
 1

LESSON - 1

CONTENTS

1.0 Aims and objectives

1.1 Programming Development Methodology

 1.1.1 Introduction

 1.1.2 Programming Style

1.1.3 Appropriate Variable Names

 1.1.4 Looping and Control Structures

1.2 Problem solving techniques

1.3 Algorithm

1.4 Pseudo code

1.5 Flow Chart

 1.5.1 Sequential construct

1.5.2 Selection construct

1.5.3 Iterative

1.6 Let us Sum up

1.7 Points for Discussion

1.8 Check your Progress

1.9 Lesson – end Activities

1.10. References

1.0 Aims and Objectives

 The objective of this lesson is to make the people to understand about
fundamental concept of general programming constructs. After reading this lesson, reader
can understand the way of developing programs based on well-defined approach.

 2

1.1 Programming development methodologies

1.1.1 Introduction

Programming development methodologies are generally useful to make a program
with easy-to-test and easy-to-change structure. These methodologies include various
modules like

 Problem Definition (state the problem clearly)
 Algorithm Design (use pseudo code)
 Desktop Testing (work a simple problem by hand)
 Write the Program (in small steps)
 Testing (use a variety of data)

1.1.2 PROGRAMMING STYLE

Programming style refers to a set of rules or guidelines used when writing the
source code for a computer program. It is often claimed that following a particular
programming style will help programmers to quickly read and understand source code
conforming to the style as well as helping to avoid introducing faults.

A classic work on the subject was The Elements of Programming Style, written in the
1970s, and illustrated largely with examples from the Fortran language prevalent at the
time.

The programming style used in a particular program may be derived from the coding
standards or code conventions of a company or other computing organization, as well
as the preferences of the author of the code. Programming styles are often designed for a
specific programming language (or language family), but some rules are commonly
applied to many languages. (Style considered good in C source code might not be
appropriate for BASIC source code, and so on.)

ELEMENTS OF GOOD STYLE

Good style, being a subjective matter, is difficult to concretely categorize.
However, there are several elements common to a large number of programming styles.
The issues usually considered as part of programming style, include the layout of the
source code, including indentation; the use of white space around operators and
keywords, the capitalization or otherwise of keywords and variable names, the style and
spelling of user-defined identifiers, such as function, procedure and variable names, the
use and style of comments and the use or avoidance of programming constructs
themselves (such as GOTO statements).

 3

CODE APPEARANCE

Programming styles commonly deal with the appearance of source code, with the
goal of improving the readability of the program. However, with the advent of software
that formats source code automatically, the focus on appearance will likely yield to a
greater focus on naming, logic, and higher techniques. As a practical point, using a
computer to format source code saves time, and it is possible to then enforce company-
wide standards without debates.

INDENTING

Indent styles assist in identifying control flow and blocks of code. In
programming languages that use indentation to delimit logical blocks of code, indentation
style directly affects the behavior of the resulting program. In other languages, such as
those that use brackets to delimit code blocks, the indentation style does not directly
affect the product. Instead, using a logical and consistent indentation style makes code
more readable. Compare:

if (hours < 24 && minutes < 60 && seconds < 60)
{
 return true;
}
else
{
 return false;
}

or

if (hours < 24 && minutes < 60 && seconds < 60) {
 return true;
} else {
 return false;
}

with something like

if(hours < 24 && minutes < 60 && seconds < 60){
return true;
 }else
 {
return false;
 }

The first two examples are probably much easier to read because they are indented in an
established way (a "hanging paragraph" style). This indentation style is especially useful
when dealing with multiple nested constructs. This example is somewhat contrived, of
course; all the above are equivalent to the more concise statement

 4

return (hours < 24) && (minutes < 60) && (seconds < 60);

VERTICAL ALIGNMENT

 It is often helpful to align similar elements vertically, to make typo-generated
bugs more obvious. Compare:

$search = array('a', 'b', 'c', 'd', 'e');
$replacement = array('foo', 'bar', 'baz', 'quux');

with:

$search = array('a', 'b', 'c', 'd', 'e');
$replacement = array('foo', 'bar', 'baz', 'quux');

The latter example makes two things intuitively clear that were not clear in the former:

 the search and replace terms are related and match up: they are not discrete
variables;

 there is one more search term than there are replacement terms. If this is a bug, it
is now more likely to be spotted.

Arguments against vertical alignment generally claim difficulty in maintaining the
alignment.

SPACING

 The grammars of most free-format languages are mostly unconcerned with the
presence or absence of whitespace. Making good use of spacing in code layout is
therefore considered good programming style.

Compare the following syntactically equivalent examples of C code.

int i;
for(i=0;i<10;++i){
 printf("%d",i*i+i);
}

versus

int i;
for (i = 0; i < 10; ++i) {
 printf("%d", i*i + i);
}

It is also recommended to avoid using tab characters in the middle of a line as different
text editors render their width differently.

 5

1.1.3 APPROPRIATE VARIABLE NAMES

Appropriate choices for variable names are seen as the keystone for good style.
Poorly-named variables make code harder to read and understand.

For example, consider the following pseudo code snippet:

get a b c
if a < 24 and b < 60 and c < 60
 return true
else
 return false

Because of the choice of variable names, the function of the code is difficult to work out.
However, if the variable names are made more descriptive:

get hours minutes seconds
if hours < 24 and minutes < 60 and seconds < 60
 return true
else
 return false

The code's intent is easier to discern, namely, "Given a 24-hour time, true will be
returned if it is a valid time and false otherwise".

BOOLEAN VALUES IN DECISION STRUCTURES

 Some programmers think decision structures such as the above, where the result
of the decision is merely computation of a Boolean value, are overly verbose and even
prone to error. They prefer to have the decision in the computation itself, like this:

return (hours < 12) && (minutes < 60) && (seconds < 60);

The difference is often purely stylistic and syntactic, as modern compilers produce
identical object code for both forms.

However, one argument in favour of the former is that some debuggers allow you to step
line by line: if your test also caused changes to the variables you were testing, and you
wanted to examine the values of all variables after that test, then only the former method
would permit that to be debugged. The latter would not allow your debugger to reach a
line "after the test" where those variables still existed.

LEFT-HAND COMPARISONS

 In languages which use a single = for assignment and a double == for comparison,
and where assignments may be made within control structures, it is sometimes considered

 6

good programming style to place constants to the left in any comparison.[1] The
following lines are functionally identical:

if (true == $a) { ... }
if ($a == true) { ... }

However, of the two following, typed lines, the first is a syntax error that will be
diagnosed by the interpreter, while the latter is a subtle bug that sets the value of $a to be
true, then evaluates to true.

if (true = $a) { ... }
if ($a = true) { ... }

1.1.4 LOOPING AND CONTROL STRUCTURES

The use of logical control structures for looping adds to good programming style
as well. It helps someone reading code to understand the program's sequence of execution
(in imperative programming languages). For example, in pseudo code:

i = 0
while i < 5
 print i * 2
 i = i + 1
end while

The above snippet obeys the naming and indentation style guidelines, but the following
use of the "for" construct makes the code much easier to read:

for i = 0, i < 5, i=i+1
 print i * 2

In many languages, the often used "for each element in a range" pattern can be shortened
to:

for i = 0 to 5
 print i * 2
print "Ended loop"

In curly bracket programming languages, it has become common for style documents to
require that even where optional, curly brackets be placed after all control flow
constructs.

for (i = 0 to 5) {
 print i * 2;
}
print "Ended loop";

 7

This prevents program-flow bugs which can be time-consuming to track down, such as
where a terminating semicolon is introduced at the end of the construct (a common typo):

for (i = 0; i < 5; ++i);
 printf("%d\n", i*2); /* The incorrect indentation hides the
fact that this line is not part of the loop body. */
puts("Ended loop");

where another line is added before the first:

for (i = 0; i < 5; ++i)
 fprintf(logfile, "loop reached %d\n", i);

 printf("%d\n", i*2); /* The incorrect indentation hides the fact
that this line is not part of the loop body. */
puts("Ended loop");

LISTS

 Where items in a list are placed on separate lines, it is sometimes considered good
practice to add the item-separator after the final item, as well as between each item, at
least in those languages where doing so is supported by the syntax (e.g, C):

const char *array[] = {
 "item1",
 "item2",
 "item3", /* still has the comma after it */
};

1.2 PROBLEM SOLVING TECHNIQUES

 Generally, problem can be solved using several different approaches as follows

1. Divide and conquer: break down large, complex problem into smaller, solvable
problems

2. Hill-climbing strategy, (or - rephrased - gradient descent/ascent, difference
reduction) - attempting at every step to move closer to the goal situation. The
problem with this approach is that many challenges require that you seem to move
away from the goal state in order to clearly see the solution.

3. Means-end analysis, more effective than hill-climbing, requires the setting of sub
goals based on the process of getting from the initial state to the goal state when
solving a problem.

4. Working backwards
5. Trial-and-error
6. Brainstorming
7. Morphological analysis
8. Method of focal objects

 8

9. Lateral thinking
10. George Polya's techniques in How to Solve It
11. Research: study what others have written about the problem (and related

problems). Maybe there's already a solution?
12. Assumption reversal (write down your assumptions about the problem, and then

reverse them all)
13. Analogy: has a similar problem (possibly in a different field) been solved before?
14. Hypothesis testing: assuming a possible explanation to the problem and trying to

prove the assumption.
15. Constraint examination: are you assuming a constraint that does not really exist?
16. Incubation: input the details of a problem into your mind, and then stop focusing

on it. The subconscious mind will continue to work on the problem, and the
solution might just "pop up" while you are doing something else

17. Build (or write) one or more abstract models of the problem
18. Try to prove that the problem cannot be solved. Where the proof breaks down can

be your starting point for resolving it
19. Get help from friends or online problem solving community (e.g. 3form)
20. Delegation: delegating the problem to others.
21. Root Cause Analysis

1.3 ALGORITHM

An algorithm, in general, is a definite list of well-defined instructions for
completing a task; that given an initial state, will proceed through a well-defined series of
successive states, eventually terminating in an end-state.

Generally, algorithm can be classified in to following categories

 (1). Recursive – an algorithm called itself. It may be direct or indirect recursive

 (2). Iterative - some portion of algorithm will be repeatedly executed

 (3). Deterministic – Output of the algorithm can be defined uniquely.

 (4). Non deterministic – Output can not defined uniquely but we can expect some

 choice

 (5). Heuristic algorithm. – (i)This algorithm usually produce a good solution even

 though such a solution need not be an optimum one.

 (ii). These algorithms can be modified easily.

 9

For example , Consider a general task like you are receiving a friend arriving at the
airport, and your friend needs to get from the airport to your house. Here are four
different algorithms that you might give your friend for getting to your home:

 The taxi algorithm:
1. Go to the taxi stand.
2. Get in a taxi.
3. Give the driver my address.

 The call-me algorithm:
1. When your plane arrives, call my cell phone.
2. Meet me outside baggage claim.

 The rent-a-car algorithm:
1. Take the shuttle to the rental car place.
2. Rent a car.
3. Follow the directions to get to my house.

 The bus algorithm:
1. Outside baggage claim, catch bus number 70.
2. Transfer to bus 14 on Main Street.
3. Get off on Elm street.
4. Walk two blocks north to my house.

All four of these algorithms accomplish exactly the same goal, but each algorithm does it
in completely different way. Each algorithm also has a different cost and a different
travel time. Taking a taxi, for example, is probably the fastest way, but also the most
expensive. Taking the bus is definitely less expensive, but a whole lot slower. You
choose the algorithm based on the circumstances.

In computer programming, there are often many different ways -- algorithms -- to
accomplish any given task. Each algorithm has advantages and disadvantages in different
situations.

1.4 PSEUDO CODE

Pseudo code is a kind of structured English for describing algorithms. It allows
the designer to focus on the logic of the algorithm without being distracted by details of
language syntax. At the same time, the pseudo code needs to be complete. It describe
the entire logic of the algorithm so that implementation becomes a rote mechanical task
of translating line by line into source code.

In general the vocabulary used in the pseudo code should be the vocabulary of the
problem domain, not of the implementation domain. The pseudo code is a narrative for
someone who knows the requirements (problem domain) and is trying to learn how the
solution is organized. E.g.,

Extract the next word from the line (good)
set word to get next token (poor)

 10

Append the file extension to the name (good)
name = name + extension (poor)

FOR all the characters in the name (good)
FOR character = first to last (ok)

Note that the logic must be decomposed to the level of a single loop or decision. Thus
"Search the list and find the customer with highest balance" is too vague because it takes
a loop AND a nested decision to implement it. It's okay to use "Find" or "Lookup" if
there's a predefined function for it such as String.indexOf().

Each textbook and each individual designer may have their own personal style of
pseudocode. Pseudocode is not a rigorous notation, since it is read by other people, not by
the computer. There is no universal "standard" for the industry, but for instructional
purposes it is helpful if we all follow a similar style. The format below is recommended
for expressing your solutions in our class.

The "structured" part of pseudo code is a notation for representing six specific structured
programming constructs: SEQUENCE, WHILE, IF-THEN-ELSE, REPEAT-UNTIL,
FOR, and CASE. Each of these constructs can be embedded inside any other construct.
These constructs represent the logic, or flow of control in an algorithm.

It has been proven that three basic constructs for flow of control are sufficient to
implement any "proper" algorithm.

SEQUENCE is a linear progression where one task is performed sequentially after
another.

WHILE is a loop (repetition) with a simple conditional test at its beginning.

IF-THEN-ELSE is a decision (selection) in which a choice is made between two
alternative courses of action.

Although these constructs are sufficient, it is often useful to include three more
constructs:

REPEAT-UNTIL is a loop with a simple conditional test at the bottom.

CASE is a multiway branch (decision) based on the value of an expression. CASE is a
generalization of IF-THEN-ELSE.

FOR is a "counting" loop.

SEQUENCE

 11

 Sequential control is indicated by writing one action after another, each action on
a line by itself, and all actions aligned with the same indent. The actions are performed in
the sequence (top to bottom) that they are written.

Example 1.1 (non-computer)

Brush teeth
Wash face
Comb hair
Smile in mirror

Example 1.2

READ height of rectangle
READ width of rectangle
COMPUTE area as height times width
Common Action Keywords

Several keywords are often used to indicate common input, output, and processing
operations.

Input: READ, OBTAIN, GET
Output: PRINT, DISPLAY, SHOW
Compute: COMPUTE, CALCULATE, DETERMINE
Initialize: SET, INIT
Add one: INCREMENT, BUMP

IF-THEN-ELSE

 Binary choice on a given Boolean condition is indicated by the use of four
keywords: IF, THEN, ELSE, and ENDIF. The general form is:

IF condition THEN
sequence 1
ELSE
sequence 2
ENDIF

The ELSE keyword and "sequence 2" are optional. If the condition is true, sequence 1 is
performed, otherwise sequence 2 is performed.

Example 1.3

IF HoursWorked > NormalMax THEN

 12

Display overtime message
ELSE
Display regular time message
ENDIF

WHILE

 The WHILE construct is used to specify a loop with a test at the top. The
beginning and ending of the loop are indicated by two keywords WHILE and
ENDWHILE. The general form is:

WHILE condition
 sequence
ENDWHILE

The loop is entered only if the condition is true. The "sequence" is performed for each
iteration. At the conclusion of each iteration, the condition is evaluated and the loop
continues as long as the condition is true.

Example 1.4

WHILE Population < Limit
Compute Population as Population + Births - Deaths
ENDWHILE

Example 1.4

WHILE employee.type NOT EQUAL manager AND personCount <
numEmployees
INCREMENT personCount
CALL employeeList.getPerson with personCount RETURNING employee
ENDWHILE

CASE

 A CASE construct indicates a multiway branch based on conditions that are
mutually exclusive. Four keywords, CASE, OF, OTHERS, and ENDCASE, and
conditions are used to indicate the various alternatives. The general form is:

CASE expression OF
condition 1 : sequence 1
condition 2 : sequence 2
...
condition n : sequence n

 13

OTHERS:
default sequence
ENDCASE

The OTHERS clause with its default sequence is optional. Conditions are normally
numbers or characters

indicating the value of "expression", but they can be English statements or some other
notation that specifies the condition under which the given sequence is to be performed.
A certain sequence may be associated with more than one condition.

Example 1.6

 CASE Title OF
 Mr : Print "Mister"
 Mrs : Print "Missus"
 Miss : Print "Miss"
 Ms : Print "Mizz"
 Dr : Print "Doctor"
 ENDCASE

Example 1.7

 CASE grade OF
 A : points = 4
 B : points = 3
 C : points = 2
 D : points = 1
 F : points = 0
 ENDCASE

REPEAT-UNTIL

This loop is similar to the WHILE loop except that the test is performed at the
bottom of the loop instead of at the top. Two keywords, REPEAT and UNTIL are used.
The general form is:

REPEAT
 sequence
UNTIL condition

 14

The "sequence" in this type of loop is always performed at least once, because the test is
performed after the sequence is executed. At the conclusion of each iteration, the
condition is evaluated, and the loop repeats if the condition is false. The loop terminates
when the condition becomes true.

FOR

 This loop is a specialized construct for iterating a specific number of times, often
called a "counting" loop. Two keywords, FOR and ENDFOR are used. The general form
is:

FOR iteration bounds
 sequence
ENDFOR

In cases where the loop constraints can be obviously inferred it is best to describe the
loop using problem domain vocabulary.

Example 1.8

FOR each month of the year (good)
FOR month = 1 to 12 (ok)

FOR each employee in the list (good)
FOR empno = 1 to listsize (ok)

NESTED CONSTRUCTS

 The constructs can be embedded within each other, and this is made clear by use
of indenting. Nested constructs should be clearly indented from their surrounding
constructs.

Example 1.9

SET total to zero
REPEAT
READ Temperature
IF Temperature > Freezing THEN
 INCREMENT total
END IF
UNTIL Temperature < zero
Print total
In the above example, the IF construct is nested within the REPEAT
construct, and therefore is indented.

INVOKING SUBPROCEDURES

 15

Use the CALL keyword. For example:

CALL AvgAge with StudentAges
CALL Swap with CurrentItem and TargetItem
CALL Account.debit with CheckAmount
CALL getBalance RETURNING aBalance
CALL SquareRoot with orbitHeight RETURNING nominalOrbit

EXCEPTION HANDLING

 BEGIN
 statements
 EXCEPTION
 WHEN exception type
 statements to handle exception
 WHEN another exception type
 statements to handle exception
 END

1.5 FLOW CHART

A flow chart is defined as a pictorial representation describing a process being
studied or even used to plan stages of a project. Flow charts tend to provide people with a
common language or reference point when dealing with a project or process.

Four particular types of flow charts have proven useful when dealing with a process
analysis: top-down flow chart, detailed flow chart, work flow diagrams, and a
deployment chart. Each of the different types of flow charts tend to provide a different
aspect to a process or a task. Flow charts provide an excellent form of documentation for
a process, and quite often are useful when examining how various steps in a process work
together.

When dealing with a process flow chart, two separate stages of the process should be
considered: the finished product and the making of the product. In order to analyze the
finished product or how to operate the process, flow charts tend to use simple and easily
recognizable symbols. The basic flow chart symbols below are used when analyzing how
to operate a process.

 16

1.5 Structured Flowchart

 A flow chart which has been constructed using only the following one-entry one-
exit control structures is called structured flowchart, The three basic structures are,

 (i). Sequential
 (ii). Selection
 (iii). Iteration

1.5.1 Sequential construct

 When statements are executed in sequence, they are said to form sequential
construct.

Where, S1 and S2 are statement blocks, which may consist of either single or more than
one statement.

1.5.2 Selection construct

 This construct is also known as conditional structure and is used to indicate
decision in a program. This construct will be represented diagrammatically as follows,

If condition ‘C’ is true then it executes S1 otherwise it executes S2.

1.5.3 Iterative

 This construct operates a sequence of statements while some condition is
satisfied. For example, the While structure can be represented as follows,

S1 S2

C

S1 S2

C

S

 17

 The statement block will be executed until condition become false.

1.6 Let us Sum Up

 In This lesson, We

 Described about the way of writing programs
 Various program development methodologies
 Pseudo Code representation
 Effective coding techniques
 Structured flow chart

1.7 Points for discussion

 Can we use selection construct in iteration construct?
 Describe the elements of structured programming.
 Do we need different style of coding?

1.8 Check your progress

 (i). Define structured program.

 If the program using any one of structured construct (ie., sequence,
 selection and iteration) then the program is referred as structured programming.

 (ii). What is meant by flow chart?

 The flow chart is pictorial representation of a problem.

1.9 Lesson-end Activities

 1. What are all the symbols we are using to construct a flow chart?
 2. Why we need structured programming approach?
 3. What do you mean by algorithm?

1.10 References
 Search Tips

1. Peter Aitken, Teach Yourself C in 21 Days, Fourth Edition, Sams Publisher.
2. Brian W. Kernighan and Dennis M. Ritchie, The C programming Language,

Prentice-Hall in 1988
3. E.Balagursamy, Programming in Ansi C, TATA MCGraw Hill
4. http://www.cs.cf.ac.uk/Dave/C
5. http://imada.sdu.dk/~svalle/courses

 18

LESSON : 2 Fundamentals of “C” Programming

CONTENTS

2.0 Aims and Objectives

2.1 Introduction to C

2.2 Basic Concepts

 2.2.1 Importance of “C”

 2.2.2 Hurdles in “C”

 2.2.3 Structure of “C” programming

 2.2.4 Character set

 2.2.5 Keywords

 2.2.6 Identifiers

2.3 Constants

2.4 Variables

2.5 Data type

2.6 Type Conversion.

2.7 Let us Sum-up

2.8 Points for discussion

2.9 Check your progress

2.10 Lesson-end Activities

2.11 References

2.0 Aims and Objectives.

 This lesson will briefly elucidate basic concepts of “C” programming, which
helps readers to understand about the structure of program as well as to know about
fundamental concepts used in “C”. After reading this lesson, I am sure that, you will be
able to implement small programs using ‘C’.

2.1 Introduction to C

C was created by Dennis Ritchie at the Bell Telephone Laboratories in 1972. The
language wasn't created for the fun of it, but for a specific purpose: to design the UNIX
operating system. From the beginning, C was intended to be useful to allow busy
programmers to get things done. Because C is such a powerful and flexible language, its

 19

use quickly spread beyond Bell Labs. Programmers everywhere began using it to write all
sorts of programs. Soon, however, different organizations began utilizing their own
versions of C, and subtle differences between implementations started to cause
programmers headaches. In response to this problem, the American National Standards
Institute (ANSI) formed a committee in 1983 to establish a standard definition of C,
which became known as ANSI Standard C. With few exceptions, every modern C
compiler has the ability to adhere to this standard.

C is a relatively ``low-level'' language. This characterization is not pejorative; it simply
means that C deals with the same sort of objects that most computers do, namely
characters, numbers, and addresses. These may be combined and moved about with the
arithmetic and logical operators implemented by real machines.

C is widely promoted as ideal portable and effective language. This characterization is
deserved when C is considered for systems-level programs such as compilers, or for
mass-market products such as word processing or spreadsheet programs. C was designed
as a reasonably transportable replacement for assembly language that would add some
high-level language constructs, but would retain almost all the low-level procedural
capabilities found at the machine instruction level.

2.2 Basic concepts

2.2.1 Importance of C

In computer programming, there are many high-level languages, such as C,
Pascal, BASIC, and Java. These are all excellent languages suited for most programming
tasks. Even so, there are several reasons why many computer professionals feel that C is
at the top of the list:

 C is a powerful and flexible language. C is used for projects as diverse as

operating systems, word processors, graphics, spreadsheets, and even compilers
for other languages.


 C is a popular language preferred by professional programmers. As a result, a

wide variety of C compilers and helpful accessories are available.

 C is a portable language. Portable means that a C program written for one

computer system (an IBM PC, for example) can be compiled and run on another
system (a DEC VAX system, perhaps) with little or no modification. Portability is
enhanced by the ANSI standard for C, the set of rules for C compilers.



 C is a language of few words, containing only a handful of terms, called

keywords, which serve as the base on which the language's functionality is built.
We might think that a language with more keywords (sometimes called reserved
words) would be more powerful. This isn't true. As we program with C, We will
find that it can be programmed to do any task.

 20


 C is modular. C code can (and should) be written in routines called functions.

These functions can be reused in other applications or programs. By passing
pieces of information to the functions, you can create useful, reusable code.

2.2.2 Hurdles in C

 The fundamental problem with C is that it doesn't hide enough machine-level
details. A good example is the central role that pointer variables play in C programs. C
pointers were designed to provide machine-independent address arithmetic; and, for the
most part, pointers do make it easier to write system programs that transport across
machines. (Even this advantage is qualified, however, because pointers don't always
transport easily between machines with flat addresses — e.g., Vax — and machines with
segmented addresses — e.g., Intel 808x.). But at an application level, C pointers are a
burden and a danger. They're burdensome because the programmer has to attend to
details that a compiler can readily handle. For example, in C, to use a function
(procedure) parameter as an output parameter (i.e., one that changes a value in the calling
function), you have to pass the address of the variable that is to receive the value.

2.2.3 Structure of C Programming

 C program may contain one or more sections as shown in the figure 1.

Documentation Section
Link Section
Definition section
Global Declaration Section
Main ()
{
 Declaration Part;
 Executable part;
}
Subprogram Section ()

Function 1
Function 2
Function 3
. (User-defined functions)
.
.
Function n

The documentation section consists of a set of comment lines giving the name of the
program, author, date of written the program and other details which programmer would
like to use. This section is also referred as comment section. Information in this section

 21

should be enclosed with /*……….*/. The compiler will simply skip the information
between /* and */.

Example 2.1
 /* Program for Inventory Control System, Date 01-10-2007 */

The link section provides instructions to the compiler to link functions from system
library. Generally all the header files are mentioned in link section.

Example 2.2

#include <stdio.h>
#include <dos.h>
#include <conio.h>
#include <math.h>
#include <string.h>

The definition section contains all the symbolic constants. These constants can not be
changed during the execution. These constants are automatically recognized by the
system and no need to declare the respective labels.

Example 2.3

 #define limit 5
 #define pi 3.14.

Some variables are used in more than one function. Such variables are called global
variables and are declared in global declaration section that is outside of all the functions.

Example 2.4
 int a ; char name[16];
 int bignumber,bigsum;
 char letter;
 main()
 {

 }

Every C program must have one main() function section. This section contains two parts,
declaration part and executable part. The declaration part declares all the variables used
in the executable part. There is at least one statement in the executable part. These two
parts must appear between two the opening and closing braces. All the statements in the
declaration part and executable part must be ended with semicolon.

 The subprogram section contains user defined functions that are called from main
function. These functions are generally placed immediately after main in any order.

#include <stdio.h> include information about standard library
main() define a function called main

 22

{ that received no argument values
 statements of main are enclosed in braces
printf("hello, world\n"); main calls library function printf

to print this sequence of characters
} \n represents the newline character
 Example 2.5 The first C program

2.2.4 Character Set Delimiters

 Characters play a central role in Standard C. C program can be represent as one or
more source files. The translator reads a source file as a text stream consisting of
characters that you can read when you display the stream on a terminal screen or produce
hard copy with a printer. You often manipulate text when a C program executes. The
program might produce a text stream that people can read, or it might read a text stream
entered by someone typing at a keyboard or from a file modified using a text editor. This
document describes the characters that you use to write C source files and that you
manipulate as streams when executing C programs.

Every character set contains a distinct code value for each character in the basic C
character set. A character set can also contain additional characters with other code
values. For example:

 The character constant 'x' becomes the value of the code for the character
corresponding to x in the target character set.

 The string literal "xyz" becomes a sequence of character constants stored in
successive bytes of memory, followed by a byte containing the value zero:
{'x', 'y', 'z', '\0'}

A string literal is one way to specify a null-terminated string, an array of zero or more
bytes followed by a byte containing the value zero.

Visible graphic characters in the basic C character set:

Form Members
letter A B C D E F G H I J K L M
 N O P Q R S T U V W X Y Z
 a b c d e f g h i j k l m
 n o p q r s t u v w x y z

digit 0 1 2 3 4 5 6 7 8 9

underscore _

punctuation ! " # % & ' () * + , - . / :
 ; < = > ? [\] ^ { | } ~

Additional graphic characters in the basic C character set:

 23

Character Meaning
space leave blank space
BEL signal an alert (BELl)
BS go back one position (Backspace)
FF go to top of page (Form Feed)
NL go to start of next line (NewLine)
CR go to start of this line (Carriage Return)
HT go to next Horizontal Tab stop
VT go to next Vertical Tab stop

The code value zero is reserved for the null character which is always in the target
character set. Code values for the basic C character set are positive when stored in an
object of type char. Code values for the digits are contiguous, with increasing value. For
example, '0' + 5 equals '5'. Code values for any two letters are not necessarily
contiguous.

2.2.5 Keywords

 Every C word is classified as either a keyword or an identifier. All keywords have
fixed meanings and these meanings cannot be changed. In general all the key words
must be written in lower case. The C language uses the following keywords:

auto double int struct break else long switch
case enum register typedef char extern return union
const float short unsigned continue for signed void
default goto sizeof volatile do if static while

2.2.6 Identifiers.

 Identifiers refer to the names of variables, functions and arrays. These are user
defined names and consist of sequence of letters and digits, with a letter as first character.
Both upper case and lower case letters are permitted, although lower case letters are
commonly used. The underscore character is also permitted in identifiers. It is usually
used as a link between two words in long identifiers.

2.3 Constants

 Constant in C refers to the values that can not be changed during the execution of
the program. The constants in “C” can be classified as follows.

 24

 Constants

 Numeric Constants Character Constants

 Integer Constants Real Constants Single character String
 Constants Constants

Decimal Octol Hexa Decimal
Integer Integer Integer
Constant Constant Constant
 Figure 2.1 Classification of Constants

Integer constants

The normal integral constants are obvious: things like 1, 1034 and so on. You can
put l or L at the end of an integer constant to force it to be long. To make the constant
unsigned, one of u or U can be used to do the job.

Integer constants can be written in hexadecimal by preceding the constant with 0x

or 0X and using the upper or lower case letters a, b, c, d, e, f in the usual way. Be careful
about octal constants. They are indicated by starting the number with 0 and only using the
digits 0, 1, 2, 3, 4, 5, 6, 7. It is easy to write 015 by accident, or out of habit, and not to
realize that it is not in decimal. The mistake is most common with beginners, because
experienced C programmers already carry the scars.

The Standard has now invented a new way of working out what type an integer

constant is. In the old days, if the constant was too big for an int, it got promoted to a long
(without warning). Now, the rule is that a plain decimal constant will be fitted into the
first in this list,

int long unsigned long
 that can hold the value.

Plain octal or hexadecimal constants
 will use this list

int unsigned int long unsigned long
 If the constant is suffixed by u or U:

unsigned int unsigned long
 If it is suffixed by l or L:

long unsigned long and finally, if it suffixed by both u or U and l or L, it can only be an
unsigned long. All that was done to try to give you ‘what you meant’; what it does mean is

 25

that it is hard to work out exactly what the type of a constant expression is if you don't
know something about the hardware. Hopefully, good compilers will warn when a
constant is promoted up to another length and the U or L etc. is not specified.

A nasty bug hides here:

printf("value of 32768 is %d\n", 32769);

 On a 16-bit two's complement machine, 32769 will be a long by the rules given
above. But Printf is only expecting an int as an argument (the %d indicates that). The type
of the argument is just wrong. For the ultimate in safety-conscious programming, you
should cast such cases to the right type:

printf("value of 32768 is %d\n", (int)32769);

It might interest you to note that there are no negative constants; writing -23 is an
expression involving a positive constant and an operator.

Character Constants

Single character constants
 Single character constants are formed by using a single character from C character
set enclosed in single quotes. Like wise String constants are formed by using either a
single character or more than one character enclosed with double quotes.

Character constants actually have type int (for historical reasons) and are written by
placing a sequence of characters between single quote marks:

'e'
't'
'like that'

Wide character constants are written just as above, but prefixed with L:

L'e'
L't'
L'like that'

Regrettably it is valid to have more than one character in the sequence, giving a machine-
dependent result. Single characters are the best from the portability point of view,
resulting in an ordinary integer constant whose value is the machine representation of the
single character. The introduction of extended characters may cause you to stumble over
this by accident; if '<a>' is a multibyte character (encoded with a shift-in shift-out around
it) then '<a>' will be a plain character constant, but containing several characters, just like
the more obvious 'abcde'. This is bound to lead to trouble in the future; let's hope that
compilers will warn about it.

A string constant is a sequence of characters enclosed in double quotes. The characters

 26

may be letters, numbers, special characters and blank space. Examples are:

"Hello'"
"1027"
"WELL COME"
“a*c”

Remember that a character constant (e.g., 'X') is not equivalent to the single character
String constant (e.g., "X"). Further, a single character string constant does not have an
equivalent integer value while a character constant has an integer value. Character strings
are often used in programs to build meaningful programs

To ease the way of representing some special characters that would otherwise be hard to
get into a character constant (or hard to read; does ' ' contain a space or a tab?), there is
what is called an escape sequence which can be used instead. Table 2.1 shows the escape
sequences defined in the Standard.

Sequence Represents
\a audible alarm
\b backspace
\f form feed
\n newline
\r carriage return
\t tab
\v vertical tab
\\ backslash
\' quote
\" double quote
\? question mark

Table 2.1. C escape sequences

It is also possible to use numeric escape sequences to specify a character in terms of the
internal value used to represent it. A sequence of either \ooo or \xhhhh, where the ooo is
up to three octal digits and hhhh is any number of hexadecimal digits respectively. A
common version of it is '\033', which is used by those who know that on an ASCII
based machine, octal 33 is the ESC (escape) code. Beware that the hexadecimal version
will absorb any number of valid following hexadecimal digits; if you want a string
containing the character whose value is hexadecimal ff followed by a letter f, then the
safe way to do it is to use the string joining feature:

"\xff" "f"

 27

The string

"\xfff"

only contains one character, with all three of the fs eaten up in the hexadecimal
sequence. Some of the escape sequences aren't too obvious, so a brief explanation is
needed. To get a single quote as a character constant you type '\'', to get a question
mark you may have to use '\?'; not that it matters in that example, but to get two of
them in there you can't use '??', because the sequence ??' is a trigraph! You would have
to use '\?\?'. The escape \" is only necessary in strings, which will come later.

There are two distinct purposes behind the escape sequences. It's obviously necessary to
be able to represent characters such as single quote and backslash unambiguously: that is
one purpose. The second purpose applies to the following sequences which control the
motions of a printing device when they are sent to it, as follows:

\a
Ring the bell if there is one. Do not move.

\b
Backspace.

\f
Go to the first position on the ‘next page’, whatever that may mean for the output
device.

\n
Go to the start of the next line.

\r
Go back to the start of the current line.

\t
Go to the next horizontal tab position.

\v
Go to the start of the line at the next vertical tab position.

For \b, \t, \v, if there is no such position, the behavior is unspecified. The Standard
carefully avoids mentioning the physical directions of movement of the output device
which are not necessarily the top to bottom, left to right movements common in Western
cultural environments.

It is guaranteed that each escape sequence has a unique integral value which can be
stored in a char.

Real constants

Real constants are formed by using the numbers 0 to 9 with decimal point. Some
examples for real constants are as follows;

1.0

 28

2.
.1
2.634
.125
2.e5
2.e+5
.125e-3
2.5e5
3.1E-6

and so on. For readability, even if part of the number is zero, it is a good idea to show it:

1.0
0.1

The exponent part shows the number of powers of ten that the rest of the number should
be raised to, so

3.0e3

is equivalent in value to the integer constant

3000

As you can see, the e can also be E. These constants all have type double unless they are
suffixed with f or F to mean float or l or L to mean long double.

For completeness, here is the formal description of a real constant:

A real constant is one of:

 A fractional constant followed by an optional exponent.
 A digit sequence followed by an exponent.

In either case followed by an optional one of f, l, F, L, where:

 A fractional constant is one of:
o An optional digit sequence followed by a decimal point followed by a

digit sequence.
o A digit sequence followed by a decimal point.

 An exponent is one of
o e or E followed by an optional + or - followed by a digit sequence.

 A digit sequence is an arbitrary combination of one or more digits.

Symbolic Constants

 C also provides the facility to define symbolic constants for flexible writing of
programs by user. For example, It's bad practice to bury ``magic numbers'' like 300 and

 29

20 in a program; they convey little information to someone who might have to read the
program later, and they are hard to change in a systematic way. One way to deal with
magic numbers is to give them meaningful names. A #define line defines a symbolic
name or symbolic constant to be a particular string of characters:

#define name replacement list

Thereafter, any occurrence of name (not in quotes and not part of another name) will be
replaced by the corresponding replacement text. The name has the same form as a
variable name: a sequence of letters and digits that begins with a letter. The replacement
text can be any sequence of characters; it is not limited to numbers.

#include <stdio.h>
#define LOWER 0 /* lower limit of table */
#define UPPER 300 /* upper limit */
#define STEP 20 /* step size */

/* print Fahrenheit-Celsius table */

main()
{
int fahr;
for (fahr = LOWER; fahr <= UPPER; fahr = fahr + STEP)
printf("%3d %6.1f\n", fahr, (5.0/9.0)*(fahr-32));
}

The quantities LOWER, UPPER and STEP are symbolic constants, not variables, so they do not
appear in declarations. Symbolic constant names are conventionally written in upper case so they
can be readily distinguished from lower case variable names. Notice that there is no semicolon at
the end of a #define line.

Some more examples are

#define MAXLINE 1000

char line[MAXLINE+1];

or

#define LEAP 1 /* in leap years */

int days[31+28+LEAP+31+30+31+30+31+31+30+31+30+31];

2.4 Variables

 A variable is a named data storage location in your computer's memory. By using
a variable's name in your program, you are, in effect, referring to the data stored there.

 30

Unlike constants, the value of variable can be changed during the execution of the
program

Rules for using Variable Names

To use variables in your C programs, you must know how to create variable names. In C,
variable names must adhere to the following rules:

 The first character of the name must be a letter.

 The underscore is also a legal first character, but its use is not recommended.

 The name can contain letters, digits, and the underscore character (_).No other

special characters should be used.

 Case matters (that is, upper- and lowercase letters). Thus, the names count and

Count refer to two different variables.

 C keywords can't be used as variable names. A keyword is a word that is part of

the C language.

 ANSI standard recognize a length of 31 characters. However, the length should

not be normally more than 8 characters.

The following list contains some examples of legal and illegal C variable names:

Variable Name Legality

Avg Legal
y2x5__fg7h Legal
annual_pro Legal
_1990_yr Legal but not advised
savings#book Illegal: Contains the illegal character #
double Illegal: Is a C keyword
9winter Illegal: First character is a digit

Because C is case-sensitive, the names percent, PERCENT, and Percent would be
considered three different variables. C programmers commonly use only lowercase letters
in variable names, although this isn't required. Using all-uppercase letters is usually
reserved for the names of constants (which are covered later in this chapter). For many
compilers, a C variable name can be up to 31 characters long. (It can actually be longer
than that, but the compiler looks at only the first 31 characters of the name.) With this
flexibility, you can create variable names that reflect the data being stored. For example,
a program that calculates loan payments could store the value of the prime interest rate in
a variable named interest_rate.

 31

The variable name helps make its usage clear. You could also have created a variable
named x or even johnny_carson; it doesn't matter to the C compiler. The use of the
variable, however, wouldn't be nearly as clear to someone else looking at the source code.
Although it might take a little more time to type descriptive variable names, the
improvements in program clarity make it worthwhile.

Many naming conventions are used for variable names created from multiple words.
You've seen one style: interest_rate. Using an underscore to separate words in a variable
name makes it easy to interpret. The second style is called camel notation. Instead of
using spaces, the first letter of each word is capitalized. Instead of interest_rate, the
variable would be named InterestRate. Camel notation is gaining popularity, because it's
easier to type a capital letter than an underscore. We use the underscore in this book
because it's easier for most people to read. You should decide which style you want to
adopt.

DO s and DON’T s

DO use variable names that are descriptive.
DO adopt and stick with a style for naming your variables.
DON'T start your variable names with an underscore unnecessarily.
DON'T name your variables with all capital letters unnecessarily.

Declaration of variable

 Before you can use a variable in a C program, it must be declared. A variable
declaration tells the compiler the name and type of a variable and optionally initializes
the variable to a specific value. If your program attempts to use a variable that hasn't been
declared, the compiler generates an error message. A variable declaration has the
following form:

General Format : Type name varname; or

Type name var1,var2,…var n;

Remember that, each statement in C should be terminated with semicolon (;).

typename specifies the variable type and must be any one of the keywords in C. The
varname is the variable name, which must follow the rules mentioned earlier. You can
declare multiple variables of the same type on one line by separating the variable names
with commas:

int size, length, height; /* three integer variables */

 32

float average, pay; /* two float variables */

A variable may also be initialized in its declaration. If the name is followed by an equals
sign and an expression, the expression serves as an initializer, as in

char esc = '\\';
int i = 0;
int limit = MAXLINE+1;
float eps = 1.0e-5;

If the variable in question is not automatic, the initialization is done once only,
conceptionally before the program starts executing, and the initializer must be a constant
expression. An explicitly initialized automatic variable is initialized each time the
function or block it is in is entered; the initializer may be any expression. External and
static variables are initialized to zero by default. Automatic variables for which is no
explicit initializer have undefined (i.e., garbage) values.

The qualifier const can be applied to the declaration of any variable to specify that its
value will not be changed. For an array, the const qualifier says that the elements will not
be altered.

const double e = 2.71828182845905;
const char msg[] = "warning: ";

The const declaration can also be used with array arguments, to indicate that the function
does not change that array:

int strlen(const char[]);

The result is implementation-defined if an attempt is made to change a const.

2.5 Data Type

 C language contains numerous data types. Storage representations and machine
instructions to handle constants differ from machine to machine. The varieties of data
types available allow the programmer to select the type appropriate to the needs of the
application as well as the machine.

ANSIC supports four classes of data types:

1. Primary (or fundamental) data types
2. User-defined data types
3. Derived data types
4. Empty data set

 The primary data types and their extensions are discussed in this section. The user-
defined data types are defined in the next section while the derived data types such as
arrays, functions, structures and pointers are discussed as and when they are encountered.
The empty data set is discussed in the chapter on functions.

 33

All C compilers support four fundamental data types, namely integer (int), character

(char), floating point (float), and double-precision floating point (double). Many of them”
also offer extended data types such as long int and long double. Various data types and
the terminology used to describe them are given in the following figure.

 Primary data type

 Integral type Floating point type

 Integer type character type float double long double
 (1) (4) (8) (10)

Signed Unsigned signed unsigned
Type type char char

int (2) unsigned int

short int(1) unsigned short int

long int(4) unsigned long int

Figure 2.2 Classification of primary data type.

Numbers in parenthesis represent size of data type in bytes.

 Even these many data types are available; we will generally use four basic data types.
The range of the basic four types are given in the following table. We discuss briefly each
one of them in this section.

Char -128 to 127
Int -32,768 to 32,767
 float 3.4e--38 to 3.4e+38
double 1.7e-308 to 1.7e+308

Integer type

Integers are whole numbers with a range of values supported by a particular
machine. Generally, integers occupy one word of storage, and since the word sizes of
machines vary (typically, 16 or 31 bits) the size of an integer that can be stored depends
on the computer. If we use a 16 bit word length, the size of the integer value is limited to
the range -32768 to +32767 (that is, -215 to +215-1). A signed integer uses one bit for
sign and 15 bits for the magnitude of the number. Similarly, a 32 bit word length can
store an integer ranging from -2, 147,483,648 to 2,147,483,647.

In order to provide some control over the range of numbers and storage space, C has

three classes of integer storage, namely short int, int, and long int, in both signed and

 34

unsigned forms. For example, short int represents fairly small integer values and requires
half the amount of storage as a regular int number uses. Unlike signed integers, unsigned
integers use all the bits for the magnitude of the number and are always positive.
Therefore, for a 16 bit machine, the range of unsigned integer numbers will be from 0 to
65,535.

We declare long and unsigned integers to increase the range of values. The use of

qualifier signed on integers is optional because the default declaration assumes a signed
number. The following table shows all the allowed combinations of basic types and
qualifiers and their size and range on a 16-bit macJ1ine.

Data Type Size

char or signed char 8
unsigned char 8
int or signed int 16
unsigned int 16
short int or 8
signed short int
unsigned short int 8
long int or 32
signed long int
unsigned long int 32
float 32
double 64
long double 80

Floating point type

 Floating point (or real) numbers are stored in 32 bits (on all 16 bit and 32 bit
machines), with 6 digits of precision. Floating point numbers are defined in C by the
keyword float. When the accuracy provided by a float number is not sufficient, the type
double can be used to define the number. A double data type number uses 64 bits giving a
precision of 14 digits. These are known as double precision numbers. Remember that
double type represents the same data type that float represents, but with a greater
precision. To extend the precision further, we may use long double which uses 80 bits.

