 
language. */ 
 } 
The list has been created and name is a  valid entry in emplist, and  position p 
specifies the position in the list where name has to inserted 
insert_emplist (emp_list    * emp_list ,  char *name, int position   ) 
{ 
/* Here,  we will be writing insert function by taking help of ‘C’ programming 
language. */ 
} 
delete_emplist (emp_list    * emp_list,  char *name) 
{ 
/* Here, we will be writing delete function by taking help of ‘C’ programming 
language. */ 
} 
visit_emplist (emp_list    * emp_list ) 
{ 
/* Here, we will be writing visit function by taking help of ‘C’ programming 
language. */ 
} 
 
The list can be implemented in two ways: the contiguous (Array) implementation and 
the linked (pointer) implementation. In contiguous implementation, the entries in the 
list are stored next to each other within an array. The linked list implementation uses 
pointers and dynamic memory allocation. We will be discussing array and linked list 
implementation in our next section. 
 

3.3   ARRAY IMPLEMENTATION OF LISTS 
 
In the array implementation of lists, we will use array to hold the entries and a 
separate counter to keep track of the number of positions are occupied. A structure 
will be declared which consists of Array and counter. 
 
typedef struct  
{ 
 int count; 
 int entry[100]; 
}list; 
For simplicity, we have taken list entry as integer. Of course, we can also take list 
entry as structure of employee record or student record, etc. 
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Count     1 2 3    4       5  6 7          8 

11 
 

22 33 44 55 66 77  

 
Insertion  
 
In the array implementation of lists, elements are stored in continuous locations. To 
add an element to the list at the end, we can add it without any problem. But, suppose 
if we want to insert the element at the beginning or middle of the list, then we have to 
rewrite all the elements after the position where the element has to be inserted. We 
have to shift  (n)th   element to (n+1)th position, where  ‘n’  is number of elements in 
the list. The (n–1)th element to  (n)th position   and this will continue until the  ( r ) th 
element to  ( r + 1 )th position, where ‘r’ is the position of insertion. For doing this, the 
count will be incremented.  
 
From the above example, if we want to add element   ‘35’ after element  ‘33’. We 
have to shift 77 to 8th position, 66 to 7th position, so on, 44 to 5th position. 
 
Before Insertion 
 
Count     1 2 3    4       5  6 7           

11 
 

22 33 44 55 66 77  

Step 1 
Count     1 2 3    4       5  6 7          8 

11 
 

22 33 44 55 66 77 77 

Step 2 
Count     1 2 3    4       5  6 7          8 

11 
 

22 33 44 55 66 66 77 

Step 3 
Count     1 2 3    4       5  6 7          8 

11 
 

22 33 44 55 55 66 77 

Step 4 
Count     1 2 3    4       5  6 7          8 

11 
 

22 33 44 44 55 66 77 

Step 5 
Count     1 2 3    4       5  6 7          8 

11 
 

22 33 35 44 55 66 77 

 
Program 3.1 will demonstrate the insertion of an element at desired position 

 
/* Inserting an element into contiguous list (Linear Array) at specified position */ 
/* contiguous_list.C */ 
# include<stdio.h> 
/* definition of linear list */ 
typedef struct 
{ 
 int data[10]; 
 int count; 
}list; 
/*prototypes of functions */ 
void insert(list *, int, int); 
void create(list *); 
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void traverse(list *); 
 
/* Definition of the insert funtion */ 
 
void insert(list *start, int position, int element) 
{ 
 int temp = start->count; 
 while( temp >= position) 
 { 
  start->data[temp+1] = start->data[temp]; 
  temp --; 
 } 
 
 start->data[position] = element; 
 start->count++ ; 
} 
 
/* definition of create function to  READ data values into the list */ 
 
void create(list *start) 
{ 
 int i=0, test=1; 
 while(test) 
 { 
  fflush(stdin); 
  printf("\n input value value for: %d:(zero to come out) ", i); 
  scanf("%d", &start->data[i]); 
 
  if(start->data[i] == 0) 
   test=0; 
  else 
   i++; 
 } 
 start->count=i; 
} 
 
/* OUTPUT FUNCTION TO PRINT ON THE CONSOLE */ 
 
void traverse(list *start) 
{ 
 int i; 
 for(i = 0; i< start->count; i++) 
 { 
  printf("\n Value at the position: %d: %d ", i, start->data[i]); 
 } 
} 
 