Character type

 A single character can be defined as a character(char) type data. Characters are
usually stored in 8 bits (one byte) of internal storage. The qualifier signed or unsigned
may be explicitly applied to char. While unsigned chars have values between 0 and 255,
signed chars have values from-128 to 127.

User defined type

 User defined data type in “C” helps the user to increase the readability of the
program’s supports a feature known as "type definition" that allows users to represent an
identifier that would represent an existing data type. The user-defined data type identifier
can later be used to declare variables. It takes the general form: "

 35

 typedef type identifier;

Where type refers to an existing data type and "identifier" refers to the "new” name given
to the existing data type. The existing data type may belong to any class of type,
including the user-defined ones. Remember that the new type is 'new' only in name, but
not the data type. typedef cannot create a new type. Some examples of type definition
are:

typedef int number;
typedef float avg;

In the above example, number and avg are alias of data type int and float. Once alias
names are created then we can declare the variables using alias names.

Example 2.5.

 number odd,even;
 avg fisrt, second;

Here, odd and even are declared as integer type and first and second are declared as
floating point type. The main advantage of typedef is that we can create meaningful data
type names for increasing the readability of the program.

Another user-defined data type provided by ANSI standard is enumerated data type, in
which, user can create his own data type with predefined values. It is defined as follows:

 enum identifier {value1, value2, ….., value n};

The "identifier" is a user-defined enumerated data type which can be used to declare
variables that can have one of the values enclosed within the braces (known as
enumeration constants). After this definition, we can declare variables to be of this 'new'
type as below:

enum identifier v1, v2, ... vn;

The enumerated variables vI, v2, ... vn can only have one of the values value1,value2, ...
value n. The assignments of the following types are valid:

V2 = value1;
V4 = value3;

For example
 enum value {10,20,30,40,50};

 enum value number1, number2;

for example 2.6, the following program is used to find a given number is prime or not.

 36

Example 2.6

#include<stdio.h>
#include<conio.h>
main()
{
int I,c=0;
enum value {10,20,30,40,50};
enum value number1;
number1=20;
for (i=1;i<=number1;i++)
 {
 if (number1%i != 0)
 c=1;
 }

if(c>=2)

 printf(“number1 is prime”);
else

 printf(number1 is not a prime”);

}

The compiler automatically assigns integer digits beginning with 0 to all the enumeration
constants. That is, the enumeration constant value 1 is assigned 0, value2 is assigned I,
and so on. However, the automatic assignments can be overridden by assigning values
explicitly to the enumeration constants. For example:

enum day {Sunday, Monday,…Saturday};
enum day {Monday = 1, Tuesday, ...};

Here, the constant Monday is assigned the value of 1. The remaining constants are
assigned values that increase successively by 1.

Derived data type and empty data set

 Arrays structures, pointers and functions will comes under derived data type,
which we will discuss in the next chapters. Empty data set will come along with the
chapter functions.

2.6 Type Conversion

 Two basic classifications of conversion methods supported by “C” are,

(i). Implicit conversion or Automatic conversion
(ii). Explicit Conversion.

 37

Implicit Conversion

 When an operator has operands of different types, they are converted to a
common type according to a small number of rules. In general, the only automatic
conversions are those that convert a ``narrower'' operand into a ``wider'' one without
losing information, such as converting an integer into floating point in an expression like
f + i. Expressions that don't make sense, like using a float as a subscript, are
disallowed. Expressions that might lose information, like assigning a longer integer type
to a shorter, or a floating-point type to an integer, may draw a warning, but they are not
illegal. A char is just a small integer, so chars may be freely used in arithmetic
expressions. This permits considerable flexibility in certain kinds of character
transformations. One is exemplified by this naive implementation of the function atoi,
which converts a string of digits into its numeric equivalent.

Example 2.7
/* atoi: convert s to integer */
int atoi(char s[])
{
int i, n;
n = 0;
for (i = 0; s[i] >= '0' &s[i] <= '9'; ++i)
n = 10 * n + (s[i] - '0');
return n;
}

For example, the expression

s[i] - '0'

gives the numeric value of the character stored in s[i], because the values of '0', '1',
etc., form a contiguous increasing sequence.

Another example of char to int conversion is the function lower, which maps a
single character to lower case for the ASCII character set. If the character is not an upper
case letter, lower returns it unchanged.

Example 2.8
/* lower: convert c to lower case; ASCII only */
int lower(int c)
{
if (c >= 'A' &c <= 'Z')
return c + 'a' - 'A';
else
return c;
}

This works for ASCII because corresponding upper case and lower case letters are a fixed
distance apart as numeric values and each alphabet is contiguous -- there is nothing but
letters between A and Z. This latter observation is not true of the EBCDIC character set,
however, so this code would convert more than just letters in EBCDIC.

 38

The standard header <ctype.h> defines a family of functions that provide tests and
conversions that are independent of character set. For example, the function tolower
is a portable replacement for the function lower shown above. Similarly, the test

c >= '0' &c <= '9'

can be replaced by,

isdigit(c)

We will use the <ctype.h> functions from now on.

There is one subtle point about the conversion of characters to integers. The language
does not specify whether variables of type char are signed or unsigned quantities.
When a char is converted to an int, can it ever produce a negative integer? The answer
varies from machine to machine, reflecting differences in architecture. On some
machines a char whose leftmost bit is 1 will be converted to a negative integer (``sign
extension''). On others, a char is promoted to an int by adding zeros at the left end, and
thus is always positive.

The definition of C guarantees that any character in the machine's standard printing
character set will never be negative, so these characters will always be positive quantities
in expressions. But arbitrary bit patterns stored in character variables may appear to be
negative on some machines, yet positive on others. For portability, specify signed or
unsigned if non-character data is to be stored in char variables. Relational
expressions like i > j and logical expressions connected by && and || are defined
to have value 1 if true, and 0 if false. Thus the assignment

d = c >= '0' &c <= '9'

sets d to 1 if c is a digit, and 0 if not. However, functions like isdigit may return
any non-zero value for true. In the test part of if, while, for, etc., ``true'' just means
``non-zero'', so this makes no difference. Implicit arithmetic conversions work much as
expected. In general, if an operator like + or * that takes two operands (a binary
operator) has operands of different types, the ``lower'' type is promoted to the ``higher''
type before the operation proceeds. The result is of the integer type. Given below is the
sequence of rules that are applied while evaluating expressions. All short and char are
automatically converted to int; then,

(1) if one of the operands is long double, the other will be converted to long
double and the result will be long double;

(2) else, if one of the operands is double, the other will be converted to double

and the result will be double;

(3) else, if one of the operands is float, the other will converted to float arid
the result will be float;

 39

(4) else, if one of the operands is unsigned long int, the other will be

converted to unsigned long int and the result will be unsigned long int;

(5) else, if one of the operands is long int and the other is unsigned int, then:

(a) if unsigned int can be converted to long int, the unsigned int operand
will be converted as such and the result will be long int;

(b) else, both operands will be converted to unsigned long int and the
result will be unsigned long int;

(6) else, if one of the operands is long int, the other will be converted to long

int and the result will be long int;

(7) else, if one of the operands is unsigned int, the other will be converted to
unsigned int and the result will be unsigned int.

Notice that floats in an expression are not automatically converted to double; this is a
change from the original definition. In general, mathematical functions like those in
<math.h> will use double precision. The main reason for using float is to save
storage in large arrays, or, less often, to save time on machines where double-precision
arithmetic is particularly expensive.

Conversion rules are more complicated when unsigned operands are involved.
The problem is that comparisons between signed and unsigned values are machine-
dependent, because they depend on the sizes of the various integer types. For example,
suppose that int is 16 bits and long is 32 bits. Then -1L < 1U, because 1U, which
is an unsigned int, is promoted to a signed long. But -1L > 1UL because -
1L is promoted to unsigned long and thus appears to be a large positive number.
Conversions take place across assignments; the value of the right side is converted to the
type of the left, which is the type of the result. A character is converted to an integer,
either by sign extension or not, as described above. Longer integers are converted to
shorter ones or to chars by dropping the excess high-order bits. Thus in

int i;
char c;
i = c;
c = i;

the value of c is unchanged. This is true whether or not sign extension is involved.
Reversing the order of assignments might lose information, however. If x is float
and i is int, then x = i and i = x both cause conversions; float to int
causes truncation of any fractional part. When a double is converted to float,
whether the value is rounded or truncated is implementation dependent. Since an
argument of a function call is an expression, type conversion also takes place when
arguments are passed to functions. In the absence of a function prototype, char and
short become int, and float becomes double. This is why we have declared

 40

function arguments to be int and double even when the function is called with
char and float.

Casting a value

 Explicit type conversions can also be possible in any expression, with a unary
operator called a cast. In the construction

(type name) expression

the expression is converted to the named type by the conversion rules above. The precise
meaning of a cast is as if the expression were assigned to a variable of the specified type,
which is then used in place of the whole construction. For example, the library routine
sqrt expects a double argument, and will produce nonsense if inadvertently handled
something else. (sqrt is declared in <math.h>.) So if n is an integer, we can use
sqrt((double) n) to convert the value of n to double before passing it to
sqrt. Note that the cast produces the value of n in the proper type; n itself is not
altered. The cast operator has the same high precedence as other unary operators, as
summarized in the table at the end of this chapter. If arguments are declared by a function
prototype, as the normally should be, the declaration causes automatic coercion of any
arguments when the function is called. Thus, given a function prototype for sqrt:

double sqrt(double)

the call, root2 = sqrt(2)

coerces the integer 2 into the double value 2.0 without any need for a cast. The standard
library includes a portable implementation of a pseudo-random number generator and a
function for initializing the seed; the former illustrates a cast:

example 2.9
unsigned long int next = 1;

/* rand: return pseudo-random integer on 0..32767 */

int rand(void)
{

 next = next * 1103515245 + 12345;
 return (unsigned int)(next/65536) % 32768;

}

/* srand: set seed for rand() */

void srand(unsigned int seed)
{

 41

 next = seed;
}

Examples of casting are given bellow.

x = (Int) 9.5 9.5 is converted to integer
by truncation. Result is 9.

a = (Int) 7.11/ (Int) 5.5 Evaluated as 5/7 and the result will be 1 .

b = (double)total / subj Division is done in floating

point mode.

y = (int) (x+y) The result of x+y is converted to integer.

z = (Int) x+y x is converted to integer and then added to y.

p = cos ((double) a) Converts ‘a’ to double before using it.

For example 2.10

/* program for type casting*/

#include<stdio.h>
main()
{

float sum; int n;
sum = 0;
for(n = 1;n<=10;++n)
{

sum = sum + 1/(float)n;

printf ("% 2d %6.4f\n", n, sum);

}

}

Output

1 1.0000
2 1 .5000
3 1 .8333
4 2.0833
5 2.2833
6 2.4500
7 2.5929
8 2.7179
9 2.8290
10 2.9290
Casting can be used to round-off a given value. Consider the following statement:

 42

 x = (int) (y+O.5);

If y is 27.6, y+O.5 is 28.1 and on casting, the result becomes 28, the value that is
assigned to x. Of course, the expression, being cast is not changed.

2.7 Let Us Sum-up

 In this lesson, we discussed about

 Importance of ‘C’ programming and its applications
 The simplest way of implementing ‘C’ programs
 Basic elements used in ‘C’ like characterset, variables, declaration and
 Initialization, rules for using variables etc,.
 Various classification of constant and implementing symbolic constants
 Rich set of data types and type conversion.

2.8 Points for discussion

(i). Can we use keywords as variables?
(ii). What will be the maximum size of variable?
(iii). Why we need type casting?
(iv). Differentiate signed and unsigned type.

2.9 Check Your Progress

 What is meant by character set in ‘C’?

 A character set denotes any letter, digit or any other sign used to represent
 the language. Ex. Numbers(0-9), Letters (a to z) both upper case and lower
 case, Special characters..

 Define Constants.

 Constants are fixed quantities in “c” which can not be changed during the
 execution.

2.10. Lesson-end Activities

 1. Can we use keywords as variable names?
 2. Why some words are referred as key words in “c”?
 3. Is it possible to treat integer data as float type?

 43

2.11 References

1.Peter Aitken, Teach Yourself C in 21 Days, Fourth Edition, Sams Publisher.
2.Brian W. Kernighan and Dennis M. Ritchie, The C programming Language, Prentice-
Hall in 1988
3.E.Balagursamy, Programming in Ansi C, TATA MCGraw Hill
4. http://publications.gbdirect.co.uk/c_book
5. http://www.cs.utk.edu

 44

LESSON – 3 : Operators, Expressions and I/O statements

CONTENTS

3.0 Aims and Objectives

3.1 Introduction

3.2 Operators and expressions

 3.2.1 Arithmetic operator

 3.2.2 Relational operator

 3.2.3 Logical operator

3.2.4 Assignment operators

3.2.5 Increment and decrement operators

3.2.6 Conditional operators

3.2.7 Bit wise operators

3.2.8 Other operators

3.3 Input and Output functions

 3.3.1 Input statement

 3.3.2 Output statement

 3.3.3 Functions puts() and gets()

3.4 Let us Sum-up

3.5 Points for discussion

3.6 Check your progress

3.7 Lesson-end Activities

3.8 References

 45

3.0 Aims and Objectives

 The main aim of this lesson is to make reader to understand about various
operators supported by “C” programming language. This lesson will also motivate the
programmer to implement programs using formatted and unformatted input and output
statements.

3.1 Introduction

 This lesson will clearly explain about the list of operators used in “C”
programming and the way of reading and displaying the information. This lesson also
covers formatted and unformatted input / output statement, so that the reader can increase
readability of the program.

3.2 Operators and Expressions

 An operator is a symbol which helps the user to command the computer to do a
certain mathematical or logical manipulations. Operators are used in C language program
to operate on data and variables. C supports rich set of operators. Variables and constants
can be used in conjunction with C operators to create more complex expressions. The
following table presents the set of C operators.

 Operator Example Description/Meaning
 () f() Function call
 [] a[10] Array reference

-> s->a Structure and union member selection
. s.a Structure and union member selection
+ [unary] +a Value of a
- [unary] -a Negative of a
* [unary] *a Reference to object at address a
& [unary] &a Address of a
~ ~a One's complement of a
++ [prefix] ++a The value of a after increment
++ [postfix] a++ The value of a before increment
- - [prefix] -a The value of a after decrement
- - [postfix] a- The value of a before decrement
sizeof sizeof (t1) Size in bytes of object with type t1
sizeof sizeof e Size in bytes of object having the type of ‘e’
+ [binary] a + b a plus b
- [binary] a – b a minus b
* [binary] a * b a times b
/ a / b a divided by b %
% a % b Remainder of a/b
 >> a >> b a, right-shifted b bits
<< a << b a, left-shifted b bits

 46

 < a > b 1 if a < b; 0 otherwise
 > a < b 1 if a > b; 0 otherwise
<= a<= b 1 if a <= b; 0 otherwise
>= a>= b 1 if a > =b; 0 otherwise
== a == b 1 if a == b; 0 otherwise
!= a != b 1 if a != b; 0 otherwise
……………….
……………….

 Generally the C operators are classified in to the following categories.

1. Arithmetic operators
2. Relational operators
3. Logical operators
4. Assignment operators
5. Increment and decrement operators
6. Conditional operators
7. Bit wise operators
8. Other operators

3.2.1 Arithmetic Operators

 C supports five basic arithmetic operators; +, -, *, / and %. All operators work the
same way as they do in other languages. These can operate on any built-in data type
allowed in C. The unary minus operator, in effect, multiplies its single operand by -1.
Therefore, a number preceded by a minus sign changes its sign.

Operation Operator Comment Value of Sum before Value of sum after

Addition + sum = sum + 3; 4 7
Subtraction - sum = sum -2; 4 2
Multiply * sum = sum * 3; 4 12
Divide / sum = sum / 2; 4 2
Modulus % sum = sum % 3; 4 1

The following code fragment adds the variables loop and count together, leaving the
result in the variable sum

 sum = loop + count;

If the modulus % sign is needed to be displayed as part of a text string, use two, ie %%

Example 3.1
#include <stdio.h>

main()

 47

{
 int sum = 50;
 float modulus;
 modulus = sum % 10;

printf("The %% of %d by 10 is %f\n",sum, modulus);
}

 Sample Program Output

 The % of 50 by 10 is 0.000000

Example 3.2

#include //include header file stdio.h
main() //tell the compiler the start of the program
{
int numb1, num2, sum, sub, mul, div, mod; //declaration of variables
scanf (“%d %d”, &num1, &num2); //inputs the operands

sum = num1+num2; //addition of numbers and storing in sum.
printf(“\n Thu sum is = %d”, sum); //display the output

sub = num1-num2; //subtraction of numbers and storing in sub.
printf(“\n Thu difference is = %d”, sub); //display the output

mul = num1*num2; //multiplication of numbers and storing in mul.
printf(“\n Thu product is = %d”, mul); //display the output

div = num1/num2; //division of numbers and storing in div.
printf(“\n Thu division is = %d”, div); //display the output

mod = num1%num2; //modulus of numbers and storing in mod.
printf(“\n Thu modulus is = %d”, mod); //display the output
}

Integer Arithmetic

 If both operands in a single arithmetic expression, such as x+y, are integers then
the expression is called an integer expression, and the operation is called integer
arithmetic. Integer arithmetic always yields an integer value. The largest integer value
depends on the machine, as pointed out earlier. In the above examples, if a and b are
integers, then for x = 13 and y = 2 we have the following results:

x - y = 11
x + y = 15
x * y = 26

 48

x / y = 6 (decimal part truncated)
 x % y = 1 (remainder of division)

During integer division, if both the operands are of the same sign, the result is truncated
towards zero. If one of them is negative, the direction of truncation is implementation
dependent. That is,

 6 / 7 = 0 and – 6 / - 7 = 0

 but -6 / 7 may be zero or -1. (Machine dependent)

Similarly, during modulo division, the sign of the result is always the sign of the first
operand (the dividend.) That is,

-14 % 3 = -2
-14 % -3 = -2
 14 % -3 = 2

The following program shows the use of integer arithmetic to convert a given number of
days into months and days.

The variables months and days are declared as integers. Therefore, the statement

 months = days/30;

truncates the decimal part and assigns the integer part to months. Similarly, the statement

days = days%30;

assigns the remainder part of the division to days. Thus the given number of days is
converted into an equivalent number of months and days and the result is printed as
shown in the output.

Example 3.3
#include <stdio.h>
main()
{
 int months, days;
 printf("Enter days\ n");
 scanf("%d", &days);
 months = days / 30i days = days % 30;
 printf("Months = %d Days = %d", months, days);
}
Output Enter days 265
Months = 8 Days = 25
Enter days 364

 49

Months = 12 Days = 4
Enter days 45
Months = 1 Days = 15

Real arithmetic

 If both operands in a single arithmetic expression, such as x + y, are integers then
the expression is called an real expression, and the operation is called real arithmetic. A
real operand may assume values either in decimal or exponential notation. Since floating
point values are rounded to the number of significant digits permissible, the final value is
an approximation of the correct result. If x, y, and z are floats, then we will have:

 x = 6.0 / 7.0 = 0.857143

Y = 1.0 / 3.0 = 0.333333
z = -2.0 / 3.0 = -0.666667

Mixed-mode Arithmetic

 When one of the operands is real and the other is integer, the expression is called
a mixed mode arithmetic expression. If either operand is of the real type, then only the
real operation is performed and the result is always a real number. Thus

 C = 5 / 2.0 gives 2.5 where as 5/2 gives 2 only.

3.2.2 Relational operators

 Relational operators are used to compare two quantities. Relational operators have
lower precedence than arithmetic operators, so an expression like i < lim-1 is taken as i <
(lim-1), as would be expected. C supports following relational operators

Operator Meaning Example

> greater than 8 > 4
>= greater than or equal to mark >= score
< less than height < 7
<= less than or equal to height <= input
== equal to score == mark
!= not equal to 9 != 4

Here are important rules for using relational operators:

 Each of these six relational operators takes two operands. These two operands

must both be arithmetic or both be strings. For arithmetic operands, if they are of
different types (i.e., one INTEGER and the other REAL), the INTEGER
operand will be converted to REAL.

 50

 The outcome of a comparison is a LOGICAL value. For example, 5 /= 3 is
.TRUE. and 7 + 3 >= 20 is .FALSE.

 All relational operators have equal priority and are lower than those of

arithmetic operators.

 Type Operator Associativity

 ** right to left
 Arithmetic * / left to right
 operators + - left to right

 Relational < <= > >= == /= none

 This means that a relational operator can be evaluated only if its two operands have
been evaluated. For example, in

a + b /= c*c + d*d

expressions a+b and c*c + d*d are evaluated before the relational operator /= is
evaluated.
 If you are not comfortable in writing long relational expressions, use parenthesis. Thus,
3.0*SQRT(Total)/(Account + Sum) - Sum*Sum >= Total*GNP - b*b
is equivalent to the following:
(3.0*SQRT(Total)/(Account + Sum) - Sum*Sum) >= (Total*GNP - b*b)

 Although a < b < c is legal in mathematics, you cannot write comparisons this way in
Fortran. The meaning of this expression is a < b and b < c.

For example

3**2 + 4**2 == 5**2 is .TRUE.

If the values of REAL variables a, b and c are 1.0, 2.0 and 4.0, respectively, then b*b -
4.0*a*c >= 0.0 is equivalent to 2.0*2.0 - 4.0*1.0*4.0 >= 0.0, which evaluates to -12.0 >=
0.0. Thus, the result is .FALSE.

If REAL variables x and y have values 3.0 and 7.0, and INTEGER variables p and q have
values 6 and 2, what is the result of x*x - y*y + 2.0*x*y /= p*q + p**3 - q**3?

x*x - y*y + 2.0*x*y /= p*q + p**3 - q**3
 --> 3.0*3.0 - 7.0*7.0 + 2.0*3.0*7.0 /= 6*2 + 6**3 - 2**3
 --> [3.0*3.0] - 7.0*7.0 + 2.0*3.0*7.0 /= 6*2 + 6**3 - 2**3
 --> 9.0 - 7.0*7.0 + 2.0*3.0*7.0 /= 6*2 + 6**3 - 2**3
 --> 9.0 - [7.0*7.0] + 2.0*3.0*7.0 /= 6*2 + 6**3 - 2**3

 51

 --> 9.0 - 49.0 + 2.0*3.0*7.0 /= 6*2 + 6**3 - 2**3
 --> [9.0 - 49.0] + 2.0*3.0*7.0 /= 6*2 + 6**3 - 2**3
 --> -40.0 + 2.0*3.0*7.0 /= 6*2 + 6**3 - 2**3
 --> -40.0 + [2.0*3.0]*7.0 /= 6*2 + 6**3 - 2**3
 --> -40.0 + 6.0*7.0 /= 6*2 + 6**3 - 2**3
 --> -40.0 + [6.0*7.0] /= 6*2 + 6**3 - 2**3
 --> -40.0 + 42.0 /= 6*2 + 6**3 - 2**3
 --> [-40.0 + 42.0] /= 6*2 + 6**3 - 2**3
 --> 2.0 /= 6*2 + 6**3 - 2**3
 --> 2.0 /= [6*2] + 6**3 - 2**3
 --> 2.0 /= 12 + 6**3 - 2**3
 --> 2.0 /= 12 + [6**3] - 2**3
 --> 2.0 /= 12 + 216 - 2**3
 --> 2.0 /= [12 + 216] - 2**3
 --> 2.0 /= 228 - 2**3
 --> 2.0 /= 228 - [2**3]
 --> 2.0 /= 228 - 8
 --> 2.0 /= [228 - 8]
 --> 2.0 /= [220]
 --> 2.0 /= 220.0
 --> .TRUE.

In the above, please note the left-to-right evaluation order and the type conversion

Comparing CHARACTER Strings

 Characters are encoded. Different standards (e.g. BCD, EBCDIC and ASCII) may
have different encoding schemes. To write a program that can run on all different kind of
computers and get the same comparison results, one can only assume the following
ordering sequences:

A < B < C < D < E < F < G < H < I < J < K < L < M
 < N < O < P < Q < R < S < T < U < V < W < X < Y < Z

a < b < c < d < e < f < g < h < i < j < k < l < m
 < n < o < p < q < r < s < t < u < v < w < x < y < z

0 < 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9

If you compare characters in different sequences such as 'A' < 'a' and '2' >= 'N', you are
asking for trouble since different encoding methods may produce different answers.
Moreover, do not assume there exists a specific order among upper and lower case letters,
digits, and special symbols. Thus, '+' <= 'A', '*' >= '%', 'u' > '$', and '8' >= '?' make no
sense. However, you can always compare if two characters are equal or not equal. Hence,
'*' /= '9', 'a' == 'B' and '8' == 'b' are perfectly fine.

 52

Here is the method for comparing two strings:

1) The comparison always starts at the first character and proceeds from left to right.

2) If the two corresponding characters are equal, then proceed to the next pair of

characters.

3) Otherwise, the string containing the smaller character is considered to be the smaller
one. And, the comparison halts.

4) During the process comparison,

i) if both strings have consumed all of their characters, they are equal since all of
 their corresponding characters are equal.

ii) otherwise, the shorter string is considered to be the smaller one.

For example

Compare "abcdef" and "abcefg"

 b c d e f
= = = <
a b c e f g

The first three characters of both strings are equal. Since 'd' of the first string is smaller
than 'e' of the second, "abcdef" < "abcefg" holds.

Compare "01357" and "013579"

0 1 3 5 7
= = = = =
0 1 3 5 7 9

Since all compared characters are equal and the first string is shorter, "01357" <
"013579" holds.

What is the result of "DOG" < "FOX"?

D O G
<
F O X

The first character (i.e., 'D' < 'F') determines the outcome. That is, "DOG" < "FOX"
yields .TRUE.

 53

The priority of all six relational operators is lower than the string concatenation operator
//. Therefore, if a relational expression involves //, then all string concatenations must be
carried out before evaluating the comparison operator. Here is an example:

"abcde" // "xyz" < "abc" // ("dex" // "ijk")
 --> ["abcde" // "xyz"] < "abc" // ("dex" // "ijk")
 --> "abcdexyz" < "abc" // ("dex" // "ijk")
 --> "abcdexyz" < "abc" // (["dex" // "ijk"])
 --> "abcdexyz" < "abc" // ("dexijk")
 --> "abcdexyz" < "abc" // "dexijk"
 --> "abcdexyz" < ["abc" // "dexijk"]
 --> "abcdexyz" < "abcdexijk"
 --> .FALSE.

Remember that, if an expression is having relational operator then the expression is
referred to as relational expression.

3.2.3 Logical operators

 Logical operators are used to combine more then one relational expression. C
supports the following logical operators.

 Operator Meaning Syntax

 && Logical AND. exp1 && exp2
 || Logical OR. exp1 || exp2
 ! Logical NOT. !exp1

The logical AND operator (&&) and the logical OR (||) operator evaluate the truth or
falsehood of pairs of expressions. The AND operator evaluates to 1 if and only if both
expressions are true. The OR operator evaluates to 1 if either expression is true. To test
whether y is greater than x and less than z, you would write

(x < y) && (y < z)

The logical negation operator (!) takes only one operand. If the operand is true, the result
is false; if the operand is false, the result is true. The operands to the logical operators
may be integers or floating-point objects. The expression,

1 && -5

results in 1 because both operands are nonzero. The same is true of the expression

0.5 && -5

 54

Logical operators (and the comma and conditional operators) are the only operators for
which the order of evaluation of the operands is defined. The compiler must evaluate
operands from left to right. Moreover, the compiler is guaranteed not to evaluate an
operand if it is unnecessary. For example, in the expression

if ((a != 0) && (b/a == 6.0))

if a equals 0, the expression (b/a == 6) will not be evaluated. This rule can have
unexpected consequences when one of the expressions contains side effects.

Truth Table for C's Logical Operators

 In C, true is equivalent to any nonzero value, and false is equivalent to 0. The
following table shows the logical tables for each operator, along with the numerical
equivalent. All of the operators return 1 for true and 0 for false.

Truth table for AND (&&) operator

 Input-1 operator Input -2 Output
 Zero && zero 0
 Nonzero && zero 0
 Zero && nonzero 0
 Nonzero && nonzero 1
Truth table for OR (||) operator

 Input-1 operator Input -2 Output

 Zero || zero 0
 Nonzero || zero 1
 Zero || nonzero 1
 Nonzero || nonzero 1

Truth table for OR (||) operator

 Input Output

 ! zero 1

 ! one 0

Examples of Expressions Using the Logical Operators

 The following table shows a number of examples that use relational and logical
operators. The logical NOT operator has a higher precedence than the others. The AND

 55

operator has higher precedence than the OR operator. Both the logical AND and OR
operators have lower precedence than the relational and arithmetic operators.

Given the following declarations:

int j = 0, m = 1, n = -1;
float x = 2.5, y = 0.0;
j && m (j) && (m) 0

j < m && n < m (j < m) && (n < m) 1

m + n || ! j (m + n) || (!j) 1

x * 5 && 5 || m / n ((x * 5) && 5) || (m / n) 1

j <= 10 && x >= 1 && m ((j <= 10) && (x >= 1)) && m 1

!x || !n || m+n ((!x) || (!n)) || (m+n) 0

x * y < j + m || n ((x * y) < (j + m)) || n 1

(x > y) + !j || n++ ((x > y) + (!j)) || (n++) 1

(j || m) + (x || ++n) (j || m) + (x || (++n)) 2

Side Effects in Logical Expressions

 Logical operators (and the conditional and comma operators) are the only
operators for which the order of evaluation of the operands is defined. For these
operators, operands must be evaluated from left to right. However, the system evaluates
only as much of a logical expression as it needs to determine the result. In many cases,
this means that the system does not need to evaluate the entire expression. For instance,
consider the following expression:

if ((a < b) && (c == d))

The system begins by evaluating (a < b). If a is not less than b, the system knows that the
entire expression is false, so it will not evaluate (c == d). This can cause problems if
some of the expressions contain side effects:

if ((a < b) && (c == d++))

In this case, d is only incremented when a is less than b. This may or may not be what the
programmer intended. In general, you should avoid using side effect operators in logical
expressions.

 56

Example 3.4
/* Program name is "logical_ops_example". This program */
/* shows how logical operators are used. */

#include <stdio.h>

int main(void)

{

int won_lottery, enough_vacation, money_saved;

char answer;

won_lottery = enough_vacation = money_saved = 0;

printf("\nThis program determines whether you can ");

printf("take your next vacation in Europe.\n");

printf("Have you won the lottery? y or n: ");

fflush(stdin);

scanf("%c", &answer);

if (answer == 'y')

won_lottery = 1;

printf("Do you have enough vacation days saved? \y or n: ");

fflush(stdin);

scanf ("%c", &answer);

if (answer == 'y')

enough_vacation = 1;

printf("Have you saved enough money for the trip? \y or n: ");

fflush(stdin);

scanf("%c", &answer);

if (answer == 'y')

money_saved = 1;

printf("\n");

if (won_lottery)

{

printf("Why do you need a program to decide if you");

 57

printf(" can afford a trip to Europe?\n");

} /* end if */

if (won_lottery || (enough_vacation &&money_saved))

printf("Look out Paris!\n");

else if (enough_vacation &&(!money_saved))

printf("You've got the time, but you haven't got \the dollars.\n");

else if (!enough_vacation || (!money_saved))

{

printf("Tough luck. Try saving your money and ");

printf("vacation days next year.\n");

} /* end else/if */

}

If you execute this program, you get the following output:

This program determines whether you can take your next vacation

in Europe.

Have you won the lottery? y or n: y

Do you have enough vacation days saved? y or n: n

Have you saved enough money for the trip? y or n: n

Why do you need a program to decide if you can afford a trip to

Europe?

Look out Paris!

unToi di lang thang lan trong bong toi buot gia, ve dau khi da mat em roi? Ve dau khi bao

nhieu mo mong gio da vo tan... Ve dau toi biet di ve dau? http://gaigoibaucat.xlphp.net

Toi di lang thang lan trong bong toi buot gia, ve dau khi da mat em roi? Ve

dau khi bao nhieu mo mong gio da vo tan... Ve dau toi biet di ve dau?

 http://gaigoibaucat.xlphp.net

3.2.4 Assignment operator

 58

 The Assignment Operator evaluates an expression on the right of the expression
and substitutes it to the value or variable on the left of the expression.

for example

x = a + b

Here the value of a + b is evaluated and substituted to the variable x.

In addition, C has a set of shorthand assignment operators of the form.

var oper = exp;

Here var is a variable, exp is an expression and oper is a C binary arithmetic operator.
The operator oper = is known as shorthand assignment operator

for example

x + = 1 is same as x = x + 1

The commonly used shorthand assignment operators are as follows

Shorthand assignment operators

 Statement with simple Statement with
 assignment operator shorthand operator

 a = a + 1 a += 1
 a = a – 1 a -= 1
 a = a * (n+1) a *= (n+1)
 a = a / (n+1) a /= (n+1)
 a = a % b a %= b

Example 3.5

#define N 100 //creates a variable N with constant value 100
#define A 2 //creates a variable A with constant value 2

main() //start of the program
{
int a; //variable a declaration
a = A; //assigns value 2 to a

while (a < N) //while value of a is less than N

 59

{ //evaluate or do the following
printf(“%d \n”,a); //print the current value of a
a *= a; //shorthand form of a = a * a
} //end of the loop
} //end of the program

Output

2
4
16

The use of shorthand assignment operators has three advantages:

1. What appears on the left-hand side need not be repeated and therefore it becomes
easier to write.

2. The statement is more concise and easier to read.

3. The statement is more efficient.

These advantages may be appreciated if we consider a slightly more involved statement,
like
 value(5*j-2) = value(5*j-2) + delta;

With the help .of the + = operator, this can be written as follows:

value(5*j-2) += delta;

It is easier to read and understand, and is more efficient because the expression 5 * j - 2 is
evaluated only once.

3.2.5 Increment and decrement operator

 The increment and decrement operators are one of the unary operators which are
very useful in C language. They are extensively used in for and while loops. The syntax
of the operators is given below

 1. ++ variable name
 2. variable name++
 3. – –variable name
 4. variable name– –

 60

The increment operator ++ adds the value 1 to the current value of operand and the
decrement operator – – subtracts the value 1 from the current value of operand.
++variable name and variable name++ mean the same thing when they form
statements independently, they behave differently when they are used in expression on
the right hand side of an assignment statement.

Consider the following

m = 5;
y = ++m; (prefix)

In this case the value of y and m would be 6

Suppose if we rewrite the above statement as

m = 5;
y = m++; (post fix)

Then the value of y will be 5 and that of m will be 6. A prefix operator first adds 1 to the
operand and then the result is assigned to the variable on the left. On the other hand, a
postfix operator first assigns the value to the variable on the left and then increments the
operand.

3.2.6 Conditional or Ternary Operator

 The conditional operator consists of 2 symbols the question mark (?) and the
colon (:) The syntax for a ternary operator is as follows

exp1 ? exp2 : exp3

The ternary operator works as follows

exp1 is evaluated first. If the expression is true then exp2 is evaluated & its value
becomes the value of the expression. If exp1 is false, exp3 is evaluated and its value
becomes the value of the expression. Note that only one of the expression is evaluated.

For example 3.6

a = 10;
b = 15;
x = (a > b) ? a : b

Here x will be assigned to the value of b. The condition follows that the expression is
false therefore b is assigned to x.

 61

/* Example 3.7 : to find the maximum value using conditional operator)
#include
void main() //start of the program
{
int i,j,larger; //declaration of variables
printf (“Input 2 integers : ”); //ask the user to input 2 numbers
scanf(“%d %d”,&i, &j); //take the number from standard input and store it
larger = i > j ? i : j; //evaluation using ternary operator
printf(“The largest of two numbers is %d \n”, larger); // print the largest number
} // end of the program

Output

Input 2 integers : 34 45
The largest of two numbers is 45

3.2.7 Bitwise Operators

 C has a distinction of supporting special operators known as bitwise operators for
manipulation data at bit level. A bitwise operator operates on each bit of data. Those
operators are used for testing, complementing or shifting bits to the right on left. Bitwise
operators may not be applied to a float or double.

Meaning Operator

Bitwise AND &
Bitwise OR |
Bitwise Exclusive ^
Shift left <<
Shift right >>

3.2.8 Special Operators

 C supports some special operators of interest such as comma operator, size of
operator, pointer operators (& and *) and member selection operators (. and -
>). The size of and the comma operators are discussed here. The remaining operators
are discussed in forth coming chapters.

The Comma Operator

 62

 The comma operator can be used to link related expressions together. A comma-
linked list of expressions are evaluated left to right and value of right most expression is
the value of the combined expression.

For example the statement

value = (x = 10, y = 5, x + y);

First assigns 10 to x and 5 to y and finally assigns 15 to value. Since comma has the
lowest precedence in operators the parenthesis is necessary. Some examples of comma
operator are
In for loops:

for (n=1, m=10, n <=m; n++,m++)

In while loops

While (c=getchar(), c != ‘10’)

Exchanging values

t = x, x = y, y = t;

The size of Operator

 The operator size of gives the size of the data type or variable in terms of bytes
occupied in the memory. The operand may be a variable, a constant or a data type
qualifier.

Example

m = sizeof (sum);
n = sizeof (long int);
k = sizeof (235L);

The size of operator is normally used to determine the lengths of arrays and structures
when their sizes are not known to the programmer. It is also used to allocate memory
space dynamically to variables during the execution of the program.

Example3.8 Program that employs different kinds of operators. The results of their
evaluation are also shown in comparison

#include<stdio.h>
main() //start of program
{
int a, b, c, d; //declaration of variables

 63

a = 15; b = 10; c = ++a-b; //assign values to variables
printf (“a = %d, b = %d, c = %d\n”, a,b,c); //print the values
d=b++ + a;
printf (“a = %d, b = %d, d = %d\n, a,b,d);
printf (“a / b = %d\n, a / b);
printf (“a %% b = %d\n, a % b);
printf (“a *= b = %d\n, a *= b);
printf (“%d\n, (c > d) ? 1 : 0);
printf (“%d\n, (c < d) ? 1 : 0);
}
Notice the way the increment operator ++ works when used in an expression. In the
statement c = ++a – b; new value a = 16 is used thus giving value 6 to C. That is ‘a’ is
incremented by 1 before using in expression. However in the statement d = b++ + a; The
old value b = 10 is used in the expression. Here b is incremented after it is used in the
expression.

We can print the character % by placing it immediately after another % character in the
 control string. This is illustrated by the statement.

printf(“a %% b = %d\n”, a%b);

This program also illustrates that the expression
c > d ? 1 : 0
Assumes the value 0 when c is less than d and 1 when c is greater than d.

3.3 Formatted input output statements.

3.3.1 Input Statement – Scanf()

 The formatted input refers to input data that has been arranged in a particular
format. Input values are generally taken by using the scanf function. The scanf function
has the general form.

Scanf (“control string”, arg1, arg2, arg3 ………….argn);

The format field is specified by the control string and the arguments
arg1, arg2, …………….argn specifies the addrss of location where address is to be
stored.

 64

The control string specifies the field format which includes format specifications and
optional number specifying field width and the conversion character % and also blanks,
tabs and newlines.

The Blanks tabs and newlines are ignored by compiler. The conversion character % is
followed by the type of data that is to be assigned to variable of the assignment. The field
width specifier is optional.

The general format for reading a integer number is

% x d

Here percent sign (%) denotes that a specifier for conversion follows and x is an integer
number which specifies the width of the field of the number that is being read. The data
type character d indicates that the number should be read in integer mode.

for example

scanf (“%3d %4d”, &sum1, &sum2);

If the values input are 175 and 1342 here value 175 is assigned to sum1 and 1342 to sum
2. Suppose the input data was follows 1342 and 175.

The number 134 will be assigned to sum1 and sum2 has the value 2 because of %3d the
number 1342 will be cut to 134 and the remaining part is assigned to second variable
sum2. If floating point numbers are assigned then the decimal or fractional part is skipped
by the computer. To read the long integer data type we can use conversion specifier % ld
 & % hd for short integer.

Input specifications for real number:

 Field specifications are not to be use while representing a real number therefore
real numbers are specified in a straight forward manner using % f specifier.

The general format of specifying a real number input is
Scanf (% f “, &variable);

for example
Scanf (“%f %f % f”, &a, &b, &c);

With the input data
321.76, 4.321, 678 The values
321.76 is assigned to a , 4.321 to b & 678 to C.

 65

If the number input is a double data type then the format specifier should be % lf instead
of %f.

Input specifications for a character.

 Single character or strings can be input by using the character specifiers.
The general format is

% xc or %xs

Where C and S represents character and string respectively and x represents the field
width. The address operator need not be specified while we input strings.

for example

Scanf (“%C %15C”, &ch, nname):

Here suppose the input given is a, Robert then a is assigned to ch and name will be
assigned to Robert.

Example 3.9

#include <stdio.h>
main()
{
float y;
int x;
puts("Enter a float, then an int");
scanf("%f %d", &y, &x);
printf("\nYou entered %f and %d ", y, x);
return 0;
}

You will want most of your programs to display information on-screen. The two most
frequently used ways to do this are with C's library functions printf() and puts().

3.3.2 Output Statement - Printf() Function

 The printf() function, part of the standard C library, is perhaps the most versatile
way for a program to display data on-screen. You've already seen printf() used in many
of the examples in this book. Now you will to see how printf() works.

Printing a text message on-screen is simple. Call the printf() function, passing the desired
message enclosed in double quotation marks. For example, to display An error has
occurred! on-screen, you write

 66

printf("An error has occurred!");

In addition to text messages, however, you frequently need to display the value of
program variables. This is a little more complicated than displaying only a message. For
example, suppose you want to display the value of the numeric variable x on-screen,
along with some identifying text. Furthermore, you want the information to start at the
beginning of a new line.You could use the printf() function as follows:

printf("\nThe value of x is %d", x);

The resulting screen display, assuming that the value of x is 12, would be

The value of x is 12

In this example, two arguments are passed to printf(). The first argument is enclosed in
double quotation marks and is called the format string. The second argument is the name
of the variable (x) containing the value to be printed.

The printf() Format Strings

 A printf() format string specifies how the output is formatted. Here are the three
possible components of a format string:

Literal text is displayed exactly as entered in the format string. In the preceding example,
the characters starting with the T (in The) and up to, but not including, the % comprise a
literal string.



An escape sequence provides special formatting control. An escape sequence consists of
a backslash (\) followed by a single character. In the preceding example, \n is an escape
sequence. It is called the newline character, and it means "move to the start of the next
line." Escape sequences are also used to print certain characters. Escape sequences are
listed in Table 7.1.

A conversion specifier consists of the percent sign (%) followed by a single character. In
the example, the conversion specifier is %d. A conversion specifier tells printf() how to
interpret the variable(s) being printed. The %d tells printf() to interpret the variable x as a
signed decimal integer.



Table 3.3.1. The most frequently used escape sequences.

 Sequence Meaning

 \a Bell (alert)
 \b Backspace
 \n Newline
 \t Horizontal tab
 \\ Backslash

 67

 \? Question mark
 \' Single quotation

The printf() Escape Sequences

Now let's look at the format string components in more detail. Escape sequences are used
to control the location of output by moving the screen cursor. They are also used to print
characters that would otherwise have a special meaning to printf(). For example, to print
a single backslash character, include a double backslash (\\) in the format string. The first
backslash tells printf() that the second backslash is to be interpreted as a literal character,
not as the start of an escape sequence. In general, the backslash tells printf() to interpret
the next character in a special manner. Here are some examples:

 Sequence Meaning

 n The character n
 \n Newline
 \" The double quotation character
 " The start or end of a string

Table 3.3.1 lists C's most commonly used escape sequences.

Using printf() escape sequences.

1: /* Demonstration of frequently used escape sequences */
2:
3: #include <stdio.h>
4:
5: #define QUIT 3
6:
7: int get_menu_choice(void);
8: void print_report(void);
9:
10: main()
11: {
12: int choice = 0;
13:
14: while (choice != QUIT)
15: {
16: choice = get_menu_choice();
17:
18: if (choice == 1)
19: printf("\nBeeping the computer\a\a\a");
20: else
21: {
22: if (choice == 2)
23: print_report();
24: }
25: }

 68

26: printf("You chose to quit!\n");
27:
28: return 0;
29: }
30:
31: int get_menu_choice(void)
32: {
33: int selection = 0;
34:
35: do
36: {
37: printf("\n");
38: printf("\n1 - Beep Computer");
39: printf("\n2 - Display Report");
40: printf("\n3 - Quit");
41: printf("\n");
42: printf("\nEnter a selection:");
43:
44: scanf("%d", &selection);
45:
46: }while (selection < 1 || selection > 3);
47:
48: return selection;
49: }
50:
51: void print_report(void)
52: {
53: printf("\nSAMPLE REPORT");
54: printf("\n\nSequence\tMeaning");
55: printf("\n=========\t=======");
56: printf("\n\\a\t\tbell (alert)");
57: printf("\n\\b\t\tbackspace");
58: printf("\n...\t\t...");
59: }
1 - Beep Computer
2 - Display Report
3 - Quit
Enter a selection:1
Beeping the computer
1 - Beep Computer
2 - Display Report
3 - Quit
Enter a selection:2
SAMPLE REPORT
Sequence Meaning
========= =======

 69

\a bell (alert)
\b backspace
... ...
1 - Beep Computer
2 - Display Report
3 - Quit
Enter a selection:3
You chose to quit!

In this program, it seems long compared with previous examples, but it offers some
additions that are worth noting. The STDIO.H header was included in line 3 because
printf() is used in this listing. In line 5, a constant named QUIT is defined. We know that
#define makes using the constant QUIT equivalent to using the value 3. Lines 7 and 8 are
function prototypes. This program has two functions: get_menu_choice() and
print_report(). get_menu_choice() is defined in lines 31 through 49. Lines 37 and 41
contain calls to printf() that print the newline escape sequence. Lines 38, 39, 40, and 42
also use the newline escape character, and they print text. Line 37 could have been
eliminated by changing line 38 to the following:

printf("\n\n1 - Beep Computer");
However, leaving line 37 makes the program easier to read.

Looking at the main() function, you see the start of a while loop on line 14. The while
loop's statements will keep looping as long as choice is not equal to QUIT. Because
QUIT is a constant, you could have replaced it with 3; however, the program wouldn't be
as clear. Line 16 gets the variable choice, which is then analyzed in lines 18 through 25 in
an if statement. If the user chooses 1, line 19 prints the newline character, a message, and
then three beeps. If the user selects 2, line 23 calls the function print_report().
print_report() is defined on lines 51 through 59. This simple function shows the ease of
using printf() and the escape sequences to print formatted information to the screen.
You've already seen the newline character. Lines 54 through 58 also use the tab escape
character, \t. It aligns the columns of the report vertically. Lines 56 and 57 might seem
confusing at first, but if you start at the left and work to the right, they make sense. Line
56 prints a newline (\n), then a backslash (\), then the letter a, and then two tabs (\t\t). The
line ends with some descriptive text, (bell (alert)). Line 57 follows the same format.

The printf() Conversion Specifiers

 The format string must contain one conversion specifier for each printed variable.
printf() then displays each variable as directed by its corresponding conversion specifier.
You'll learn more about this process on Day 15. For now, be sure to use the conversion
specifier that corresponds to the type of variable being printed. Exactly what does this
mean? If you're printing a variable that is a signed decimal integer (types int and long),
use the %d conversion specifier. For an unsigned decimal integer (types unsigned int and
unsigned long), use %u. For a floating-point variable (types float and double), use the %f
specifier. The conversion specifiers you need most often are listed in following Table

 70

The most commonly needed conversion specifiers.

 Specifier Meaning Types Converted

 %c Single character char
 %d Signed decimal integer int, short
 %ld Signed long decimal integer long
 %f Decimal floating-point number float, double
 %s Character string char arrays
 %u Unsigned decimal integer unsigned int, unsigned short
 %lu Unsigned long decimal integer unsigned c

The literal text of a format specifier is anything that doesn't qualify as either an escape
sequence or a conversion specifier. Literal text is simply printed as is, including all
spaces. What about printing the values of more than one variable? A single printf()
statement can print an unlimited number of variables, but the format string must contain
one conversion specifier for each variable. The conversion specifiers are paired with
variables in left-to-right order. If you write

printf("Rate = %f, amount = %d", rate, amount);

the variable rate is paired with the %f specifier, and the variable amount is paired with
the %d specifier. The positions of the conversion specifiers in the format string determine
the position of the output. If there are more variables passed to printf() than there are
conversion specifiers, the unmatched variables aren't printed. If there are more specifiers
than variables, the unmatched specifiers print "garbage." You aren't limited to printing
the value of variables with printf(). The arguments can be any valid C expression. For
example, to print the sum of x and y, you could write

z = x + y;
printf("%d", z);
You also could write
printf("%d", x + y);

Any program that uses printf() should include the header file STDIO.H.

The printf() Function

#include <stdio.h>
printf(format-string[,arguments,...]);

printf() is a function that accepts a series of arguments, each applying to a conversion
specifier in the given format string. Printf() prints the formatted information to the
standard output device, usually the display screen. When using printf(), you need to
include the standard input/output header file, STDIO.H.

The format-string is required; however, arguments are optional. For each argument, there
must be a conversion specifier.

 71

The format-string can also contain escape sequences. The following are examples of calls
to printf() and their output:

Example 3.10 Input
#include <stdio.h>
main()
{
printf("This is an example of something printed!");
return 0;
}

Example 3.10 Output

This is an example of something printed!

Example 3.11 Input

printf("This prints a character, %c\na number, %d\na floating point, %f", `z', 123,
456.789);

Example 3.11 Outtput

This prints a character, z
a number, 123

a floating point, 456.789

printf formatting is controlled by 'format identifiers' which, are shown below in their
simplest form.

 %d %i Decimal signed integer.
 %o Octal integer.
 %x %X Hex integer.
 %u Unsigned integer.
 %c Character.
 %s String. See below.
 %f double
 %e %E double.
 %g %G double.
 %p pointer.
 %n Number of characters written by this printf.
 No argument expected.
 %% %. No argument expected.

These identifiers actually have upto 6 parts as shown in the table below. They MUST be
used in the order shown.

 72

% Flags Minimum
field width Period

Precision.
Maximum field

width

Argument
type

Required Optional Optional Optional Optional Required

%
The % marks the start and therefore is minatory.
Flags
The format identifiers can be altered from their default function by applying the
following flags:
 - Left justify.
 0 Field is padded with 0's instead of blanks.
 + Sign of number always O/P.
 blank Positive values begin with a blank.
 # Various uses:
 %#o (Octal) 0 prefix inserted.
 %#x (Hex) 0x prefix added to non-zero values.
 %#X (Hex) 0X prefix added to non-zero values.
 %#e Always show the decimal point.
 %#E Always show the decimal point.
 %#f Always show the decimal point.
 %#g Always show the decimal point trailing
 zeros not removed.
 %#G Always show the decimal point trailing
 zeros not removed.
The flags must follow the %. Where it makes sense, more than one flag can be used.
Here are a few more examples.

 printf(" %-10d \n", number);
 printf(" %010d \n", number);
 printf(" %-#10x \n", number);
 printf(" %#x \n", number);

Minimum field width.
By default the width of a field will be the minimum required to hold the data. If you want
to increase the field width you can use the following syntax.

Example 3.12
main()
 {
 int number = 5;
 char *pointer = "little";

 printf("Here is a number-%4d-and a-%10s-word.\n", number, pointer);

 73

 }

 /*********************************
 *
 * Program result is:
 *
 * Here is a number- 5-and a- little-word.
 *
 *********************************/
As you can see, the data is right justified within the field. It can be left justified by using
the - flag. A maximum string width can also be specified.
The width can also be given as a variable as shown below.
main()
 {
 int number=5;

 printf("---%*d----\n", 6, number);
 }

 /*********************************
 *
 * Program result is:
 *
 * ---- 5---
 *
 *********************************/
The * is replaced with the supplied int to provide the ability to dynamically specify the
field width.

Period

If you wish to specify the precision of an argument, it MUST be prefixed with the period.

Precision

The Precision takes different meanings for the different format types.

Float Precision

 %8.2f
This says you require a total field of 8 characters, within the 8 characters the last 2 will
hold the decimal part.
 %.2f
The example above requests the minimum field width and the last two characters are to
hold the decimal part.

 74

Character String Maximum field width

 The precision within a string format specifies the maximum field width.

 %4.8s

Specifies a minimum width of 4 and a maximum width of 8 characters. If the string is
greater than 8 characters, it will be cropped down to size.

Precision
 As with the 'width' above, the precision does not have to be hard coded, the *
symbol can be used and an integer supplied to give its value.

Format Identifiers

 The format identifier describes the expected data. The identifier is the character
that ends Here is a list of the format identifers as used in 'printf' ,'sprintf' ,'fprintf' and
'scanf'. Except for '%' and 'n', all the identifiers expect to extract an argument from the
printf parameter list.

All of the parameters should be the value to be inserted. EXCEPT %s, this expects a
pointer to be passed.

Example 3.13.

main()
 {
 int number=5;
 char *pointer="little";

 printf("Here is a number %d and a %s word.\n", number, pointer);
 }
 /*********************************
 *
 * Program result is:
 *
 * Here is a number 5 and a little word.
 *
 *********************************/

3.3.3 Puts() and gets() functions

Displaying Messages with puts()

 75

 The puts() function can also be used to display text messages on-screen, but it
can't display numeric variables. puts() takes a single string as its argument and displays it,
automatically adding a newline at the end. For example, the statement

puts("Hello, world.");

performs the same action as

printf("Hello, world.\n");

You can include escape sequences (including \n) in a string passed to puts(). They have
the same effect as when they are used with printf()

Any program that uses puts() should include the header file STDIO.H. Note that
STDIO.H should be included only once in a program.

DO use the puts() function instead of the printf() function whenever you want to print
text but don't need to
print any variables.

DON'T try to use conversion specifiers with the puts() statement.

The puts() Function

#include <stdio.h>
puts(string);

puts() is a function that copies a string to the standard output device, usually the display
screen. When you use puts(), include the standard input/output header file (STDIO.H).
puts() also appends a newline character to the end of the string that is printed. The for-
mat string can contain escape sequences. Table 7.1 lists the most frequently used escape
sequences. The following are examples of calls to puts() and their output:

Example 1 Input

puts("This is printed with the puts() function!");

Example 1 Output

This is printed with the puts() function!

The gets() function

 This function is used to read a line of text

#include <stdio.h>

 76

gets(string);

if the input is

 “Hello India”,

the gets function reads entire line of text and stored in to respective variable, where as,
scanf will read only “Hello” even though the input is “Hello India”.

Simple I/O -- getchar, putchar

 The getchar and putchar are the basic I/O library functions in C. getchar fetches
one character from the standard input (usually the terminal) each time it is called, and
returns that character as the value of the function. When it reaches the end of whatever
file it is reading, thereafter it returns the character represented by `\0' (ascii NUL, which
has value zero). We will see how to use this very shortly.

Putchar puts one character out on the standard output (usually the terminal) each time it is
called. So the program above reads one character and writes it back out. By itself, this
isn't very interesting, but observe that if we put a loop around this, and add a test for end
of file, we have a complete program for copying one file to another.

main()

{
 char c;
 c = getchar();
 putchar(c);
}

3.4 Let us Sum Up

 In this lesson, we discussed about various classification of operators supported by
“C”. This will help the programmer to understand the difference between mathematical
operators and equivalent operators used in “C”. This lesson also explained about various
formatted and unformatted input and output statements available in “C”.

3.5 Points for discussion

 Define Ternary operator.

 Differentiate scanf() with gets().

 How pre increment will differ from post increment?

 Explain about mixed-mode expression.

 77

3.6 Check your progress

 Differentiate scanf() with gets().

 Both functions are used to read the string. The scanf() will read the string
 until it finds a space (ie, it read single word) where as gets() will read entire line
 of text. You should also specify the general format for scanf() and gets() with
 example.

 What %5.2f means?

 This format code is used to print floating point data, in which, the total
 size of the data including decimal point is 5 and 2 represent the number of digits
 will appear after decimal point in the result.

3.7 Lesson-end Activities

 1. How many categories of operators we are using in “C”?
 2. What is the alternate name of conditional operator?
 3. Where we are using Bit wise operators?

3.8 References

 1. E.Balagursamy, Programming in Ansi C, TATA MCGraw Hill
 2. http://imada.sdu.dk/~svalle/courses/
 3. http://www.geocities.com/learnprogramming123/Clesson11
 4. http://www.java2s.com/Code/C/

 78

LESSON – 4: Decision Making – Branching statements

CONTENTS

4.0 Aims and objectives

4.1 Introduction - branching statement

4.2 IF Statement

 4.2.1 Simple IF

 4.2.2 If..else

 4.2.3 else… if ladder

 4.2.4 Nested IF

4.3 Switch Statement

4.4 While Statement

4.5 dowhile Structure

4.6 For statement

4.7 GO TO statement

4.8 Let us Sum-Up

4.9 Points for discussion

4.10 Check your progress

4.11 Lesson-end Activities

4.12 References

4.0 Aims and objectives

 The objective of this lesson is to make you to learn about C Programming -
Decision Making, Branching, if Statement, The If else construct, Compound Relational

 79

tests, Nested if Statement, The ELSE If Ladder, The Switch Statement and The GOTO
statement.

4.1 Introduction: Branching

 The C language programs presented until now follows a sequential form of
execution of statements. Many times it is required to alter the flow of the sequence of
instructions. C language provides statements that can alter the flow of a sequence of
instructions. These statements are called control statements. These statements help to
jump from one part of the program to another. The control transfer may be conditional or
unconditional.

4.2 Decision making with IF Statement

C support four different types of IF statements, as follows

1. Simple IF
2. IF Else
3. Else…IF ladder
4. Nested IF.

 4.2.1 Simple IF
 The simplest form of the control statement is the If statement. It is very frequently
used in decision making and allowing the flow of program execution. The If structure has
the following syntax

 if(condition)
 statement;

 if(condition or expression)
 {
 statement1;
 statement2;
 statement3;
 statement4;
 ……….
 ……….
 }
The statement is any valid C’ language statement and the condition is any valid C’
language expression, frequently logical operators are used in the condition statement. The
condition part should not end with a semicolon, since the condition and statement should
be put together as a single statement. The command says if the condition is true then

 80

performs the following statement or If the condition is fake the computer skips the
statement and moves on to the next instruction in the program.

Example 4.1

/* Calculate the absolute value of an integer */

include < stdio.h > //Include the stdio.h file
void main () // start of the program
{
int numbers; // Declare the variables
printf (“Type a number:”); // message to the user
scanf (“%d”, & number); // read the number from standard input
if (number < 0) // check whether the number is a negative
number
number = - number; // If it is negative then convert it into
positive.
Printf (“The absolute value is % d \n”, number); // print the value
}

The above program checks the value of the input number to see if it is less than zero. If it
is then the following program statement, which negates the value of the number, is
executed. If the value of the number is not less than zero, we do not want to negate it then
this statement is automatically skipped. The absolute number is then displayed by the
program, and program execution ends.

4.2.2 If - Else

The if-else statement is used to express decisions. Formally the syntax is

if (expression)
 statement1
else
 statement2

where the else part is optional. The expression is evaluated; if it is true (that is, if
expression has a non-zero value), statement1 is executed. If it is false (expression is zero)
and if there is an else part, statement2 is executed instead. Since an if tests the numeric
value of an expression, certain coding shortcuts are possible. The most obvious is writing

if (expression)

instead of

if (expression != 0)

 81

Sometimes this is natural and clear; at other times it can be cryptic.

Because the else part of an if-else is optional, there is an ambiguity when an else if
omitted from a nested if sequence. This is resolved by associating the else with the
closest previous else-less if. For example, in

if (n > 0)
if (a > b)
z = a;
else
z = b;

the else goes to the inner if, as we have shown by indentation. If that isn't what you want,
braces must be used to force the proper association:

if (n > 0) {
if (a > b)
z = a;
}
else
z = b;

The ambiguity is especially pernicious in situations like this:

if (n > 0)
for (i = 0; i < n; i++)
if (s[i] > 0) {
printf("...");
return i;
}
else /* WRONG */
printf("error -- n is negative\n");

The indentation shows unequivocally what you want, but the compiler doesn't get the
message, and associates the else with the inner if. This kind of bug can be hard to find;
it's a good idea to use braces when there are nested ifs. By the way, notice that there is a
semicolon after z = a in

if (a > b)
z = a;
else
z = b;

This is because grammatically, a statement follows the if, and an expression statement
like ``z = a;'' is always terminated by a semicolon.

 82

Example 4.2

// Program find whether a number is negative or positive */

#include < stdio.h > //include the stdio.h header file in your program
void main () // Start of the main
{
int num; // declare variable num as integer
printf (“Enter the number”); //message to the user
scanf (“%d”, &num); // read the input number from keyboard
if (num < 0) // check whether number is less than zero.
Printf (“The number is negative”) // If it is less than zero then it is negative.
Else // else statement.
Printf (“The number is positive”); //If it is more than zero then the given
number is positive.
}

In the above program the If statement checks whether the given number is less than 0. If
it is less than zero then it is negative therefore the condition becomes true then the
statement The number is negative is executed. If the number is not less than zero the If
else construct skips the first statement and prints the second statement declaring that the
number is positive.
4.2.3 Else..if..ladder

 This is another if structure available in “C” for making multiple decisions

If (Condition 1 or expression 1)
 Statement block 1;
else if (Condition 2 or expression 2)
 statement block 2;
else if…..
…………
…………
…………
else
 false block;

In this structure, condition 1 will be evaluated first. If condition 1 is true then respective
statement block will be executed otherwise condition 2 will be evaluated next.

Binary search is an another example for using If.. Else and else…if structure.

Example 4.3

 83

/* binsearch: find x in v[0] <= v[1] <= ... <= v[n-1] */
int binsearch(int x, int v[], int n)
{
int low, high, mid;
low = 0;
high = n - 1;
while (low <= high) {
mid = (low+high)/2;
if (x < v[mid])
high = mid + 1;
else if (x > v[mid])
low = mid + 1;
else /* found match */
return mid;
}
return -1; /* no match */
}

The fundamental decision is whether x is less than, greater than, or equal to the middle
element v[mid] at each step; this is a natural for else-if.

Compound Relational tests:

 C language provides the mechanisms necessary to perform compound relational
tests. A compound relational test is simple one or more simple relational tests joined
together by either the logical AND or the logical OR operators. These operators are
represented by the character pairs && // respectively. The compound operators can be
used to form Complex expressions in C.

Syntax

a> if (condition1 && condition2 && condition3)
b> if (condition1 // condition2 // condition3)

The syntax in the statement ‘a’ represents a complex if statement which combines
different conditions using the and operator in this case if all the conditions are true only
then the whole statement is considered to be true. Even if one condition is false the whole
if statement is considered to be false. The statement ‘b’ uses the logical operator or (//) to
group different expression to be checked. In this case if any one of the expression if
found to be true the whole expression considered to be true, we can also uses the mixed
expressions using logical operators && and || together.

4.2.4 Nested if Statement

The if statement may itself contain another if statement is known as nested if statement.

 84

Syntax:

if (condition1 or expressein1)
if (condition2 or expression 2)
statement-1;
else
statement-2;
else
statement-3;

The if statement may be nested as deeply as you need to nest it. One block of code will
only be executed if two conditions are true. Condition 1 is tested first and then condition
2 is tested. The second if condition is nested in the first. The second if condition is tested
only when the first condition is true else the program flow will skip to the corresponding
Else statement.

Example 4.4 print the given numbers along with the largest number.
#include < stdio.h > //includes the stdio.h file to your program
main () //start of main function
{
int a,b,c,big; //declaration of variables
printf (“Enter three numbers”); //message to the user
scanf (“%d %d %d”, &a, &b, &c); //Read variables a,b,c,
if (a>b) // check whether a is greater than b if true then
if(a>c) // check whether a is greater than c
big = a ; // assign a to big
else big = c ; // assign c to big
else if (b>c) // if the condition (a>b) fails check whether b is greater than c
big = b ; // assign b to big
else big = c ; // assign C to big
printf (“Largest of %d,%d&%d = %d”, a,b,c,big);
}

In the above program the statement if (a>c) is nested within the if (a>b). If the first If
condition if (a>b). If (a>b) is true only then the second if statement if (a>b) is executed. If
the first if condition is executed to be false then the program control shifts to the
statement after corresponding else statement.

/* Example 4.5 program using compound if else construct */
/* This program determines if a year is a leap year */
include < stdio.h > //Includes stdio.h file to your program

void main () // start of the program

 85

{
int year, rem_4, rem_10, rem_400; // variable declaration
printf (“Enter the year to be tested”); // message for user
scanf (“t.d”, & year); // Read the year from standard input.
rem_4 = year % 4; //find the remainder of year – by 4
rem_100 = year % 100; //find the remainder of year – by 100
rem_400 = year % 400; // find the remainder of year – by 400
if ((rem_4 = = 0 && rem_100! = 0) //rem_400 = = 0)
 //apply if condition 5 check whether remainder is zero
printf (“It is a leap year, \n”) ; // print true condition
else
printf (“No. It is not a leap year. \n”); //print the false condition
}
The above program checks whether the given year is a leap year or not. The year is
divided by 4100 and 400 respectively and its remainder is collected in the variables
rem_4, rem_100 and rem_400. A if condition statements checks whether the remainders
are zero. If remainder is zero then the year is a leap year. Here either the year – y 400 is
to be zero or both the year – 4 and year – by 100 has to be zero, then the year is a leap
year.

4.3 Switch Statement

 The switch statement is a construct that is used when many conditions are being
tested for. When there are many conditions, it becomes too difficult and complicated to
use the if and else if constructs. Nested if/else statements arise when there are multiple
alternative paths of execution based on some condition that is being tested for.

The general form of a switch statement is:

switch (variable)

{
case expression1:
 do something 1;
 break;
case expression2:
 do something 2;
 break;
....
default:
 do default processing;
}

Here's an example, this is a simple calculator that can be used to add, multiply, subtract,
and divide. If this program was using if else statements than this program will work fine,

 86

but the if/else block is cumbersome. It would be easy, particularly if there were more
choices and maybe sub choices involving more if/else's to end up with program that
doesn't perform the actions intended. Here's the same program with a switch.

Example 4.6

#include <stdio.h>

int main(void)
{
 float numb1 = 0, numb2 = 0; /* the two numbers to work on */
 int menu = 1; /* add or subtract or divide or multiply */
 float total = 0; /* the result of the calculation */
 char calType; /* what type of calculation */

 printf("Please enter in the first of the two numbers\n\t");
 scanf("%f", &numb1); /* READ first number */

 printf("\n\n Please enter the second of the two numbers\n\t");
 scanf("%f", &numb2); /* READ second number */

 printf("\n\n What would you like to do?\n\n"); /* WRITE instructions */
 printf("\t1 = add\n");
 printf("\t2 = subtract\n");
 printf("\t3 = multiply\n");
 printf("\t4 = divide\n");

 printf("\n\n Pleas make your selection now:\n\t");
 scanf("%d",&menu); /* READ calculation type */

 switch (menu) /* select the type of calculation */
 {
 case 1: total = numb1 + numb2;
 calType = '+'; /* assign a char to symbolize calculation type */
 break;
 case 2: total = numb1 - numb2;
 calType = '-';
 break;
 case 3: total = numb1 * numb2;
 calType = '*';
 break;
 case 4: total = numb1 / numb2;
 calType = '/';
 break;
 default: printf("Invalid option selected\n");
 }

 87

 if (menu == 3 && numb2 == 0) /* cannot divide by 0 */
 printf("\n\n\tYou cannot divide by 0\n\n");

 /* display result to 2 decimal places */
 printf("\n\n*************************");
 printf("\n\n\t%.3f %c %.3f = %.2f", numb1, calType, numb2, total);
 printf("\n\n*************************\n\n");

 return 0;

}

The keyword default is executed when none of the conditions being tested for in the
switch statement are met or executed. The break statement must be used after each
condition because if it were not used than all the conditions from the one met will be
executed. For example if case 2 was met, and there was no break statement at the end of
the case, case 3 and case 4 and even default would all be executed.

Example 4.7

Program to count the occurrences of each digit, white space, and all other characters,
using switch statement:

#include <stdio.h>
main() /* count digits, white space, others */
{
int c, i, nwhite, nother, ndigit[10];
nwhite = nother = 0;
for (i = 0; i < 10; i++)
ndigit[i] = 0;
while ((c = getchar()) != EOF) {
switch (c) {
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
ndigit[c-'0']++;
break;
case ' ':
case '\n':
case '\t':
nwhite++;
break;
default:
nother++;

 88

break;
}
}
printf("digits =");
for (i = 0; i < 10; i++)
printf(" %d", ndigit[i]);
printf(", white space = %d, other = %d\n",
nwhite, nother);
return 0;
}

The break statement causes an immediate exit from the switch. Because cases serve
just as labels, after the code for one case is done, execution falls through to the next
unless you take explicit action to escape. break and return are the most common
ways to leave a switch. A break statement can also be used to force an immediate
exit from while, for, and do loops, as will be discussed later in this chapter.

Example 4.8

int number;
/* Estimate a number as none, one, two, several, many */
{ switch(number) {
 case 0 :
 printf("None\n");
 break;
 case 1 :
 printf("One\n");
 break;
 case 2 :
 printf("Two\n");
 break;
 case 3 :
 case 4 :
 case 5 :
 printf("Several\n");
 break;
 default :
 printf("Many\n");
 break;
 }
}

Each interesting case is listed with a corresponding action. The break statement prevents
any further statements from being executed by leaving the switch. Since case 3 and case 4
have no following break, they continue on allowing the same action for several values of
number.

 89

Example 4.9

Consider the example shown below:

switch(Grade)
 {
 case 'A' : printf("Excellent");
 case 'B' : printf("Good");
 case 'C' : printf("OK");
 case 'D' : printf("Mmmmm....");
 case 'F' : printf("You must do better than this");
 default : printf("What is your grade anyway?");
 }

Here, if the Grade is 'A' then the output will be

 Excellent
 Good
 OK
 Mmmmm....
 You must do better than this
 What is your grade anyway?

This is because, in the 'C' switch statement, execution continues on into the next case
clause if it is not explicitly specified that the execution should exit the switch statement.
The correct statement would be:

switch(Grade)
 {
 case 'A' : printf("Excellent");
 break;

 case 'B' : printf("Good");
 break;

 case 'C' : printf("OK");
 break;

 case 'D' : printf("Mmmmm....");
 break;

 case 'F' : printf("You must do better than this");
 break;

 default : printf("What is your grade anyway?");
 break;
 }

Although the break in the default clause (or in general, after the last clause) is not
necessary, it is good programming practice to put it in anyway.

Example 4.10

 90

/**

 *
 * Purpose: Program to demonstrate the 'switch/case' structure.
 * Method: Prog looks at the number of parameters passed to it and
 * tells the user how many its got.
 * Author: M J Leslie
 * Date: 09-Apr-94
 *

***/

main(int argc, char *argv[])
{

 switch (argc) /* Switch evaluates an expression (argc) */
 {
 /* If expression resolves to 1, jump here */
 case 1:
 puts("Only the command was entered.");
 break; /* break - cases the execution to jump
 out of the 'switch' block. */

 /* If expression resolves to 2, jump here */
 case 2:
 puts("Command plus one parm entered");
 break;

 /* If expression resolves to 3, jump here */
 case 3:
 puts("Command plus two parm entered");
 break;

 /* Any other value jumps here. */
 default:
 printf("Command plus %d parms entered\n", argc-1);
 break;
 }
}

4.4 While Statement

 The while loop is used to execute a block of code as long as some condition is
true. If the condition is false from the start the block of code is not executed at al. The
while loop tests the condition before it's executed so sometimes the loop may never be
executed if initially the condition is not met. Its syntax is as follows.

 while (tested condition is satisfied)
{

 91

 block of code
}

In all constructs, curly braces should only be used if the construct is to execute more than
one line of code. The above program executes only one line of code so it not really
necessary (same rules apply to if...else constructs) but you can use it to make the program
seem more understandable or readable. Here is a simple example of the use of the while
loop. This program counts from 1 to 100.

Example 4.11
#include <stdio.h>
int main(void)
{

 int count = 1;
 while (count <= 100)
 {
 printf("%d\n",count);
 count += 1; // Notice this statement
 }
 return 0;

}

Note that no semi-colons (;) are to be used after the while (condition) statement. These
loops are very useful because the condition is tested before execution begins.

Example 4.12
/* Demonstrates a simple while statement */
2:
3: #include <stdio.h>
4:
5: int count;
6:
7: int main()
8: {
9: /* Print the numbers 1 through 20 */
10:
11: count = 1;
12:
13: while (count <=10)
14: {
15: printf("%d\n", count);
16: count++;
17: }
18: return 0;
19: }

Output

1

 92

2
3
4
5
6
7
8
9
10

The code fragment

x = 0;
while (x < 3)
{
 x++;
}

first checks whether x is larger than 3, which it is not, so it increments x by 1. It then
checks the condition again, and executes again, repeating this process until the variable x
has the value 3.

Example 4.13

int x = 0;
while (x < 10)
{
printf("\nThe value of x is %d", x);
x++;
}

Example 4.14

/* get numbers until you get one greater than 99 */
int nbr=0;
while (nbr <= 99)
scanf("%d", &nbr);

Example 4.15

/* Lets user enter up to 10 integer values */
/* Values are stored in an array named value. If 99 is */
/* entered, the loop stops */
int value[10];
int ctr = 0;
int nbr;

 93

while (ctr < 10 && nbr != 99)
{
puts("Enter a number, 99 to quit ");
scanf("%d", &nbr);
value[ctr] = nbr;
ctr++;
}

Nesting while Statements

 Like other statements, while statements can also be nested. If statement block of
one While statement is having another While Statement then the structure is referred as
nested structure.

While (i<=m)
{

 While (j<=n)

 {
 While(k<=t)

 {

 }
 }
 }

4.5 dowhile Structure

 The do loop also executes a block of code as long as a condition is satisfied. The
difference between a "do ...while" loop and a "while {} " loop is that the while loop tests
its condition before execution of the contents of the loop begins; the "do" loop tests its
condition after it's been executed at least once. As noted above, if the test condition is
false as the while loop is entered the block of code is never executed. Since the condition
is tested at the bottom of a do loop, its block of code is always executed at least once.

Some people don't like these loops because it is always executed at least once. When i
ask them "so what?", they normally reply that the loop executes even if the data is
incorrect. Basically because the loop is always executed, it will execute no matter what
value or type of data is supposed to be required. The "dowhile" loops syntax is as
follows

 94

do
{
 block of code
} while (condition is satisfied);

Note that a semi-colon (;) must be used at the end of the do ...while loop. This semi-
colon is needed because it instructs whether the while (condition) statement is the
beginning of a while loop or the end of a do ...while loop. Here is an example of the use
of a do loop.

Example 4.16

include <stdio.h>

int main(void)
{

int value, r_digit;
printf(“Enter a number to be reversed.\n”);
scanf(“%d”, &value);

do
{
 r_digit = value % 10;
 printf(“%d”, r_digit);
 value = value / 10;
} while (value != 0);

printf(“\n”);
return 0;

}

Example 4.17 /* program for converting upper to lower and lower to
upper characters in the input string */

#include <stdio.h>
#include <ctype.h>

int main(void)
{
 char ch;

 printf("Enter some text (type a period to quit).\n");
 do {
 ch = getchar();

 95

 if(islower(ch))
 ch = toupper(ch);
 else
 ch = tolower(ch);

 putchar(ch);
 } while (ch != '.');

 return 0;
}

Input : WELcome

Output : welCOME

Example 4.18 /* Program for reversing a number */

#include <stdio.h>
void main() {
 int number = 123; /* The number to be reversed */
 int reversedNumber = 0; /* The reversed number */
 int temp = 0; /* Working storage */

 temp = number; /* Copy to working storage */

 /* Reverse the number stored in temp */
 do
 {
 reversedNumber = 10 * reversedNumber + temp % 10; /* Add the right
 most digit */
 temp = temp/10; /* Remove the rightmost digit */
 } while (temp); /* Continue while temp>0 */

 printf ("\nThe number %d reversed is %d rebmun ehT\n",
 number, reversedNumber);
}
Input : 1234
Output : 4321

Example 4.19 /* program for multiple selection */
#include <stdio.h>

int main(void) {
 char ch;

 do {
 printf("Load, Save, Edit, Quit?\n");
 do {
 printf("Enter your selection: ");
 ch = getchar();

 96

 } while(ch!='L' && ch!='S' && ch!='E' && ch!='Q');

 if(ch == 'Q') {
 printf("Exit.");
 }

 } while(ch != 'Q');

 return 0;
}

Example 4.20/* to print equivalent value for a given character */
#include <stdio.h>

main()
{
 char ch;

 do
 ch = getche();
 printf ("%d", ch);
 while (ch++ < 'z');

 printf ("\n");
}

example 4.21 /* DO…While with Continue */

#include <stdio.h>

int main(void) {

 int total, i, j;

 total = 0;
 do {

 printf("Enter a number (0 to stop): ");
 scanf("%d", &i);

 printf("Enter the number again: ");
 scanf("%d", &j);

 if(i != j) {
 printf("Mismatch\n");
 continue;
 }
 total = total + i;
 } while(i);
 printf("Total is %d\n", total);
 return 0;
}

 97

4.6 for statement

 The third and last looping construct in C is the for loop. The for loop can execute
a block of code for a fixed or given number of times. Its syntax is as follows.

for (initializations;test conditions;increment value)
{
 block of code
}

The simplest way to understand for loops is to study several examples.

First, here is a for loop that counts from 1 to 10.

for (count = 1; count <= 10; count++)
{
 printf("%d\n",count);
}

The test conditions may be unrelated to the variables being initialized and updated. Here
is a loop that counts until a user response terminates the loop.

for (count = 1; response != 'N'; count++)
{
 printf("%d\n",count);
 printf("Dam man, you still want to continue? (Y/N): \n");
 scanf("%c",&response);
}

More complicated test conditions are also allowed. Suppose the user of the last example
never enters "N", but the loop should terminate when 100 is reached, regardless.

for (count = 1; (response != 'N') && (count <= 100); count++)
{
 printf("%d\n",count);
 printf("Dam man, you still want to continue? (Y/N): \n");
 scanf("%c",&response);
}

It is also possible to have multiple initializations and multiple actions. This loop starts
one counter at 0 and another at 100, and finds a midpoint between them. (This is
advanced material).

 98

for (i = 0, j = 100; j != i; i++, j--)
{
 printf("i = %d, j = %d\n",i,j);
}

printf("i = %d, j = %d\n",i,j);

All of the constituent parts of the statement are optional. The initialization, condition,
termination sections of the for loop can be blank. For instance, suppose we need to count
from a user specified number to 100. The first semicolon is still required as a place
keeper

printf("Enter a number to start the count: ");
scanf("%d",&count);

for (; count < 100 ; count++)
{
 printf("%d\n",count);
}

The actions are also optional. Here is a silly example that will repeatedly echo a single
number until a user terminates the loop;

for (number = 5; response != 'Y';)
{
 printf("%d\n",number);
 printf("You still want to look at this? (Y/N) \n");
 scanf("%c",&response);

}

Example 4.22

main()
{
int row,column;
puts("\t\tMY Handy multiplication table");
for(row=1;tow<=10;row++)
{
for(column=1;column<=10;column++)
printf("%6d", row*column);
putchar('\n');
}
}

 99

The output is a multiplication table of 10x10 size.

Example 4.23

/* This example explain implementation of backward for construct */

#include <stdio.h>
void main() {

 long sum = 0L;

 int count = 10; /* The number of integers to be summed */

 int i = 0; /* The loop counter */

 /* Sum integers from count to 1 */
 for (i = count ; i >= 1 ; sum += i--);
 printf("\nTotal of the first %d numbers is %ld\n", count, sum);
}

Example 4.24
/* every part in for structure is optional */

#include <stdio.h>
 main()
{
 long luckyNumber = 15;
 int yourInput = 0;
 int count = 3; /* The maximum number of tries */
 for(; count>0 ; --count) {

 printf("\nYou have %d tr%s left.", count, count == 1 ? "y" : "ies");
 printf("\nEnter: "); /* Prompt for a guess */
 scanf("%d", &yourInput); /* Read in a guess */

 /* Check for a correct guess */
 if (yourInput == luckyNumber)
 {
 printf("\nYou guessed it!\n");
 return; /* End the program */
 }

 /* Check for an invalid guess */
 if(yourInput<1 || yourInput > 20)

 100

 printf("I said between 1 and 20.\n ");
 else
 printf("Sorry. %d is wrong.\n", yourInput);
 }
 printf("\nYou have had three tries and failed. The number was %ld\n"
 , luckyNumber);
}

Example 4.25/* This example will draw a box */

#include <stdio.h>
main()

{
 int count = 0;
 printf("\n$$$$$$$$$$$$$$$$$$$$"); /* box top */

 for(count = 1 ; count <= 8 ; ++count)
 printf("\n$ $"); /* box sides */

 printf("\n$$$$$$$$$$$$$$$$$$$$\n"); /* bottom of the box */
}

4.7 GO TO

 C support unconditional control statement called as “goto”, which transfer the
control from one location to another location with out checking the condition. The
location where to transfer the control is specified by label name. For example,

#include <stdio.h>
int main(void)

{
 int i;
 i = 1;
 again:
 printf("%d ", i);
 i++;
 if(i<10)
 goto again;
 return 0;
 }

It transfer the control from ‘if’ statement to the location specified by “again” when the
condition (i<10) becomes true.

 101

4.8 Let us Sum-up

 After read this lesson, we are clearly understand about various conditional and
unconditional control structures used for implementing programs. The syntax of every
loop structure and decision-making structures were discussed elaborately. Even though
“C” supports unconditional control structure (ie., goto), its always suggestible to avoid
“goto” statement in good programming practice.

4.9 Points for Discussion

 Differentiate while and do…while structures.
 Write about the syntax of for loop?
 How the switch construct varies from else..if…ladder?

4.10 Check your Progress

 Differentiate while and do…while structures.

 If the question comes like differentiate two statements or structures then you
should explain in the form of table, in which you should mention all the comparable
information.

 While do- while

 1. Condition will be executed first statement block will be executed first

 2. Statement block may or may no statement block will be executed
 be executed. atleast one time
 …………..
 …………..

 Define “break” statement

 The break statement is used to terminate execution from current block.

4.11 Lesson-end Activities

 1. Is there any restriction for using while loop?
 2. Do we need Do..While loop?

 102

 3. What do you mean by branching statements?

 103

4.12 References

Peter Aitken, Teach Yourself C in 21 Days, Fourth Edition, Sams Publisher.
Brian W. Kernighan and Dennis M. Ritchie, The C programming Language, Prentice-
Hall in 1988
E.Balagursamy, Programming in Ansi C, TATA MCGraw Hill
http://publications.gbdirect.co.uk/c_book
http://www.cs.cf.ac.uk/Dave/C/
 http://www.oreilly.com/catalog/pcp3/
http://www.cs.utah.edu/dept/
http://vergil.chemistry.gatech.edu/resources/programming/c-tutorial
http://sysprog.net
http://www.mycplus.com/
http://www.programmersheaven.com/download/
http://en.literateprograms.org/

 104

UNIT – II Arrays

LESSON – 5

CONTENTS

5.0 Aims and objectives

5.1 Array - Introduction

5.2 Declaration of array

5.3 Initialization of array

5.4 Character array

5.5 String handling functions

 5.5.1 String Searching Functions

 5.5.2 Character testing:

 5.5.3 Character Conversion:

5.6 Let us sum-up

5.7 Points for discussion

5.8 Check your progress

5.9 Lesson-end Activities

5.10 References

5.0 Aims and objectives
 In this lesson, you will learn about C Programming - Arrays - Declaration of
arrays, Initialization of arrays, Multi dimensional Arrays, Elements of multi dimension
arrays and Initialization of multidimensional arrays.

5.1 Array - Introduction

 The C language provides a capability that enables the user to define a set of
ordered data items known as an array. C uses arrays as a way of describing a collection of
variables with identical properties. The group has a single name for all of the members,
with the individual members being selected by an index.

 105

5.2 Declaration of array

Like any other variable arrays must be declared before they are used. The general form of
declaration is:

type variable-name[50];

The type specifies the type of the elements that will be contained in the array, such as int
float or char and the size indicates the maximum number of elements that can be stored
inside the array for ex:

float height[50];

declares the height to be an array containing 50 real elements. Any subscripts 0 to 49 are
valid. In C the array elements index or subscript begins with number zero. So height [0]
refers to the first element of the array. (For this reason, it is easier to think of it as
referring to element number zero, rather than as referring to the first element).

As individual array element can be used anywhere that a normal variable with a statement
such as

G = grade [50];

The statement assigns the value stored in the 50th index of the array to the variable ‘g’.
More generally if ‘I’ is declared to be an integer variable, then the statement g=grades [I];
Will take the value contained in the element number I of the grades array to assign it to g.
so if ‘I’ were equal to 7 when the above statement is executed, then the value of grades
[7] would get assigned to g.

The name of the array is ar and its members are accessed as ar[0] through to ar[99]
inclusive, as Figure 5.2.1 shows.

Figure 5.2.1. 100 element array

Each of the hundred members is a separate variable whose type is double. Without
exception, all arrays in C are numbered from 0 up to one less than the bound given in the
declaration

The declaration int values[10]; would reserve enough space for an array called values that
could hold up to 10 integers. Refer to the figure 5.2.2 below given picture to
conceptualize the reserved storage space.

values[0]
values[1]

 106

values[2]
values[3]
values[4]
values[5]
values[6]
values[7]
values[8]
values[9]
Figure 5.2.2 Internal organization of array in memory.

The array values stored in the memory.

Arrays are a data structure which hold multiple variables of the same data type. Consider
the case where a programmer needs to keep track of a number of people within an
organization. So far, our initial attempt will be to create a specific variable for each user.
This might look like,

 int name1 = 101;
 int name2 = 232;
 int name3 = 231;

It becomes increasingly more difficult to keep track of this as the number of variables
increase. Arrays offer a solution to this problem.

An array is a multi-element box, a bit like a filing cabinet, and uses an indexing system to
find each variable stored within it. In C, indexing starts at zero.

Arrays, like other variables in C, must be declared before they can be used.
The replacement of the above example using arrays looks like,

 int names[4];
 names[0] = 101;
 names[1] = 232;
 names[2] = 231;
 names[3] = 0;

We created an array called names, which has space for four integer variables. You may
also see that we stored 0 in the last space of the array. This is a common technique used
by C programmers to signify the end of an array.

Arrays have the following syntax, using square brackets to access each indexed value
(called an element).

 107

 x[i]

so that x[5] refers to the sixth element in an array called x. In C, array elements start with
0. Assigning values to array elements is done by,

 x[10] = g;

and assigning array elements to a variable is done by,

 g = x[10];

In the following example, a character based array named word is declared, and each
element is assigned a character. The last element is filled with a zero value, to signify the
end of the character string (in C, there is no string type, so character based arrays are used
to hold strings). A printf statement is then used to print out all elements of the array.

Example 5.1 /* Introducing array's, 2 */
 #include <stdio.h>

 main()
 {
 char word[20];

 word[0] = 'H';
 word[1] = 'e';
 word[2] = 'l';
 word[3] = 'l';
 word[4] = 'o';
 word[5] = 0;
 printf("The contents of word[] is -->%s\n", word);
 }

 Sample Program Output
 The contents of word[] is Hello

If we want an array of six integers , called "numbers", we write in C

int numbers[6];

For a character array called letters,

 108

char letters[6]; and so on.

Classification of array

 Arrays will be generally classified in to two category as follows

 (i). Single dimension
 (ii). Multiple dimension

This classification is based on the number of subscript used to declare array variable. If
an array is having only one subscript is referred as single dimension array. If an array
declared by more than one subscript then it referred as multi dimension array. Consider
an example of declaring two dimensional array,

int a[3][3];
declares ‘a’ as two dimensional array having 9 (ie, 3X3) elements. The first element starts
with the index a[0][0] and last element will be at the location a[2][2] as shown in the
figure 5.2.1.

 a[0][0] a[0][1] a[0][1]

 a[1][0] a[1][1] a[1][2]

 a[2][0] a[2][1] a[2][2]

 Figure 5.2.1 Two diamentional array

Similarly the multi dimensional array can be specified as follows,

 Depth

 109

 Row

 Column

 Figure 5.2.2

5.3 Initialization of arrays:

 We can initialize the elements in the array in the same way as the ordinary
variables when they are declared. The general form of initialization off arrays is:

type array_name[size]={list of values};

The values in the list care separated by commas, for example the statement

int point[6]={0,0,1,0,0,0};

If we want to access a variable stored in an array, for example with the above declaration,
the following code will store a 1 in the variable x

int x;
x = point[2];

Arrays in C are indexed starting at 0, as opposed to starting at 1. The first element of the
array above is point[0]. The index to the last value in the array is the array size minus
one. In the example above the subscripts run from 0 through 5. C does not guarantee
bounds checking on array accesses. The compiler may not complain about the following
(though the best compilers do):

char y;
int z = 9;
char point[6] = { 1, 2, 3, 4, 5, 6 };
//examples of accessing outside the array. A compile error is not always raised
y = point[15];
y = point[-4];
y = point[z];

During program execution, an out of bounds array access does not always cause a run
time error. Your program may happily continue after retrieving a value from point[-1].
To alleviate indexing problems, the sizeof() expression is commonly used when coding
loops that process arrays.