/* main function */ 
 
void main( ) 
{ 
 int position, element; 
 list l; 
 create(&l); 
 printf("\n Entered list as follows:\n"); 
 fflush(stdin); 
 traverse(&l); 
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 printf("\n input the position where you want to add a new data item:"); 
 scanf("%d", &position); 
 fflush(stdin); 
 printf("\n input the value for the position:"); 
 scanf("%d", &element); 
 insert(&l, position, element); 
 traverse(&l); 
} 

 
Program 3.1: Insertion of an element into a linear array. 

Deletion 
 
To delete an element in the list at the end, we can delete it without any problem. But, 
suppose if we want to delete the element at the beginning or middle of the list, then, 
we have to rewrite all the elements after the position where the element that has to be 
deleted exists. We have to shift  (r+1)th   element to rth  position , where  ‘r’  is position 
of deleted element in the list,  the (r + 2)th element to  (r + 1)th position,   and this will 
continue until the  (n)th element to  ( n–1 )th position, where n is the number of 
elements in the list. And then the count is decremented.  
 
From the above example, if we want to delete an element   ‘44’ from list. We have to 
shift 55 to 4th position, 66 to 5th position, 77 to 6th position. 
 
Before deletion 
 
Count     1 2 3    4       5  6 7           

11 
 

22 33 44 55 66 77  

 
Step 1 
Count     1 2 3    4       5  6 7          

11 
 

22 33 55 55 66 77  

 
Step 2 
Count     1 2 3    4       5  6 7           

11 
 

22 33 55 66 66 77  

 
Step 3 
Count     1 2 3    4       5  6           

11 
 

22 33 55 66 77   

 
Program 3.2 will demonstrate deletion of an element from the linear array 

 
/* declaration  of delete_list function */ 
void delete_list(list *, int); 
 
/* definition of delete_list  function*/ 
/* the position of the element is given by the user and the element is deleted from the 
list*/ 
void delete_list(list *start, int position) 
{ 
 int temp = position; 
 printf("\n information which we have to delete: %d",l->data[position]); 
 
 while( temp <= start->count-1) 
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 { 
  start->data[temp] = start->data[temp+1]; 
  temp ++; 
 } 
 start->count = start->count - 1 ; 
} 
 
/* main  function */ 
void main() 
{ 

……………….. 
 ………………. 

 
printf("\n input the position of element you want to delete:"); 

 scanf("%d", &position); 
 fflush(stdin); 
 delete_list(&l, position); 
 traverse(&l); 
} 

 
Program 3.2: Deletion of an element from the linear array 

 

3.4    LINKED  LISTS - IMPLEMENTATION  

The Linked list is a chain of structures in which each structure consists of data as well 
as pointer, which stores the address (link) of the next logical structure in the list. 
 
A linked list is a data structure used to maintain a dynamic series of data. Think of a 
linked list as a line of bogies of train where each bogie is connected on to the next 
bogie. If you know where the first bogie is, you can follow its link to the next one. By 
following links, you can find any bogie of the train. When you get to a bogie that isn’t 
holding (linked) on to another bogie, you know you are at the end.  
 
Linked lists work in the same way, except programmers usually refer to  nodes instead 
of bogies. A single node is defined in the same way as any other  user defined type or 
object, except that it also contains a pointer to a variable of the same type as itself.  
  
We will be seeing how the linked list is stored in the memory of the computer. In the 
following Figure 3.1, we can see that start is a pointer which is pointing to the node 
which contains data as madan and the node madan is pointing to the node mohan and 
the last node babu is not pointing to any node. 1000,1050,1200 are memory addresses. 
 