 110

int ix;
short anArray[]= { 3, 6, 9, 12, 15 };
for (ix=0; ix< (sizeof(anArray)/sizeof(short)); ++ix)
 {
 DoSomethingWith(anArray[ix]);
}

Notice in the above example, the size of the array was not explicitly specified. The
compiler knows to size it at 5 because of the five values in the initializer list. Adding an
additional value to the list will cause it to be sized to six, and because of the sizeof
expression in the for loop, the code automatically adjusts to this change. Good
programming practice is declare a variable size and store the size of the array.

size = sizeof(anArray)/sizeof(short)

The initialization of arrays in c suffers two draw backs
1. There is no convenient way to initialize only selected elements.
2. There is no shortcut method to initialize large number of elements.

Example 5.2 /* Program to count the no of positive and negative numbers*/
#include< stdio.h >
void main()
{
int a[50],n,count_neg=0,count_pos=0,I;
printf(“Enter the size of the array\n”);
scanf(“%d”,&n);
printf(“Enter the elements of the array\n”);
for I=0;I < n;I++)
scanf(“%d”,&a[I]);
for(I=0;I < n;I++)
{
if(a[I] < 0)
count_neg++;
else
count_pos++;
}
printf(“There are %d negative numbers in the array\n”,count_neg);
printf(“There are %d positive numbers in the array\n”,count_pos);
}

One important point about array declarations is that they don't permit the use of varying
subscripts. The numbers given must be constant expression which can be evaluated at
compile time, not run time. For example, this function incorrectly tries to use its
argument in the size of an array declaration:

f(int x)

 111

{
 char var_sized_array[x]; /* FORBIDDEN */
}

It's forbidden because the value of x is unknown when the program is compiled; it's a
run-time, not a compile-time, value.

To tell the truth, it would be easy to support arrays whose first dimension is variable, but
neither Old C nor the Standard permits it, although we do know of one Very Old C
compiler that used to do it.

/*
 Example 5.3 How to read elements into an array.
*/

#include <stdio.h>

main()
{
 /* Declaration Statements */
 char month[12][4];
 short units[12];
 double sales[12];
 short i;

 printf("C51.C -> How to read elements into an array \n");

 /* Assignment Statements */
 for (i = 1; i <= 12; i++) {
 printf("\nEnter the month (Jan,Feb,...) : ");
 scanf("%s",month[i-1]);

 /* Don't forget, in C the first element of an array is 0 */
 /* and not 1. */

 printf("\nEnter number of units sold : ");
 scanf("%hd", &units[i - 1]);
 printf("\nEnter sales (in million $) : ");
 scanf("%lg", &sales[i - 1]);
 } /* End of For{} loop */

 return(0);
}
/* End of Program C51 */

 112

/*
 Example 5.4 This program demonstrates how to sum all the elements of an array.
*/

#include <stdio.h>

main()
{
 /* Declaration Statements */
 char month[12][4];
 short units[12];
 double sales[12];
 double ss; /* ss stands for sum of sales */
 short i, j, su, k; /* su stands for sum of units */

 clrscr();
 printf("C52.C -> How to sum all the elements of an array \n");

 /* Assignment Statements */

 for (i = 1; i <= 12; i++) {
 printf("\nMonth (Jan,Feb,...) : ");
 scanf("%s",month[i-1]);
 printf("\nUnits Sold : ");
 scanf("%hd", &units[i - 1]);
 printf("\nSales (in million $): ");
 scanf("%lg", &sales[i - 1]);
 }

 i = 0;
 for (j = 1; j <= 4; j++) {
 su = 0;
 ss = 0.0;
 for (k = 1; k <= 3; k++) {
 i++;
 su += units[i - 1];
 ss += sales[i - 1];
 } /* End of inner for{} loop */

 /* Print result by quarter */
 printf("\nquarter%2d%7d cars $%5.1f m\n\n", j, su, ss);
 } /* End of outer for{} loop */

 return(0);
}
/* End of Program C52 */

 113

/*
Example 5.5 How to sum part of an array.
*/

#include <stdio.h>

main()
{
 /* Declaration Statements */
 char month[12][4];
 short units[12];
 short uq[4]; /* uq stands for units per quarter */
 double sales[12];
 double sq[4]; /* dq stands for sales per quarter */
 short i, j, k;
 char *TEMP;

 printf("C53.C -> Summing part of an array \n");

 /* Assignment Statements */
 for (i = 1; i <= 12; i++) {
 printf("Month (Jan,Feb,...) : ");
 scanf("%s",month[i-1]);
 printf("Units Sold : ");
 scanf("%hd", &units[i - 1]);
 printf("Sales (in million $): ");
 scanf("%lg", &sales[i - 1]);
 }

 /* Form 4 quarter totals */

 i = 0;
 for (j = 1; j <= 4; j++) {
 uq[j - 1] = 0;
 sq[j - 1] = 0.0;
 for (k = 1; k <= 3; k++) {
 i++;
 uq[j - 1] += units[i - 1];
 sq[j - 1] += sales[i - 1];
 } /* End of inner for{} loop */
 } /* End of outer for{} loop */

 /* Print results */
 printf("\n Cars sold by quarter %5d%5d%5d%5d\n", uq[0], uq[1], uq[2],

 114

 uq[3]);
 printf("\n Sales by quarter % .1E% .1E% .1E% .1E\n", sq[0], sq[1],
 sq[2], sq[3]);

 return(0);
}
/* End of Program C53 */

Example 5.6

/*
 Several operations on an array (largest/smallest, average, etc)
*/

#include <stdio.h>

main()
{
 /* Declaration Statements */
 char month[12][4];
 short units[12];
 double sales[12];
 short uq[4];
 double sq[4];
 short i, cars, mins, maxs, j, k, iave;
 double totals, big, min, ave;

 printf("C54.C -> Operations an array \n");

 /* Assignment Statements */

 for (i = 1; i <= 12; i++)
 { /* Read value from */
 printf("Month (Jan,Feb,...) : "); /* keyboard entry. */
 scanf("%s",month[i-1]);
 printf("Units Sold : ");
 scanf("%hd", &units[i - 1]);
 printf("Sales (in million $): ");
 scanf("%lg", &sales[i - 1]);
 }

 /* Initializing variables */
 cars = units[0];
 totals = sales[0];
 big = totals;

 115

 min = totals;
 mins = 1;
 maxs = 1;

 for (i = 2; i <= 12; i++)
 {
 cars += units[i - 1];
 totals += sales[i - 1];
 if (sales[i - 1] > big) /* It selects the biggest sales */
 { /* and keep track of the index */
 big = sales[i - 1]; /* to know when it occurs. */
 maxs = i;
 } /* End of if statement */
 else
 {
 if (sales[i - 1] < min) /* It selects the smallest sales */
 { /* and keep track of the index */
 min = sales[i - 1]; /* to know when it occurs. */
 mins = i;
 }
 } /* End of else statement */
 } /* End of for{} loop */

 i = 0;
 for (j = 1; j <= 4; j++)
 {
 uq[j - 1] = 0;
 sq[j - 1] = 0.0;
 for (k = 1; k <= 3; k++)
 {
 i++;
 uq[j - 1] += units[i - 1];
 sq[j - 1] += sales[i - 1];
 } /* End of inner for{} loop */
 } /* End of outer for{} loop */

 /* Output original data and results */

 printf("\n");
 printf("Month unit sales m$\n");
 for (k = 1; k <= 12; k++)
 printf("%3c%s%6d%6.1f\n",' ', month[k-1], units[k-1], sales[k-1]);
 printf("\nTotals%5d%6.1f\n", cars, totals);

 iave = cars / 12; /* Compute the units sold average */
 ave = totals / 12.0; /* and sales average by month. */

 116

 printf("\Nave.%7d%6.1f\n\n", iave, ave);
 printf("Best/worst-%5.1f%5.1f\n\n", big, min);
 printf("Occurred in%2c%s%2c%s\n\n",
 ' ', month[maxs - 1], ' ', month[mins - 1]);
 printf("Cars sold by quarter%5d%5d%5d%5d\n", uq[0], uq[1], uq[2],
 uq[3]);
 printf("Sales by quarter %5.1f%5.1f%5.1f%5.1f\n",
 sq[0], sq[1], sq[2], sq[3]);

 return(0);
}
/* End of Program C54 */

5.4 Character array

 The most common type of array in C is the array of characters. To illustrate the
use of character arrays and functions to manipulate them, let's write a program that reads
a set of text lines and prints the longest. The outline is simple enough:

while (there's another line)
if (it's longer than the previous longest)
(save it)
(save its length)
print longest line

This outline makes it clear that the program divides naturally into pieces. One piece gets
a new line, another saves it, and the rest controls the process.

Since things divide so nicely, it would be well to write them that way too. Accordingly,
let us first write a separate function getline to fetch the next line of input. We will try to
make the function useful in other contexts. At the minimum, getline has to return a signal
about possible end of file; a more useful design would be to return the length of the line,
or zero if end of file is encountered. Zero is an acceptable end-of-file return because it is
never a valid line length. Every text line has at least one character; even a line containing
only a newline has length 1. Then we find a line that is longer than the previous longest
line, it must be saved somewhere. This suggests a second function, copy, to copy the new
line to a safe place. Finally, we need a main program to control getline and copy. Here is
the result.

Example 5.7

#include <stdio.h>
#define MAXLINE 1000 /* maximum input line length */
int getline(char line[], int maxline);
void copy(char to[], char from[]);

 117

/* print the longest input line */
main()
{
int len; /* current line length */
int max; /* maximum length seen so far */
char line[MAXLINE]; /* current input line */
char longest[MAXLINE]; /* longest line saved here */
max = 0;
while ((len = getline(line, MAXLINE)) > 0)
if (len > max) {
max = len;
copy(longest, line);
}
if (max > 0) /* there was a line */
printf("%s", longest);
return 0;
}
/* getline: read a line into s, return length */
int getline(char s[],int lim)
{
int c, i;
for (i=0; i < lim-1 &(c=getchar())!=EOF &c!='\n'; ++i)
s[i] = c;
if (c == '\n') {
s[i] = c;
++i;
}
s[i] = '\0';
return i;
}
/* copy: copy 'from' into 'to'; assume to is big enough */
void copy(char to[], char from[])
{
int i;
i = 0;
while ((to[i] = from[i]) != '\0')
++i;
}

The functions getline and copy are declared at the beginning of the program, which we
assume is contained in one file. main and getline communicate through a pair of
arguments and a returned value. In getline, the arguments are declared by the line

int getline(char s[], int lim);

 118

which specifies that the first argument, s, is an array, and the second, lim, is an integer.
The purpose of supplying the size of an array in a declaration is to set aside storage. The
length of an array s is not necessary in getline since its size is set in main. getline uses
return to send a value back to the caller, just as the function power did. This line also
declares that getline returns an int; since int is the default return type, it could be omitted.

Some functions return a useful value; others, like copy, are used only for their effect and
return no value. The return type of copy is void, which states explicitly that no value is
returned.

getline puts the character '\0' (the null character, whose value is zero) at the end of the
array it is creating, to mark the end of the string of characters. This conversion is also
used by the C language: when a string constant like

"hello\n"

appears in a C program, it is stored as an array of characters containing the characters in
the string and terminated with a '\0' to mark the end.

The %s format specification in printf expects the corresponding argument to be a string
represented in this form. copy also relies on the fact that its input argument is terminated
with a '\0', and copies this character into the output.

It is worth mentioning in passing that even a program as small as this one presents some
sticky design problems. For example, what should main do if it encounters a line which is
bigger than its limit? Getline works safely, in that it stops collecting when the array is
full, even if no newline has been seen. By testing the length and the last character
returned, main can determine whether the line was too long, and then cope as it wishes.
In the interests of brevity, we have ignored this issue. There is no way for a user of
getline to know in advance how long an input line might be, so getline checks for
overflow. On the other hand, the user of copy already knows (or can find out) how big
the strings are, so we have chosen not to add error checking to it.

5.5 String Handling functions

 Recall from our discussion of arrays that strings are defined as an array of
characters or a pointer to a portion of memory containing ASCII characters. A string in
C is a sequence of zero or more characters followed by a NULL (\0)character:

 119

It is important to preserve the NULL terminating character as it is how C defines and
manages variable length strings. All the C standard library functions require this for
successful operation.

In general, apart from some length-restricted functions (strncat(), strncmp,() and
strncpy()), unless you create strings by hand you should not encounter any such
problems, . You should use the many useful string handling functions and not really need
to get your hands dirty dismantling and assembling strings.

All the string handling functions are prototyped in:

#include <string.h>

The common functions are described below:

char *stpcpy (const char *dest,const char *src) -- Copy one string into another.

int strcmp(const char *string1,const char *string2) - Compare string1 and string2 to
determine alphabetic order.

char *strcpy(const char *string1,const char *string2) -- Copy string2 to stringl.

char *strerror(int errnum) -- Get error message corresponding to specified error number.

int strlen(const char *string) -- Determine the length of a string.

char *strncat(const char *string1, char *string2, size_t n) -- Append n characters from
string2 to stringl.

int strncmp(const char *string1, char *string2, size_t n) -- Compare first n characters of
two strings.

char *strncpy(const char *string1,const char *string2, size_t n) -- Copy first n characters
of string2 to stringl .

int strcasecmp(const char *s1, const char *s2) -- case insensitive version of strcmp().
int strncasecmp(const char *s1, const char *s2, int n) -- case insensitive version of
strncmp().

The use of most of the functions is straightforward, for example:

char *str1 = "HELLO";
char *str2;
int length;

length = strlen("HELLO"); /* length = 5 */

 120

(void) strcpy(str2,str1);

Note that both strcat() and strcopy() both return a copy of their first argument which is
the destination array. Note the order of the arguments is destination array followed by
source array which is sometimes easy to get the wrong around when programming.
The strcmp() function lexically compares the two input strings and returns:

Less than zero
-- if string1 is lexically less than string2
Zero
-- if string1 and string2 are lexically equal
Greater than zero
-- if string1 is lexically greater than string2

This can also confuse beginners and experience programmers forget this too. The
strncat(), strncmp,() and strncpy() copy functions are string restricted version of their
more general counterparts. They perform a similar task but only up to the first n
characters. Note the the NULL terminated requirement may get violated when using
these functions, for example:

char *str1 = "HELLO";
char *str2;
int length = 2;

(void) strcpy(str2,str1, length); /* str2 = "HE" */
str2 is not null terminated

5.5.1 String Searching Functions

The library also provides several string searching functions:

char *strchr(const char *string, int c) -- Find first occurrence of character c in string.

char *strrchr(const char *string, int c) -- Find last occurrence of character c in string.

char *strstr(const char *s1, const char *s2) -- locates the first occurrence of the string s2
in string s1.

char *strpbrk(const char *s1, const char *s2) -- returns a pointer to the first
occurrence in string s1 of any character from string s2, or a null pointer if no character
from s2 exists in s1

size_t strspn(const char *s1, const char *s2) -- returns the number of
characters at the begining of s1 that match s2.

 121

size_t strcspn(const char *s1, const char *s2) -- returns the number of
characters at the begining of s1 that do not match s2.

char *strtok(char *s1, const char *s2) -- break the string pointed to by s1 into a sequence
of tokens, each of which is delimited by one or more characters from the string pointed to
by s2.

char *strtok_r(char *s1, const char *s2, char **lasts) -- has the same functionality as
strtok() except that a pointer to a string placeholder lasts must be supplied by the caller.
strchr() and strrchr() are the simplest to use, for example:

char *str1 = "Hello";
char *ans;

ans = strchr(str1,'l');

After this execution, ans points to the location str1 + 2

strpbrk() is a more general function that searches for the first occurrence of any of a
group of characters, for example:

char *str1 = "Hello";
char *ans;

ans = strpbrk(str1,'aeiou');

Here, ans points to the location str1 + 1, the location of the first e.

strstr() returns a pointer to the specified search string or a null pointer if the string is not
found. If s2 points to a string with zero length (that is, the string ""), the function returns
s1. For example,

char *str1 = "Hello";
char *ans;

ans = strstr(str1,'lo');
will yield ans = str + 3.
strtok() is a little more complicated in operation. If the first argument is not NULL then
the function finds the position of any of the second argument characters. However, the
position is remembered and any subsequent calls to strtok() will start from this position if
on these subsequent calls the first argument is NULL. For example, If we wish to break
up the string str1 at each space and print each token on a new line we could do:

char *str1 = "Hello Big Boy";
char *t1;

 122

for (t1 = strtok(str1," ");
 t1 != NULL;
 t1 = strtok(NULL, " "))
printf("%s\n",t1);

Here we use the for loop in a non-standard counting fashion:

 The initialization calls strtok() loads the function with the string str1
 We terminate when t1 is NULL
 We keep assigning tokens of str1 to t1 until termination by calling strtok() with a

NULL first argument

5.5.2 Character testing:

 The header file <ctype.h> which contains many useful functions to convert and
test single characters. The common functions are prototypes as follows:

int isalnum(int c) -- True if c is alphanumeric.
int isalpha(int c) -- True if c is a letter.
int isascii(int c) -- True if c is ASCII .
int iscntrl(int c) -- True if c is a control character.
int isdigit(int c) -- True if c is a decimal digit
int isgraph(int c) -- True if c is a graphical character.
int islower(int c) -- True if c is a lowercase letter
int isprint(int c) -- True if c is a printable character
int ispunct (int c) -- True if c is a punctuation character.
int isspace(int c) -- True if c is a space character.
int isupper(int c) -- True if c is an uppercase letter.
int isxdigit(int c) -- True if c is a hexadecimal digit

5.5.3 Character Conversion:

int toascii(int c) -- Convert c to ASCII .
tolower(int c) -- Convert c to lowercase.
int toupper(int c) -- Convert c to uppercase.

The use of these functions is straightforward and we do not give examples here.

5.6 Let us sum-up

 In this lesson, we discussed briefly about Arrays and its declaration, Initialization
of arrays, single and Multi dimensional Array, Elements of multi dimension arrays and
Initialization of multidimensional arrays. We also discussed about character array and its
implementation in programming.

 123

5.7 Points for discussion

1. What will be the first value of index by default?
2. Give an example for multidimensional array.
3. How to initialize array elements?
4. What are the advantages and disadvantages of array?

5.8 Check your progress

How to initialize array elements?

 Array can be initialize in two different ways. First, at the time of declaring
an array, we can assign the values to array members. Second, the array members
can be initializing individually.

Advantages and disadvantages

Advantage
 We can group more number of similar data under a single label name.
 The elements of the array will be stored in consecutive memory locations.

 Disadvantage
 We cant group different data under the same name.

5.9 Lesson-end Activities

 1. How array concept will helps you to increase the efficiency of your program?
 2. Do you feel array is flexible compare with individual variables?
 3. Is there any limitations for an index used in array?

5.10 Suggested Readings/References/Sources

1.Peter Aitken, Teach Yourself C in 21 Days, Fourth Edition, Sams Publisher.
2.Brian W. Kernighan and Dennis M. Ritchie, The C programming Language, Prentice-
Hall in 1988
3.E.Balagursamy, Programming in Ansi C, TATA MCGraw Hill
http://sysprog.net/
http://www.mycplus.com/cplus
http://www.programmersheaven.com/download/

 124

LESSON – 6 Functions

CONTENTS

6.0 Aims and Objectives

6.1 Introduction

6.2 Classification of function

6.3 Scope of variables

 6.3.1 Local variables:

 6.3.2 Global variables:

6.5 Passing arrays as function argument

6.4 Recursion

6.5 Passing arrays as function argument.

6.6 Let us sum-up

6.7 Points for discussion

6.8 Check your progress

6.9 Lesson-end Activities

6.10 References

6.0 Aims and Objectives

 The objective of this lesson is to make the reader to understand and develop
programming style by using function. The effective programming includes two major
factors, such as, size of the program and time need to execute a program. Both factors can
be achieved by using functions.

6.1 Introduction

 A function in C can perform a particular task, and supports the concept of
modular programming design techniques. We have already been exposed to functions.
The main body of a C program, identified by the keyword main, and enclosed by the left

 125

and right braces is a function. It is called by the operating system when the program is
loaded, and when terminated, returns to the operating system.

6.2 Classification of function

Generally, the function can be classified in to three categories as follows.

 (1). Function with no argument and no return value

 (2). Function with argument and no return value

 (3). Function with argument and return value.

Functions have a basic structure. Their format is:

 return_ data_type function name (arguments, arguments)
 data _type _declarations of arguments;
 {
 function body

 }

It is worth noting that a return data type is assumed to be of type int unless otherwise
specified, thus programs we have seen so far imply that main() returns an integer to the
operating system. ANSI C varies slightly in the way that functions are declared. Its
format is:

return_data_type function name (data type variable name, data type variable name,….)
{

 function body

}

This permits type checking by utilizing function prototypes to inform the compiler of the
type and number of parameters a function accepts. When calling a function, this
information is used to perform the type and parameter checking.

ANSI C also requires that the return_ data_type for a function which does not return data
must my of type void. The default return_ data_type is assumed to be an integer unless
otherwise specified, but must match that which the function declaration specifies. A
simple function is:

int print_message ()
{

 126

 printf(“This is a module called print_message.\n”);

}

Note the function name is print_message. No arguments are accepted by the function, this
is indicated by the keyword void in accepted parameter section of function declaration.
The return_data_type is void, this data is not returned by the function. An ANSI C
function prototype for print_message() is:

int print_message ();

Function prototypes are listed at the beginning of the source file. Often, they might be
placed in a users .h (header) file.Now lets incorporate this function into a program.

/* Example 6.1 Program illustrating a simple function call */

#include <stdio.h>

void print_message (void); /* ANSI C function prototype */

void print_message (void) /* the function code */
{

 printf(“This is a module called print_message.\n”);
}

int main(void)
{

 print_message();

 return 0;

}

Sample program output

This is a module called print_message.

To call a function, it is only necessary to write its name. The code associated with the
function is executed at this point in the program. When the function terminates, execution
begins with the statement which follows the function name.

In the above program, execution begins at main(). The only statement inside main the
main body of the program is a call to the code of function print_message(). This code is
executed, and when finished returns control back to main().

 127

As there is no further example, the function accepts a single data variable, but does not
return any information.

/*Example 6.2 Program to calculate a specific factorial number */

#iinclude <stdio.h>

void calc_factorial (int); // ANSI function prototype

void calc_factorial (int i)
{

 int I, factorial_number = 1;

 for (i=1; I <=n; ++i)
 factorial_number *= I;

 printf(“The factorial of %d is %d\n”, n, factorial_number);

}
int main(void)
{

 int number = 0;

 printf(“Enter a number\n”);

 scanf(“%d”, &number);
 calc_factorial (number);

 return 0;

}

Sample program output

Enter a number
3
The factorial of 3 is 6

Lets look at the function calc_factorial(). The declaration of the function

 void calc_factorial (int n)

 128

Indicates there is no return data type and a single integer is accepted, known inside the
body of the function as n. Next comes the declaration of the local variables.

 int i, factorial_ number = 0;

It is more correct in C to use:

 auto int i, factorial_number = 0;

As the keyword auto designates to the compiler that the variable is local. The program
works by accepting a variable from the keyboard which is then passed to the function. In
other words, the variable number inside the main body is then copied to the variable n in
the function, which then calculates the correct answer.

Returning function results

 This is done by the use of the keyword return, followed by a data_variable or
constant value, the data type os which must match that of the declared return_data_type
for the function.

float add_numbers (float n1, float n2)
{

 return n1 + n2; // legal
 return 6; // illegal, not the same type

 return 6.0; // legal

}

It is possible for a function to have multiple return statements.

int validate_input (char command)
{

 switch (command)
 {
 case ‘+’ :
 case ‘-‘ : return 1;
 case ‘*’ :
 case ‘/’ : return 2;
 default : return 0;
 }

 129

}

Here is another example 6.3

/* Simple multiply program using argument passing */

#include <stdio.h>

int calc_result (int, int) // ANSI function prototype
{

 auto int result;
 result = numb1 * numb2;
 return result;

}

int main(void)
{

 int digit1 = 10, digit2 = 30, answer = 0;

 answer = calc_result(digit1, digit2);

 printf(“%d multiplied by %d is %d\n”, digit1, digit2, answer);

 return 0;

}

Sample program output

10 multiplied by 30 is 300

NOTE that the value which is returned from the function (ie result) must be declared in
the function.

NOTE: The formal declaration of the function name is preceded by the data type which is
returned,

int calc_result (numb1, numb2)

 130

6.3 Scope of variables

Local and global variables

6.3.1 Local variables:

 These variables only exist inside the specific function that creates them. They are
unknown to other functions and to the main program. As such, they are normally
implemented using a stack. Local variables cease to exist once the function that created
them is completed. They are recreated each time a function is executed or called.

6.3.2 Global variables:

 These variables can be accessed (ie known) by any function comprising the
program. They are implemented by associating memory locations with variable names.
They do not get recreated if the function is recalled. To declare a global variable, declare
it outside of all the functions. There is no general rule for where outside the functions
these should be declared, but declaring them on top of the code is normally recommended
for reasons of scope, as explained below. If a variable of the same name is declared both
within a function and outside of it, the function will use the variable that was declared
within it and ignore the global one.

I recommend to use as few global variables as possible.

Defining global variables:

/* Example 6.4Demonstrating global variables */

#include <stdio.h>
int add_numbers(void); // ANSI function prototype
/* These are global variables and can be accessed by functions from this point on */
int value1, value2, value3;
int add_numbers (void)
{

 auto int result;
 result = value1 + value2 + value3;

 return result;

}

int main(void)
{

 auto int result;

 131

 value1 = 10;
 value2 = 20;
 value3 = 30;
 result = add_numbers();
 printf(“The sum of %d + %d + %d is %d\n”, value1, value2, value3, final_result);

 return 0;

}

Sample program output

The scope of a global variable can be restricted by carefully placing the declaration. They
are visible from the declaration until the end of the current source file.

Example 6.5

#include <stdio.h>

int no_access (void); // ANSI function prototype
int all_access(void);

static int n2; // n2 is known from this point onwards
int no_access (void)
{
 n1 = 10; // illegal, n1 not yet known
 n2 = 5; // valid
}

int all_access(void)
{

 n1 = 10; // valid
 n2 = 3; // valid

}

Example 6.6 A program that uses a function to calculate the cube of a number.

1: /* Demonstrates a simple function */
2: #include <stdio.h>
3:
4: long cube(long x);
5:
6: long input, answer;
7:

 132

8: main()
9: {
10: printf("Enter an integer value: ");
11: scanf("%d", &input);
12: answer = cube(input);
13: /* Note: %ld is the conversion specifier for */
14: /* a long integer */
15: printf("\nThe cube of %ld is %ld.\n", input, answer);
16:
17: return 0;
18: }
19:
20: /* Function: cube() - Calculates the cubed value of a variable */
21: long cube(long x)
22: {
23: long x_cubed;
24:
25: x_cubed = x * x * x;
26: return x_cubed;
27: }
Enter an integer value: 100
The cube of 100 is 1000000.
Enter an integer value: 9
The cube of 9 is 729.
Enter an integer value: 3

The cube of 3 is 27.

Example 6.7 Using multiple return statements in a function.

1: /* Demonstrates using multiple return statements in a function. */
2:
3: #include <stdio.h>
4:
5: int x, y, z;
6:
7: int larger_of(int , int);
8:
9: main()
10: {
11: puts("Enter two different integer values: ");
12: scanf("%d%d", &x, &y);
13:
14: z = larger_of(x,y);
15:
16: printf("\nThe larger value is %d.", z);

 133

17:
18: return 0;
19: }
20:
21: int larger_of(int a, int b)
22: {
23: if (a > b)
24: return a;
25: else
26: return b;
27: }
Enter two different integer values:
200 300
The larger value is 300.
Enter two different integer values:
300
200
The larger value is 300.

6.4 Recursion

 The term recursion refers to a situation in which a function calls itself either
directly or indirectly. Indirect recursion occurs when one function calls another function
that then calls the first function. C allows recursive functions, and they can be useful in
some situations. For example, recursion can be used to calculate the factorial of a
number. The factorial of a number x is written x! and is calculated as follows:

x! = x * (x-1) * (x-2) * (x-3) * ... * (2) * 1

However, you can also calculate x! like this:

x! = x * (x-1)!

Going one step further, you can calculate (x-1)! using the same procedure:

(x-1)! = (x-1) * (x-2)!

You can continue calculating recursively until you're down to a value of 1, in which case
you're finished. The program in Listing 5.5 uses a recursive function to calculate
factorials. Because the program uses unsigned integers, it's limited to an input value of 8;
the factorial of 9 and larger values are outside the allowed range for integers.

Example 6.8 Using a recursive function to calculate factorials.

1: /* Demonstrates function recursion. Calculates the */

 134

2: /* factorial of a number. */
3:
4: #include <stdio.h>
5:
6: unsigned int f, x;
7: unsigned int factorial(unsigned int a);
8:
9: main()
10: {
11: puts("Enter an integer value between 1 and 8: ");
12: scanf("%d", &x);
13:
14: if(x > 8 || x < 1)
15: {
16: printf("Only values from 1 to 8 are acceptable!");
17: }
18: else
19: {
20: f = factorial(x);
21: printf("%u factorial equals %u\n", x, f);
22: }
23:
24: return 0;
25: }
26:
27: unsigned int factorial(unsigned int a)
28: {
29: if (a == 1)
30: return 1;
31: else
32: {
33: a *= factorial(a-1);
34: return a;
35: }
36: }
Enter an integer value between 1 and 8:
6
6 factorial equals 720

The first half of this program is like many of the other programs you have worked with so
far. It starts with comments on lines 1 and 2. On line 4, the appropriate header file is
included for the input/output routines. Line 6 declares a couple of unsigned integer
values. Line 7 is a function prototype for the factorial function. Notice that it takes an
unsigned int as its parameter and returns an unsigned int. Lines 9 through 25 are the
main() function. Lines 11 and 12 print a message asking for a value from 1 to 8 and then
accept an entered value.

 135

Lines 14 through 22 show an interesting if statement. Because a value greater than 8
causes a problem, this if statement checks the value. If it's greater than 8, an error
message is printed; otherwise, the program figures the factorial on line 20 and prints the
result on line 21. When you know there could be a problem, such as a limit on the size of
a number, add code to detect the problem and prevent it. Our recursive function,
factorial(), is located on lines 27 through 36. The value passed is assigned to a. On line
29, the value of a is checked. If it's 1, the program returns the value of 1. If the value isn't
1, a is set equal to itself times the value of factorial(a-1). The program calls the factorial
function again, but this time the value of a is (a-1). If (a-1) isn't equal to 1, factorial() is
called again with ((a-1)-1), which is the same as (a-2). This process continues until the if
statement on line 29 is true. If the value of the factorial is 3, the factorial is evaluated to
the following:

3 * (3-1) * ((3-1)-1)

Here is a recursive version of the Fibonacci function. We saw a non recursive version of
this earlier.

int fib(int num)
/* Fibonacci value of a number */
{ switch(num) {
 case 0:
 return(0);
 break;
 case 1:
 return(1);
 break;
 default: /* Including recursive calls */
 return(fib(num - 1) + fib(num - 2));
 break;
 }
}
We met another function earlier called power. Here is an alternative recursive version.

double power(double val, unsigned pow)
{
 if(pow == 0) /* pow(x, 0) returns 1 */
 return(1.0);
 else
 return(power(val, pow - 1) * val);
}

 136

Notice that each of these definitions incorporate a test. Where an input value gives a
trivial result, it is returned directly, otherwise the function calls itself, passing a changed
version of the input values. Care must be taken to define functions which will not call
themselves indefinitely, otherwise your program will never finish.

The definition of fib is interesting, because it calls itself twice when recursion is used.
Consider the effect on program performance of such a function calculating the fibonacci
function of a moderate size number.

Example 6.9 /* program to calculate average of numbers */

#include <stdio.h>
#include <stdarg.h>
double average(double v1 , double v2,...);
int main()
{

 printf("\n Average = %lf", average(3.5, 4.5, 0.0));
 printf("\n Average = %lf", average(1.0, 2.0));
 printf("\n Average = %lf\n", average(0.0,1.2,1.5));
}

double average(double v1, double v2,...)
{
 va_list parg;
 double sum = v1+v2;
 double value = 0;
 int count = 2;
 va_start(parg,v2);
 while((value = va_arg(parg, double)) != 0.0)
 {
 sum += value;

 137

 printf("\n in averge = %.2lf", value);
 count++;
 }
 va_end(parg); /* End variable argument process */
 return sum/count;
}

output

Average = 5.250000
Average = 1.900000
Average = 9.100000

Example 6.10 * Compute area of triangles *\

#include <stdio.h>

float triangle(float width, float height)
{
 float area;

 area = width * height / 2.0;
 return (area);
}

int main()
{
 printf("Triangle #1 %f\n", triangle(1.3, 8.3));
 printf("Triangle #2 %f\n", triangle(4.8, 9.8));
 printf("Triangle #3 %f\n", triangle(1.2, 2.0));
 return (0);
}

6.5 Passing arrays as function argument.

 Arrays can also be passed to the function. If an array as function argument, we
should specify name of the array and size of the array. If we miss to specify the size of
the array in formal declaration section, the compiler automatically assign the size of the
array during execution based on actual argument.

Example 6.10

#include <stdio.h>

void print_onedim(int a[]);
void print_twodim(int a[][4]);
void print_threedim(int a[][3][4]);

 138

main() {
 int cnt=0;
 int a[2][3][4];
 int i;
 int j;
 int k;

 for(i = 0;i < 2; i++){
 for(j = 0;j < 3; j++){
 for(k = 0;k < 4; k++) {
 a[i][j][k] = cnt;
 cnt++;
 }
 }
 }
 print_onedim(a[1][1]);
 print_twodim(a[1]);
 print_threedim(a);
}

void print_onedim(int a[]) {
 int i;

 for(i = 0; i < 4 ; i++)
 printf("%d ", a[i]);
}

void print_twodim(int a[][4]) {
 int j;
 for(j = 0;j < 3; j++)
 print_onedim(a[j]);

 printf("\n");
}

void print_threedim(int a[][3][4]) {
 int j;

 printf("Each two dimension matrix\n");

 for(j = 0; j < 2 ; j++)
 print_twodim(a [j]);

}

 139

Example 6.11

#include <stdio.h>

void printarr(int a[]) {
 int i;
 for(i = 0;i<5;i++) {
 printf(" %d\n",a[i]);
 }
}

main() {
 int a[5];
 int i;

 for(i = 0;i<5;i++) {
 a[i]=i;
 }
 printarr(a);
}

6.6 Let us sum-up

 In this lesson, make the reader to understand and develop programming style by
using function. The effective programming includes two major factors, such as, size of
the program and time need to execute a program. Both factors can be achieved by using
functions.

6.7 Points for discussion

 1. Why we need functions?

 2. Write about two advantages of an array?

 3. Define recursion

 4. Define the term call by value.

6.8 Check your progress

 1. Recursion - A function called itself. This may be either direct or indirect
 recursion. Give example
 2. Explain about string handling function.

 140

 You can specify all string handling functions, especially four basic functions,
such as, strlen(), strcpy(), strcat(), strcmp(). Give some example also.

6.9 Lesson-end Activities

 1. What are the advantages of using functions?

 2. What is the purpose of using return statement?

6.10 Suggested Readings/references /sourcing

1.Peter Aitken, Teach Yourself C in 21 Days, Fourth Edition, Sams Publisher.
2.Brian W. Kernighan and Dennis M. Ritchie, The C programming Language, Prentice-
Hall in 1988
3.E.Balagursamy, Programming in Ansi C, TATA MCGraw Hill
http://publications.gbdirect.co.uk/c_book
http://www.cs.cf.ac.uk/Dave/C/
http://www.oreilly.com/catalog/pcp3/
http://www.cs.utah.edu/dept/old/texinfo/cpp
http://vergil.chemistry.gatech.edu/resources/programming/c-tutorial
http://sysprog.net/
http://www.mycplus.com

 141

LESSON – 7 Pointers

CONTENTS

7.0 Aims and Objectives

7.1 Introduction

7.2 Fundamentals of pointers

7.3 Operators with pointers

7.4 Pointer Operations

7.5 Pointers as Function Arguments

 7.5.1 Call by reference

7.6 Const Pointers

7.7 Pointers and Arrays

7.8 How Not to Use Pointers

7.9 Using Pointers to Split a String

7.10 Pointers and Structures

 7.10.1 Command-Line Arguments

7.11 Let us Sum up.

7.12 Points for discussion

7.13 Check your progress

7.14 Lesson-end Activities

7.15 References

 142

7.0 Aims and Objectives

 The aim of this lesion is to motivated people to understand about the importance
and usage of pointers and its applications.

7.1 Introduction

 Pointers are a fundamental part of C. If you cannot use pointers properly then you
have basically lost all the power and flexibility that C allows. The secret to C is in its use
of pointers.

7.2 Fundamentals of pointers

C uses pointers a lot. Why?:

 It is the only way to express some computations.
 It produces compact and efficient code.
 It provides a very powerful tool.

There are things and pointers to things. Knowing the difference between the
two is very important. This concept is illustrated in following Figure 7.2.1.

Figure 7.2.1 A thing and a pointer to a thing

In this book, we use a box to represent a thing. The name of the variable is written on the
bottom of the box. In this case, our variable is named thing. The value of the variable is
6.

The address of thing is 0x1000. Addresses are automatically assigned by the C compiler
to every variable. Normally, you don't have to worry about the addresses of variables, but
you should understand that they're there.

Our pointer (thing_ptr) points to the variable thing. Pointers are also called address
variables because they contain the addresses of other variables. In this case, our pointer
contains the address 0x1000. Because this is the address of thing, we say that
thing_ptr points to thing.

Variables and pointers are much like street addresses and houses. For example, your
address might be "214 Green Hill Lane." Houses come in many different shapes and

 143

sizes. Addresses are approximately the same size (street, city, state, and zip). So, while
"1600 Pennsylvania Ave." might point to a very big white house and "8347 Undersea
Street" might be a one-room shack, both addresses are the same size.

The same is true in C. While things may be big and small, pointers come in one size
(relatively small).

Many novice programmers get pointers and their contents confused. In order to limit this
problem, all pointer variables in this book end with the extension _ptr. You might want
to follow this convention in your own programs. Although this notation is not as common
as it should be, it is extremely useful.

Many different address variables can point to the same thing. This concept is true for
street addresses as well. The following Table 7.2.2 lists the location of important
services in a small town.

Table 7.2.2 : Directory of Ed's Town USA

Service
(variable name)

Address
(address value)

Building
(thing)

Fire Department 1 Main Street City Hall
Police Station 1 Main Street City Hall
Planning office 1 Main Street City Hall
Gas Station 2 Main Street Ed's Gas Station

In this case, we have a government building that serves many functions. Although it has
one address, three different pointers point to it.

As we will see in this chapter, pointers can be used as a quick and simple way to access
arrays. In later chapters, we will discover how pointers can be used to create new
variables and complex data structures such as linked lists and trees. As you go through
the rest of the book, you will be able to understand these data structures as well as create
your own.

A pointer is declared by putting an asterisk (*) in front of the variable name in the
declaration statement:

int thing; /* define a thing */
int *thing_ptr; /* define a pointer to a thing */

7.3 Operators with pointers

The following Table7.3.1 lists the operators used in conjunction with pointers.

 144

Table 7.3.1 : Pointer Operators
Operator Meaning
* Dereference (given a pointer, get the thing referenced)
& Address of (given a thing, point to it)

The operator ampersand (&) returns the address of a thing which is a pointer. The operator
asterisk (*) returns the object to which a pointer points. These operators can easily cause
confusion. The following Table 7.3.2 shows the syntax for the various pointer operators.

Table 7.3.2 : Pointer Operator Syntax
C Code Description

thing Simple thing (variable)
&thing Pointer to variable thing
thing_ptr Pointer to an integer (may or may not be specific integer thing)
*thing_ptr Integer

Let's look at some typical uses of the various pointer operators:

int thing; /* Declare an integer (a thing) */
thing = 4;

The variable thing is a thing. The declaration int thing does not contain an *, so
thing is not a pointer:

int *thing_ptr; /* Declare a pointer to a thing */

The variable thing_ptr is a pointer. The * in the declaration indicates this is a pointer.
Also, we have put the extension _ptr onto the name:

thing_ptr = &thing; /* Point to the thing */

The expression &thing is a pointer to a thing. The variable thing is an object. The &
(address of operator) gets the address of an object (a pointer), so &thing is a pointer. We
then assign this to thing_ptr, also of type pointer:

thing_ptr = 5; / Set "thing" to 5 */
 /* We may or may not be pointing */
 /* to the specific integer "thing" */

 145

The expression *thing_ptr indicates a thing. The variable thing_ptr is a pointer. The *
(dereference operator) tells C to look at the data pointed to, not the pointer itself. Note
that this points to any integer. It may or may not point to the specific variable thing.

7.4 Pointer Operations

 These pointer operations are summarized in the following Figure 7.4.1.

Figure 7.4.1. Pointer operations

The following examples show how to misuse the pointer operations:

*thing

is illegal. It asks C to get the object pointed to by the variable thing. Because thing is
not a pointer, this operation is invalid.

&thing_ptr

is legal, but strange. thing_ptr is a pointer. The & (address of operator) gets a pointer to
the object (in this case thing_ptr). The result is a pointer to a pointer.

Example illustrates a simple use of pointers. It declares one object, one thing, and a
pointer, thing_ptr. thing is set explicitly by the line:

thing = 2;

The line:

thing_ptr = &thing;

 146

causes C to set thing_ptr to the address of thing. From this point on, thing and
*thing_ptr are the same.

Example 7.1 : thing/thing.c

#include <stdio.h>
int main()
{
 int thing_var; /* define a variable for thing */
 int *thing_ptr; /* define a pointer to thing */

 thing_var = 2; /* assigning a value to thing */
 printf("Thing %d\n", thing_var);

 thing_ptr = &thing_var; /* make the pointer point to thing */
 thing_ptr = 3; / thing_ptr points to thing_var so */
 /* thing_var changes to 3 */
 printf("Thing %d\n", thing_var);

 /* another way of doing the printf */
 printf("Thing %d\n", *thing_ptr);
 return (0);
}

Several pointers can point to the same thing:

1: int something;
2:
3: int *first_ptr; /* one pointer */
4: int *second_ptr; /* another pointer */
5:
6: something = 1; /* give the thing a value */
7:
8: first_ptr = &something;
9: second_ptr = first_ptr;

In line 8, we use the & operator to change something, a thing, into a pointer that can be
assigned to first_ptr. Because first_ptr and second_ptr are both pointers, we can
do a direct assignment in line 9.

After executing this program fragment, we have the situation shown in the following
Figure 7.4.2.

Figure 7.4.2. Two pointers and a thing

 147

You should note that while we have three variables, there is only one integer
(something). The following are all equivalent:

something = 1;
*first_ptr = 1;
*second_ptr = 1;

7.5 Pointers as Function Arguments

 C passes parameters using "call by value." That is, the parameters go only one
way into the function. The only result of a function is a single return value. This concept
is illustrated in the following Figure 7.5.1.

Figure 7.5.1 . Function call

However, pointers can be used to get around this restriction. Imagine that there are two
people, Sam and Joe, and whenever they meet, Sam can only talk and Joe can only listen.
How is Sam ever going to get any information from Joe? Simple: all Sam has to do is tell
Joe, "I want you to leave the answer in the mailbox at 335 West 5th Street."

C uses a similar trick to pass information from a function to its caller. In this Example ,
main wants the function inc_count to increment the variable count.

Passing it directly would not work, so a pointer is passed instead ("Here's the address of
the variable I want you to increment"). Note that the prototype for inc_count contains an
int *. This format indicates that the single parameter given to this function is a pointer
to an integer, not the integer itself.

 148

7.5.1 Call by reference

 If the arguments are reference to the value then it referred as call by reference
otherwise the function is referred as call by value.

Example 7.2 : call/call.c /* Call by Reference */

#include <stdio.h>
void inc_count(int *count_ptr)
{
 (*count_ptr)++;
}

int main()
{
 int count = 0; /* number of times through */

 while (count < 10)
 inc_count(&count);

 return (0);
}

This code is represented graphically in the following Figure 7.5.2 Note that the
parameter is not changed, but what it points to is changed.

Figure 7.5.2 . Call of inc_count

 149

Finally, there is a special pointer called NULL. It points to nothing. (The actual numeric
value is 0.) The standard include file, locale.h, defines the constant NULL. (This file is
usually not directly included, but is usually brought in by the include files stdio.h or
stdlib.h.) The NULL pointer is represented graphically in Figure 7.5.2 .

Figure 7.5.2. NULL

7.6 const Pointers

 Declaring constant pointers is a little tricky. For example, the declaration:

const int result = 5;

tells C that result is a constant so that:

result = 10; /* Illegal */

 150

is illegal. The declaration:

const char *answer_ptr = "Forty-Two";

does not tell C that the variable answer_ptr is a constant. Instead, it tells C that the data
pointed to by answer_ptr is a constant. The data cannot be changed, but the pointer can.
Again we need to make sure we know the difference between "things" and "pointers to
things."

What's answer_ptr? A pointer. Can it be changed? Yes, it's just a pointer. What does it
point to? A const char array. Can the data pointed to by answer_ptr be changed? No,
it's constant.

In C this is:

answer_ptr = "Fifty-One"; /* Legal (answer_ptr is a variable) */
answer_ptr = 'X'; / Illegal (*answer_ptr is a constant) */

If we put the const after the * we tell C that the pointer is constant.

For example:

char *const name_ptr = "Test";

What's name_ptr? It is a constant pointer. Can it be changed? No. What does it point to?
A character. Can the data we pointed to by name_ptr be changed? Yes.

name_ptr = "New"; /* Illegal (name_ptr is constant) */
name_ptr = 'B'; / Legal (*name_ptr is a char) */

Finally, we can put const in both places, creating a pointer that cannot be changed to a
data item that cannot be changed:

const char *const title_ptr = "Title";

7.7 Pointers and Arrays

 C allows pointer arithmetic (addition and subtraction). Suppose we have:

char array[5];
char *array_ptr = &array[0];

In this example, *array_ptr is the same as array[0], *(array_ptr+1) is the same as
array[1], *(array_ptr+2) is the same as array[2], and so on. Note the use of
parentheses. Pointer arithmetic is represented graphically in Figure 7.7.1.

Figure 7.7.1. Pointers into an array

 151

However, (*array_ptr)+1 is not the same as array[1]. The +1 is outside the
parentheses, so it is added after the dereference. So (*array_ptr)+1 is the same as
array[0]+1.

At first glance, this method may seem like a complex way of representing simple array
indices. We are starting with simple pointer arithmetic. In later chapters we will use more
complex pointers to handle more difficult functions efficiently.

The elements of an array are assigned to consecutive addresses. For example, array[0]
may be placed at address 0xff000024. Then array[1] would be placed at address
0xff000025, and so on. This structure means that a pointer can be used to find each
element of the array. In the example, it prints out the elements and addresses of a simple
character array.

Example7.3 : array-p/array-p.c

#include <stdio.h>
 #define ARRAY_SIZE 10 /* Number of characters in array */
/* Array to print */
char array[ARRAY_SIZE] = "0123456789";

int main()
{
 int index; /* Index into the array */

 for (index = 0; index < ARRAY_SIZE; ++index) {
 printf("&array[index]=0x%p (array+index)=0x%p
array[index]=0x%x\n",
 &array[index], (array+index), array[index]);
 }
 return (0);
}

NOTE: When printing pointers, the special conversion %p should be used.

 152

When run, this program prints:

&array[index] (array+index) array[index]
0x40b0 0x40b0 0x30
0x40b1 0x40b1 0x31
0x40b2 0x40b2 0x32
0x40b3 0x40b3 0x33
0x40b4 0x40b4 0x34
0x40b5 0x40b5 0x35
0x40b6 0x40b6 0x36
0x40b7 0x40b7 0x37
0x40b8 0x40b8 0x38
0x40b9 0x40b9 0x39

Characters use one byte, so the elements in a character array will be assigned consecutive
addresses. A short int font uses two bytes, so in an array of short int, the addresses
increase by two. Does this mean that array+1 will not work for anything other than
characters? No. C automatically scales pointer arithmetic so that it works correctly. In
this case, array+1 will point to element number 1.

C provides a shorthand for dealing with arrays. Rather than writing:

array_ptr = &array[0];

we can write:

array_ptr = array;

C blurs the distinction between pointers and arrays by treating them in the same manner
in many cases. Here we use the variable array as a pointer, and C automatically does the
necessary conversion.

Example counts the number of elements that are nonzero and stops when a zero is found.
No limit check is provided, so there must be at least one zero in the array.

Example 7.4 : ptr2.c

#include <stdio.h>

int array[] = {4, 5, 8, 9, 8, 1, 0, 1, 9, 3};
int index;

int main()
{
 index = 0;
 while (array[index] != 0)
 ++index;
 printf("Number of elements before zero %d\n",
 index);
 return (0);
}

 153

Next Example is a version of previous Example that uses pointers.

Example7.5 : ptr3/ptr3.c

#include <stdio.h>

int array[] = {4, 5, 8, 9, 8, 1, 0, 1, 9, 3};
int *array_ptr;

int main()
{
 array_ptr = array;

 while ((*array_ptr) != 0)
 ++array_ptr;

 printf("Number of elements before zero %d\n",
 array_ptr - array);
 return (0);
}

Notice that when we wish to examine the data in the array, we use the dereference
operator (*). This operator is used in the statement:

while ((*array_ptr) != 0)

When we wish to change the pointer itself, no other operator is used. For example, the
line:

++array_ptr;

increments the pointer, not the data.

In the above example uses the expression (array[index] != 0). This expression
requires the compiler to generate an index operation, which takes longer than a simple
pointer dereference, ((*array_ptr) != 0).

The expression at the end of this program, array_ptr - array, computes how far
array_ptr is into the array.

When passing an array to a procedure, C will automatically change the array into a
pointer. In fact, if you put & before the array, C will issue a warning. The following
example illustrates the various ways in which an array can be passed to a subroutine.

 154

Example 7.6 : init-a/init-a.c (continued)

#define MAX 10 /* Size of the array */
/**
 * init_array_1 -- Zeroes out an array. *
 * *
 * Parameters *
 * data -- The array to zero out. *
 **/
void init_array_1(int data[])
{
 int index;

 for (index = 0; index < MAX; ++index)
 data[index] = 0;
}

/**
 * init_array_2 -- Zeroes out an array. *
 * *
 * Parameters *
 * data_ptr -- Pointer to array to zero. *
 **/
void init_array_2(int *data_ptr)
{
 int index;

 for (index = 0; index < MAX; ++index)
 *(data_ptr + index) = 0;
}
int main()
{
 int array[MAX];

 void init_array_1();
 void init_array_2();

 /* one way of initializing the array */
 init_array_1(array);

 /* another way of initializing the array */
 init_array_1(&array[0]);

 /* works, but the compiler generates a warning */
 init_array_1(&array);

 /* Similar to the first method but */
 /* function is different */
 init_array_2(array);

 return (0);
}

 155

7.8 How Not to Use Pointers

 The major goal of this book is to teach you how to create clear, readable,
maintainable code. Unfortunately, not everyone has read this book and some people still
believe that you should make your code as compact as possible. This belief can result in
programmers using the ++ and -- operators inside other statements.

Example shows several examples in which pointers and the increment operator are used
together.

Example7.7 : Bad Pointer Usage

/* This program shows programming practices that should **NOT** be used
*/
/* Unfortunately, too many programmers use them */
int array[10]; /* An array for our data */
int main()
{
 int *data_ptr; /* Pointer to the data */
 int value; /* A data value */

 data_ptr = &array[0];/* Point to the first element */
 value = *data_ptr++; /* Get element #0, data_ptr points to element
 #1 */
 value = *++data_ptr; /* Get element #2, data_ptr points to element
 #2 */
 value = ++*data_ptr; /* Increment element #2, return its value */
 /* Leave data_ptr alone */

To understand each of these statements, you must carefully dissect each expression to
discover its hidden meaning. When I do maintenance programming, I don't want to have
to worry about hidden meanings, so please don't code like this, and shoot anyone who
does.

This example is a little extreme, but it illustrates how side effects can easily become
confusing.

Example is an example of the code you're more likely to run into. The program copies a
string from the source (p) to the destination (q).

void copy_string(char *p, char *q)
{
 while (*p++ = *q++);
}

Given time, a good programmer will decode this. However, understanding the program is
much easier when we are a bit more verbose, as in Example .

 156

These statements are dissected in Figure 7.8.1 .

Figure 7.8.1. Pointer operations dissected

Example7.8 : Readable Use of Pointers

/**
 * copy_string -- Copies one string to another. *
 * *
 * Parameters *
 * dest -- Where to put the string *
 * source -- Where to get it *
 **/
void copy_string(char *dest, char *source)
{
 while (1) {
 *dest = *source;

 /* Exit if we copied the end of string */
 if (*dest == '\0')
 return;

 ++dest;
 ++source;
 }
}

7.9 Using Pointers to Split a String

 157

 Suppose we are given a string of the form "Last/First." We want to split this into
two strings, one containing the first name and one containing the last name.

We need a function to find the slash in the name. The standard function strchr performs
this job for us. In this program, we have chosen to duplicate this function to show you
how it works.

This function takes a pointer to a string (string_ptr) and a character to find (find) as its
arguments. It starts with a while loop that will continue until we find the character we are
looking for (or we are stopped by some other code below).

while (*string_ptr != find) {

Next we test to see if we've run out of string. In this case, our pointer (string_ptr)
points to the end-of-string character. If we have reached the end of string before finding
the character, we return NULL:

if (*string_ptr == '\0')
 return (NULL);

If we get this far, we have not found what we are looking for, and are not at the end of the
string. So we move the pointer to the next character, and return to the top of the loop to
try again:

++string_ptr;
}

Our main program reads in a single line, stripping the newline character from it. The
function my_strchr is called to find the location of the slash (/).

At this point, last_ptr points to the first character of the last name and first_ptr
points to slash. We then split the string by replacing the slash (/) with an end of string
(NUL or \0). Now last_ptr points to just the last name and first_ptr points to a null
string. Moving first_ptr to the next character makes it point to the beginning of the
first name.

The sequence of steps in splitting the string is illustrated in Figure 7.9.1.

 158

Figure 7.9.1. Splitting a string

Following example contains the full program, which demonstrates how pointers and
character arrays can be used for simple string processing.

Example 7.8: split/split.c (continued)

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

/**
 * my_strchr -- Finds a character in a string. *
 * Duplicate of a standard library function, *
 * put here for illustrative purposes *
 * *
 * Parameters *
 * string_ptr -- String to look through. *
 * find -- Character to find. *
 * *
 * Returns *
 * pointer to 1st occurrence of character *
 * in string or NULL for error. *
 **/
char *my_strchr(char * string_ptr, char find)
{
 while (*string_ptr != find) {

 /* Check for end */

 if (*string_ptr == '\0')
 return (NULL); /* not found */

 ++string_ptr;

 159

 }
 return (string_ptr); /* Found */
}

int main()
{
 char line[80]; /* The input line */
 char *first_ptr; /* pointer to the first name */
 char *last_ptr; /* pointer to the last name */

 fgets(line, sizeof(line), stdin);

 /* Get rid of trailing newline */
 line[strlen(line)-1] = '\0';

 last_ptr = line; /* last name is at beginning of line */

 first_ptr = my_strchr(line, '/'); /* Find slash */

 /* Check for an error */
 if (first_ptr == NULL) {
 fprintf(stderr,
 "Error: Unable to find slash in %s\n", line);
 exit (8);
 }

 first_ptr = '\0'; / Zero out the slash */

 ++first_ptr; /* Move to first character of name */

 printf("First:%s Last:%s\n", first_ptr, last_ptr);
 return (0);
}

Question : Example is supposed to print out:

Name: tmp1 but instead, we get:
Name: !_@$#ds80
(Your results may vary.) Why?

Example 7.9: tmp-name/tmp-name.c

#include <stdio.h>
#include <string.h>

/**
 * tmp_name -- Return a temporary filename. *
 * *
 * Each time this function is called, a new name will *
 * be returned. *
 * *
 * Returns *
 * Pointer to the new filename. *

 160

 **/
char *tmp_name(void)
{
 char name[30]; /* The name we are generating */
 static int sequence = 0; /* Sequence number for last digit */

 ++sequence; /* Move to the next filename */

 strcpy(name, "tmp");

 /* But in the sequence digit */
 name[3] = sequence + '0';

 /* End the string */
 name[4] = '\0';

 return(name);
}

int main()
{
 char *tmp_name(void); /* Get name of temporary file */

 printf("Name: %s\n", tmp_name());
 return(0);
}

7.10 Pointers and Structures

 Consider the example, we can defined a structure for a mailing list as follows

struct mailing {
 char name[60]; /* last name, first name */
 char address1[60];/* two lines of street address */
 char address2[60];
 char city[40];
 char state[2]; /* two-character abbreviation */
 long int zip; /* numeric zip code */
} list[MAX_ENTRIES];

Mailing lists must frequently be sorted by name and zip code. We could sort the entries
themselves, but each entry is 226 bytes long. That's a lot of data to move around. One
way around this problem is to declare an array of pointers, and then sort the pointers:

/* Pointer to the data */
struct mailing *list_ptrs[MAX_ENTRIES];
int current; /* current mailing list entry */

 for (current = 0; current = number_of_entries; ++current)
 list_ptrs[current] = &list[current];
 /* Sort list_ptrs by zip code */

Now, instead of having to move a 226-byte structure around, we are moving 4-byte
pointers. Our sorting is much faster. Imagine that you had a warehouse full of big heavy

 161

boxes and you needed to locate any box quickly. You could put them in alphabetical
order, but that would require a lot of moving. Instead, you assign each location a number,
write down the name and number on index cards, and sort the cards by name.

7.10.1 Command-Line Arguments

 The procedure main actually takes two arguments. They are called argc and
argv[2]:

main(int argc, char *argv[])
{

(If you realize that the arguments are in alphabetical order, you can easily remember
which one comes first.)

The parameter argc is the number of arguments on the command line (including the
program name). The array argv contains the actual arguments. For example, if the
program args were run with the command line:

args this is a test

then:

 argc = 5
argv[0] = "args"
argv[1] = "this"
argv[2] = "is"
argv[3] = "a"
argv[4] = "test"
argv[5] = NULL

NOTE: The UNIX shell expands wildcard characters like *, ?, and [] before sending the
command line to the program. See your sh or csh manual for details.

Turbo C++ and Borland C++ expand wildcard characters if the file WILDARG.OBJ is
linked with your program. See the manual for details.

Almost all UNIX commands use a standard command-line format. This standard has
carried over into other environments. A standard UNIX command has the form:

command options file1 file1 file3 ...

Options are preceded by a dash (-) and are usually a single letter. For example, the option
-v might turn on verbose mode for a particular command. If the option takes a parameter,
it follows the letter. For example, the option -m1024 sets the maximum number of
symbols to 1024 and -ooutfile sets the output filename to outfile.

 162

Let's look at writing a program that can read the command-line arguments and act
accordingly. This program formats and prints files. Part of the documentation for the
program is given here:

print_file [-v] [-llength] [-oname] [file1] [file2] ...

where:

-v

specifies verbose options; turns on a lot of progress information messages

-llength

sets the page size to length lines (default = 66)

-oname

sets the output file to name (default = print.out)

file1, file2, ...

is a list of files to print. If no files are specified, the file print.in is printed.

We can use a while loop to cycle through the command-line options. The actual loop is:

while ((argc > 1) && (argv[1][0] == '-')) {

One argument always exists: the program name. The expression (argc > 1) checks for
additional arguments. The first one is numbered 1. The first character of the first
argument is argv[1][0]. If this is a dash, we have an option.

At the end of the loop is the code:

 --argc;
 ++argv;
}

This consumes an argument. The number of arguments is decremented to indicate one
less option, and the pointer to the first option is incremented, shifting the list to the left
one place. (Note: after the first increment, argv[0] no longer points to the program
name.)

The switch statement is used to decode the options. Character 0 of the argument is the
dash (-). Character 1 is the option character, so we use the expression:

switch (argv[1][1]) {

 163

to decode the option.

The option -v has no arguments; it just causes a flag to be set.

The option -o takes a filename. Rather than copy the whole string, we set the character
pointer out_file to point to the name part of the string. By this time we know the
following:

argv[1][0] ='-'
argv[1][1] ='o'
argv[1][2] = first character of the filename

We set out_file to point to the string with the statement:

out_file = &argv[1][2];

The address of operator (&) is used to get the address of the first character in the output
filename. This process is appropriate because we are assigning the address to a character
pointer named out_file.

The -l option takes an integer argument. The library function atoi is used to convert the
string into an integer. From the previous example, we know that argv[1][2] is the first
character of the string containing the number. This string is passed to atoi.

Finally, all the options are parsed and we fall through to the processing loop. This merely
executes the function do_file for each file argument. The following example print.c
contains the print program.

This is one way of parsing the argument list. The use of the while loop and switch
statement is simple and easy to understand. This method does have a limitation. The
argument must immediately follow the options. For example, -odata.out will work, but
"-o data.out" will not. An improved parser would make the program more friendly,
but the techniques described here work for simple programs.

Example7.10 : print/print.c (continued)

[File: print/print.c]
/**
 * Program: Print *
 * *
 * Purpose: *
 * Formats files for printing. *
 * *
 * Usage: *
 * print [options] file(s) *
 * *
 * Options: *
 * -v Produces verbose messages. *

 164

 * -o<file> Sends output to a file *
 * (default=print.out). *
 * -l<lines> Sets the number of lines/page *
 * (default=66). *
 **/
#include <stdio.h>
#include <stdlib.h>

int verbose = 0; /* verbose mode (default = false) */
char *out_file = "print.out"; /* output filename */
char *program_name; /* name of the program (for errors) */
int line_max = 66; /* number of lines per page */

/**
 * do_file -- Dummy routine to handle a file. *
 * *
 * Parameter *
 * name -- Name of the file to print. *
 **/
void do_file(char *name)
{
 printf("Verbose %d Lines %d Input %s Output %s\n",
 verbose, line_max, name, out_file);
}
/***
 * usage -- Tells the user how to use this program and *
 * exit. *
 **/
void usage(void)
{
 fprintf(stderr,"Usage is %s [options] [file-list]\n",
 program_name);
 fprintf(stderr,"Options\n");
 fprintf(stderr," -v verbose\n");
 fprintf(stderr," -l<number> Number of lines\n");
 fprintf(stderr," -o<name> Set output filename\n");
 exit (8);
}
int main(int argc, char *argv[])
{
 /* save the program name for future use */
 program_name = argv[0];

 /*
 * loop for each option
 * Stop if we run out of arguments
 * or we get an argument without a dash
 */
 while ((argc > 1) && (argv[1][0] == '-')) {
 /*
 * argv[1][1] is the actual option character
 */
 switch (argv[1][1]) {
 /*
 * -v verbose
 */
 case 'v':

 165

 verbose = 1;
 break;
 /*
 * -o<name> output file
 * [0] is the dash
 * [1] is the "o"
 * [2] starts the name
 */
 case 'o':
 out_file = &argv[1][2];
 break;
 /*
 * -l<number> set max number of lines
 */
 case 'l':
 line_max = atoi(&argv[1][2]);
 break;
 default:
 fprintf(stderr,"Bad option %s\n", argv[1]);
 usage();
 }
 /*
 * move the argument list up one
 * move the count down one
 */
 ++argv;
 --argc;
 }

 /*
 * At this point, all the options have been processed.
 * Check to see if we have no files in the list.
 * If no files exist, we need to process just standard input
stream.
 */
 if (argc == 1) {
 do_file("print.in");
 } else {
 while (argc > 1) {
 do_file(argv[1]);
 ++argv;
 --argc;
 }
 }
 return (0);
}
7.11 Let us Sum up.
 In this lesson we discussed about :
Pointers as Function Arguments
Usage of const Pointers
Pointers and Arrays
How Not to Use Pointers
Using Pointers to Split a String
Pointers and Structures

 166

7.12 Points for discussion

 1. What are all the advantages of using pointers?
 2. Define call by reference and call by value
 3. How to set pointer to function?
 4. Explan rules for using pointers

7.13 Check your progress

 Define call by reference and call by value

 If the arguments are reference to the value then it referred as call by
 reference otherwise the function is referred as call by value. Give appropriate
 example.

 Explain any twoPurposse of using pointers.

 1. Pointers will increase the spead of execution.
 2. It saves memory also
 3. We can access the variable, even though it may declare outside the
 function.

7.14 Lesson-end Activities
 1. What do you mean by address of and value of operators?
 2. How pointer will increase your program efficiency?

7.15 References

1.Peter Aitken, Teach Yourself C in 21 Days, Fourth Edition, Sams Publisher.
2.Brian W. Kernighan and Dennis M. Ritchie, The C programming Language, Prentice-
Hall in 1988
3.E.Balagursamy, Programming in Ansi C, TATA McGraw Hill
http://sysprog.net/
http://www.mycplus.com/cplus

 167

LESSON - 8 : PREPROCESSORS

CONTENTS

8.0 Aims and Objectives.

8.1 Introduction

8.2 Preprocessing Directives

 8.2.1 Header Files

 8.2.2 Uses of Header Files

 8.2.3 The `#include' Directive

 8.3 Macros

 8.3.1 Simple Macros

 8.3.2 Macros with Arguments

 8.3.3 Predefined Macros

 8.3.4 Nonstandard Predefined Macros

 8.3.5 Stringification

 8.3.6 Concatenation

 8.3.7 Undefining Macros

 8.3.8 Redefining Macros

8.4 Let us Sum up

8.5 Points for discussion

8.6 Check your progress

8.7 Lesson-end Activities

8.8 References

 168

8.0 Aims and Objectives

 The aim of this lesson is to make the readers to understand about a facility called
C-Preprocessors and its applications.

8.1 Introduction

 The C preprocessor is a macro processor that is used automatically by the C
compiler to transform your program before actual compilation. It is called a macro
processor because it allows you to define macros, which are brief abbreviations for
longer constructs.

The C preprocessor provides four separate facilities that you can use as you see fit:

 Inclusion of header files. These are files of declarations that can be substituted
into your program.

 Macro expansion. You can define macros, which are abbreviations for arbitrary
fragments of C code, and then the C preprocessor will replace the macros with
their definitions throughout the program.

 Conditional compilation. Using special preprocessing directives, you can include
or exclude parts of the program according to various conditions.

 Line control. If you use a program to combine or rearrange source files into an
intermediate file which is then compiled, you can use line control to inform the
compiler of where each source line originally came from.

C preprocessors vary in some details. This manual discusses the GNU C preprocessor,
the C Compatible Compiler Preprocessor. The GNU C preprocessor provides a superset
of the features of ANSI Standard C.

ANSI Standard C requires the rejection of many harmless constructs commonly used by
today's C programs. Such incompatibility would be inconvenient for users, so the GNU C
preprocessor is configured to accept these constructs by default. Strictly speaking, to get
ANSI Standard C, you must use the options `-trigraphs', `-undef' and `-
pedantic', but in practice the consequences of having strict ANSI Standard C make it
undesirable to do this.

The C preprocessor is designed for C-like languages; you may run into problems if you
apply it to other kinds of languages, because it assumes that it is dealing with C. For
example, the C preprocessor sometimes outputs extra white space to avoid inadvertent C
token concatenation, and this may cause problems with other languages.

 169

8.2 Preprocessing Directives

 Most preprocessor features are active only if you use preprocessing directives to
request their use. Preprocessing directives are lines in your program that start with `#'.
The `#' is followed by an identifier that is the directive name. For example,
`#define' is the directive that defines a macro. White space is also allowed before and
after the `#'.

The set of valid directive names is fixed. Programs cannot define new preprocessing
directives. Some directive names require arguments; these make up the rest of the
directive line and must be separated from the directive name by whitespace. For example,
`#define' must be followed by a macro name and the intended expansion of the
macro

A preprocessing directive cannot be more than one line in normal circumstances. It may
be split cosmetically with Backslash-Newline, but that has no effect on its meaning.
Comments containing Newlines can also divide the directive into multiple lines, but the
comments are changed to Spaces before the directive is interpreted. The only way a
significant Newline can occur in a preprocessing directive is within a string constant or
character constant. Note that most C compilers that might be applied to the output from
the preprocessor do not accept string or character constants containing Newlines.

The `#' and the directive name cannot come from a macro expansion. For example, if
`foo' is defined as a macro expanding to `define', that does not make `#foo' a
valid preprocessing directive.

 8.2.1 Header Files

 A header file is a file containing C declarations and macro definitions to be shared
between several source files. You request the use of a header file in your program with
the C preprocessing directive `#include'.

8.2.2 Uses of Header Files

Header files serve two kinds of purposes.

 System header files declare the interfaces to parts of the operating system. You
include them in your program to supply the definitions and declarations you need
to invoke system calls and libraries.

 Your own header files contain declarations for interfaces between the source files
of your program. Each time you have a group of related declarations and macro

 170

definitions all or most of which are needed in several different source files, it is a
good idea to create a header file for them.

Including a header file produces the same results in C compilation as copying the header
file into each source file that needs it. But such copying would be time-consuming and
error-prone. With a header file, the related declarations appear in only one place. If they
need to be changed, they can be changed in one place, and programs that include the
header file will automatically use the new version when next recompiled. The header file
eliminates the labor of finding and changing all the copies as well as the risk that a failure
to find one copy will result in inconsistencies within a program.

The usual convention is to give header files names that end with `.h'. Avoid unusual
characters in header file names, as they reduce portability.

 8.2.3 The `#include' Directive

 Both user and system header files are included using the preprocessing directive
`#include'. It has three variants:

#include <file>
This variant is used for system header files. It searches for a file named file in a
list of directories specified by you, then in a standard list of system directories.
You specify directories to search for header files with the command option `-I'
. The option `-nostdinc' inhibits searching the standard system directories;
in this case only the directories you specify are searched. The parsing of this form
of `#include' is slightly special because comments are not recognized within
the `<...>'. Thus, in `#include <x/*y>' the `/*' does not start a
comment and the directive specifies inclusion of a system header file named
`x/*y'. Of course, a header file with such a name is unlikely to exist on Unix,
where shell wildcard features would make it hard to manipulate. The argument
file may not contain a `>' character. It may, however, contain a `<' character.

#include "file"
This variant is used for header files of your own program. It searches for a file
named file first in the current directory, then in the same directories used for
system header files. The current directory is the directory of the current input file.
It is tried first because it is presumed to be the location of the files that the current
input file refers to. (If the `-I-' option is used, the special treatment of the
current directory is inhibited.) The argument file may not contain `"' characters.
If backslashes occur within file, they are considered ordinary text characters, not
escape characters. None of the character escape sequences appropriate to string
constants in C are processed. Thus, `#include "x\n\\y"' specifies a
filename containing three backslashes. It is not clear why this behavior is ever
useful, but the ANSI standard specifies it.

#include anything else
This variant is called a computed #include. Any `#include' directive whose
argument does not fit the above two forms is a computed include. The text

 171

anything else is checked for macro calls, which are expanded . When this is done,
the result must fit one of the above two variants--in particular, the expanded text
must in the end be surrounded by either quotes or angle braces. This feature
allows you to define a macro which controls the file name to be used at a later
point in the program. One application of this is to allow a site-specific
configuration file for your program to specify the names of the system include
files to be used. This can help in porting the program to various operating systems
in which the necessary system header files are found in different places.

 How `#include' Works

 The `#include' directive works by directing the C preprocessor to scan the
specified file as input before continuing with the rest of the current file. The output from
the preprocessor contains the output already generated, followed by the output resulting
from the included file, followed by the output that comes from the text after the
`#include' directive. For example, given a header file `header.h' as follows,

char *test ();

and a main program called `program.c' that uses the header file, like this,

int x;
#include "header.h"

main ()
{
 printf (test ());
}

the output generated by the C preprocessor for `program.c' as input would be

int x;
char *test ();

main ()
{
 printf (test ());
}

Included files are not limited to declarations and macro definitions; those are merely the
typical uses. Any fragment of a C program can be included from another file. The include
file could even contain the beginning of a statement that is concluded in the containing
file, or the end of a statement that was started in the including file. However, a comment
or a string or character constant may not start in the included file and finish in the
including file. An unterminated comment, string constant or character constant in an
included file is considered to end (with an error message) at the end of the file.

It is possible for a header file to begin or end a syntactic unit such as a function
definition, but that would be very confusing, so don't do it.

 172

The line following the `#include' directive is always treated as a separate line by the
C preprocessor even if the included file lacks a final newline.

 Once-Only Include Files

 Very often, one header file includes another. It can easily result that a certain
header file is included more than once. This may lead to errors, if the header file defines
structure types or typedefs, and is certainly wasteful. Therefore, we often wish to prevent
multiple inclusion of a header file.

The standard way to do this is to enclose the entire real contents of the file in a
conditional, like this:

#ifndef FILE_FOO_SEEN
#define FILE_FOO_SEEN

the entire file

#endif /* FILE_FOO_SEEN */

The macro FILE_FOO_SEEN indicates that the file has been included once already. In a
user header file, the macro name should not begin with `_'. In a system header file, this
name should begin with `__' to avoid conflicts with user programs. In any kind of
header file, the macro name should contain the name of the file and some additional text,
to avoid conflicts with other header files.

The GNU C preprocessor is programmed to notice when a header file uses this particular
construct and handle it efficiently. If a header file is contained entirely in a `#ifndef'
conditional, then it records that fact. If a subsequent `#include' specifies the same
file, and the macro in the `#ifndef' is already defined, then the file is entirely
skipped, without even reading it.

There is also an explicit directive to tell the preprocessor that it need not include a file
more than once. This is called `#pragma once', and was used in addition to the
`#ifndef' conditional around the contents of the header file. `#pragma once' is
now obsolete and should not be used at all.

In the Objective C language, there is a variant of `#include' called `#import'
which includes a file, but does so at most once. If you use `#import' instead of
`#include', then you don't need the conditionals inside the header file to prevent
multiple execution of the contents.

`#import' is obsolete because it is not a well designed feature. It requires the users of
a header file--the applications programmers--to know that a certain header file should
only be included once. It is much better for the header file's implementor to write the file
so that users don't need to know this. Using `#ifndef' accomplishes this goal.

 173

8.3 Macros

 A macro is a sort of abbreviation which you can define once and then use later.
There are many complicated features associated with macros in the C preprocessor.

8.3.1 Simple Macros

 A simple macro is a kind of abbreviation. It is a name which stands for a
fragment of code. Some people refer to these as manifest constants.

Before you can use a macro, you must define it explicitly with the `#define'
directive. `#define' is followed by the name of the macro and then the code it should
be an abbreviation for. For example,

#define BUFFER_SIZE 1020

defines a macro named `BUFFER_SIZE' as an abbreviation for the text `1020'. If
somewhere after this `#define' directive there comes a C statement of the form

foo = (char *) xmalloc (BUFFER_SIZE);

then the C preprocessor will recognize and expand the macro `BUFFER_SIZE',
resulting in

foo = (char *) xmalloc (1020);

The use of all upper case for macro names is a standard convention. Programs are easier
to read when it is possible to tell at a glance which names are macros.

Normally, a macro definition must be a single line, like all C preprocessing directives.
(You can split a long macro definition cosmetically with Backslash-Newline.) There is
one exception: Newlines can be included in the macro definition if within a string or
character constant. This is because it is not possible for a macro definition to contain an
unbalanced quote character; the definition automatically extends to include the matching
quote character that ends the string or character constant. Comments within a macro
definition may contain Newlines, which make no difference since the comments are
entirely replaced with Spaces regardless of their contents.

Aside from the above, there is no restriction on what can go in a macro body. Parentheses
need not balance. The body need not resemble valid C code. (But if it does not, you may
get error messages from the C compiler when you use the macro.)

The C preprocessor scans your program sequentially, so macro definitions take effect at
the place you write them. Therefore, the following input to the C preprocessor

foo = X;
#define X 4

 174

bar = X;

produces as output

foo = X;

bar = 4;

After the preprocessor expands a macro name, the macro's definition body is appended to
the front of the remaining input, and the check for macro calls continues. Therefore, the
macro body can contain calls to other macros. For example, after

#define BUFSIZE 1020
#define TABLESIZE BUFSIZE

the name `TABLESIZE' when used in the program would go through two stages of
expansion, resulting ultimately in `1020'.

This is not at all the same as defining `TABLESIZE' to be `1020'. The `#define'
for `TABLESIZE' uses exactly the body you specify--in this case, `BUFSIZE'---and
does not check to see whether it too is the name of a macro. It's only when you use
`TABLESIZE' that the result of its expansion is checked for more macro names.

 8.3.2 Macros with Arguments

 A simple macro always stands for exactly the same text, each time it is used.
Macros can be more flexible when they accept arguments. Arguments are fragments of
code that you supply each time the macro is used. These fragments are included in the
expansion of the macro according to the directions in the macro definition. A macro that
accepts arguments is called a function-like macro because the syntax for using it looks
like a function call.

To define a macro that uses arguments, you write a `#define' directive with a list of
argument names in parentheses after the name of the macro. The argument names may
be any valid C identifiers, separated by commas and optionally whitespace. The open-
parenthesis must follow the macro name immediately, with no space in between.

For example, here is a macro that computes the minimum of two numeric values, as it is
defined in many C programs:

#define min(X, Y) ((X) < (Y) ? (X) : (Y))

(This is not the best way to define a "minimum" macro in GNU C.

To use a macro that expects arguments, you write the name of the macro followed by a
list of actual arguments in parentheses, separated by commas. The number of actual

 175

arguments you give must match the number of arguments the macro expects. Examples
of use of the macro `min' include `min (1, 2)' and `min (x + 28, *p)'.

The expansion text of the macro depends on the arguments you use. Each of the argument
names of the macro is replaced, throughout the macro definition, with the corresponding
actual argument. Using the same macro `min' defined above, `min (1, 2)'
expands into

((1) < (2) ? (1) : (2))

where `1' has been substituted for `X' and `2' for `Y'.

Likewise, `min (x + 28, *p)' expands into

((x + 28) < (*p) ? (x + 28) : (*p))

Parentheses in the actual arguments must balance; a comma within parentheses does not
end an argument. However, there is no requirement for brackets or braces to balance, and
they do not prevent a comma from separating arguments. Thus,

macro (array[x = y, x + 1])

passes two arguments to macro: `array[x = y' and `x + 1]'. If you want to
supply `array[x = y, x + 1]' as an argument, you must write it as `array[(x
= y, x + 1)]', which is equivalent C code.

After the actual arguments are substituted into the macro body, the entire result is
appended to the front of the remaining input, and the check for macro calls continues.
Therefore, the actual arguments can contain calls to other macros, either with or without
arguments, or even to the same macro. The macro body can also contain calls to other
macros. For example, `min (min (a, b), c)' expands into this text:

((((a) < (b) ? (a) : (b))) < (c)
 ? (((a) < (b) ? (a) : (b)))
 : (c))

(Line breaks shown here for clarity would not actually be generated.)

If a macro foo takes one argument, and you want to supply an empty argument, you must
write at least some whitespace between the parentheses, like this: `foo ()'. Just
`foo ()' is providing no arguments, which is an error if foo expects an argument. But
`foo0 ()' is the correct way to call a macro defined to take zero arguments, like this:

#define foo0() ...

If you use the macro name followed by something other than an open-parenthesis (after
ignoring any spaces, tabs and comments that follow), it is not a call to the macro, and the

 176

preprocessor does not change what you have written. Therefore, it is possible for the
same name to be a variable or function in your program as well as a macro, and you can
choose in each instance whether to refer to the macro (if an actual argument list follows)
or the variable or function (if an argument list does not follow).

Such dual use of one name could be confusing and should be avoided except when the
two meanings are effectively synonymous: that is, when the name is both a macro and a
function and the two have similar effects. You can think of the name simply as a
function; use of the name for purposes other than calling it (such as, to take the address)
will refer to the function, while calls will expand the macro and generate better but
equivalent code. For example, you can use a function named `min' in the same source
file that defines the macro. If you write `&min' with no argument list, you refer to the
function. If you write `min (x, bb)', with an argument list, the macro is expanded.
If you write `(min) (a, bb)', where the name `min' is not followed by an open-
parenthesis, the macro is not expanded, so you wind up with a call to the function
`min'.

You may not define the same name as both a simple macro and a macro with arguments.

In the definition of a macro with arguments, the list of argument names must follow the
macro name immediately with no space in between. If there is a space after the macro
name, the macro is defined as taking no arguments, and all the rest of the line is taken to
be the expansion. The reason for this is that it is often useful to define a macro that takes
no arguments and whose definition begins with an identifier in parentheses. This rule
about spaces makes it possible for you to do either this:

#define FOO(x) - 1 / (x)

(which defines `FOO' to take an argument and expand into minus the reciprocal of that
argument) or this:

#define BAR (x) - 1 / (x)

(which defines `BAR' to take no argument and always expand into `(x) - 1 /
(x)').

Note that the uses of a macro with arguments can have spaces before the left parenthesis;
it's the definition where it matters whether there is a space.

8.3.3 Predefined Macros

 Several simple macros are predefined. You can use them without giving
definitions for them. They fall into two classes: standard macros and system-specific
macros.

 177

Standard Predefined Macros

 The standard predefined macros are available with the same meanings regardless
of the machine or operating system on which you are using GNU C. Their names all start
and end with double underscores. Those preceding __GNUC__ in this table are
standardized by ANSI C; the rest are GNU C extensions.

__FILE__
This macro expands to the name of the current input file, in the form of a C string
constant. The precise name returned is the one that was specified in
`#include' or as the input file name argument.

__LINE__
This macro expands to the current input line number, in the form of a decimal
integer constant. While we call it a predefined macro, it's a pretty strange macro,
since its "definition" changes with each new line of source code.

This and `__FILE__' are useful in generating an error message to report an
inconsistency detected by the program; the message can state the source line at
which the inconsistency was detected. For example,

fprintf (stderr, "Internal error: "
 "negative string length "
 "%d at %s, line %d.",
 length, __FILE__, __LINE__);

A `#include' command changes the expansions of `__FILE__' and
`__LINE__' to correspond to the included file. At the end of that file, when
processing resumes on the input file that contained the `#include' command,
the expansions of `__FILE__' and `__LINE__' revert to the values they had
before the `#include' (but `__LINE__' is then incremented by one as
processing moves to the line after the `#include').

The expansions of both `__FILE__' and `__LINE__' are altered if a
`#line' command is used.

__INCLUDE_LEVEL__
This macro expands to a decimal integer constant that represents the depth of
nesting in include files. The value of this macro is incremented on every
`#include' command and decremented at every end of file.

__DATE__
This macro expands to a string constant that describes the date on which the
preprocessor is being run. The string constant contains eleven characters and
looks like `"Jan 29 1987"' or `"Apr 1 1905"'.

__TIME__
This macro expands to a string constant that describes the time at which the
preprocessor is being run. The string constant contains eight characters and looks
like `"23:59:01"'.

 178

__STDC__
This macro expands to the constant 1, to signify that this is ANSI Standard C.
(Whether that is actually true depends on what C compiler will operate on the
output from the preprocessor.)

__GNUC__
This macro is defined if and only if this is GNU C. This macro is defined only
when the entire GNU C compiler is in use; if you invoke the preprocessor
directly, `__GNUC__' is undefined.

__GNUG__
The GNU C compiler defines this when the compilation language is C++; use
`__GNUG__' to distinguish between GNU C and GNU C++.

__cplusplus
The draft ANSI standard for C++ used to require predefining this variable.
Though it is no longer required, GNU C++ continues to define it, as do other
popular C++ compilers. You can use `__cplusplus' to test whether a header
is compiled by a C compiler or a C++ compiler.

__STRICT_ANSI__
This macro is defined if and only if the `-ansi' switch was specified when
GNU C was invoked. Its definition is the null string. This macro exists primarily
to direct certain GNU header files not to define certain traditional Unix constructs
which are incompatible with ANSI C.

__BASE_FILE__
This macro expands to the name of the main input file, in the form of a C string
constant. This is the source file that was specified as an argument when the C
compiler was invoked.

__VERSION__
This macro expands to a string which describes the version number of GNU C.
The string is normally a sequence of decimal numbers separated by periods, such
as `"1.18"'. The only reasonable use of this macro is to incorporate it into a
string constant.

__OPTIMIZE__
This macro is defined in optimizing compilations. It causes certain GNU header
files to define alternative macro definitions for some system library functions. It is
unwise to refer to or test the definition of this macro unless you make very sure
that programs will execute with the same effect regardless.

__CHAR_UNSIGNED__
This macro is defined if and only if the data type char is unsigned on the target
machine. It exists to cause the standard header file `limit.h' to work correctly.
It is bad practice to refer to this macro yourself; instead, refer to the standard
macros defined in `limit.h'. The preprocessor uses this macro to determine
whether or not to sign-extend large character constants written in octal; see
section The `#if' Command.

8.3.4 Nonstandard Predefined Macros

 The C preprocessor normally has several predefined macros that vary between
machines because their purpose is to indicate what type of system and machine is in use.
This manual, being for all systems and machines, cannot tell you exactly what their

 179

names are; instead, we offer a list of some typical ones. You can use `cpp -dM' to see
the values of predefined macros;

Some nonstandard predefined macros describe the operating system in use, with more or
less specificity. For example,

unix
`unix' is normally predefined on all Unix systems.

BSD
`BSD' is predefined on recent versions of Berkeley Unix (perhaps only in
version 4.3).

Other nonstandard predefined macros describe the kind of CPU, with more or less
specificity. For example,

vax
`vax' is predefined on Vax computers.

mc68000
`mc68000' is predefined on most computers whose CPU is a Motorola 68000,
68010 or 68020.

m68k
`m68k' is also predefined on most computers whose CPU is a 68000, 68010 or
68020; however, some makers use `mc68000' and some use `m68k'. Some
predefine both names. What happens in GNU C depends on the system you are
using it on.

M68020
`M68020' has been observed to be predefined on some systems that use 68020
CPUs--in addition to `mc68000' and `m68k', which are less specific.

_AM29K
_AM29000

Both `_AM29K' and `_AM29000' are predefined for the AMD 29000 CPU
family.

ns32000
`ns32000' is predefined on computers which use the National Semiconductor
32000 series CPU.

Yet other nonstandard predefined macros describe the manufacturer of the system. For
example,

sun
`sun' is predefined on all models of Sun computers.

pyr
`pyr' is predefined on all models of Pyramid computers.

sequent
`sequent' is predefined on all models of Sequent computers.

 180

These predefined symbols are not only nonstandard, they are contrary to the ANSI
standard because their names do not start with underscores. Therefore, the option `-
ansi' inhibits the definition of these symbols.

This tends to make `-ansi' useless, since many programs depend on the customary
nonstandard predefined symbols. Even system header files check them and will generate
incorrect declarations if they do not find the names that are expected. You might think
that the header files supplied for the Uglix computer would not need to test what machine
they are running on, because they can simply assume it is the Uglix; but often they do,
and they do so using the customary names. As a result, very few C programs will compile
with `-ansi'. We intend to avoid such problems on the GNU system.

What, then, should you do in an ANSI C program to test the type of machine it will run
on?

GNU C offers a parallel series of symbols for this purpose, whose names are made from
the customary ones by adding `__' at the beginning and end. Thus, the symbol __vax__
would be available on a Vax, and so on.

The set of nonstandard predefined names in the GNU C preprocessor is controlled (when
cpp is itself compiled) by the macro `CPP_PREDEFINES', which should be a string
containing `-D' options, separated by spaces. For example, on the Sun 3, we use the
following definition:

#define CPP_PREDEFINES "-Dmc68000 -Dsun -Dunix -Dm68k"

This macro is usually specified in `tm.h'.

8.3.5 Stringification

 Stringification means turning a code fragment into a string constant whose
contents are the text for the code fragment. For example, stringifying `foo (z)'
results in `"foo (z)"'. In the C preprocessor, stringification is an option available
when macro arguments are substituted into the macro definition. In the body of the
definition, when an argument name appears, the character `#' before the name specifies
stringification of the corresponding actual argument when it is substituted at that point in
the definition. The same argument may be substituted in other places in the definition
without stringification if the argument name appears in those places with no `#'.