 
 

madan mohan babu null  1050 1200 1000 

 
            start              1000   1050         1200 

 
Figure 3.1: A Singly linked list 

 
Consider the following definition: 
typedef struct node 
{ 
    int data; 
    struct node *next; 
} list; 
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Lists Once you have a definition for a list node, you can create a list simply by declaring a 
pointer to the first element, called the “head”. A pointer is generally used instead of a 
regular variable. List can be defined as  

list *head; 

It is as simple as that! You now have a linked list data structure. It isn’t altogether 
useful at the moment. You can see if the list is empty. We will be seeing how to 
declare and define list-using pointers in the following program 3.3. 
#include <stdio.h> 
 
typedef struct node 
{ 
    int data; 
    struct node *next; 
} list; 
 
int main() 
{ 
    list *head = NULL; /* initialize list head to NULL */ 
    if (head == NULL) 
    { 
        printf("The list is empty!\n"); 
    } 
} 

Program 3.3: Creation of a linked list 

In the next example (Program 3.4), we shall look to the process of addition of new 
nodes to the list with the function create_list().  
#include<stdio.h> 
#include<stdlib.h> 
#define NULL 0 
 
struct linked_list 
{ 
 int data; 
 struct linked_list *next; 
}; 
typedef struct linked_list list; 
 
void main() 
{ 
 list  *head; 
 void create(list *); 
 int count(list *); 
 void traverse(list *); 
 head=(list *)malloc(sizeof(list)); 
 create(head); 
 printf("  \n  traversing the list \n"); 
 traverse(head); 
 printf("\n number of elements in the list   %d \n", count(head)); 
} 
 
void create(list *start) 
{ 
 printf("inputthe element  -1111 for coming oout of the loop\n"); 
 scanf("%d", &start->data); 
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 if(start->data == -1111) 
  start->next=NULL; 
 else 
 { 
  start->next=(list*)malloc(sizeof(list)); 
  create(start->next); 
 } 
} 
 
void traverse(list *start) 
{ 
 if(start->next!=NULL) 
 { 
  printf("%d --> ", start->data); 
  traverse(start->next); 
 } 
} 
 
int count(list *start) 
 
{ 
 if(start->next == NULL) 
  return 0; 
 else 
  return (1+count(start->next)); 
} 

 
Program 3.4: Insertion of elements into a Linked list 

 
 

ALGORITHM  (Insertion of element into a linked list) 
 
Step 1  Begin 
Step 2  if the list is empty or a new element comes before the start (head) 

element, then   insert the new element as start element. 
Step 3 else, if the new element comes after the last element, then insert the 

new element as the end element. 
Step 4 else, insert the new element in the list by using the find function, find 

function returns the address of the found element to the insert_list 
function. 

Step 5 End. 
 
Figure 3.2 depicts the scenario of a linked list of two elements and a new element 
which has to be inserted between them. Figure 3.3 depicts the scenario of a linked list 
after insertion of a new element into the linked list of Figure 3.2. 
 
 
Before insertion  
 
 
 

f 

new element
NULL 

 
f                 next 

NULL 
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Figure 3.2: A linked list of two elements and an element that is to be inserted 
 
After insertion 
 
 

 
 
 
 
 
 

                                      
                                      

 
 
 
 
 

f           next 

 

new element 

NULL 

 
Figure 3.3: Insertion of a new element into linked list 

 
Program 3.5 depicts the code for the insertion of an element into a linked list by 
searching for the position of insertion with the help of a  find function. 
 
INSERT FUNCTION 
 
/*prototypes of insert and find functions */ 
list * insert_list(list *); 
list * find(list *, int); 
/*definition of insert function */ 
list * insert_list(list *start) 
{ 
 list *n, *f; 
 int key, element; 
 printf("enter value of new element"); 
 scanf("%d", &element); 
 printf("eneter value of key element"); 
 scanf("%d",&key); 
 if(start->data ==key) 
 { 
  n=(list *)mallo(sizeof(list)); 
  n->data=element; 
  n->next = start; 
  start=n; 
 } 
 else 
 { 
  f = find(start, key); 
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  if(f == NULL) 
   printf("\n key is not found \n"); 
  else 
  { 
   n=(list*)malloc(sizeof(list)); 
   n->data=element; 
   n->next=f->next; 
   f->next=n; 
  } 
 } 
 return(start); 
} 
/*definition of find function */ 
list * find(list *start, int key) 
{ 
 if(start->next->data == key) 
  return(start); 
  if(start->next->next == NULL) 
  return(NULL); 
 else 
  find(start->next, key); 
} 
 
void main() 
{ 
 list  *head; 
 void create(list *); 
 int count(list *); 
 void traverse(list *); 
 head=(list *)malloc(sizeof(list)); 
 create(head); 
 printf("  \n  traversing the created list \n"); 
 traverse(head); 
 printf("\n number of elements in the list   %d \n", count(head)); 
 head=insert_list(head); 
 printf("  \n  traversing the list after insert \n"); 
 traverse(head); 
} 
 
Program 3.5: Insertion of an element into a linked list at a specific position 
 
 
ALGORITHM (Deletion of an element from the linked list)  
 
Step 1 Begin 
Step 2 if the list is empty, then element cannot be deleted 
Step 3 else, if element to be deleted is first node, then  make the start (head) to point 

to the second element. 
Step 4 else, delete the element from the list by calling find function and returning the 

found address of the element. 
Step 5  End 
 
Figure 3.4 depicts the process of deletion of an element from a linked list. 
After Deletion 
 
 
                                                                                          f          next                                                          
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                                                                           key node 
 
 

 
 

f 

 
 

Figure 3.4: Deletion of an element from the linked list (Dotted line depicts the link prior to 
deletion) 

 
Program 3.6 depicts the deletion of an element from the linked list. It includes a 
function which specifically searches for the element to be deleted. 
 
DELETE_LIST FUNCTION 
 
/*  prototype of delete_function */ 
list *delete_list(list *); 
list *find(list *, int); 
 
/*definition of delete_list */ 
list *delete_list(list *start) 
{ 
 int key; list * f, * temp; 
 printf(“\n enter the value of element to be deleted \n”); 
 scanf(“%d”, &key); 
 if(start->data == key) 
 { 
  temp=start->next; 
  free(start); 
  start=temp; 
 } 
 else 
 { 
  f = find(start,key); 
  if(f==NULL) 
   printf(“\n key not fund”); 
  else 
  { 
   temp = f->next->next; 
   free(f->next); 
   f->next=temp; 
  } 
 } 
 return(start); 
} 
void main() 
{ 
 
 list  *head; 
 void create(list *); 
 int count(list *); 
 void traverse(list *); 
 head=(list *)malloc(sizeof(list)); 
 create(head); 
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 printf(“  \n  traversing the created list \n”); 
 traverse(head); 
 printf(“\n number of elements in the list   %d \n”, count(head)); 
 head=insert(head); 
 printf(“  \n  traversing the list after insert \n”); 
 traverse(head); 
 head=delete_list(head); 
 printf(“  \n  traversing the list after delete_list \n”); 
 traverse(head); 
} 
 
Program 3.6: Deletion of an element from the linked list by searching for element that is to be deleted 
 
 

3.5   DOUBLY LINKED LISTS-IMPLEMENTATION 
 
In a singly linked list, each element contains a pointer to the next element. We have 
seen this before. In single linked list, traversing is possible only in one direction. 
Sometimes, we have to traverse the list in both directions to improve performance of 
algorithms. To enable this, we require links in both the directions, that is, the element 
should have pointers to the right element as well as to its left element. This type of list 
is called doubly linked list. 
 
 
 
NULL 

 
DATA 

RIGHT 
LINK  
 

 LEFT 
LINK 

 
DATA 

RIGHT 
LINK 

 LEFT 
LINK 

 
DATA 

 
NULL 

  
Figure 3.5: A Doubly Linked List   

 
Doubly linked list (Figure 3.5) is defined as a collection of elements, each element 
consisting of three fields: 
 
 
 
 
 
 

• pointer  to left element, 
• data field, and 
• pointer to right element. 

 
Left link of the leftmost element is set to NULL which means that there is no left 
element to that. And, right link of the rightmost element is set to NULL which means 
that there is no right element to that. 
 
ALGORITHM  (Creation) 
 
Step 1  begin 
Step 2  define a structure ELEMENT with   fields   
  Data 
  Left pointer 
  Right pointer 
Step 3  declare a pointer by name head and by using (malloc()) memory 

allocation function allocate space for one element and store the 
address in head pointer 

   Head = (ELEMENT *) malloc(sizeof(ELEMENT)) 
 
Step 4  read the value for head->data 
   head->left  = NULL 
   head->right = (ELEMENT *) malloc(size of (ELEMENT)) 
Step 5  repeat step3 to create required number of elements 
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Lists Step 6  end 
 
Program 3.7 depicts the creation of a Doubly linked list. 
 