Here is an example of a macro definition that uses stringification:

#define WARN_IF(EXP) \
do { if (EXP) \
 fprintf (stderr, "Warning: " #EXP "\n"); } \
while (0)

 181

Here the actual argument for `EXP' is substituted once as given, into the `if'
statement, and once as stringified, into the argument to `fprintf'. The `do' and
`while (0)' are a kludge to make it possible to write `WARN_IF (arg);', which
the resemblance of `WARN_IF' to a function would make C programmers want to do;

The stringification feature is limited to transforming one macro argument into one string
constant: there is no way to combine the argument with other text and then stringify it all
together. But the example above shows how an equivalent result can be obtained in ANSI
Standard C using the feature that adjacent string constants are concatenated as one string
constant. The preprocessor stringifies the actual value of `EXP' into a separate string
constant, resulting in text like

do { if (x == 0) \
 fprintf (stderr, "Warning: " "x == 0" "\n"); } \
while (0)

but the C compiler then sees three consecutive string constants and concatenates them
into one, producing effectively

do { if (x == 0) \
 fprintf (stderr, "Warning: x == 0\n"); } \
while (0)

Stringification in C involves more than putting doublequote characters around the
fragment; it is necessary to put backslashes in front of all doublequote characters, and all
backslashes in string and character constants, in order to get a valid C string constant with
the proper contents. Thus, stringifying `p = "foo\n";' results in `"p =
\"foo\\n\";"'. However, backslashes that are not inside of string or character
constants are not duplicated: `\n' by itself stringifies to `"\n"'.

Whitespace (including comments) in the text being stringified is handled according to
precise rules. All leading and trailing whitespace is ignored. Any sequence of whitespace
in the middle of the text is converted to a single space in the stringified result.

8.3.6 Concatenation

 Concatenation means joining two strings into one. In the context of macro
expansion, concatenation refers to joining two lexical units into one longer one.
Specifically, an actual argument to the macro can be concatenated with another actual
argument or with fixed text to produce a longer name. The longer name might be the
name of a function, variable or type, or a C keyword; it might even be the name of
another macro, in which case it will be expanded.

When you define a macro, you request concatenation with the special operator `##' in
the macro body. When the macro is called, after actual arguments are substituted, all
`##' operators are deleted, and so is any whitespace next to them (including whitespace

 182

that was part of an actual argument). The result is to concatenate the syntactic tokens on
either side of the `##'.

Consider a C program that interprets named commands. There probably needs to be a
table of commands, perhaps an array of structures declared as follows:

struct command
{
 char *name;
 void (*function) ();
};

struct command commands[] =
{
 { "quit", quit_command},
 { "help", help_command},
 ...
};

It would be cleaner not to have to give each command name twice, once in the string
constant and once in the function name. A macro which takes the name of a command as
an argument can make this unnecessary. The string constant can be created with
stringification, and the function name by concatenating the argument with
`_command'. Here is how it is done:

#define COMMAND(NAME) { #NAME, NAME ## _command }

struct command commands[] =
{
 COMMAND (quit),
 COMMAND (help),
 ...
};

The usual case of concatenation is concatenating two names (or a name and a number)
into a longer name. But this isn't the only valid case. It is also possible to concatenate two
numbers (or a number and a name, such as `1.5' and `e3') into a number. Also,
multi-character operators such as `+=' can be formed by concatenation. In some cases it
is even possible to piece together a string constant. However, two pieces of text that don't
together form a valid lexical unit cannot be concatenated. For example, concatenation
with `x' on one side and `+' on the other is not meaningful because those two
characters can't fit together in any lexical unit of C. The ANSI standard says that such
attempts at concatenation are undefined, but in the GNU C preprocessor it is well
defined: it puts the `x' and `+' side by side with no particular special results.

Keep in mind that the C preprocessor converts comments to whitespace before macros
are even considered. Therefore, you cannot create a comment by concatenating `/' and
`*': the `/*' sequence that starts a comment is not a lexical unit, but rather the
beginning of a "long" space character. Also, you can freely use comments next to a `##'

 183

in a macro definition, or in actual arguments that will be concatenated, because the
comments will be converted to spaces at first sight, and concatenation will later discard
the spaces.

8.3.7 Undefining Macros

 To undefine a macro means to cancel its definition. This is done with the
`#undef' directive. `#undef' is followed by the macro name to be undefined.

Like definition, undefinition occurs at a specific point in the source file, and it applies
starting from that point. The name ceases to be a macro name, and from that point on it is
treated by the preprocessor as if it had never been a macro name.

For example,

#define FOO 4
x = FOO;
#undef FOO
x = FOO;

expands into

x = 4;

x = FOO;

In this example, `FOO' had better be a variable or function as well as (temporarily) a
macro, in order for the result of the expansion to be valid C code.

The same form of `#undef' directive will cancel definitions with arguments or
definitions that don't expect arguments. The `#undef' directive has no effect when
used on a name not currently defined as a macro.

8.3.8 Redefining Macros

 Redefining a macro means defining (with `#define') a name that is already
defined as a macro. A redefinition is trivial if the new definition is transparently identical
to the old one. You probably wouldn't deliberately write a trivial redefinition, but they
can happen automatically when a header file is included more than once, so they are
accepted silently and without effect.

Nontrivial redefinition is considered likely to be an error, so it provokes a warning
message from the preprocessor. However, sometimes it is useful to change the definition
of a macro in mid-compilation. You can inhibit the warning by undefining the macro
with `#undef' before the second definition.

 184

In order for a redefinition to be trivial, the new definition must exactly match the one
already in effect, with two possible exceptions:

 Whitespace may be added or deleted at the beginning or the end.
 Whitespace may be changed in the middle (but not inside strings). However, it

may not be eliminated entirely, and it may not be added where there was no
whitespace at all.

Recall that a comment counts as whitespace.

8.4 Let us Sum up

 This lesson explains importance of pre processor derectives and its applications.
We were also discussed about the usage og macros, creating macros, defining and
undefining macros, usage of header file, the procedure for making our own header file
etc.,

8.5 Points for discussion

 1. Why we need preprocessor directives?

 2. Write any one of the drawback of preprocessor?

 3. What is the purpose of using header files?

 4. How to create our own header files?

8.6 Check your progress

 1. Write any one of the drawback of preprocessor?

1. It is difficult to identify errors.
2. Difficult to understand also.

 2. What is meant by Undefining Macros?

 The word ‘undefine a macro’ means to cancel its definition. This is done
with the `#undef' directive. `#undef' is followed by the macro name to be
undefined. Like definition, undefinition occurs at a specific point in the source file, and it
applies starting from that point. The name ceases to be a macro name, and from that point
on it is treated by the preprocessor as if it had never been a macro name.

 185

8.7 Lesson-end Activities

 1. Can you implement all applications using preprocessors?

 2. Who will be responsible for taking care of macros?

8.8 References

Peter Aitken, Teach Yourself C in 21 Days, Fourth Edition, Sams Publisher.
Brian W. Kernighan and Dennis M. Ritchie, The C programming Language, Prentice-
Hall in 1988
E.Balagursamy, Programming in Ansi C, TATA MCGraw Hill
http://www.java2s.com/Code/C/
http://publications.gbdirect.co.uk/c_book
http://www.cs.cf.ac.uk/Dave/C/
http://www.oreilly.com/catalog/pcp3/
http://www.cs.utah.edu/dept/old/texinfo/cpp
http://vergil.chemistry.gatech.edu/resources/programming/c-tutorial
http://sysprog.net/

 186

UNIT - III

LESSON - 9 : STRUCTURES

CONTENTS

9.0 Aims and Objectives

9.1 Introduction

9.2 Defining and Declaring Structures

9.3 Accessing Structure Members

9.4 Arrays as structure members

9.5 Arrays of structures

9.6 Structures with in Structures

9.7 Structures as Function Arguments

9.8 Pointers and structures

9.9 Linked lists and other structures

9.10 Union

 9.10.1 Using Structures within Unions:

9.11 Let us Sum up

9.12 Points for discussion

9.13 Check your progress

9.14 Lesson-end Activities

9.15 References

 187

9.0 Aims and Objectives

 The major aim of this lesson is to provide detailed information about structures
and its implementations. This helps the programmers to make effective programs with the
concept of structures.This lesson also explain about fails used in “C”.

9.1 Introduction

 A structure is a collection of one or more variables grouped under a single name for easy
manipulation. The variables in a structure, unlike those in an array, can be of different variable
types. A structure can contain any of C's data types, including arrays and other structures. Each
variable within a structure is called a member of the structure. The next section shows a simple
example. You should start with simple structures. Note that the C language makes no distinction
between simple and complex structures, but it's easier to explain structures in this way.

9.2 Defining and Declaring Structures

 If you're writing a graphics program, your code needs to deal with the coordinates
of points on the screen. Screen coordinates are written as an x value, giving the horizontal
position, and a y value, giving the vertical position. You can define a structure named
coord that contains both the x and y values of a screen location as follows:

struct coord {
int x;
int y;
};

The struct keyword, which identifies the beginning of a structure definition, must be
followed immediately by the structure name, or tag (which follows the same rules as
other C variable names). Within the braces following the structure name is a list of the
structure's member variables. You must give a variable type and name for each member.

The preceding statements define a structure type named coord that contains two integer
variables, x and y. They do not, however, actually create any instances of the structure
coord. In other words, they don't declare (set aside storage for) any structures. There are
two ways to declare structures. One is to follow the structure definition with a list of one
or more variable names, as is done here:

struct coord {
int x;
int y;
} first, second;

These statements define the structure type coord and declare two structures, first and
second, of type coord. First and second are each instances of type coord; first contains
two integer members named x and y, and so does second. This method of declaring
structures combines the declaration with the definition. The second method is to declare

 188

structure variables at a different location in your source code from the definition. The
following statements also declare two instances of type coord:

struct coord {
int x;
int y;
};
/* Additional code may go here */
struct coord first, second;

9.3 Accessing Structure Members

 Individual structure members can be used like other variables of the same type.
Structure members are accessed using the structure member operator (.), also called the
dot operator, between the structure name and the member name. Thus, to have the
structure named first refer to a screen location that has coordinates x=50, y=100, you
could write

first.x = 50;
first.y = 100;

To display the screen locations stored in the structure second, you could write

printf("%d,%d", second.x, second.y);

At this point, you might be wondering what the advantage is of using structures rather
than individual variables. One major advantage is that you can copy information between
structures of the same type with a simple equation statement. Continuing with the
preceding example, the statement

first = second;

is equivalent to this statement:

first.x = second.x;
first.y = second.y;

When your program uses complex structures with many members, this notation can be a
great time-saver. Other advantages of structures will become apparent as you learn some
advanced techniques. In general, you'll find structures to be useful whenever information
of different variable types needs to be treated as a group. For example, in a mailing list
database, each entry could be a structure, and each piece of information (name, address,
city, and so on) could be a structure member.

The struct Keyword

struct tag {
structure_member(s);
/* additional statements may go here */

 189

} instance;

The struct keyword is used to declare structures. A structure is a collection of one or
more variables (structure_members) that have been grouped under a single name for easy
man-ipulation. The variables don't have to be of the same variable type, nor do they have
to be simple variables. Structures also can hold arrays, pointers, and other structures. The
keyword struct identifies the beginning of a structure definition. It's followed by a tag that
is the name given to the structure. Following the tag are the structure members, enclosed
in braces. An instance, the actual declaration of a structure, can also be defined. If you
define the structure without the instance, it's just a template that can be used later in a
program to declare structures. Here is a template's format:

struct tag {
structure_member(s);
/* additional statements may go here */
};

To use the template, you use the following format:

struct tag instance;

To use this format, you must have previously declared a structure with the given tag.

Example 9.1

/* Declare a structure template called SSN */
struct SSN {
int first_three;
char dash1;
int second_two;
char dash2;
int last_four;
}
/* Use the structure template */
struct SSN customer_ssn;

Example 9. 2

/* Declare and initialize a structure */
struct time {
int hours;
int minutes;
int seconds;

} time_of_birth = { 8, 45, 0 };

 190

9.4 Arrays as structure members

 One of the member of the structure can be of type array.The following example
shows arrays as members of the structure.

Example 9.3

/* Declare a structure and instance together */
struct date {
char month[2];
char day[2];
char year[4];
} current_date;

9.5 Arrays of structures

 The structure variable name itself can be of type array for creating multiple
number of records.This structure is refered as arrays of structures.Here is an example
using an array of structures like the one before. A function is used to read characters from
the program's standard input and return an appropriately initialized structure. When a
newline has been read or the array is full, the structures are sorted into order depending
on the character value, and then printed out.

Example 9.4
#include <stdio.h>
#include <stdlib.h>

#define ARSIZE 10

struct wp_char{
 char wp_cval;
 short wp_font;
 short wp_psize;
}ar[ARSIZE];

/*
* type of the input function -
* could equally have been declared above;
* it returns a structure and takes no arguments.
*/
struct wp_char infun(void);

main(){
 int icount, lo_indx, hi_indx;

 for(icount = 0; icount < ARSIZE; icount++){
 ar[icount] = infun();
 if(ar[icount].wp_cval == '\n'){
 /*
 * Leave the loop.
 * not incrementing icount means that the
 * '\n' is ignored in the sort
 */

 191

 break;
 }
 }

 /* now a simple exchange sort */

 for(lo_indx = 0; lo_indx <= icount-2; lo_indx++)
 for(hi_indx = lo_indx+1; hi_indx <= icount-1; hi_indx++){
 if(ar[lo_indx].wp_cval > ar[hi_indx].wp_cval){
 /*
 * Swap the two structures.
 */
 struct wp_char wp_tmp = ar[lo_indx];
 ar[lo_indx] = ar[hi_indx];
 ar[hi_indx] = wp_tmp;
 }
 }

 /* now print */
 for(lo_indx = 0; lo_indx < icount; lo_indx++){
 printf("%c %d %d\n", ar[lo_indx].wp_cval,
 ar[lo_indx].wp_font,
 ar[lo_indx].wp_psize);
 }
 exit(EXIT_SUCCESS);
}

struct wp_char
infun(void){
 struct wp_char wp_char;

 wp_char.wp_cval = getchar();
 wp_char.wp_font = 2;
 wp_char.wp_psize = 10;

 return(wp_char);
}

Once it is possible to declare structures it seems pretty natural to declare arrays of them,
use them as members of other structures and so on. In fact the only restriction is that a
structure cannot contain an example of itself as a member—in which case its size would
be an interesting concept for philosophers to debate, but hardly useful to a C programmer.

Example 9.5

/* Demonstrates using arrays of structures. */
2:
3: #include <stdio.h>
4:
5: /* Define a structure to hold entries. */
6:
7: struct entry {
8: char fname[20];

 192

9: char lname[20];
10: char phone[10];
11: };
12:
13: /* Declare an array of structures. */
14:
15: struct entry list[4];
16:
17: int i;
18:
19: main()
20: {
21:
22: /* Loop to input data for four people. */
23:
24: for (i = 0; i < 4; i++)
25: {
26: printf("\nEnter first name: ");
27: scanf("%s", list[i].fname);
28: printf("Enter last name: ");
29: scanf("%s", list[i].lname);
30: printf("Enter phone in 123-4567 format: ");
31: scanf("%s", list[i].phone);
32: }
33:

34: /* Print two blank lines. */

35:
36: printf("\n\n");
37:
38: /* Loop to display data. */
39:
40: for (i = 0; i < 4; i++)
41: {
42: printf("Name: %s %s", list[i].fname, list[i].lname);
43: printf("\t\tPhone: %s\n", list[i].phone);
44: }
45:
46: return 0;
47: }
Enter first name: Bradley
Enter last name: Jones
Enter phone in 123-4567 format: 555-1212
Enter first name: Peter
Enter last name: Aitken
Enter phone in 123-4567 format: 555-3434
Enter first name: Melissa
Enter last name: Jones
Enter phone in 123-4567 format: 555-1212
Enter first name: Deanna

 193

Enter last name: Townsend
Enter phone in 123-4567 format: 555-1234
Name: Bradley Jones Phone: 555-1212
Name: Peter Aitken Phone: 555-3434
Name: Melissa Jones Phone: 555-1212

Name: Deanna Townsend Phone: 555-1234

9.6 Structures with in Structures

 As mentioned earlier, a C structure can contain any of C's data types. For
example, a structure can contain other structures. The previous example can be extended
to illustrate this. Assume that your graphics program needs to deal with rectangles. A
rectangle can be defined by the coordinates of two diagonally opposite corners. You've
already seen how to define a structure that can hold the two coordinates required for a
single point. You need two such structures to define a rectangle. You can define a
structure as follows (assuming, of course, that you have already defined the type coord
structure):

struct rectangle {
struct coord topleft;
struct coord bottomrt;
};

This statement defines a structure of type rectangle that contains two structures of type
coord. These two type coord structures are named topleft and bottomrt. The preceding
statement defines only the type rectangle structure. To declare a structure, you must then
include a statement such as

struct rectangle mybox;

You could have combined the definition and declaration, as you did before for the type
coord:

struct rectangle {
struct coord topleft;
struct coord bottomrt;
} mybox;

To access the actual data locations (the type int members), you must apply the member
operator (.) twice. Thus, the expression

mybox.topleft.x

refers to the x member of the topleft member of the type rectangle structure named
mybox. To define a rectangle with coordinates (0,10),(100,200), you would write

mybox.topleft.x = 0;
mybox.topleft.y = 10;

 194

mybox.bottomrt.x = 100;
mybox.bottomrt.y = 200;

 Example 9.6 A demonstration of structures that contain other structures.

1: /* Demonstrates structures that contain other structures. */
2:
3: /* Receives input for corner coordinates of a rectangle and
4: calculates the area. Assumes that the y coordinate of the
5: upper-left corner is greater than the y coordinate of the
6: lower-right corner, that the x coordinate of the lower-7:
right corner is greater than the x coordinate of the upper-8:
left corner, and that all coordinates are positive. */

9:

10: #include <stdio.h>
11:
12: int length, width;
13: long area;
14:
15: struct coord{
16: int x;
17: int y;
18: };
19:
20: struct rectangle{
21: struct coord topleft;
22: struct coord bottomrt;
23: } mybox;
24:
25: main()
26: {
27: /* Input the coordinates */
28:
29: printf("\nEnter the top left x coordinate: ");
30: scanf("%d", &mybox.topleft.x);
31:
32: printf("\nEnter the top left y coordinate: ");
33: scanf("%d", &mybox.topleft.y);
34:
35: printf("\nEnter the bottom right x coordinate: ");
36: scanf("%d", &mybox.bottomrt.x);
37:
38: printf("\nEnter the bottom right y coordinate: ");
39: scanf("%d", &mybox.bottomrt.y);
40:
41: /* Calculate the length and width */
42:
43: width = mybox.bottomrt.x - mybox.topleft.x;

 195

44: length = mybox.bottomrt.y - mybox.topleft.y;
45:
46: /* Calculate and display the area */
47:
48: area = width * length;
49: printf("\nThe area is %ld units.\n", area);
50:
51: return 0;
52: }
Enter the top left x coordinate: 1
Enter the top left y coordinate: 1
Enter the bottom right x coordinate: 10
Enter the bottom right y coordinate: 10
The area is 81 units.

 The coord structure is defined in lines 15 through 18 with its two members, x and
y. Lines 20 through 23 declare and define an instance, called mybox, of the rectangle
structure. The two members of the rectangle structure are topleft and bottomrt, both
structures of type coord. Lines 29 through 39 fill in the values in the mybox structure. At
first it might seem that there are only two values to fill, because mybox has only two
members. However, each of mybox's members has its own members. Topleft and
bottomrt have two members each, x and y from the coord structure. This gives a total of
four members to be filled. After the members are filled with values, the area is calculated
using the structure and member names. When using the x and y values, you must include
the structure instance name. Because x and y are in a structure within a structure, you
must use the instance names of both structures--mybox.bottomrt.x, mybox.bottomrt.y,
mybox.topleft.x, and mybox.topleft.y--in the calculations.

C places no limits on the nesting of structures. While memory allows, you can define
structures that contain structures that contain structures that contain structures--well, you
get the idea! Of course, there's a limit beyond which nesting becomes unproductive.
Rarely are more than three levels of nesting used in any C program.

9.7 Structures as Function Arguments

 A structure can be passed as a function argument just like any other variable. This
raises a few practical issues. Where we wish to modify the value of members of the
structure, we must pass a pointer to that structure. This is just like passing a pointer to an
int type argument whose value we wish to change.

If we are only interested in one member of a structure, it is probably simpler to just pass
that member. This will make for a simpler function, which is easier to re-use. Of course if
we wish to change the value of that member, we should pass a pointer to it.

When a structure is passed as an argument, each member of the structure is copied. This
can prove expensive where structures are large or functions are called frequently. Passing
and working with pointers to large structures may be more efficient in such cases.

 196

For example,
struct mystruct
 {
 int a;
 char b;
 };
Main()
{
 struch mystruct svn;

 myfunction(svn)

}

void myfunction(svn1)
struch mystruct svn1;
{

}

In this example, the formal argument svn1 should be declared as structre of type
“mystruct”.

9.8 Pointers and structures

 If what the last paragraph says is true, that it is more common to use pointers to
structures than to use the structures directly. we need to know how to do it. Declaring
pointers is easy of course:

struct wp_char *wp_p;

gives us one straight away. But how do we access the members of the structure? One way
might be to look through the pointer to get the whole structure, then select the member:

/* get the structure, then select a member */
(*wp_p).wp_cval

that would certainly work (the parentheses are there because . has a higher precedence
than *). It's not an easy notation to work with though, so C introduces a new operator to
clean things up; it is usually known as the ‘pointing-to’ operator. Here it is being used:

/* the wp_cval in the structure wp_p points to */
wp_p->wp_cval = 'x';

 197

and although it might not look a lot easier than its alternative, it pays off when the
structure contains pointers, as in a linked list. The pointing-to syntax is much easier if
you want to follow two or three stages down the links of a linked list. If you haven't come
across linked lists before, you're going to learn a lot more than just the use of structures
before this chapter finishes!

If the thing on the left of the . or -> operator is qualified (with const or volatile) then
the result is also has those qualifiers associated with it. Here it is, illustrated with
pointers; when the pointer points to a qualified type the result that you get is also
qualified:

Example 9.7

#include <stdio.h>
#include <stdlib.h>

struct somestruct{
 int i;
};

main(){
 struct somestruct *ssp, s_item;
 const struct somestruct *cssp;

 s_item.i = 1; /* fine */
 ssp = &s_item;
 ssp->i += 2; /* fine */
 cssp = &s_item;
 cssp->i = 0; /* not permitted - cssp points to const objects
*/

 exit(EXIT_SUCCESS);
}

Not all compiler writers seem to have noticed that requirement the compiler that we used
to test the last example failed to warn that the final assignment violated a constraint.

Here is the example rewritten using pointers, and with the input function infun changed
to accept a pointer to a structure rather than returning one. This is much more likely to be
what would be seen in practice.

(It is fair to say that, for a really efficient implementation, even the copying of structures
would probably be dropped, especially if they were large. Instead, an array of pointers
would be used, and the pointers exchanged until the sorted data could be found by
traversing the pointer array in index order. That would complicate things too much for a
simple example.)

Example 9.8
#include <stdio.h>
#include <stdlib.h>

 198

#define ARSIZE 10

struct wp_char{
 char wp_cval;
 short wp_font;
 short wp_psize;
}ar[ARSIZE];

void infun(struct wp_char *);

main(){
 struct wp_char wp_tmp, *lo_indx, *hi_indx, *in_p;

 for(in_p = ar; in_p < &ar[ARSIZE]; in_p++){
 infun(in_p);
 if(in_p->wp_cval == '\n'){
 /*
 * Leave the loop.
 * not incrementing in_p means that the
 * '\n' is ignored in the sort
 */
 break;
 }
 }

 /*
 * Now a simple exchange sort.
 * We must be careful to avoid the danger of pointer underflow,
 * so check that there are at least two entries to sort.
 */

 if(in_p-ar > 1) for(lo_indx = ar; lo_indx <= in_p-2; lo_indx++){
 for(hi_indx = lo_indx+1; hi_indx <= in_p-1; hi_indx++){
 if(lo_indx->wp_cval > hi_indx->wp_cval){
 /*
 * Swap the structures.
 */
 struct wp_char wp_tmp = *lo_indx;
 *lo_indx = *hi_indx;
 *hi_indx = wp_tmp;
 }
 }
 }

 /* now print */
 for(lo_indx = ar; lo_indx < in_p; lo_indx++){
 printf("%c %d %d\n", lo_indx->wp_cval,
 lo_indx->wp_font,
 lo_indx->wp_psize);
 }
 exit(EXIT_SUCCESS);
}

void
infun(struct wp_char *inp){

 inp->wp_cval = getchar();

 199

 inp->wp_font = 2;
 inp->wp_psize = 10;

 return;
}

The next issue is to consider what a structure looks like in terms of storage layout. It's
best not to worry about this too much, but it is sometimes useful if you have to use C to
access record-structured data written by other programs. The wp_char structure will be
allocated storage as shown in Figure 9.8.1.

Figure 9.8.1. Storage Layout of a Structure

The diagram assumes a number of things: that a char takes 1 byte of storage; that a
short needs 2 bytes; and that shorts must be aligned on even byte addresses in this
architecture. As a result the structure contains an unnamed 1-byte member inserted by the
compiler for architectural reasons. Such addressing restrictions are quite common and can
often result in structures containing ‘holes’.

The Standard makes some guarantees about the layout of structures and unions:

 Members of a structure are allocated within the structure in the order of their
appearance in the declaration and have ascending addresses.

 There must not be any padding in front of the first member.
 The address of a structure is the same as the address of its first member, provided

that the appropriate cast is used. Given the previous declaration of struct
wp_char, if item is of type struct wp_char, then (char *)item ==
&item.wp_cval.

 Bit fields don't actually have addresses, but are conceptually packed into units
which obey the rules above.

9.9 Linked lists and other structures

 The combination of structures and pointers opens up a lot of interesting
possibilities. This is not a textbook on complex linked data structures, but it will go on to
describe two very common examples of the breed: linked lists and trees. Both have a
feature in common: they consist of structures containing pointers to other structures, all
the structures typically being of the same type. Figure 9.9.1 shows a picture of a linked
list.

 200

Figure 9.9.1. List linked by pointers

The sort of declaration needed for that is this:

struct list_ele{
 int data; /* or whatever you like here */
 struct list_ele *ele_p;
};

Now, at first glance, it seems to contain itself—which is forbidden—but in fact it only
contains a pointer to itself. How come the pointer declaration is allowed? Well, by the
time the compiler reaches the pointer declaration it already knows that there is such a
thing as a struct list_ele so the declaration is permitted. In fact, it is possible to make
a incomplete declaration of a structure by saying

struct list_ele;

at some point before the full declaration. A declaration like that declares an incomplete
type. This will allow the declaration of pointers before the full declaration is seen. It is
also important in the case of cross-referencing structures where each must contain a
pointer to the other, as shown in the following example.

struct s_1; /* incomplete type */

struct s_2{
 int something;
 struct s_1 *sp;
};

struct s_1{ /* now the full declaration */
 float something;
 struct s_2 *sp;
};

This illustrates the need for incomplete types. It also illustrates an important thing about
the names of structure members: they inhabit a name-space per structure, so element
names can be the same in different structures without causing any problems.

Incomplete types may only be used where the size of the structure isn't needed yet. A full
declaration must have been given by the time that the size is used. The later full
declaration mustn't be in an inner block because then it becomes a new declaration of a
different structure.

 201

Example 9.9
struct x; /* incomplete type */

/* valid uses of the tag */
struct x *p, func(void);

void f1(void){
 struct x{int i;}; /* redeclaration! */
}

/* full declaration now */
struct x{
 float f;
}s_x;

void f2(void){
 /* valid statements */
 p = &s_x;
 *p = func();
 s_x = func();
}

struct x
func(void){
 struct x tmp;
 tmp.f = 0;
 return (tmp);
}

There's one thing to watch out for: you get a incomplete type of a structure simply by
mentioning its name! That means that this works:

struct abc{ struct xyz *p;};
 /* the incomplete type 'struct xyz' now declared */
struct xyz{ struct abc *p;};
 /* the incomplete type is now completed */

There's a horrible danger in the last example, though, as this shows:

struct xyz{float x;} var1;

main(){
 struct abc{ struct xyz *p;} var2;

 /* AAAGH - struct xyz REDECLARED */
 struct xyz{ struct abc *p;} var3;
}

The result is that var2.p can hold the address of var1, but emphatically not the address
of var3 which is of a different type! It can be fixed (assuming that it's not what you
wanted) like this:

struct xyz{float x;} var1;

 202

main(){
 struct xyz; /* new incomplete type 'struct xyz' */
 struct abc{ struct xyz *p;} var2;
 struct xyz{ struct abc *p;} var3;
}

The type of a structure or union is completed when the closing } of its declaration is seen;
it must contain at least one member or the behaviour is undefined.

The other principal way to get incomplete types is to declare arrays without specifying
their size, their type is incomplete until a later declaration provides the missing
information:

int ar[]; /* incomplete type */
int ar[5]; /* completes the type */

If you try that out, it will only work if the declarations are outside any blocks (external
declarations), but that's for other reasons.

Back to the linked list. There were three elements linked into the list, which could have
been built like this:

struct list_ele{
 int data;
 struct list_ele *pointer;
}ar[3];

main(){

 ar[0].data = 5;
 ar[0].pointer = &ar[1];
 ar[1].data = 99;
 ar[1].pointer = &ar[2];
 ar[2].data = -7;
 ar[2].pointer = 0; /* mark end of list */
 return(0);
}

and the contents of the list can be printed in two ways. The array can be traversed in
order of index, or the pointers can be used as in the following example.

Example 9.10

#include <stdio.h>
#include <stdlib.h>

struct list_ele{
 int data;
 struct list_ele *pointer;
}ar[3];

 203

main(){

 struct list_ele *lp;

 ar[0].data = 5;
 ar[0].pointer = &ar[1];
 ar[1].data = 99;
 ar[1].pointer = &ar[2];
 ar[2].data = -7;
 ar[2].pointer = 0; /* mark end of list */

 /* follow pointers */
 lp = ar;
 while(lp){
 printf("contents %d\n", lp->data);
 lp = lp->pointer;
 }
 exit(EXIT_SUCCESS);
}

It's the way that the pointers are followed which makes the example interesting. Notice
how the pointer in each element is used to refer to the next one, until the pointer whose
value is 0 is found. That value causes the while loop to stop. Of course the pointers can
be arranged in any order at all, which is what makes the list such a flexible structure.
Here is a function which could be included as part of the last program to sort the linked
list into numeric order of its data fields. It rearranges the pointers so that the list, when
traversed in pointer sequence, is found to be in order. It is important to note that the data
itself is not copied. The function must return a pointer to the head of the list, because that
is not necessarily at ar[0] any more.

struct list_ele *
sortfun(struct list_ele *list)
{

 int exchange;
 struct list_ele *nextp, *thisp, dummy;

 /*
 * Algorithm is this:
 * Repeatedly scan list.
 * If two list items are out of order,
 * link them in the other way round.
 * Stop if a full pass is made and no
 * exchanges are required.
 * The whole business is confused by
 * working one element behind the
 * first one of interest.
 * This is because of the simple mechanics of
 * linking and unlinking elements.
 */

 dummy.pointer = list;

 204

 do{
 exchange = 0;
 thisp = &dummy;
 while((nextp = thisp->pointer)
 && nextp->pointer){
 if(nextp->data < nextp->pointer->data){
 /* exchange */
 exchange = 1;
 thisp->pointer = nextp->pointer;
 nextp->pointer =
 thisp->pointer->pointer;
 thisp->pointer->pointer = nextp;
 }
 thisp = thisp->pointer;
 }
 }while(exchange);

 return(dummy.pointer);
}

Expressions such as thisp->pointer->pointer are commonplace in list processing. It's
worth making sure that you understand it; the notation emphasizes the way that links are
followed.

9.10 Union

 Unions allow one same portion of memory to be accessed as different data types,
since all of them are in fact the same location in memory. Its declaration and use is
similar to the one of structures but its functionality is totally different:

union union_name {
 member_type1 member_name1;
 member_type2 member_name2;
 member_type3 member_name3;
 .
 .
} object_names;

All the elements of the union declaration occupy the same physical space in memory. Its
size is the one of the greatest element of the declaration. For example:

union mytypes_t {
 char c;
 int i;
 float f;
 } mytypes;

defines three elements:

mytypes.c
mytypes.i
mytypes.f

 205

each one with a different data type. Since all of them are referring to the same location in
memory, the modification of one of the elements will affect the value of all of them. We
cannot store different values in them independent from each other.

One of the uses a union may have is to unite an elementary type with an array or
structures of smaller elements. For example:

union mix_t {
 long l;
 struct {
 short hi;
 short lo;
 } s;
 char c[4];
} mix;

defines three names that allow to access the same group of 4 bytes: mix.l, mix.s and
mix.c and which we can use according to how we want to access these bytes, as if they
were a single long-type data, as if they were two short elements or as an array of char
elements, respectively. I have mixed types, arrays and structures in the union so that you
can see the different ways that we can access the data. For a little-endian system (most
PC platforms), this union could be represented as follows:

 Figure 9.10.1 Memory specification for union

The exact alignment and order of the members of a union in memory is platform
dependant. Therefore be aware of possible portability issues with this type of use.

9.10.1 Using Structures within Unions:

 Unions can contain any types of variables, including structures. Be aware that the
length of a union is the length of its longest variable. If the name in the previous example
had only been 3 characters long, there would have been an undefined slack byte after
name, since an integer occupies 4 bytes.

If you have a more complex situation than a simple redefine of one scalar variable with
another, you may need to use structures in the union. Let's say an area in the record could
contain either one long integer or two short integers; one solution would be to define a

 206

structure for the two shorts.

typedef struct twoshorts
 {
 short smallamount1;
 short smallamount2;
 } TwoShorts;

typedef union udata
 {
 TwoShorts smallamounts;
 int bigamount;
 } Udata;

9.11 Let us Sum up

 In this lesson, we described about

 Structures and its importance

 Accessing Structure Members using dot operator
 Arrays as structure members
 Arrays of structures for creating multiple records
 Structures with in Structures like nesting of statement
 Structures as Function Arguments
 How to use pointers to structures
 Linked lists and other structures
 Union and Using Structures within Unions

9.12 Points for discussion

 Differintate structure and union
 Define structure
 What is meant by self referential structure?
 Define nesting of structure

9.13 Check your progress

1. Define the term union

 Unions are similar to structures. Unions allow one same portion of
memory to be accessed as different data types, since all of them are in fact the same
location in memory. Its declaration and use is similar to the one of structures but its
functionality is totally different:

union union_name {
 member_type1 member_name1;

 207

 member_type2 member_name2;
 member_type3 member_name3;
 .
 .
} object_names;
All the elements of the union declaration occupy the same physical space in memory. Its
size is the one of the greatest element of the declaration.

2. What is meant by self referential structure?

 If any one of the structure member is of type pointer and that points to same
structure then the structure is referred as self referential structure.

 Struct mystruct
 {
 int data;
 struct mystruct *ptr;
 };

 here, ptr is pointer which points to the same structure.

9.14 Lesson-end Activities

1. How structure will differ from array?
2. Do you feel union is better than structure?

9.15 References

Peter Aitken, Teach Yourself C in 21 Days, Fourth Edition, Sams Publisher.
Brian W. Kernighan and Dennis M. Ritchie, The C programming Language, Prentice-
Hall in 1988
E.Balagursamy, Programming in Ansi C, TATA MCGraw Hill
http://www.cs.cf.ac.uk/Dave/C/
http://www.oreilly.com/catalog/pcp3/
http://www.cs.utah.edu/dept/old/texinfo/cpp
http://vergil.chemistry.gatech.edu/resources/programming/c-tutorial
http://sysprog.net/
http://www.mycplus.com/cplus

 208

LESSON - 10 : FILES

CONTENTS

10.0 Aims and Objectives

10.1 Introduction

 10.1.1 ASCII Text files

 10.1.2 Binary files

 10.1.3 Steps to be considered during file processing

10.2 Opening a file pointer using fopen()

10.3 Closing a file using fclose()

10.4 Input and Output using file pointers

10.5 Formatted Input Output with File Pointers

10.6 File Positioning Functions

10.7 Error Functions

10.8 Command-line Arguments

10.9 I/O Redirection

10.10 Let us Sum up

10.11 Points for discussion

10.12 Check your progress

10.13 Lesson-end Activities

10.14 References

 209

10.0 Aims and Objectives

 The objective of this lesson is to help programmers to understand about about
files which are very important for large-scale data processing. Data are stored in data files
and programs are stored in program files. This lesson helps readers to implement their
programs using files effectively.

10.1 File handling in C Language – an Introduction.

What is a File?

 Abstractly, a file is a collection of bytes stored on a secondary storage device,
which is generally a disk of some kind. The collection of bytes may be interpreted, for
example, as characetrs, words, lines, paragraphs and pages from a textual document;
fields and records belonging to a database; or pixels from a graphical image. The
meaning attached to a particular file is determined entirely by the data structures and
operations used by a program to process the file. It is conceivable (and itsometimes
happens) that a graphics file will be read and displayed by a program designed to process
textual data. The result is that no meaningful output occurs (probably) and this is to be
expected. A file is simply a machine decipherable storage media where programs and
data are stored for machine usage.

Essentially there are two kinds of files that programmers deal with text files and binary
files. These two classes of files will be discussed in the following sections.

10.1.1 ASCII Text files

 A text file can be a stream of characters that a computer can process sequentially.
It is not only processed sequentially but only in forward direction. For this reason a text
file is usually opened for only one kind of operation (reading, writing, or appending) at
any given time.

Similarly, since text files only process characters, they can only read or write data one
character at a time. (In C Programming Language, Functions are provided that deal with
lines of text, but these still essentially process data one character at a time.) A text stream
in C is a special kind of file. Depending on the requirements of the operating system,
newline characters may be converted to or from carriage-return/linefeed combinations
depending on whether data is being written to, or read from, the file. Other character
conversions may also occur to satisfy the storage requirements of the operating system.
These translations occur transparently and they occur because the programmer has
signalled the intention to process a text file.

 210

10.1.2 Binary files

 A binary file is no different to a text file. It is a collection of bytes. In C
Programming Language a byte and a character are equivalent. Hence a binary file is also
referred to as a character stream, but there are two essential differences.

1. No special processing of the data occurs and each byte of data is transferred to or
from the disk unprocessed.

2. C Programming Language places no constructs on the file, and it may be read
from, or written to, in any manner chosen by the programmer.

Binary files can be either processed sequentially or, depending on the needs of the
application, they can be processed using random access techniques. In C Programming
Language, processing a file using random access techniques involves moving the current
file position to an appropriate place in the file before reading or writing data. This
indicates a second characteristic of binary files – they a generally processed using read
and write operations simultaneously.

For example, a database file will be created and processed as a binary file. A record
update operation will involve locating the appropriate record, reading the record into
memory, modifying it in some way, and finally writing the record back to disk at its
appropriate location in the file. These kinds of operations are common to many binary
files, but are rarely found in applications that process text files.

10.1.3 Steps to be considered during file processing

 You can have many files on your disk. If you wish to use a file in your programs, then
you must specify which file or files you wish to use.

Specifying the file you wish to use is referred to as opening the file.

When you open a file you must also specify what you wish to do with it i.e. Read from the file,
Write to the file, or both.

Because you may use a number of different files in your program, you must specify when
reading or writing which file you wish to use. This is accomplished by using a variable called a
file pointer.

Every file you open has its own file pointer variable. When you wish to write to a file you
specify the file by using its file pointer variable.

 211

10.2 Opening a file pointer using fopen()

 C communicates with files using a new datatype called a file pointer. This type is
defined within stdio.h, and written as FILE *. A file pointer called output_file is declared
in a statement like

 FILE *output_file;

The function fopen is one of the Standard Library functions and returns a file pointer which
you use to refer to the file you have opened.

General format is

Filepointer = fopen (“file name”, “mode”);

File name will be a valied file and mode may be of different form.

Generally we will use following modes frequently,

r – read only
w – write only
a – append only
r+ - similar to read except for both read and write
w+ - similar to write except for both read and write
a+ - similar to append except for both read and write

Reading (r)

 The second parameter is the file attribute and can be any of three letters, r, w, or a,
and must be lower case. When an r is used, the file is opened for reading, a w is used to
indicate a file to be used for writing, and an a indicates that you desire to append
additional data to the data already in an existing file. Most C compilers have other file
attributes available; check your Reference Manual for details. Using the r indicates that
the file is assumed to be a text file. Opening a file for reading requires that the file
already exist. If it does not exist, the file pointer will be set to NULL and can be checked
by the program.

Writing (w)

 When a file is opened for writing, it will be created if it does not already exist and
it will be reset if it does, resulting in the deletion of any data already there. Using the w
indicates that the file is assumed to be a text file.

 212

Appending (a)

 When a file is opened for appending, it will be created if it does not already exist
and it will be initially empty. If it does exist, the data input point will be positioned at the
end of the present data so that any new data will be added to any data that already exists
in the file. Using the a indicates that the file is assumed to be a text file.

e.g.

 fp = fopen(“prog.c”, “r”) ;

The above statement opens a file called prog.c for reading and associates the file pointer fp
with the file.

When we wish to access this file for I/O, we use the file pointer variable fp to refer to it.

You can have up to about 20 files open in your program - you need one file pointer for each file
you intend to use.

Consider another example, If the file cannot be opened for any reason then the value
NULL will be returned. You will usually use fopen as follows

 if ((output_file = fopen("output_file", "w")) == NULL)
 fprintf(stderr, "Cannot open %s\n", "output_file");

10.3 Closing a file using fclose()

 The fclose command can be used to disconnect a file pointer from a file. This is
usually done so that the pointer can be used to access a different file. Systems have a
limit on the number of files which can be open simultaneously, so it is a good idea to
close a file when you have finished using it.

This would be done using a statement like

 fclose(output_file);

If files are still open when a program exits, the system will close them for you. However
it is usually better to close the files properly.

 213

10.4 Input and Output using file pointers

 Having opened a file pointer, you will wish to use it for either input or output. C
supplies a set of functions to allow you to do this. All are very similar to input and output
functions that you have already met.

Character Input and Output with Files

 This is done using equivalents of getchar and putchar which are called getc and
putc. Each takes an extra argument, which identifies the file pointer to be used for input
or output.

The routine getc() is similar to getchar()
and putc() is similar to putchar().

Thus the statement

 c = getc(fp);

reads the next character from the file referenced by fp and the statement

 putc(c,fp);

For example,

writes the character c into file referenced by fp.

Examplr 10.1
/* file.c: Display contents of a file on screen */

#include <stdio.h>

void main()
{
 FILE *fopen(), *fp;
 int c ;

 fp = fopen(“prog.c”, “r”);
 c = getc(fp) ;
 while (c != EOF)
 {
 putchar(c);
 c = getc (fp);
 }

 fclose(fp);

 214

}

In this program, we open the file prog.c for reading.

We then read a character from the file. This file must exist for this program to work.

If the file is empty, we are at the end, so getc returns EOF a special value to indicate that the
end of file has been reached. (Normally -1 is used for EOF)

The while loop simply keeps reading characters from the file and displaying them, until the end
of the file is reached.

The function fclose is used to close the file i.e. indicate that we are finished processing this
file.

This program is slightly modified as follows

Example 10.2

/* Prompt user for filename and display file on screen */

#include <stdio.h>

void main()
{
 FILE *fopen(), *fp;
 int c ;
 char filename[40] ;

 printf(“Enter file to be displayed: “);
 gets(filename) ;

 fp = fopen(filename, “r”);

 c = getc(fp) ;

 while (c != EOF)
 {
 putchar(c);
 c = getc (fp);
 }

 fclose(fp);
}

 215

In this program, we pass the name of the file to be opened which is stored in the array called
filename, to the fopen function. In general, anywhere a string constant such as “prog,c”
can be used so can a character array such as filename. (Note the reverse is not true).

The above programs suffer a major limitation. They do not check whether the files to be used
exist or not.

If you attempt to read from an non-existent file, your program will crash!!

The fopen function was designed to cope with this eventuality. It checks if the file can be
opened appropriately. If the file cannot be opened, it returns a NULL pointer. Thus by
checking the file pointer returned by fopen, you can determine if the file was opened correctly
and take appropriate action e.g.

 fp = fopen (filename, “r”) ;

 if (fp == NULL)
 {
 printf(“Cannot open %s for reading \n”, filename);
 exit(1) ; /*Terminate program: Commit suicide !!*/
 }

The above code fragment show how a program might check if a file could be opened
appropriately.