/* CREATION OF A DOUBLY LINKED LIST */ 
/* DBLINK.C */ 
 
# include <stdio.h> 
# include <malloc.h> 
 
struct dl_list 
{ 
 int data; 
 struct dl_list *right; 
 struct dl_list *left; 
}; 
typedef struct dl_list dlist; 
 
void dl_create (dlist *); 
void traverse (dlist *); 
 
/* Function creates a simple doubly linked list */ 
 
void dl_create(dlist *start) 
{ 
 printf("\n Input the values of the element -1111 to come out :  "); 
 scanf("%d", &start->data); 
 if(start->data != -1111) 
 { 
  start->right = (dlist *) malloc(sizeof(dlist)); 
  start->right->left = start; 
  start->right->right = NULL; 
  dl_create(start->right); 
 } 
 else 
 start->right = NULL; 
} 
 
/* Display the list */ 
 
void traverse (dlist *start) 
{ 
 printf("\n traversing the list using right pointer\n"); 
 do { 
  printf(" %d = ", start->data); 
  start = start->right; 
 } while (start->right);  /* Show value of last start only one time */ 
 
 
 printf("\n traversing the list using left pointer\n"); 
 start=start->left; 
 do 
 { 
  printf(" %d =", start->data); 
  start = start->left; 
 }while(start->right); 
} 
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void main() 
{ 
 dlist *head; 
 head = (dlist *) malloc(sizeof(dlist)); 
 head->left=NULL; 
 head->right=NULL; 
 dl_create(head); 
 printf("\n Created doubly linked list is as follows"); 
 traverse(head); 
} 
 
Program 3.7:  Creation of a Doubly Linked List 
 
OUTPUT 
 
Input the values of the element -1111 to come out : 
1 
Input the values of the element -1111 to come out : 
2 
Input the values of the element -1111 to come out : 
3 
Input the values of the element -1111 to come out : 
-1111 
Created doubly linked list is as follows 
traversing the list using right pointer 
1 = 2 = 3 = 
traversing the list using left pointer 
3 = 2 = 1 = 
 
 

3.6   CIRCULARLY LINKED LISTS 
IMPLEMENTATION 
 

A linked list in which the last element points to the first element is called 
CIRCULAR linked list. The chains do not indicate first or last element; last element 
does not contain the NULL pointer. The external pointer provides a reference to 
starting element.  
  
The possible operations on a circular linked list are: 

• Insertion, 
• Deletion, and 
• Traversing 
 
Figure 3.6 depicts a Circular linked list. 
 
 
 
 
 
 

Figure 3.6: A Circular Linked List 

head 
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   Figure 3.6 : A Circular Linked List 
 
Program 3.8 depicts the creation of a Circular linked list. 
#include<stdio.h> 
#include<stdlib.h> 
#define NULL 0 
 
struct linked_list 
{ 
 int data; 
 struct linked_list *next; 
}; 
typedef struct linked_list clist; 
 
clist *head, *s; 
 
void main() 
{ 
 void create_clist(clist *); 
 int count(clist *); 
 void traverse(clist *); 
 head=(clist *)malloc(sizeof(clist)); 
 s=head; 
 create_clist(head); 
 printf("  \n  traversing the created clist and the starting address is %u \n",  

head); 
 traverse(head); 
 printf("\n number of elements in the clist   %d \n", count(head)); 
} 
 
void create_clist(clist *start) 
{ 
 printf("input the element  -1111 for coming out of the loop\n"); 
 scanf("%d", &start->data); 
 if(start->data == -1111) 
  start->next=s; 
 else 
 { 
  start->next=(clist*)malloc(sizeof(clist)); 
  create_clist(start->next); 
 } 
} 
 
void traverse(clist *start) 
{ 
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 if(start->next!=s) 
 { 
  printf("data is %d \t next element address is %u\n", start->data, start-
>next); 
  traverse(start->next); 
 } 
 if(start->next == s) 
  printf("data is %d \t next element address is %u\n",start->data, start-
>next); 
} 
 
int count(clist *start) 
{ 
 if(start->next == s) 
  return 0; 
 else 
  return(1+count(start->next)); 
} 
 

Program 3.8: Creation of a Circular linked list 
 

ALGORITHM (Insertion of an element into a Circular Linked List) 
 

Step 1  Begin 
 
Step 2  if the list is empty or new element comes before the start (head) 

element,  then   insert the  new  element as start element. 
 
Step 3 else, if the new element comes after the last element, then insert the 

new element at the end element and adjust the pointer of last element 
to the start element. 

 
Step 4 else, insert the new element in the list by using the find function. find 

function returns the address of the found element to the insert_list 
function. 

 
Step 5 End. 
 
 
If new item is to be inserted after an existing element, then, call the find function 
recursively to trace the ‘key’ element. The new element is inserted before the ‘key’ 
element by using above algorithm. 
 

Figure 3.7 depicts the Circular linked list with a new element that is to be inserted.  
 
Figure 3.8 depicts a Circular linked list with the new element inserted between first 
and second nodes of Figure 3.7. 
 
 
 
 
 
 
 
 

 
f next

f
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new element 
NULL 

f               next 

Program 3.9 depicts the code for insertion of a node into a Circular linked list. 
 

#include<stdio.h> 
#include<stdlib.h> 
#define NULL 0 
struct linked_list 
{ 
 int data; 
 struct linked_list *next; 
}; 
typedef struct linked_list clist; 
clist *head, *s; 
/*  prototype of find and insert functions */ 
clist * find(clist *, int); 
clist * insert_clist(clist *); 
/*definition of insert_clist function */ 
clist * insert_clist(clist *start)  { 
 clist *n, *n1; 
 int key, x; 
 printf("enter value of new element"); 
 scanf("%d", &x); 
 printf("eneter value of key element"); 
 scanf("%d",&key); 
 if(start->data ==key) 
 { 
 
 
 

Figure 3.8: A Circular Linked List  after  insertion of the new element between first and second nodes  
                   (Dotted lines depict the links prior to insertion) 
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  n=(clist *)malloc(sizeof(clist)); 
  n->data=x; 
  n->next = start; 
  start=n; 
 } 
 else 
 { 
  n1 = find(start, key); 
  if(n1 == NULL) 
   printf("\n key is not found\n"); 
  else 
  { 
   n=(clist*)malloc(sizeof(clist)); 
   n->data=x; 
   n->next=n1->next; 
   n1->next=n; 
  } 
 } 
 return(start); 
} 
/*definition of find function */ 
clist * find(clist *start, int key) 
{ 
 if(start->next->data == key) 
  return(start); 
  if(start->next->next == NULL) 
  return(NULL); 
 else 
  find(start->next, key); 
} 
void main() 
{ 
 void create_clist(clist *); 
 int count(clist *); 
 void traverse(clist *); 
 head=(clist *)malloc(sizeof(clist)); 
 s=head; 
 create_clist(head); 
 printf("  \n  traversing the created clist and the starting address is %u \n", 
head); 
 traverse(head); 
 printf("\n number of elements in the clist   %d \n", count(head)); 
 head=insert_clist(head); 
 printf("\n  traversing the clist after insert_clist and starting address is %u 
\n",head); 
 traverse(head); 
} 
void create_clist(clist *start) 
{ 
 printf("inputthe element  -1111 for coming oout of the loop\n"); 
 scanf("%d", &start->data); 
 if(start->data == -1111) 
  start->next=s; 
 else 
 { 
  start->next=(clist*)malloc(sizeof(clist)); 
  create_clist(start->next); 
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} 
 
void traverse(clist *start) 
{ 
 if(start->next!=s) 
 { 
  printf("data is %d \t next element address is %u\n", start->data, start-
>next); 
  traverse(start->next); 
 } 
 if(start->next == s) 
  printf("data is %d \t next element address is %u\n",start->data, start-
>next); 
} 
int count(clist *start) 
{ 
 if(start->next == s) 
  return 0; 
 else 
  return(1+count(start->next)); 
} 

Program 3.9 Insertion of a node into a Circular Linked List 
 
Figure 3.9 depicts a Circular linked list from which an element was deleted. 
 