The function exit() is a special function which terminates your program immediately.

exit(0) mean that you wish to indicate that your program terminated successfully whereas a
nonzero value means that your program is terminating due to an error condition.

Alternatively, you could prompt the user to enter the filename again, and try to open it again:

 fp = fopen (fname, “r”) ;

 while (fp == NULL)
 {
 printf(“Cannot open %s for reading \n”, fname);

 printf(“\n\nEnter filename :”);
 gets(fname);

 fp = fopen (fname, “r”) ;
 }

In this code fragment, we keep reading filenames from the user until a valid existing filename is
entered.

 216

To read and write Integer values

 Similar to getc() and putc(), the functions getw() and putw() are used to read and
write an integer with specified file.

Example 10.3 /* program to write and read numbers in to a file pointed by file pointer */
#include <stdio.h>

void main()
{
 FILE *fopen(), *fp;
 int c ;

 fp = fopen(“numbers”, “w”);
 scanf(“%d”,&c) /* reading a number */
 while (c != 0)
 {
 putw(c,fp);
 scanf(“%d”,&c)
 }

 fclose(fp);
 fp = fopen(“numbers”, “r”);

 while ((c = getw(fp))!=feof(fp))
 {
 c= getw(fp);
 printf(“%d”,c)
 }
fclose(fp);
}

Example 10.4

/*count.c : Count characters in a file*/
#include <stdio.h>

void main()
 /* Prompt user for file and count number of characters
 and lines in it*/
{
 FILE *fopen(), *fp;
 int c , nc, nlines;
 char filename[40] ;

 nlines = 0 ;

 217

 nc = 0;

 printf(“Enter file name: “);
 gets(filename);

 fp = fopen(filename, “r”);

 if (fp == NULL)
 {
 printf(“Cannot open %s for reading \n”, filename);
 exit(1); /* terminate program */
 }

 c = getc(fp) ;
 while (c != EOF)
 {
 if (c == ‘\n’)
 nlines++ ;

 nc++ ;
 c = getc (fp);
 }

 fclose(fp);

 if (nc != 0)
 {
 printf(“There are %d characters in %s \n”, nc,
 filename);
 printf(“There are %d lines \n”, nlines);
 }
 else
 printf(“File: %s is empty \n”, filename);
}

Example 10.5 : Write a program to compare two files specified by the user, displaying a
message indicating whether the files are identical or different. This is the basis of a compare
command provided by most operating systems. Here our file processing loop is as follows:

read character ca from file A;
read character cb from file B;

while ca == cb and not EOF file A and not EOF file B
begin
 read character ca from file A;
 read character cb from file B;

 218

end

if ca == cb then
 printout(“Files identical”);
else
 printout(“Files differ”);

This program illustrates the use of I/O with two files. In general you can manipulate up to 20
files, but for most purposes not more than 4 files would be used. All of these examples illustrate
the usefulness of processing files character by character. As you can see a number of Operating
System programs such as compare, type, more, copy can be easily written using character I/O.
These programs are normally called system programs as they come with the operating system.
The important point to note is that these programs are in no way special. They are no different in
nature than any of the programs we have constructed so far.

Example 10.6
/* compare.c : compare two files */

#include <stdio.h>
void main()
{
 FILE *fp1, *fp2, *fopen();
 int ca, cb;
 char fname1[40], fname2[40] ;

 printf(“Enter first filename:”) ;
 gets(fname1);
 printf(“Enter second filename:”);
 gets(fname2);
 fp1 = fopen(fname1, “r”); /* open for reading */
 fp2 = fopen(fname2, “r”) ; /* open for writing */

 if (fp1 == NULL) /* check does file exist etc */
 {
 printf(“Cannot open %s for reading \n”, fname1);
 exit(1); /* terminate program */
 }
 else if (fp2 == NULL)
 {
 printf(“Cannot open %s for reading \n”, fname2);
 exit(1); /* terminate program */
 }
 else /* both files opened successfully */
 {
 ca = getc(fp1) ;

 219

 cb = getc(fp2) ;

 while (ca != EOF && cb != EOF && ca == cb)
 {
 ca = getc(fp1) ;
 cb = getc(fp2) ;
 }
 if (ca == cb)
 printf(“Files are identical \n”);
 else if (ca != cb)
 printf(“Files differ \n”);
 fclose (fp1);
 fclose (fp2);
 }
}

Example 10.7

/* filecopy.c : Copy prog.c to prog.old */

#include <stdio.h>
void main()
{
 FILE *fp1, *fp2, *fopen();
 int c ;

 fp1 = fopen(“prog.c”, “r”); /* open for reading */
 fp2 = fopen(“prog.old”, “w”) ; ../* open for writing */

 if (fp1 == NULL) /* check does file exist etc */
 {
 printf(“Cannot open prog.c for reading \n”);
 exit(1); /* terminate program */
 }
 else if (fp2 == NULL)
 {
 printf(“Cannot open prog.old for writing \n”);
 exit(1); /* terminate program */
 }
 else /* both files O.K. */
 {
 c = getc(fp1) ;
 while (c != EOF)
 {

 220

 putc(c, fp2); /* copy to prog.old */
 c = getc(fp1) ;
 }

 fclose (fp1); /* Now close files */
 fclose (fp2);
 printf(“Files successfully copied \n”);
 }
}

10.5 Formatted Input Output with File Pointers

 Similarly there are equivalents to the functions printf and scanf which read or
write data to files. These are called fprintf and fscanf. The functions are used in the same
way, except that the fprintf and fscanf take the file pointer as an additional first argument.

fprintf() is used to write a line of text to the file specified by file pointer

fprintf(filepointer, “control string”, variable list);

Example:

 fprintf(fp,”%d %f %s”, empno, sal,empname);

this statement writes three dta specified in the variable list to the file pointed by file
pointer fp.

Similarly fscanf() is used to read a line of text from the file specified by file pointer

fscanf(filepointer, “control string”, variable list);

Example:

 fprintf(fp,”%d %f %s”, &empno, &sal,empname);

Formatted Input Output with Strings

These are the third set of the printf and scanf families. They are called sprintf and sscanf.

sprintf
puts formatted data into a string which must have sufficient space allocated to
hold it. This can be done by declaring it as an array of char. The data is formatted
according to a control string of the same form as that for p rintf.

sscanf

 221

takes data from a string and stores it in other variables as specified by the control
string. This is done in the same way that scanf reads input data into variables.
sscanf is very useful for converting strings into numeric v values.

Whole Line Input and Output using File Pointers

 Predictably, equivalents to gets and puts exist called fgets and fputs. The
programmer should be careful in using them, since they are incompatible with gets and
puts. gets requires the programmer to specify the maximum number of characters to be
read. fgets and fputs retain the trailing newline character on the line they read or write,
wheras gets and puts discard the newline.

When transferring data from files to standard input / output channels, the simplest way to
avoid incompatibility with the newline is to use fgets and fputs for files and standard
channels too.

For Example, read a line from the keyboard using

 fgets(data_string, 80, stdin);
and write a line to the screen using

 fputs(data_string, stdout);

Special Characters

 C makes use of some 'invisible' characters which have already been mentioned.
However a fuller description seems appropriate here.

NULL, The Null Pointer or Character

 NULL is a character or pointer value. If a pointer, then the pointer variable does
not reference any object (i.e. a pointer to nothing). It is usual for functions which return
pointers to return NULL if they failed in some way. The return value can be tested. See
the section on fopen for an example of this.

NULL is returned by read commands of the gets family when they try to read beyond the
end of an input file.

Where it is used as a character, NULL is commonly written as '\0'. It is the string
termination character which is automatically appended to any strings in your C program.
You usually need not bother about this final \0', since it is handled automatically.
However it sometimes makes a useful target to terminate a string search. There is an
example of this in the string_length function example in the section on Functions in C.

 222

EOF, The End of File Marker

 EOF is a character which indicates the end of a file. It is returned by read
commands of the getc and scanf families when they try to read beyond the end of a file.

Direct Input and Output Functions

size_t fread(void *ptr, size_t size, size_t nobj, FILE *stream)

fread reads from stream into the array ptr at most nobj objects of size size. fread
returns the number of objects read; this may be less than the number requested. feof and
ferror must be used to determine status.

size_t fwrite(const void *ptr, size_t size, size_t nobj, FILE
*stream)

fwrite writes, from the array ptr, nobj objects of size size on stream. It returns the
number of objects written, which is less than nobj on error.

10.6 File Positioning Functions

 The following function are related to random access to the file

int fseek(FILE *stream, long offset, int origin)

fseek sets the file position for stream; a subsequent read or write will access data beginning
at the new position. For a binary file, the position is set to offset characters from origin,
which may be SEEK_SET (beginning), SEEK_CUR (current position), or SEEK_END (end of
file). For a text stream, offset must be zero, or a value returned by ftell (in which case
origin must be SEEK_SET). fseek returns non-zero on error.

long ftell(FILE *stream)

ftell returns the current file position for stream, or -1 on error.

void rewind(FILE *stream)

rewind(fp) is equivalent to fseek(fp, 0L, SEEK_SET); clearerr(fp).

int fgetpos(FILE *stream, fpos_t *ptr)

fgetpos records the current position in stream in *ptr, for subsequent use by fsetpos.
The type fpos_t is suitable for recording such values. fgetpos returns non-zero on error.

int fsetpos(FILE *stream, const fpos_t *ptr)

 223

fsetpos positions stream at the position recorded by fgetpos in *ptr. fsetpos
returns non-zero on error.

10.7 Error Functions

 Many of the functions in the library set status indicators when error or end of file
occur. These indicators may be set and tested explicitly. In addition, the integer
expression errno (declared in <errno.h>) may contain an error number that gives further
information about the most recent error.

void clearerr(FILE *stream)

clearerr clears the end of file and error indicators for stream.
int feof(FILE *stream)

feof returns non-zero if the end of file indicator for stream is set.

int ferror(FILE *stream)
ferror returns non-zero if the error indicator for stream is set.

void perror(const char *s)
perror(s) prints s and an implementation-defined error message corresponding to the
integer in errno, as if by

fprintf(stderr, "%s: %s\n", s, "error message");

10.8 Command-line Arguments

 In environments that support C, there is a way to pass command-line arguments or
parameters to a program when it begins executing. When main is called, it is called with
two arguments. The first (conventionally called argc, for argument count) is the number
of command-line arguments the program was invoked with; the second (argv, for
argument vector) is a pointer to an array of character strings that contain the arguments,
one per string. We customarily use multiple levels of pointers to manipulate these
character strings.

The simplest illustration is the program echo, which echoes its command-line arguments
on a single line, separated by blanks. That is, the command

echo hello, world

prints the output

hello, world

By convention, argv[0] is the name by which the program was invoked, so argc is at least
1. If argc is 1, there are no command-line arguments after the program name. In the
example above, argc is 3, and argv[0], argv[1], and argv[2] are "echo", "hello,", and

 224

"world" respectively. The first optional argument is argv[1] and the last is argv[argc-1];
additionally, the standard requires that argv[argc] be a null pointer.

The first version of echo treats argv as an array of character pointers:

#include <stdio.h>
/* echo command-line arguments; 1st version */
main(int argc, char *argv[])
{
int i;
for (i = 1; i < argc; i++)
printf("%s%s", argv[i], (i < argc-1) ? " " : "");
printf("\n");
return 0;

}

Since argv is a pointer to an array of pointers, we can manipulate the pointer rather than
index the array. This next variant is based on incrementing argv, which is a pointer to
pointer to char, while argc is counted down:

#include <stdio.h>
/* echo command-line arguments; 2nd version */
main(int argc, char *argv[])
{
while (--argc > 0)
printf("%s%s", *++argv, (argc > 1) ? " " : "");
printf("\n");
return 0;
}

Since argv is a pointer to the beginning of the array of argument strings, incrementing it
by 1 (++argv) makes it point at the original argv[1] instead of argv[0]. Each successive
increment moves it along to the next argument; *argv is then the pointer to that argument.
At the same time, argc is decremented; when it becomes zero, there are no arguments left
to print.Alternatively, we could write the printf statement as

printf((argc > 1) ? "%s " : "%s", *++argv);

This shows that the format argument of printf can be an expression too.

The following program is used to print lines that match pattern from arg.

Example 10.8

#include <stdio.h>
#include <string.h>

 225

#define MAXLINE 1000
int getline(char *line, int max);
/* find: print lines that match pattern from 1st arg */
main(int argc, char *argv[])
{
char line[MAXLINE];
int found = 0;
if (argc != 2)
printf("Usage: find pattern\n");
else
while (getline(line, MAXLINE) > 0)
if (strstr(line, argv[1]) != NULL) {
printf("%s", line);
found++;
}
return found;
}

The standard library function strstr(s,t) returns a pointer to the first occurrence of the
string t in the string s, or NULL if there is none. It is declared in <string.h>.

10.9 I/O Redirection

 Your assignment shell must support i/o-redirection on both stdin and stdout. i.e.
the command line:

programname arg1 arg2 < inputfile > outputfile

will execute the program programname with arguments arg1 and arg2, the stdin FILE
stream replaced by inputfile and the stdout FILE stream replaced by outputfile.

With output redirection, if the redirection character is > then the outputfile is created if it
does not exist and truncated if it does. If the redirection token is >> then outputfile is
created if it does not exist and appended to if it does.

Note: you can assume that the redirection symbols, < , > & >> will be delimited from
other command line arguments by white space - one or more spaces and/or tabs.

I/O redirection is accomplished in the child process immediately after the fork and before
the exec command. At this point, the child has inherited all the filehandles of its parent
and still has access to a copy of the parent memory. Thus, it will know if redirection is to
be performed, and, if it does change the stdin and/or stdout file streams, this will only
effect the child not the parent.

 226

You can use open to create file descriptors for inputfile and/or outputfile and then use
dup or dup2 to replace either the stdin descriptor (STDIN_FILENO from stdio.h) or the
stdout descriptor (STDOUT_FILENO from stdio.h).

However, the easiest way to do this is to use freopen. This function is one of the three
functions you can use to open a standard I/O stream.

#include <stdio.h>

FILE *fopen(const char *pathname, const char * type);

FILE *freopen(const char * pathname, const char * type, FILE *fp);

FILE *fdopen(int filedes, const char * type);

All three return: file pointer if OK, NULL on error

The differences in these three functions are as follows:

1. fopen opens a specified file.
2. freopen opens a specified file on a specified stream, closing the stream first if it is

already open. This function is typically used to open a specified file as one of the
predefined streams, stdin, stdout, or stderr.

3. fdopen takes an existing file descriptor (obtained from open, etc) and associates a
standard I/O stream with that descriptor - useful for associating pipes etc with an
I/O stream.

The type string is the standard open argument:

type Description
r or rb
w or wb
a or ab
r+ or r+b or rb+
w+ or w+b or wb+
a+ or a+b or ab+

open for reading
truncate to 0 length or create for writing
append; open for writing at end of file, or create for writing
open for reading and writing
truncate to 0 length or create for reading and writing
open or create for reading and writing at end of file

where b as part of type allows the standard I/O system to differentiate between a text file
and a binary file.

Thus:

 227

freopen("inputfile", "r", stdin);

would open the file inputfile and use it to replace the standard input stream, stdin.

You may want to use the access function to check on existence or not of the files:

#include <unistd.h>

int access(const char *pathname, int mode);

Returns: 0 if OK, -1 on error

The mode is the bitwise OR of any of the constants below:

mode Description
 R_OK
W_OK
X_OK
F_OK

test for read permission
test for write permission
test for execute permission
test for existence of file

Looking at the assignment specification, stdout redirection should also be possible for the
internal commands: dir, environ, echo, & help.

10.10 Let us Sum up

 In this lesson, we discussed about basic concepts of files, various classification of
files, reading and writing data with files. We also discussed about, how to interact with
program from command line using command line argument. We also elaborated about
the purpose of using I/O direction. Errors during implementation of files were also
discussed.

10.11 Points for discussion

 1. Define text file

 2. How to open a file

 3. Explain about various modes of opening a file.

 4. How to identify errors in file handling?

 228

10.12 Check your progress

 1. How to identify errors in file handling?

 Each function in the library set status indicators when error or end of file occur.
These indicators may be set and tested explicitly. In addition, the integer expression errno
(declared in <errno.h>) may contain an error number that gives further information about
the most recent error.

void clearerr(FILE *stream)

clearerr clears the end of file and error indicators for stream.
int feof(FILE *stream)

feof returns non-zero if the end of file indicator for stream is set.

int ferror(FILE *stream)
ferror returns non-zero if the error indicator for stream is set.

2. How to close a file

 Once the purpose of opening a file is over then it is the responsibility of
user to close the corresponding file using the command fclose.

 fclose(file pointer);

10.13 Lesson-end Activities

 1. Do you feel the file in c can acts as the replacement of database?

 2. what is the purpose of using files?

10.14 References

Peter Aitken, Teach Yourself C in 21 Days, Fourth Edition, Sams Publisher.
Brian W. Kernighan and Dennis M. Ritchie, The C programming Language, Prentice-
Hall in 1988
E.Balagursamy, Programming in Ansi C, TATA MCGraw Hill
http://vergil.chemistry.gatech.edu/resources/programming/c-tutorial
http://sysprog.net/
http://www.mycplus.com/cplus
http://www.programmersheaven.com/download/
http://en.literateprograms.org/
http://www.cs.utk.edu/~plank/plank/classes/

 229

UNIT – IV:

LESSON - 11 : LINEAR DATA STRUCTURE

CONTENTS

11.0 Aims and Objectives

11.1 Introduction

11.2 Characteristics of Data Structures

11.3 Abstract Data Types

 11.3.1 Data type

 11.3 2 Abstract

11.4 List

 11.4.1 Array based implementation of lists

 11.4.2 Operation Time complexity and operations

11.5 More about List

 11.5.1 Implementation of Flat Lists

 11.5.2 Flat Lists by Arrays

 11.5.3 Recursion and Iteration

11. 6 Introduction to Linked Lists

 11.6.1 linked list expansion :

 11.6.2 Deletion from a linked list

11.7 Let us Sum up.

11.8 Points for discussion

11.9 Check your progress

11.10 Lesson-end Activities

11.11 References

 230

11.0 Aims and Objectives

 The objective of this lesson is to make the reader to understand about fundamental
concepts of data structures and its implementation, various traversal and searching
algorithms and importance of stack.

11.1 Introduction

A data structure is an arrangement of data in a computer's memory or even disk

storage. An example of several common data structures are arrays, linked lists, queues,
stacks, binary trees, and hash tables.

11.2 Characteristics of Data Structures

Data Structure Advantages Disadvantages

Array Quick inserts
Fast access if index known

Slow search
Slow deletes
Fixed size

Ordered Array Faster search than unsorted
array

Slow inserts
Slow deletes
Fixed size

Stack Last-in, first-out acces Slow access to other items

Queue First-in, first-out access Slow access to other items

Linked List Quick inserts
Quick deletes

Slow search

Binary Tree Quick search
Quick inserts
Quick deletes
(If the tree remains balanced)

Deletion algorithm is
complex

Red-Black
Tree

Quick search
Quick inserts
Quick deletes
(Tree always remains balanced)

Complex to implement

 231

2-3-4
Tree

Quick search
Quick inserts
Quick deletes
(Tree always remains balanced)
(Similar trees good for disk storage)

Complex to implement

Hash
Table

Very fast access if key is known
Quick inserts

Slow deletes
Access slow if key is not known
Inefficient memory usage

Heap Quick inserts
Quick deletes
Access to largest item

Slow access to other items

Graph Best models real-world situations Some algorithms are slow and very
complex

NOTE: The data structures shown above (with the exception of the array) can be
thought of as Abstract Data Types (ADTs).

11.3 Abstract Data Types

 An Abstract Data Type (ADT) is more a way of looking at a data structure:
focusing on what it does and ignoring how it does its job. A stack or a queue is an
example of an ADT. It is important to understand that both stacks and queues can be
implemented using an array. It is also possible to implement stacks and queues using a
linked list. This demonstrates the "abstract" nature of stacks and queues: how they can be
considered separately from their implementation.

To best describe the term Abstract Data Type, it is best to break the term down into "data
type" and then "abstract".

11.3.1 Data type

 When we consider a primitive type we are actually referring to two things: a data
item with certain characteristics and the permissible operations on that data. An int in
Java, for example, can contain any whole-number value from -2,147,483,648 to
+2,147,483,647. It can also be used with the operators +, -, *, and /. The data type's
permissible operations are an inseparable part of its identity; understanding the type
means understanding what operations can be performed on it.

In Java, any class represents a data type, in the sense that a class is made up of data
(fields) and permissible operations on that data (methods). By extension, when a data
storage structure like a stack or queue is represented by a class, it too can be referred to as

 232

a data type. A stack is different in many ways from an int, but they are both defined as a
certain arrangement of data and a set of operations on that data.

11.3 2 Abstract

 Now lets look at the "abstract" portion of the phrase. The word abstract in
our context stands for "considered apart from the detailed specifications or
implementation".

In Java, an Abstract Data Type is a class considered without regard to its implementation.
It can be thought of as a "description" of the data in the class and a list of operations that
can be carried out on that data and instructions on how to use these operations. What is
excluded though, is the details of how the methods carry out their tasks. An end user (or
class user), you should be told what methods to call, how to call them, and the results that
should be expected, but not HOW they work.

We can further extend the meaning of the ADT when applying it to data structures such
as a stack and queue. In Java, as with any class, it means the data and the operations that
can be performed on it. In this context, although, even the fundamentals of how the data
is stored should be invisible to the user. Users not only should not know how the methods
work, they should also not know what structures are being used to store the data.

Consider for example the stack class. The end user knows that push() and pop() (amoung
other similar methods) exist and how they work. The user doesn't and shouldn't have to
know how push() and pop() work, or whether data is stored in an array, a linked list, or
some other data structure like a tree.

11.4 List

A list is a sequential data structure, i.e. a collection of items accessible one after
another beginning at the head and ending at the tail. It is a widely used data structure for
applications which do not need random access. It differs from the stack and queue data
structures in that additions and removals can be made at any position in the list.

We can define a list is a sequence of zero or more elements of certain type. We

usually denote a list as a1, a2, . . . , an. Here n is the number of elements in the list which
we also call as length of the list. a1 is the first element, an is the last element. There is an
order among the elements defined by their position in the list. For instance, for each 1 _ i
< n − 1, ai + 1 precedes ai+2 and succeeds ai. Note that there may be more than one type
of order which can be defined on a set of elements; one such order could be based on the
value of the elements (smaller valued lements precede larger valued elements). However,
in the case of list, the order defined is just defined by the numbering of the elements
based on their positions in the list. Now we define the operations which can be performed
on a list. Later we shall see that there are two implementations possible for supporting
these operations. One implementation is array based and another one is linked list based.
In the following functional description of list, L denotes the given list, x denotes an

 233

element, and p denotes the position. Note that p essentially will be address of some
element in the list and its actual type will depend upon the implementation. Please note
that the following operations serve as an example for functional description of a list and
are not necessarily unique. You may define another set of similar operations with
possibly different description
.
• CreateList(L) : creates an empty list L.

• MakeNULL(L) : converts L into an empty list.

• Locate(x,L) : returns the location of an element x in list L if it is present and otherwise
reports error.

• Retrieve(p,L) : returns the elements present at location p in list L.

• Insert(x, p,L) : insert a new element x after the element at position p in the list L

• Delete(p,L) : delete the element that follows the element at position p in list L.

• Next(p,L) : return the position of the element succeeding the element stored at position
p.

• Previous(p,L) : return the position of the element preceding the element stored at
position p.

• IsEmpty(L) : return true if the list L is empty

Note that position p used in operations defined above depends upon the specific
implementation we have for the data structure as well as the specific application. For
example, in case of array based implementation, position may refer to an index in the
array. However, for Linked list based implementation, p is the address of some specific
element in the list.

11.4.1 Array based implementation of lists

It is quite easy to implement List using an array and a variable for keeping the
count of the number of elements in the list at any moment of time. For sake of simplicity,
we assume that the elements of the list are integers.the following function will represent
some general functions on list.

Example11.1

static final int INIT SIZE = 10;
int MyList[];
INT ListSize;

 234

ArrayList(){
MyList = new int[INIT SIZE];
ListSize = 0;
}

void resize()
{
int temp[] = new int[size() * 2];
arraycopy(MyList, 0, temp, 0, size());
MyList = temp;
}

void Insert(int x, int pos)
 {
if(ListSize == MyList.length)
resize();
if(pos<ListSize) {
for(int i = ListSize; i > pos+1; i–){
MyList[i] = MyList[i-1];
}
MyList[pos] = x;
ListSize++;
}
}

int Remove(int pos)
{
int current = MyList[pos];
for(int i = pos+1; i < ListSize-1; i++){
MyList[i] = MyList[i+1];
}
ListSize–;
2
return current;
}

int Retrieve(int pos)
{
return MyList[pos];
}

int Locate(int x)
 {
while(int i = 0, int flag==0; i< ListSize && flag==0) {
if(MyList[i]==x) flag=1; else i++;
}

 235

if(flag==1) return i; else return -1;
}
int Next(int pos) {
if(pos >=1 && pos < ListSize)
return pos+1;
}

int Previous(int pos)
 {
if(pos >1 && pos < ListSize)
return pos-1;
}
int Size() {
return ListSize;
}

boolean IsEmpty()
 {
return ListSize==0
}

void MakeNULL()
{
MyList = new int[10];
ListSize = 0;
}
}

It is easy to verify that the array based implementation described above achieves

following time complexities for operations on list.

11.4.2 Operation Time complexity and operations

Insert O(n)
Delete O(n)
Locate() O(n)
Retrieve() O(1)
Next() O(1)
Previous() O(1)
IsEmpty O(1)

11.5 More about List

 The list is a flexible abstract data type. It is particularly useful when the number
of elements to be stored is not known before running a program or can change during

 236

running. It is well suited to sequential processing of elements because the next element of
a list is readily accessible from the current element. It is less suitable for random access
to elements as this requires a slow linear search. Two forms of list are considered, flat
lists of elements and hierarchical.

The definition of list can be read as follows: a list of e is (=) either `nil' or (|) is `cons'
applied to an element of type e and a list. Nil represents the empty list. Null tests for the
empty list. The head of a list is the first element in the list. The tail of a list is everything
but the first element and is a list not an element. Cons constructs a list given an element
and a list.

Given the basic operations on lists, a number of useful functions can be defined.

length(nil) = 0
length(cons(e,L)) = 1+length(L)

Note that the length function is recursively defined, as is the list type. While there are
infinitely many lists, there are only two cases that length must consider. One case is the
empty list and the other is the non-empty list. These two cases correspond to the two
cases in the definition of the list type - nil and cons(e,L

Append joins two lists together; for example, append([1,2], [3,4]) = [1,2,3,4]. If the first
list is empty the result is the second list, otherwise the result is the first element of the
first list followed by the result of appending the tail of the first list to the second list. Note
that if the length of the first list is n, append takes O(n) time. It makes a copy of this list
which finally points to the second; it does not change the first one. In this way append
does not cause any side-effect.

L ----> 1--->2nil L := [1,2]

L'----------->----------> 3--->4nil L':= [3,4]
 ^
 |
L"----> 1--->2--->|

 after L":=append(L,L') = [1, 2, 3, 4]

Note however that if the contents of L' are now changed, by some means, then so also are
the contents of L". This kind of side-effect is a common cause of program bugs.

The merge function produces one sorted list when given two sorted lists.

merge(nil, nil) = nil |
merge(nil, L) = L |
merge(L, nil) = L |
merge(L, L') = % ~null(L) & ~null(L')
 if head L < head L' then

 237

 cons(head L , merge(tail L, L'))
 else {head L >= head L'}
 cons(head L', merge(L, tail L'))

%this version allows duplicates

The original lists are unchanged. Note the similarities with the array and file merge
operations.

The map function applies a function f to every element of a list and produces a new list.
In this way map f processes a single data structure as a whole.

map(f, nil) = nil |
map(f, (cons(e,L))) = cons(f(e), map(f, L))

eg. map(factorial, [1,2,3,4]) = [1,2,6,24]

Map is known as mapcar in some works on Lisp.

The reduce function inserts a binary function, or operator, between every element in a
list. If the list is empty, reduce returns an identity or zero element z.

reduce(f, z, nil) = z |
reduce(f, z, cons(e,L)) = f(e, reduce(f, z, L))

Reduce(plus, 0, L) adds up the elements in a list of integers.

eg. reduce(plus, 0, [1,2,3,4])
 where plus(a,b)=a+b
 = 1 + reduce(plus, 0, [2,3,4])
 = 1 +(2 + reduce(plus, 0, [3,4]))
 = 1 +(2 +(3 + reduce(plus, 0, [4])))
 = 1 +(2 +(3 +(4 + reduce(plus, 0, nil))))
 = 1 +(2 +(3 +(4 + 0)))
 = 10

Reduce(times, 1, L) multiplies the elements in a list of integers together.

eg. reduce(times, 1, [1,2,3,4]) = 24
 where times(a,b)=a*b
 = 24

These functions for manipulating lists can be combined to give many short but powerful
programs. For example, the program

lookup(x, L) = reduce(or, false, map(equals_x, L))
 where equals_x(y) = x=y

is a search program and returns true only when x is in the list L. Map(equals_x, L) returns
a list of boolean values, at least one value is true only when x is in L. Reduce or's all
these values together. Processing lists and other linked data structures is important in

 238

functional programming languages such as Haskell, Lisp and ML. This style of
combining simple functions on these data structures to achieve complex objectives is a
powerful programming technique.

As always, the issue of efficiency must be attended to. For example, there are various
ways to reverse a list. The simplest way but not the best is:

reverse(nil) = nil |
reverse(cons(e,L)) = append(reverse(L), [e])

To reverse the empty list do nothing. To reverse a non-empty list, reverse the tail of the
list and append the first element of the original list. Given a list of length n, an append
operation takes O(n) time on average. There are n calls to append so this reverse takes
O(n2) time. Note that the element `e' and the list containing it `[e]' have different types.

A fast list-reversal algorithm takes O(n) time and uses the accumulating parameter
technique.

reverse(L) = reverse1(L, nil)
 where
 reverse1(nil,L) = L |
 reverse1(cons(e,L),L') = reverse1(L,cons(e,L'))

The local function reverse1 does the real work. Its first parameter is the input list which
shrinks at each step. Its second parameter is the accumulating parameter which grows at
each step as the head of the first is attached to it. When the first list has shrunk to nothing,
the second contains all the original elements in reverse order and this is the final result.
There are n calls to reverse1 each of which does a constant amount of work so the
algorithm takes O(n) time overall.

Note that although there are infinitely many possible lists there are really only two types
of list - empty ones and non-empty ones. Almost every function that manipulates a list
must deal with these two cases.

f(nil) = |
f(cons(e,L)) =

If one of these cases is missing then there is probably an error. Processing the empty list
is usually easy. Many functions return a constant - 0, 1, true, false or nil - in this case.
Processing the non-empty list, cons(e,L), varies from application to application but often
involves e or f(L) or both.

f(nil) = some constant | -- a very
f(cons(e,L)) = ...e...f(L)... -- common pattern

Look back at the various functions defined to identify this pattern in each case.

 239

11.5.1 Implementation of Flat Lists

 The most natural way to implement lists is by means of records/structs and
pointers. They can also be implemented by arrays if necessary.

Flat Lists by Records and Pointers

The list type is defined as a pointer to a record (structure).

Example 11.2

#include "List.h"

List cons(ListElementType E, List L) /*A*/
 { List L2; /*l*/
 L2 = (List)malloc(sizeof(Cell)); /*l*/
 L2->hd = E; /*i*/
 L2->tl = L; /*s*/
 return L2; /*o*/
 }/*cons*/ /*n*/

int null(List L)/*predicate*/ { return L==NULL ? 1 : 0; }

ListElementType head(List L)
/* pre: not null(L) */
 { return L->hd; }

List tail(List L)
/* pre: not null(L) */
 { return L->tl; }

/* Basic List Operation */

The basic operations manipulate the pointers:
#include "List.h"

List cons(ListElementType E, List L) /*A*/
 { List L2; /*l*/
 L2 = (List)malloc(sizeof(Cell)); /*l*/
 L2->hd = E; /*i*/
 L2->tl = L; /*s*/
 return L2; /*o*/
 }/*cons*/ /*n*/

int null(List L)/*predicate*/ { return L==NULL ? 1 : 0; }

ListElementType head(List L)
/* pre: not null(L) */
 { return L->hd; }

List tail(List L)
/* pre: not null(L) */
 { return L->tl; }

 240

/* Basic List Operation */

The extended operations on lists that were described previously are easily defined.

#include "List.h"

int length(List L)
 { if(L==NULL) return 0;
 else return 1+length(L->tl);
 }

/* Length of a List L (recursive) */

If the implementation of lists by pointers can be assumed, it is more efficient, if
marginally less clear, to use in-line code such as L=nil(List) in place of null(L) and
similarly for the other basic operations.

#include "List.h"

List append(List L1, List L2)
/* NB. L1 & L2 are not changed but L2 is shared with the result.
L.Allison */
 { if(L1==NULL) return L2;
 /*else*/ return cons(L1->hd, append(L1->tl, L2));
 }

/* Append Two Lists, L1 and L2 */

The list reversal functions can be coded as follows:

#include "List.h"

/* NB. Below, opL is an `accumulating' parameter -- L.Allison */

List accumulateAndReverse(List inL, List opL)
 { if(inL == NULL) return opL;
 /*else*/ return accumulateAndReverse(inL->tl, cons(inL->hd, opL));
 }

List reverse(List L)
 { return accumulateAndReverse(L, NULL); }

/* O(|L|)-time List Reversal */

If the element type of a list can be printed by a library routine, a list can be printed by
repeated calls. There are three cases to consider. The empty list should appear as `[]', a
list of a single element should appear as `[e]' and a list of two or more elements should
have the elements separated by commas `[a,b,...]'. The empty list can be treated as a
special case by an if statement. The last two cases can be dealt with by using a loop and
placing the printing of the current element before the exit and the printing of the comma
after the exit. In this way one fewer commas than elements are printed.

#include "List.h"

 241

/* NB. Assumes a list of int */

void WriteList(List L)
 { printf("["); /* [*/
 if(L!=NULL)
 while(1)
 { printf("%d", L->hd); /* element */
 L = L->tl;
 if(L==NULL) break;
 printf(","); /* comma */
 }
 printf("]"); /*] */
 }

/* Write a List, e.g. [] or [1] or [1,2,3] */

11.5.2 Flat Lists by Arrays

A list can be implemented by an array of records. Rather than using a pointer to indicate
the next element, an integer is used to hold the index of the next element. Some
convention, such as the use of zero, indicates the null list. This implementation has the
disadvantage that an array of the maximum size of the list must be declared even if the
list(s) grow and shrink. This method is useful in a language without dynamic storage.

11.5.3 Recursion and Iteration

 Many of the operations on lists and other recursive data types are naturally
expressed as recursive routines. Recursive routines have fewer state variables than
iterative routines and are frequently easier to prove correct. However recursion does
require system-stack space to operate. Iterative versions of many routines, particularly for
the simpler operations, are straightforward. Note that we saw an iterative routine to print
a list.

#include "List.h"

int lengthItr(List L)
 { int len; len=0;
 while(L!=NULL)
 { len++; L=L->tl; }
 return len;
 }

/* Length of a List L (iterative) */

 242

11. 6 Introduction to Linked Lists

Linked list is another form of list structure. We have been using arrays to store similar
data linearly. While arrays are simple to understand and easy to implement in common
situations, they do suffer from some drawbacks which are listed below:

 Arrays have fixed dimensions, even if we dynamically allocate the dimension it
remains constant throughout. So there is a limit to the number of elements it can
store.

 Operations such as insertion and deletion are pretty much difficult to implement
and increases the overhead because these operations require elements in the array
to be physically shifted.

Linked lists overcome these drawbacks and are commonly used to store linear data.

Actually elements of linked lists (called as nodes) store two information, data and
the link (pointer) pointing to the next elements (node).

The elements (nodes) are linked sequentially with the help of link pointers. So we
can say that linked lists are collection of nodes which have data and are linked
sequentially so that all the nodes or elements are grouped together.

In programming sense, linked lists are classes whose general form is:

 class node
 {
 public:
 data-type info;
 node *link;
 };

Here info stores the actual data while link stores the memory address of the next node,
which forms the link between the nodes.

FIGURE 11.6.1.: Graphical representation of a node

Following figure illustrates the growing of linked lists, the node which has its link as
NULL is the last element in the linked list.

 243

FIGURE 11.6.2.: Linked lists Initial stage

11.6.1 Let us now discuss a bit about how a linked list grows:

1. We have a pointer that stores the memory address of the first element in the
linked list, represented as the start pointer (of type node). It is NULL to begin
with as we don’t have any element in the list.

2. As an element is added, the start pointer is made to point at it and since for now
the first element is the last element therefore its link is made to be NULL

3. After the addition of each element the link pointer of the previously last element
is made to point at new last element. This step continues…

In this way the number of nodes in a linked list can grow or shrink over time as far as
memory permits.
Just as variables of pre-def data type are dynamically allocated, same way objects of class
can also be dynamically allocated. While the method of doing this is no different but the
way members of such objects are accessed is a bit different. This is why I thought of
writing a separate article on it.
In the previous lesson Introduction to Linked Lists, we introduced the basic concept of
linked list. To make the program (an the article) as simple as possible, we discussed only
the addition and display of nodes in the linked list although necessary we didn't’t
discussed the deletion of node in the previous discussion. Here is the procedure for
deletion.

 11.6.2 Deletion of node (elements) from a linked list

The node to be deleted can be represented by many ways but here we will be representing
it by its info. So if we have the following linked list

 244

Figure.11.6.3 List expansion

And we want to delete node1 then we will express it by its info part (i.e. 10).

The main theory behind deletion of nodes is pretty simple. We need to make the link
pointer of the node before the target node (to be deleted) to point at the node after the
target node. Suppose if we wish to delete node having info as 10 from the above linked
list then it will be accomplished as below:

Figure.11.6.4 Deletion of a node

Now since node1 is orphan and has no meaning, it can be deleted to free-up memory as
represented below:

Figure.12.3.3 After deleting a node

11.7 Let us Sum up

 In this lesson, we discussed about fundamental concepts of data structures and its
implementation, data types and abstract data types, concept of list various operations
involved in the list and its algorithmic implementations.

11.8 Points for discussion

1. Define the term abstract data type.
2. Explain various characteristics of data structure.
3. How to define list.
4. Explain various operatios involved with list.

 245

11.9 Check you progress

1. What is meant by data structure?

A data structure is an arrangement of data in a computer's memory or even disk

storage. An example of several common data structures are arrays, linked lists, queues,
stacks, binary trees, and hash table
2. What is meant by list?

 The list is a flexible abstract data type. It is particularly useful when the number
of elements to be stored is not known before running a program or can change during
running. It is well suited to sequential processing of elements because the next element of
a list is readily accessible from the current element. It is less suitable for random access
to elements as this requires a slow linear search. Two forms of list are considered, flat
lists of elements and hierarchical.

11. 10 Lesson-end activities
 1. Explain any two applications of list
 2. What is meant by primitive data structures?
 3. Write any one of operation on list?
 4. Is it possible to implement list using pointers?

11.11 References

Peter Aitken, Teach Yourself C in 21 Days, Fourth Edition, Sams Publisher.
Brian W. Kernighan and Dennis M. Ritchie, The C programming Language, Prentice-
Hall in 1988
E.Balagursamy, Programming in Ansi C, TATA MCGraw Hill
http://sysprog.net/
http://www.mycplus.com/cplus
http://www.programmersheaven.com/download/
http://en.literateprograms.org/
http://www.cs.utk.edu/~plank/plank/classes/
http://www.go4expert.com/forums/
http://www.cs.bu.edu/teaching/c/

 246

LESSON - 12 : STACK

CONTENTS

12.0 Aims and Objectives

12.1 Introduction

12.2 Operations on Stack

12.3 Stack representation

12.4 Implementing a stack with an array:

 12.4.1 C code implementation:

 12.4.2 Data types for a stack:

 12.4.3 Filling in stack functions:

 12.4.4 StackInit():

 12.4.5 StackDestroy():

 12.4.6 StackIsEmpty() and StackIsFull():

 12.4.7 StackPush():

 12.4.8 StackPop():

12.5 Implementation of stack using linked list

 12.5.1 Turning it into a module

12.6 Let us sum up

12.7 Points for discussion

12.8 Check your progress

12.9 Lesson-end Activities

12.10 References

 247

12.0 Aims and Objectives

 The objective of this lesson is to motivate the readers to understand the
concept of stack and its applications, operations on stack. This lesson also describes the
usage of queue also. This helps readers to get clear information about stack and queue.

12.1 Stack : Introduction

Represents stacks of arbitrary objects. This class reflects a view of a stack as a
kind of list, albeit one with some unique operations (push, pop, etc.), and in which some
of the traditional list operations (find, delete, etc.) do nothing. The overall result is a class
whose instances behave like standard stacks. This class was created to support the text
Algorithms & Data Structures: The Science of Computing by Doug Baldwin and Greg
Scragg.

12.2 Operations on Stack

Operation Description Requirement

Push This operation adds or
pushes another item onto
the stack.

The number of items on
the stack is less than n.

Pop: This operation removes an
item from the stack.

The number of items on
the stack must be greater
than 0.

Top: This operation returns the
value of the item at the top
of the stack.

Note: It does not remove
that item.

Is
Empty:

This operation returns true
if the stack is empty and
false if it is not.

Is Full: This operation returns true
if the stack is full and false
if it is not.

These are the basic operations that can be performed on a stack. Let us
now go on and look at them in detail.

 248

12. 3 Simple representation of a stack

In computer science, a stack is a temporary abstract data type and data structure
based on the principle of Last In First Out (LIFO). Stacks are used extensively at every
level of a modern computer system. For example, a modern PC uses stacks at the
architecture level, which are used in the basic design of an operating system for interrupt
handling and operating system function calls. Among other uses, stacks are used to run a
Java Virtual Machine, and the Java language itself has a class called "Stack", which can
be used by the programmer. The stack is ubiquitous.

A stack-based computer system is one that stores temporary information primarily in
stacks, rather than hardware CPU registers (a register-based computer system).

Abstract data type

As an abstract data type, the stack is a container of nodes and has two basic
operations: push and pop. Push adds a given node to the top of the stack leaving previous
nodes below. Pop removes and returns the current top node of the stack. A frequently
used metaphor is the idea of a stack of plates in a spring loaded cafeteria stack. In such a
stack, only the top plate is visible and accessible to the user, all other plates remain
hidden. As new plates are added, each new plate becomes the top of the stack, hiding
each plate below, pushing the stack of plates down. As the top plate is removed from the
stack, they can be used, the plates pop back up, and second plate becomes the top of the
stack. Two important principles are illustrated by this metaphor, the Last In First Out
principle is one. The second is that the contents of the stack are hidden. Only the top plate
is visible, so to see what is on the third plate, the first and second plates will have to be
removed.

 Operations

In modern computer languages, the stack is usually implemented with more
operations than just "push" and "pop". The length of a stack can often be returned as a
parameter. Another helper operation top (also known as peek and peak) can return the
current top element of the stack without removing it from the stack.

 Here are the minimal operations we'd need for an abstract stack (and their typical
names):

 Push: Places an object on the top of the stack.
 Pop: Removes an object from the top of the stack and produces that object.
 IsEmpty: Reports whether the stack is empty or not.

Because we think of stacks in terms of the physical analogy, we usually draw them
vertically (so the top is really on top).

 249

Order produced by a stack:

 Stacks are linear data structures. This means that their contexts are stored in what
looks like a line (although vertically). This linear property, however, is not sufficient to
discriminate a stack from other linear data structures. For example, an array is a sort of
linear data structure. However, you can access any element in an array--not true for a
stack, since you can only deal with the element at its top.

One of the distinguishing characteristics of a stack, and the thing that makes it useful, is
the order in which elements come out of a stack. Let's see what order that is by looking at
a stack of letters...

Suppose we have a stack that can hold letters, call it stack. What would a particular
sequence of Push and Pops do to this stack?

We begin with stack empty:

stack

Now, let's perform Push(stack, A), giving:

| A | <-- top

stack

Again, another push operation, Push(stack, B), giving:

| B | <-- top

A
stack

Now let's remove an item, letter = Pop(stack), giving:

----- -----
| A | <-- top | B |
----- -----
stack letter

And finally, one more addition, Push(stack, C), giving:

| C | <-- top

 250

A
stack

You'll notice that the stack enforces a certain order to the use of its contents, i.e., the Last
thing In is the First thing Out. Thus, we say that a stack enforces LIFO order.