ALGORITHM (Deletion of an element from a Circular Linked List) 
 
Step 1 Begin 
Step 2 if the list is empty, then element cannot be deleted. 
Step 3 else, if element to be deleted is first node, then make the start (head) to point 

to the second element. 
Step 4 else, delete  the element from the list  by calling find function and  returning 

the found address of the element. 
Step 5   End. 
  
 
 
      f  
 
 
 

    f next    

   

 
Figure 3.9 A Circular Linked List from which an element was deleted  

                    (Dotted line shows the linked that existed prior to deletion) 
Program 3.10 depicts the code for the deletion of an element from the Circular linked 
list. 
 
#include<stdio.h> 
#include<stdlib.h> 
#define NULL 0 
 
struct linked_list 
{ 
 int data; 
 struct linked_list *next; 
}; 
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typedef struct linked_list clist; 
clist *head, *s; 
 
/*  prototype of find and delete_function*/ 
clist * delete_clist(clist *); 
clist * find(clist *, int); 
 
/*definition of delete_clist       */ 
clist *delete_clist(clist *start) 
{ 
 int key; clist * f, * temp; 
 printf("\n enter the value of element to be deleted \n"); 
 scanf("%d", &key); 
 if(start->data == key) 
 { 
  temp=start->next; 
  free(start); 
  start=temp; 
 } 
 else 
 { 
  f = find(start,key); 
  if(f==NULL) 
   printf("\n key not fund"); 
  else 
  { 
   temp = f->next->next; 
   free(f->next); 
   f->next=temp; 
  } 
 } 
 return(start); 
} 
/*definition of find function */ 
clist * find(clist *start, int key) 
{ 
 if(start->next->data == key) 
  return(start); 
  if(start->next->next == NULL) 
  return(NULL); 
 else 
  find(start->next, key); 
} 
 
void main() 
{ 
 void create_clist(clist *); 
 int count(clist *); 
 void traverse(clist *); 
 head=(clist *)malloc(sizeof(clist)); 
 s=head; 
 create_clist(head); 
 printf("  \n  traversing the created clist and the starting address is %u \n",  
 head); 
 traverse(head); 
 printf("\n number of elements in the clist   %d \n", count(head)); 
 head=delete_clist(head); 



 

 

Lists  printf("  \n  traversing the clist after delete_clistand starting address is %u  
 \n",head); 
 traverse(head); 
} 
void create_clist(clist *start) 
{ 
 printf("inputthe element  -1111 for coming oout of the loop\n"); 
 scanf("%d", &start->data); 
 if(start->data == -1111) 
  start->next=s; 
 else 
 { 
  start->next=(clist*)malloc(sizeof(clist)); 
  create_clist(start->next); 
 } 
} 
 
void traverse(clist *start) 
{ 
 if(start->next!=s) 
 { 
  printf("data is %d \t next element address is %u\n", start->data,   start-
>next); 
  traverse(start->next); 
 } 
 if(start->next == s) 
  printf("data is %d \t next element address is %u\n",start->data,    start-
>next); 
} 
 
int count(clist *start) 
{ 
 if(start->next == s) 
  return 0; 
 else 
  return(1+count(start->next)); 
} 
 

Program 3.10: Deletion of an element from the circular linked list 
 
 

3.7   APPLICATIONS 
 
Lists are used to maintain POLYNOMIALS in the memory. For example, we have a 
function f(x)= 7x5 + 9x4  –  6x³ + 3x². Figure 3.10 depicts the representation of a 
Polynomial using a singly linked list. 1000,1050,1200,1300 are memory addresses. 
 
 
 7 5 1050 9 4 1200 130031000 −6 2 

              
   Start                  1000                           1050                1200                    1300 

 
 
Figure 3.10: Representation of a Polynomial using a singly linked list  
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Polynomial contains two components, coefficient and an exponent, and ‘x’ is a formal 
parameter. The polynomial is a sum of terms, each of which consists of coefficient 
and an exponent. In computer, we implement the polynomial as list of structures 
consisting of coefficients and an exponents.  
 
Program 3.11 accepts a Polynomial as input.  It uses linked list to represent the 
Polynomial.  It also prints the input polynomial along with the number of nodes in it.  
 
/* Representation of Polynomial using Linked List */ 
# include <stdio.h> 
# include <malloc.h> 
struct link 
{ 
 char sign; 
 int coef; 
 int expo; 
 struct link *next; 
}; 
typedef struct link poly; 
void insertion(poly *); 
void create_poly(poly *); 
void display(poly *); 
/* Function create a ploynomial list */ 
void create_poly(poly *start) 
{ 
 char ch; 
 static int i; 
 printf("\n Input choice n for break: "); 
 ch = getchar(); 
 if(ch != 'n') 
 { 
  printf("\n Input the sign: %d: ", i+1); 
  scanf("%c", &start->sign); 
  printf("\n Input the coefficient value: %d: ", i+1); 
  scanf("%d", &start->coef); 
  printf("\n Input the exponent value: %d: ", i+1); 
  scanf("%d", &start->expo); 
  fflush(stdin); 
  i++; 
  start->next = (poly *) malloc(sizeof(poly)); 
  create_poly(start->next); 
 } 
 else 
 start->next=NULL; 
} 
/* Display the polynomial */ 
void display(poly *start) 
{ 
 if(start->next != NULL) 
 { 
  printf(" %c", start->sign); 
  printf(" %d", start->coef); 
  printf("X^%d", start->expo); 
  display(start->next); 
 } 
} 
/* counting the number of nodes */ 
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{ 
 if(start->next == NULL) 
  return 0; 
 else 
  return(1+count_poly(start->next)); 
}  
/* Function main */ 
void main() 
{ poly *head = (poly *) malloc(sizeof(poly)); 

create_poly(head); 
 printf("\n Total nodes = %d \n", count_poly(head)); 
 display(head); } 
  

Program 3.11: Representation of Polynomial using Linked list 
 

   Check Your Progress 
 
1) Write a function to print the memory location(s) which are used to store the  

data in a single linked list ? 

…………………………………………………………………………………………

……………..……………………………………………………………………………

. 

2) Can we use doubly linked list as a circular linked list? If yes, Explain. 

………………………………………………………………………………………….

……….………………………………………………………………………………… 

3) Write the differences between Doubly linked list and Circular linked list. 

..…………………………………………………………………………………………

………………………….……….……………………………………………………... 

4) Write a program to count the number of items stored in a single linked list. 

..…………………………………………………………………………………………

…………………………………………………………………………………………. 

5)    Write a function to check the overflow condition of a list represented by an 
array. 
…………………………………………………………………………………………

………………………………………………………………………………………… 

3.8    SUMMARY  

The advantage of Lists over Arrays is flexibility. Over flow is not a problem until the 
computer memory is exhausted. When the individual records are quite large, it may be 
difficult to determine the amount of contiguous storage that might be in need for the 
required arrays. With dynamic allocation, there is no need to attempt to allocate in 
advance.  Changes in list, insertion and deletion can be made in the middle of the list, 
more quickly than in the contiguous lists. 
 
The drawback of lists is that the links themselves take space which is in addition to 
the space that may be needed for data. One more drawback of lists is that they are not 
suited for random access.  With lists, we need to traverse a long path to reach a 
desired node. 
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3.9    SOLUTIONS/ANSWERS 
 
  1)  void print_location(struct node *head) 
 { 
  temp=head; 
  while(temp->next !=NULL) 
  { 
      printf("%u", temp); 
      temp=temp->next; 
  } 
  printf("%u", temp); 
 } 
  4)   void count_items(struct node *head) 
 { 
     int count=0; 

 temp=head; 
  while(temp->next !=NULL) 
  { 
   count++; 
  } 
  count++; 
  pintf("total items = %d", count); 
 } 
5) void Is_Overflow(int max_size, int last_element_position) 
 { 
  if(last_element_position == max_size) 
   printf("List Overflow"); 
  else 
   printf("not Overflow"); 
 } 
 

3.10   FURTHER READINGS 
 

1.       Fundamentals of Data Structures in C++ by E.Horowitz, Sahni and D.Mehta; 
Galgotia Publications 

2. Data Structures and Program Design in C by Kruse, C.L.Tonodo and B.Leung; 
Pearson Education  

Reference Websites 
http://www.webopedia.com 
http://www.ieee.org  
. 

http://www.webopedia.com/
http://www.ieee.org/
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