Now we can see one of the uses of a stack...To reverse the order of a set of objects.

12.4 Implementing a stack with an array:

 Let's think about how to implement this stack in the C programming language.

First, if we want to store letters, we can use type char. Next, since a stack usually holds a
bunch of items with the same type (e.g., char), we can use an array to hold the contents
of the stack.

Now, consider how we'll use this array of characters, call it contents, to hold the
contents of the stack. At some point we'll have to decide how big this array is; keep in
mind that a normal array has a fixed size.

Let's choose the array to be of size 4 for now. So, an array getting A, then B, will look
like:

| A | B | | |

 0 1 2 3
contents

Is this array sufficient, or will we need to store more information concerning the stack?

Answer: We need to keep track of the top of the stack since not all of the array holds
stack elements.

What type of thing will we use to keep track of the top of the stack?

Answer: One choice is to use an integer, top, which will hold the array index of the
element at the top of the stack.

Example:

Again suppose the stack has (A,B) in it already...
stack (made up of 'contents' and 'top')
----------------- -----
| A | B | | | | 1 |
----------------- -----

 251

 0 1 2 3 top
contents

Since B is at the top of the stack, the value top stores the index of B in the array (i.e., 1).

Now, suppose we push something on the stack, Push(stack, 'C'), giving:

stack (made up of 'contents' and 'top')
----------------- -----
| A | B | C | | | 2 |
----------------- -----
 0 1 2 3 top
contents

(Note that both the contents and top part have to change.)

So, a sequence of pops produce the following effects:

1. letter = Pop(stack)
2. stack (made up of 'contents' and 'top')
3. ----------------- ----- -----
4. | A | B | | | | 1 | | C |
5. ----------------- ----- -----
6. 0 1 2 3 top letter
7. contents
8. letter = Pop(stack)
9. stack (made up of 'contents' and 'top')
10. ----------------- ----- -----
11. | A | | | | | 0 | | B |
12. ----------------- ----- -----
13. 0 1 2 3 top letter
14. contents
15. letter = Pop(stack)
16. stack (made up of 'contents' and 'top')
17. ----------------- ----- -----
18. | | | | | | -1| | A |
19. ----------------- ----- -----
20. 0 1 2 3 top letter
21. contents
22.

so that you can see what value top should have when it is empty, i.e., -1.

Let's use this implementation of the stack with contents and top fields.

What happens if we apply the following set of operations?

1. Push(stack, 'D')
2. Push(stack, 'E')
3. Push(stack, 'F')
4. Push(stack, 'G')

 252

giving:

stack (made up of 'contents' and 'top')
----------------- -----
| D | E | F | G | | 3 |
----------------- -----
 0 1 2 3 top
contents

and then try to add H with Push(stack, 'H')?

Thus, what is the disadvantage of using an array to implement a stack?

Dynamically-sized stack:

Now, we will add one more choice to how we'll implement our stack. We want to be able
to decide the maximum size of the stack at run-time (not compile-time).

Thus, we cannot use a regular array, but must use a pointer to a dynamically-allocated
array.

Now, will we need to keep track of any more information besides the contents and top?

Answer: Yes! We'll need to keep the size of this array, i.e., the maximum size of the
stack. We'll see why this is necessary as we write the code.

12.4.1 C code implementation:

Now, let's think about how to actually code this stack of characters in C.

It is usually convenient to put a data structure in its own module, thus, we'll want to
create files stack.h and stack.c.

Now, there are 2 main parts to a C data structure: the data types needed to keep track of a
stack and the functions needed to implement stack operations.

1. The main data type we need is a type that people can use to declare new stacks, as
in:

2. type-of-a-stack s1, s2;
3. Some of the functions we'll need come directly from the operations needed for an

abstract stack, like:
4. StackPush(ref-to-s1, 'A');
5. ch = StackPop(ref-to-s2);

Notice how each stack operation needs some way to refer to a specific stack (so
that we can have more than one stack at a time).

 253

We may need to add a few other operations to help implement a stack. These will
become apparent as we start to implement the stack. Remember that we need to
put prototypes for each stack function in stack.h and put the function definitions
(bodies) in stack.c.

Before we ponder the details of the stack functions, we should decide on the types we
need...

12.4.2 Data types for a stack:

 For the array implementation, we need to keep track of (at least) the array
contents and a top index. How could we combine these 2 into a single C construct of type
stackT?

Answer: Put them into a struct.

So, our stack types become:

typedef char stackElementT; /* Give it a generic name--makes */
 /* changing the type of things in */
 /* the stack easy. */

typedef struct {
 stackElementT *contents;
 int top;
 /* Other fields? */
} stackT;

Note that the contents is a pointer since it will be dynamically-allocated.

Are any other fields needed? Well, remember that the maximum size of the array is
determined at run-time...We'll probably need to keep that value around so that we can tell
when the stack is full... The final type, thus, is:

typedef struct {
 stackElementT *contents;
 int top;
 int maxSize;
} stackT;

These types should go in the interface, stack.h.

12.4.3 Filling in stack functions:

 Now that we've decided on the data types for a stack, let's think about the
functions we need...

First, we need the standard stack operations:

 254

StackPush()
StackPop()
StackIsEmpty()

We'll use the convention of placing the data structure name at the beginning of the
function name (e.g., StackIsEmpty). That will help us down the line. For example,
suppose we use 2 different data structures in a program, both with IsEmpty operations--
our naming convention will prevent the 2 different IsEmpty functions from conflicting.

We'll also need 2 extra operations:

StackInit()
StackDestroy()

They are not part of the abstract concept of a stack, but they are necessary for setup and
cleanup when writing the stack in C.

Finally, while the array that holds the contents of the stack will be dynamically-allocated,
it still has a maximum size. So, this stack is unlike the abstract stack in that it can get full.
We should add something to be able to test for this state:

StackIsFull()

12.4.4 StackInit():

The first function we'll implement is StackInit(). It will need to set up a stackT
structure so that it represents an empty stack.

Here is what the prototype for StackInit() looks like...

void StackInit(stackT *stackP, int maxSize);

It needs to change the stack passed to it, so the stack is passed by reference (stackT *).
It also needs to know what the maximum size of the stack will be (i.e., maxSize).

Now, the body of the function must:

1. Allocate space for the contents.
2. Store the maximum size (for checking fullness).
3. Set up the top.

Here is the full function:

void StackInit(stackT *stackP, int maxSize)
{
 stackElementT *newContents;

 /* Allocate a new array to hold the contents. */

 255

 newContents = (stackElementT *)malloc(sizeof(stackElementT)
 * maxSize);

 if (newContents == NULL) {
 fprintf(stderr, "Insufficient memory to initialize stack.\n");
 exit(1); /* Exit, returning error code. */
 }

 stackP->contents = newContents;
 stackP->maxSize = maxSize;
 stackP->top = -1; /* I.e., empty */
}

Note how we make sure that space was allocated (by testing the pointer against NULL).
Also, note that if the stack was not passed by reference, we could not have changed its
fields.

12.4.5 StackDestroy():

The next function we'll consider is the one that cleans up a stack when we are done with
it. It should get rid of any dynamically-allocated memory and set the stack to some
reasonable state.

This function only needs the stack to operate on:

void StackDestroy(stackT *stackP);

and should reset all the fields set by the initialize function:

void StackDestroy(stackT *stackP)
{
 /* Get rid of array. */
 free(stackP->contents);

 stackP->contents = NULL;
 stackP->maxSize = 0;
 stackP->top = -1; /* I.e., empty */
}

12.4.6 StackIsEmpty() and StackIsFull():

 Let's look at the functions that determine emptiness and fullness. Now, it's not
necessary to pass a stack by reference to these functions, since they do not change the
stack. So, we could prototype them as:

int StackIsEmpty(stackT stack);
int StackIsFull(stackT stack);

However, then some of the stack functions would take pointers (e.g., we need them for
StackInit(), etc.) and some would not. It is more consistent to just pass stacks by

 256

reference (with a pointer) all the time. Furthermore, if the struct stackT is large, passing
a pointer is more efficient (since it won't have to copy a big struct).

So, our prototypes will be:

int StackIsEmpty(stackT *stackP);
int StackIsFull(stackT *stackP);

Emptiness

 Now, testing for emptyness is an easy operation. We've said that the top field is -1
when the stack is empty. Here's a simple implementation of the function...

int StackIsEmpty(stackT *stackP)
{
 return stackP->top < 0;
}

Fullness

 Testing for fullness is only slightly more complicated. Let's look at an example
stack. Suppose we asked for a stack with a maximum size of 1 and it currently contained
1 element (i.e., it was full)...

stack (made up of 'contents' and 'top')
----- -----
| A | | 0 |
----- -----
 0 top
contents

We can see from this example that when the top is equal to the maximum size minus 1
(e.g., 0 = 1 - 1), then it is full. Thus, our fullness function is...

int StackIsFull(stackT *stackP)
{
 return stackP->top >= stackP->maxSize - 1;
}

This illustrates the importance of keeping the maximum size around in a field like
maxSize.

12.4.7 StackPush():

 Now, pushing onto the stack requires the stack itself as well as something to push.
So, its prototype will look like:

 257

void StackPush(stackT *stackP, stackElementT element);

The function should place an element at the correct position in the contents array and
update the top. However, before the element is placed in the array, we should make sure
the array is not already full...Here is the body of the function:

void StackPush(stackT *stackP, stackElementT element)
{
 if (StackIsFull(stackP)) {
 fprintf(stderr, "Can't push element on stack: stack is full.\n");
 exit(1); /* Exit, returning error code. */
 }

 /* Put information in array; update top. */

 stackP->contents[++stackP->top] = element;
}

Note how we used the prefix ++ operator. It increments the top index before it is used as
an index in the array (i.e., where to place the new element).

Also note how we just reuse the StackIsFull() function to test for fullness.

12.4.8 StackPop():

 Finally, popping from a stack only requires a stack parameter, but the value
popped is typically returned. So, its prototype will look like:

stackElementT StackPop(stackT *stackP);

The function should return the element at the top and update the top. Again, before an
element is removed, we should make sure the array is not empty....Here is the body of the
function:

stackElementT StackPop(stackT *stackP)
{
 if (StackIsEmpty(stackP)) {
 fprintf(stderr, "Can't pop element from stack: stack is empty.\n");
 exit(1); /* Exit, returning error code. */
 }

 return stackP->contents[stackP->top--];
}

Note how we had the sticky problem that we had to update the top before the function
returns, but we need the current value of top to return the correct array element. This is
accomplished easily using the postfix -- operator, which allows us to use the current value
of top before it is decremented.

 258

Stack module:

 Finally, don't forget that we are putting this stack in its own module. The stack
types and function prototypes should go in stack.h. The stack function definitions
should go in stack.c.

People that need to use the stack must include stack.h and link their code with stack.c
(really, link their code with its object file, stack.o).

Finally, since we wrote the types and functions for a stack, we know how to use a stack.
For example, when you need stacks, declare stack variables:

stackT s1, s2;

When you pass a stack to stack functions, pass it by reference:

StackInit(&s1, 10);
StackPush(&s1, 'Z');

Example 12.1

This program is another example for operations on stack with integer data.

#include<stdio.h>
#define length 10
#include<conio.h>
#include<stdlib.h>
int top=-1;
int stack[length];
void push()
{
 int data;
 if(top+1==length)
 {
 printf("stack overflow\n");
 return;
 }
 top++;
 printf("enter the data ");
 scanf("%d",&data);
 stack[top]=data;
}
int pop()
{
 int temp_var;

 259

 if(top==-1)
 {
 puts("stack is underflow");
 return(-78799);
 }
 temp_var=stack[top];
 top--;
 return(temp_var);
}
void main()
{
 int i,ch;
 clrscr();
 do{
 printf("\n");
 puts("1.push");
 puts("2.pop");
 puts("3.exit");
 puts("enter choice");
 scanf("%d",&ch);
//} while(1);
switch(ch)
{
case 1:push();
printf("list is ");
for(i=0;i!=top+1;i++)
printf("%d ",stack[i]);
break;
case 2:printf("data poped=%d ",pop());
printf("list is ");
for(i=0;i!=top+1;i++)
printf("%d ",stack[i]);

break;
case 3:exit(0);
}
} while(1);
getch();
}

12.5 Implementation of stack using linked list

 Let us first see how we can implement a stack without being concerned with
header objects. For the purpose of this section, we assume that we have a linked list
contained in a variable named l with the elements of the stack (if you do not appreciate
the choice of such a short name, read the section on naming conventions). We also

 260

assume that we implement the operations as side effects on the variable l. For the
implementation of push we further assume that a variable element contains the
element to push onto the stack. We can take advantage of the operation cons that we
defined in the section on linked lists, which gives the following code:
 l = cons(element, l);
The implementation of empty is particularly simple:
 return l == NULL;
or simply:
 return !l;
For the implementation of pop we need to check that the stack is not empty before
attempting to remove the top element. Here is the code:
 assert(!empty(l));
 {
 list temp = l;
 l = l -> next;
 free(temp);
 }
If we have a garbage collector, we can do even better, like this:
 assert(!empty(l));
 l = l -> next;
Finally, for the top operation, we also need to check whether the stack is empty before
attempting the operation:
 assert(!empty(l));
 return l -> element;

12.5.1 Turning it into a module

Now that we got our programming idioms done, let us look at how to turn these functions
into a module. Recall that we divide a module into two distinct files, the header file (or
the .h file) and the implementation file (or the .c file). Let us call our module stack
and use that as a prefix for the operations.

Here is the header file:

 #ifndef STACK_H
 #define STACK_H

 struct stack;
 typedef struct stack *stack;

 /* create a new, empty stack */
 extern stack stack_create(void);

 /* push a new element on top of the stack */
 extern void stack_push(stack s, void *element);

 /* pop the top element from the stack. The stack must not be
 empty. */
 extern void stack_pop(stack s);

 /* return the top element of the stack */
 extern void *stack_top(stack s);

 261

 /* return a true value if and only if the stack is empty */
 extern int stack_empty(stack s);

 #endif

We have added comments describing briefly what the module does, and describing what
each interface function does. The phrases must be and must not be mean that a program
that does not respect what these phrases say, is a program with errors in it. This module is
therefore free to do whatever it thinks reasonable (including nothing at all) when such a
condition is violated. In our implementation, we will call assert and abort the
execution of the program.

For the implementation, we use a header object:

 #include "stack.h"
 #include "list.h"
 #include < assert.h>
 #include < stdlib.h>

 typedef struct stack *stack;

 struct stack
 {
 list elements;
 };

 stack stack_create(void)
 {
 stack temp = malloc(sizeof(struct stack));
 temp -> elements = NULL;
 return temp;
 }

 void stack_push(stack s, void *element)
 {
 s -> elements = cons(element, s -> elements);
 }

int stack_empty(stack s)
 {
 return s -> elements == NULL;
 }

 void stack_pop(stack s)
 {
 assert(!empty(s));
 s -> elements = cdr_and_free(s -> elements);
 }

 void * stack_top(stack s)
 {
 assert(!empty(s));
 return s -> elements -> element;
 }

 262

12.6 Let us sum up

 In this lesson, we briefly discussed about the concept of stack, various
representation of stack, operations on stack, implementation of stack using array and
implementation of stack using linked list. This lesson will help programmers to
understand about stack data structure.

12.7 Points for discussion

1. How to implement push operation?
2. How to implement pop operation?
3. What is meant by stack overflow and underflow?
4. What will be the condition for checking empty stack?

12.8 Check your progress

1. Check empty stack
When top field reaches -1 then we can say the stack is empty. Here's a simple
implementation of the function...
int StackIsEmpty(stackT *stackP)
{
 return stackP->top < 0;
}

2. Check the stack full

 Testing for fullness is only slightly more complicated. Let's look at an example
stack. Suppose we asked for a stack with a maximum size of 1 and it currently contained
1 element (i.e., it was full)...
stack (made up of 'contents' and 'top')
----- -----
| A | | 0 |
----- -----
 0 top
contents

We can see from this example that when the top is equal to the maximum size minus 1
(e.g., 0 = 1 - 1), then it is full. Thus, our fullness function is...

int StackIsFull(stackT *stackP)
{
 return stackP->top >= stackP->maxSize - 1;
}

 263

12.9 Lesson-end activities

 1. What are all the way we can implement stack?

 2. Find out one suitable real time example for stack?

 3. Remember any two operations on stack.

12.10 References

Ellis HoroWitz and Sartaj Sahni: Fundamentals of Data structure, Galgotia book source.
Ashok N Kamthane, Programming and Data structures, Pearson Education
M.Tanenbaum, Data structure using C, PHI pub.
http://sysprog.net/
http://www.mycplus.com/cplus
http://www.programmersheaven.com/download/
http://en.literateprograms.org/
http://www.cs.utk.edu/~plank/plank/classes/
http://www.go4expert.com/forums/
http://www.cs.bu.edu/teaching/c/

 264

LESSON - 13 : LINKED LIST

CONTENTS

13.0 Aims and Objectives

13.1 Introduction

13.2 Types of linked lists

 13.2.1 Singly-linked list

 13.2.2 Doubly-linked list

13.3 Creating and manipulating a list

 13.3.1 Nodes

 13.3.2 Creating a node

 13.3.3 Inserting a node

 13.3.4 Removing a node

13.4 More Operating on the entire list

 13.4.1 Traversing a list

 13.4.2 Searching a list

13.5 Doubly linked lists

13.6 Let us sum up

13.7 Points for discussion

13.8 Check your progress

13.9 Lesson-end Activities

13.10 References

 265

13.0 Aims and Objectives
 This lesson will help readers to understand about the concept of linked list adding
and deleting an element with linked list. This lesson also discuss about predecessor and
successor problems and its implementation.

13.1 Introduction

The Linked List is stored as a sequence of linked nodes. As in the case of the
stack, each node in a linked list contains data AND a reference to the next node. The
Linked List has the following properties:

• The list can grow and shrink as needed.

• The position of each element is given by an index from 0 to n-1, where n is the number
of elements.

• Given any index, the time taken to access an element with that index depends on the
index. This is because each element of the list must be traversed until the required
index is found.

• The time taken to add an element at any point in the list does not depend on the size of
the list, as no shifts are required. It does, however, depend on the index.Additions near
the end of the list take longer than additions near the middle orstart. The same applies to
the time taken to remove an element.

A list needs a reference to the front node

The following diagram describes the storage of a linked list called LinkedList.
Each node consists of data (DataItem) and a reference (NextNode).

 Figure 13.1.1 Linked list

• The first node is accessed using the name LinkedList.Head
• Its data is accessed using LinkedList.Head.DataItem
• The second node is accessed using LinkedList.Head.NextNode

 266

13.2 Types of linked lists

13.2.1 Singly-linked list

The simplest kind of linked list is a singly-linked list (or slist for short), which has one
link per node. This link points to the next node in the list, or to a null value or empty list
if it is the final node.

 Figure 13.2.1 A singly-linked list containing three integer values

13.2.2 Doubly-linked list

 A more sophisticated kind of linked list is a doubly-linked list or two-way
linked list. Each node has two links: one points to the previous node, or points to a null
value or empty list if it is the first node; and one points to the next, or points to a null
value or empty list if it is the final node.

Figure 13.2.2 A doubly-linked list containing three integer values

In some very low level languages, Xor-linking offers a way to implement doubly-linked
lists using a single word for both links, although the use of this technique is usually
discouraged.

13.2.3 Circularly-linked list

 In a circularly-linked list, the first and final nodes are linked together. This can
be done for both singly and doubly linked lists. To traverse a circular linked list, you
begin at any node and follow the list in either direction until you return to the original
node. Viewed another way, circularly-linked lists can be seen as having no beginning or
end. This type of list is most useful for managing buffers for data ingest, and in cases
where you have one object in a list and wish to see all other objects in the list.

The pointer pointing to the whole list may be called the access pointer.

Figure 13.2.3 A circularly-linked list containing three integer values

 267

13.3 Creating and manipulating a list

13.3.1 Nodes

 Each node in the list contains a data pointer, and a pointer to the next element.
The data pointer is of type void *, so that it could point to any data. A node with
next==NULL is the last node in the list.

Any node can be viewed as representing the list beginning at that element, so we do not
need a special structure to represent the whole list. The structure for a single node is:

typedef struct node_s {
 void *data;
 struct node_s *next;
} NODE;

13.3.2 Creating a node

Creating a new node is simple. The memory needed to store the node is allocated, and the
pointers are set up. This function leaves allocation of data to the user.

NODE *list_create(void *data)
{
 NODE *node;
 if(!(node=malloc(sizeof(NODE)))) return NULL;
 node->data=data;
 node->next=NULL;
 return node;
}

13.3.3 Inserting a node

In a singly-linked list, there is no efficient way to insert a node before a given node or at
the end of the list, but we can insert a node after a given node or at the beginning of the
list. The following code creates and insert a new node after an existing node.

NODE *list_insert_after(NODE *node, void *data)
{
 NODE *newnode;
 newnode=list_create(data);
 newnode->next = node->next;
 node->next = newnode;
 return newnode;
}

The above code cannot insert at the beginning of the list, so we have a separate function
for this. This code creates and inserts the new node and returns the new head of the list:

NODE *list_insert_beginning(NODE *list, void *data)
{

 268

 NODE *newnode;
 newnode=list_create(data);
 newnode->next = list;
 return newnode;
}

13.3.4 Removing a node

Note: This will not free the data associated with the node. Is this able to remove the head
node?

int list_remove(NODE *list, NODE *node)
{
 while(list->next && list->next!=node) list=list->next;
 if(list->next) {
 list->next=node->next;
 free(node);
 return 0;
 } else return -1;
}

13.4 More Operating on the entire list

13.4.1 Traversing a list

The user-supplied function pointer will be called once for each element in the list.

int list_foreach(NODE *node, int(*func)(void*))
{
 while(node) {
 if(func(node->data)!=0) return -1;
 node=node->next;
 }
 return 0;
}

13.4.2 Searching a list

This function will return the first node to which the supplied function pointer returns a
positive number.

NODE *list_find(NODE *node, int(*func)(void*,void*), void *data)
{
 while(node) {
 if(func(node->data, data)>0) return node;
 node=node->next;
 }
 return NULL;
}

 269

Examples of user-supplied functions

 Here are a few examples of user-supplied functions that might be used in list
traversals and searches. The first function prints a value to stdout, and can be used with
a traversal to print the entire contents of a list.

int printstring(void *s)
{
 printf("%s\n", (char *)s);
 return 0;
}

The second function tests to see if the value of a given node matches some string.

int findstring(void *listdata, void *searchdata)
{
 return strcmp((char*)listdata, (char*)searchdata)?0:1;
}

Complete program will be as follows,

Example 13.1

#include<stdlib.h>
#include<stdio.h>
#include<string.h>
int main()
{
 NODE *list, *second, *inserted;
 NODE *match;

 /* Create initial elements of list */
 list=list_create((void*)"First");
 second=list_insert_after(list, (void*)"Second");
 list_insert_after(second, (void*)"Third");

 printf("Initial list:\n");
 list_foreach(list, printstring);
 putchar('\n');

 /* Insert 1 extra element in front */
 list=list_insert_beginning(list, "BeforeFirst");
 printf("After list_insert_beginning():\n");
 list_foreach(list, printstring);
 putchar('\n');

 /* Insert 1 extra element after second */
 inserted=list_insert_after(second, "AfterSecond");
 printf("After list_insert_after():\n");
 list_foreach(list, printstring);
 putchar('\n');

 270

 /* Remove the element */
 list_remove(list, inserted);
 printf("After list_remove():\n");
 list_foreach(list, printstring);
 putchar('\n');

 /* Search */
 if((match=list_find(list, findstring, "Third")))
 printf("Found \"Third\"\n");
 else printf("Did not find \"Third\"\n");

 return 0;
}

The following figures shows diagrammatic representation of adding and deleting a node
in the linked list.

 Figure 13.4.1 The first node is set to be the new node if list is empty

Figure 13.4.2 Node is added at the beginning

 271

Figure 13.4.3 Node is added at the end of list. Prob is a pointer to identify the location of
insertion. Figure 13.4.4 Deleting a node

13.5 Doubly linked lists

 Doubly linked lists are like singly linked lists, except each node has two pointers -
- one to the next node, and one to the previous node. This makes life nice in many ways:

 You can traverse lists forward and backward.
 You can insert anywhere in a list easily. This includes inserting before a node,

after a node, at the front of the list, and at the end of the list.
 You can delete nodes very easily.

 272

The following program shows various operation involved in doubly linked list
Figure 13.2
#include<stdio.h>
#include<conio.h>
#include<alloc.h>
struct node
{
char info;
struct node *next,*prev;

} *head=NULL,*newnode ,*Traverse;

insertdata(char chh1)
{

if (head == NULL)
{
newnode=(struct node *)malloc (sizeof(struct node));
newnode->info=chh1;
newnode->next=newnode->prev=NULL;
//newnode->next=head;
//head->prev=newnode;
head=newnode ;

}

else
{
newnode= (struct node *)malloc (sizeof(struct node));
newnode->info=chh1;
newnode->next=newnode->prev=NULL;
Traverse=head;
while(Traverse->next !=NULL)
Traverse=Traverse->next;

Traverse->next=newnode;
newnode->prev=Traverse;

}

return ;
}

 273

deletedata (char chh1)
{
Traverse=head;
if (Traverse->info==chh1)
{

head=head->next;

free(Traverse);
}
else
{
while(Traverse->info!=chh1)
Traverse=Traverse->next;

Traverse->next->prev=Traverse->prev;
Traverse->prev->next=Traverse->next;
free(Traverse) ;
//printf("\nRecord deleted for %c ",chh1);
}
return ;
}

showdata()
{
Traverse=head;
while (Traverse->info !=NULL)
{
printf("%c",Traverse->info);
Traverse=Traverse->next;
}

return ;
}
void main(void)
{
char chh;
char i;
clrscr();
while(1)
{

printf("\n1.insert 2.Delete ");
printf("3.show 4.exit \n ");
printf("\n\nEnter any one of the choice :--");
scanf("\n%c",&i);

 274

switch(i)
{
case '1' :
printf("\nEnter a CHAR--");

scanf ("\n%c",&chh);
//scanf ("%c",&chh);
insertdata(chh);

break;

case '2' :

printf("\nEnter the CHAR U want to delete :: ");
scanf ("\n%c", &chh);
//scanf ("%c", &chh);
deletedata(chh);
break;

case '3' :

showdata();
break;

case '4' :
exit(0);
break ;
default :
printf("\n invalid choice\n");
break;
}
}
}

Example 13.3

This program illustrate implementation of doubly linked list for mark statement
preparation

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include <string.h>
#define N 100

 275

struct dlinklist
{
 struct dlinklist *prev; /** Stores address of previous node **/
 int roll_no; /** stores roll number **/
 char name[N]; /** stores Name **/
 float marks; /** stores Marks **/
 struct dlinklist *next; /** stores address of next node **/
};

/** Redefining dlinklist as node **/
typedef struct dlinklist node;

void init(node*); /** Input function **/
void ins_aft(node*); /** Function inserting before **/
node* ins_bef(node*); /** Function inserting after **/
node* del(node*); /** Function deleting a node **/
void search(node*); /** Function for searching node **/
void disp(node*); /** Function for displaying node **/
void rollsrch(node*); /** Function for searching node by roll number
**/
void namesrch(node*); /** Function for searching node by name **/
void marksrch(node*); /** Function for searching node by marks **/

void main()
{
 node *head;
 char ch; /* Choice inputing varible */
 int opt; /* Option inputing variable*/
 static int flag=0; /* Unchanged after iniialization
*/
 clrscr();
 head=(node*)malloc(sizeof(node));
 head->next=NULL;
 head->prev=NULL;
 do
 {
again:
 printf("\nEnter your option\n");
 printf("\n1. Initialize the node\n");
 printf("\n2. Insert before a specified node\n");
 printf("\n3. Insert after a specified node\n");
 printf("\n4. Delete a particular node\n");
 printf("\n5. Search the nodes\n");
 printf("\n6. Display all the nodes\n");
 scanf("%d",&opt);
 if(flag==0 && opt!=1)
 {
 printf("\nNo. You must first initialize at least one node\n");

 goto again;
 }
 if(flag==1 && opt==1)
 {
 printf("\nInitialisation can occur only once.\n");

 276

 printf("\nNow you can insert a node\n");
 goto again;
 }
 if(opt==4 && head->next==NULL)
 {
 printf("\nYou cannot delete the one and only the single
node\n");
 goto again;
 }
 if(flag==0 && opt==1)
 flag=1;
 switch(opt)
 {
 case 1:
 init(head);
 break;
 case 2:
 head=ins_bef(head);
 break;
 case 3:
 ins_aft(head);
 break;
 case 4:
 head=del(head);
 break;
 case 5:
 search(head);
 break;
 case 6:
 disp(head);
 break;
 }
 printf("\nDo you wish to continue[y/n]\n");
 ch=getche();
 }while(ch=='Y' || ch=='y');
 printf("\nDone by \"SHABBIR\"\n");
 printf("\nPress any key to exit\n");
 getch();
}

void init(node *current)
{
 current->prev=NULL;
 printf("\nEnter Roll number\n");
 scanf("%d",¤t->roll_no);
 printf("\nEnter the name\n");
 fflush(stdin);
 gets(current->name);
 printf("\nEnter the marks\n");
 scanf("%f",¤t->marks);
 current->next=NULL;
}

void ins_aft(node *current)
{
 int rno; /* Roll number for inserting a node*/

 277

 int flag=0;
 node *newnode;
 newnode=(node*)malloc(sizeof(node));
 printf("\nEnter the roll number after which you want to insert a
node\n");
 scanf("%d",&rno);
 init(newnode);
 while(current->next!=NULL)
 {
 /*** Insertion checking for all nodes except last ***/
 if(current->roll_no==rno)
 {
 newnode->next=current->next;
 current->next->prev=newnode;
 current->next=newnode;
 newnode->prev=current;
 flag=1;
 }
 current=current->next;
 }
 if(flag==0 && current->next==NULL && current->roll_no==rno)
 {
 /*** Insertion checking for last nodes ***/
 newnode->next=current->next;
 current->next=newnode;
 flag=1;
 }
 else if(flag==0 && current->next==NULL)
 printf("\nNo match found\n");
}

node* ins_bef(node *current)
{
 int rno; /* Roll number for inserting a node*/
 node *newnode,*temp;
 newnode=(node*)malloc(sizeof(node));
 printf("\nEnter the roll number before which you want to insert a
node\n");
 scanf("%d",&rno);
 init(newnode);
 if(current->roll_no==rno)
 {
 /*** Insertion checking for first node ***/
 newnode->next=current;
 current->prev=newnode;
 current=newnode;
 return(current);
 }
 temp=current;
 while(temp->next!=NULL)
 {
 /*** Insertion checking for all node except first ***/
 if(temp->next->roll_no==rno)
 {
 newnode->next=temp->next;
 temp->next->prev=newnode;

 278

 temp->next=newnode;
 newnode->prev=temp;
 return(current);
 }
 temp=temp->next;
 }
 /*
 If the function does not return from any return statement.
 There is no match to insert before the input roll number.
 */
 printf("\nMatch not found\n");
 return(current);
}

node* del(node *current)
{
 int rno; /* Roll number for deleting a node*/
 node *newnode,*temp;
 printf("\nEnter the roll number whose node you want to delete\n");
 scanf("%d",&rno);
 newnode=current;
 if(current->roll_no==rno)
 {
 /*** Checking condition for deletion of first node ***/
 newnode=current; /* Unnecessary step */
 current=current->next;
 current->prev=NULL;
 free(newnode);
 return(current);
 }
 else
 {
 while(newnode->next->next!=NULL)
 {
 /*** Checking condition for deletion of ***/
 /*** all nodes except first and last node ***/
 if(current->next->roll_no==rno)
 {
 newnode=current;
 temp=current->next;
 newnode->next=newnode->next->next;
 newnode->next->prev=current;
 free(temp);
 return(current);
 }
 newnode=newnode->next;
 }
 if(newnode->next->next==NULL && newnode->next->roll_no==rno)
 {
 /*** Checking condition for deletion of last node ***/
 temp=newnode->next;
 free(temp);
 newnode->next=NULL;
 return(current);
 }
 }

 279

 printf("\nMatch not found\n");
 return(current);
}

void search(node *current)
{
 int ch; /* Choice inputing variable */
 printf("\nEnter the criteria for search\n");
 printf("\n1. Roll number\n");
 printf("\n2. Name\n");
 printf("\n3. Marks\n");
 scanf("%d",&ch);
 switch(ch)
 {
 case 1:
 rollsrch(current);
 break;
 case 2:
 namesrch(current);
 break;
 case 3:
 marksrch(current);
 break;
 default:
 rollsrch(current);
 }
}

void rollsrch(node *current)
{
 int rno;
 printf("\nEnter the roll number to search\n");
 scanf("%d",&rno);
 while(current->next!=NULL)
 {
 if(current->roll_no==rno)
 printf("\n%d\t%s\t%f\n",current->roll_no,current-
>name,current->marks);
 current=current->next;
 }
 if(current->next==NULL && current->roll_no==rno)
 printf("\n%d\t%s\t%f\n",current->roll_no,current->name,current-
>marks);
}

void namesrch(node *current)
{
 char arr[20];

 printf("\nEnter the name to search\n");
 fflush(stdin);
 gets(arr);
 while(current->next!=NULL)
 {
 if(strcmp(current->name,arr)==NULL)

 280

 printf("\n%d\t%s\t%f\n",current->roll_no,current-
>name,current->marks);
 current=current->next;
 }
 if(current->next==NULL && strcmp(current->name,arr)==NULL)
 printf("\n%d\t%s\t%f\n",current->roll_no,current->name,current-
>marks);
}

void marksrch(node *current)
{
 float marks;
 printf("\nEnter the marks to search\n");
 scanf("%f",&marks);
 while(current->next!=NULL)
 {
 if(current->marks==marks)
 printf("\n%d\t%s\t%f\n",current->roll_no,current-
>name,current->marks);
 current=current->next;
 }
 if(current->next==NULL && current->marks==marks)

printf("\n%d\t%s\t%f\n",current->roll_no,
 current->name,current->marks);

}

void disp(node *current)
{
 while(current!=NULL)
 {
 printf("\n%d\t%s\t%f",current->roll_no,current->name,current-
>marks);
 current=current->next;
 }
}

13.6 Let us sum up

 In the lesson, we discussed about linked list and its classifications, difference
between various forms of linked list, implementation of single linked list and
algorithamic representation, the concept of doubly linked list and its application.we also
discussed about the way of implementing doubly linked list.

 281

13.7 Points for discussion

1. How to implement single linked list?
2. What is the speciality of circular linked list?
3. What is meant by node?
4. Define doubly linked list

13.8 Check your progress

1. Define the term circular queu

 In a circularly-linked list, the first and final nodes are linked together. This can
be done for both singly and doubly linked lists. To traverse a circular linked list, you
begin at any node and follow the list in either direction until you return to the original
node. Viewed another way, circularly-linked lists can be seen as having no beginning or
end.

2. How to define structure for a node

typedef struct node_s
 {
 void *data;
 struct node_s *next;
 } NODE;

13.9 Lesson-end activities

1. How many classification of linked lists are available?
2. Why we need the support of linked list?
3. what do you meant by node?

13.10 References

Ellis HoroWitz and Sartaj Sahni: Fundamentals of Data structure, Galgotia book source.
Ashok N Kamthane, Programming and Data structures, Pearson Education
M.Tanenbaum, Data structure using C, PHI pub.
http://en.literateprograms.org/
http://www.cs.utk.edu/~plank/plank/classes/
http://www.go4expert.com/forums/
http://www.cs.bu.edu/teaching/c/

 282

LESSON - 14 : QUEUE

CONTENTS

14.0 Aims and Objectives

14.1 Introduction

14.2 Properties of Queues:

14.3 Operations on queue

14 . 4 C imp le me nt a t io n o f que ue s

 14 . 4 . 1 Repr e se nt a t io n

 14.4.2 Empty Operation

 14.4.3 Remove operation

 14.4.4 Insert Operation

14.5 Priority queue

 14.5.1 Ascending priority queue

 14.5.2 Descending priority queue

14.6 Array Implementation of a priority queue

14.7 Let us sum up

14.8 Points for discussion

14.9 Check your progress

14.10 Lesson-end Activities

14.11 References

14.0 Aims and Objectives

 The objective of this lesson is to make readers to know about the concept of
Queue. This lesson will helps the readers to implement various applications using the
concept of queue.

 283

14.1 Introduction

Queue is a linear data structure in which data can be added to one end and
retrieved from the other. Just like the queue of the real world, the data that goes first into
the queue is the first one to be retrieved. That is why queues are sometimes called as
First-In-First-Out data structure.
In case of queues, we saw that data is inserted both from one end but in case of Queues;
data is added to one end (known as REAR) and retrieved from the other end (known as
FRONT).

The data first added is the first one to be retrieved while in case of queues the data last
added is the first one to be retrieved.

14.2 A few points regarding Queues:

1. Queues: It is a linear data structure; linked lists and arrays can represent it.
Although representing queues with arrays have its shortcomings but due to
simplicity, we will be representing queues with arrays in this article.

2. Rear: A variable stores the index number in the array at which the new data will
be added (in the queue).

3. Front: It is a variable storing the index number in the array where the data will be
retrieved.

Let us have look at the process of adding and retrieving data in the queue with the help of
an example.

Consider a queue containing four elements A,B,C,D

Front A B C D Rear

In the above queue, queue, A is at the front of the queue and D is at the rear.

 284

After deleting an element

Front B C D Rear

Since elements may be deleted only from the front of the queue, A is removed.
Now B is at the front.

After Adding an element

Front B C D E Rear

Since elements may be inserted only from the rear the of the queue, E s added
at the rear end. Now E is at the rear.

14.3 Operations on queue

The operations available on a queue are insert(), remove() and empty().

Assume a queue q and an item x. Then the operation insert(q,x) inserts
an item x at the rear end of the queue q. The operation remove (q)
removes the front element from the queue q and returns it. Empty(q) operation
returns true if the queue is empty; otherwise it returns false.

14 . 4 C imp le ment at ion o f queu es

14 . 4 . 1 Rep re sent a t i on

A queue is represented by an array. The array is used to hold the elaments. Also
two variables are used to implement the queue. They are (i) front and (ii) rear;
variable "front" is used to store the position of the first element of the queue and the
variable "rear" is used to store the position of the last element of the queue.

A queue of integers may be declared and initialized as
define MAXSIZE 100
struct queue
int items[MAXSIZE];
 int front;
int rear;
};

 285

main()
{
 struct queue q ;
 q.front MAXSIZE;
 q.rear MAXSIZE ;

}

Assume the array which hold the queue as a circle; ie., assume that first element of
array immediately follows its last element. In this case if front=rear then queue is empty.

Note that q.front and .rear are initialized to the last index of the array[last index is
MAXSIZE]

14.4.2 Empty Operation
The coding for empty function is as follows

empty(struct queue 9)
{
int flag = 0;
if (q.front == q.rear) /* queue is empty */
 return (1);
else
return (0);

}

If the above function is available, an empty queue is tested by the statement.

If (empty(q))
printf ("queue is empty");
else

printf("queue is not empty");

14.4.3 Remove operation

 Remove operation is possible in the queue if it is not empty.
remove (struct queue q, int uf, int x)
 uf = 0;
if ((empty(q)) == 1)
{
printf ("queue is underfloor \n");
uf = 1;
 }
else
{

 286

if (q.front == MAXSIZE)
 q.front = 1;
else
q.front = q.front + 1
x = q.item (q.front];
return (x);
 }
 }

14.4.4 Insert Operation
 In case of insert operation, overflow condition is to be considered. It is
assumed that the queue can grow only as large as the size of and array. The function for
insert procedure is as follows,
insert(struct queue q, int ovf, int x)
{
 ovf=0;
 if(q.rear==MAXSIZE)
 q.rear=1;
 else
 q.rear=q.rear+1;
 if(q.rear==q.front)
 {
 printf(“Queue overflow”);
 ovf = 1;
 q.rear=q.rear + 1;
 }
 else
 q.items[q.rear]=x;
}

Example

5 5 5
4 4 4
3 3 Z 3 Z
2 2 Y 2 Y
1 1 X 1

 Queue empty After insertion(X,Y,Z) After deletion(X)

 287

14.5 Priority queue

 In both stack and queue, the items are orderly placed based on the

sequence in which they have been inserted. If there is any intrinsic order
(numeric order or alphabetic order) among the elements stored in the stack or
queue, these order is ignored in the stack or queue operation. In stacks and
queues, it is possible to retrieve the element at one end of the list.

The priority queue is also a data structure. In priority queue, the intr insic ordering of
the elements determines the result of it s basic operation. In the priority
queue, it is possible to retrieve the smallest element or the largest element, if they
are placed at any position.

Two types of Priority queues are available. They are (i) ascending priority queue and (ii)
descending priority queue.

14.5.1 Ascending priority queue

An ascending priority queue, items are inserted arbitrarily and only the
smallest item can be removed. If apq is an ascending priority queue, the
operation pqinsert(apq, x) inserts an item x into apq and pqmin delete(apq)
removes the smallest element from apq and returns it value. Applying the
function pqmindelete() successively, retrieves the elements in ascending order.

14.5.2 Descending priority queue

In descending priority queue, items are inserted arbitrarily and allows the
removal of only the largest element. If dpq is a descending priority queue, then the
operatin pqinsert(dpq, x) inserts an item x into dpq and the operation pqmaxdelete (dpq)
removes the largest element from dpq and returns it value. Applying the functions
pqmaxdelete continuously retrieves the element in descending order.

The operation empty(pq) is used to determine whether a priority queue is empty or not.
The elements of the priority queue can be numbers or characters or complex structures
that are ordered on one or several fields.

 14.6 Array Implementation of a priority queue

Assume the n elements of a priority queue pq are placed in position 1 to n of
an array of pq.items. Assume the size of the queue is MAXSIZEPQ. Then
pq.rear equals the first empty array position. Then the coding for pqinsert(pq, x) is very
simple and as follows.
if (pq.rear >= MAXSIZEPQ)

 288

{
printf ("priority queue overflow");
exit (1);
 }
pq. items[pq. rear] = x;
pq. rear = pq. rear + 1;

In the above method, the elements of the priority queue are not kept ordered in the
array.

Deleting of items from the priority queue involves the following two steps.
(i) In the case of ascending priority queue, locate the smaller element first. For
doing this, every element of the array from pq.items[1] through pq. items[pq. rear]
must be examined. Therefore deletion requires accessing every elements of the
priority queue

(ii). Removal of the above element from the array.

Deletion problem is solved in the following four ways

1. A special "empty" symbol can be placed into the position of the deleted element.
Care must be taken to select this symbol. For example, if the priority queue of non-
negative numbers, choose indicator as –1. Disadvantage of this method is as follows:
Each search process examines these deleted positions in addition to the actual elements.
To delete number of items, the deletion operation accesses many more array elements
than exist in the priority queue

2. The insertion operation is modified to insert a new item'in the first "empty" position.
Now the insertion operation will become complex. So the insertion efficiency is
decreased. This is a major draw hack of this method.

3. After each deletion operation, shift all the elements beyond the deleted element
by one position and then decrementing pq.rear by 1. In this method, for each deletion,
or on the average, half of all priority queue elements are shifted. So deletion becomes
quite inefficient.

4. Maintain the priority queue as an ordered, circular array i.e., the elements are stored
in ascending order for ascending priority queue.

defies MAXSIZE PQ 50
struct pqueue
{
int items[MAXS!ZE PQ];
int front, rear;
}q;

 289

q.front is the position of the smallest element. q.rear is 1 greater than the position of the
largest. In the ascending priority queue, to delete an item, decrease the value of q.front
and return the above value.

In this method, insertion of an element will take many steps. When inserting an element
into the priority queue, the correct location to be found. Then the new element is inserted
after shifting all the elements from that location by one position.

14.7. Let us sum up

 In this lesson, we described about queue and its representation, implementation of
queue using array, various operations on queue and its implementation, priority queues,
importance of priority queues.

14.8 Points for discussion

1. Define the term queue
2. How to check that queue is empty?
3. what are all the ways to implement queue?

14.9 Check your progress

1. Explain various operations on queue.

Assume a queue q and an item x. Then the operation insert(q,x) inserts

an item x at the rear end of the queue q. The operation remove (q)
removes the front element from the queue q and returns it. Empty(q) operation
returns true if the queue is empty; otherwise it returns false.

2. what is meant by ascending priority queue?

An ascending priority queue, items are inserted arbitrarily and only the
smallest item can be removed. If apq is an ascending priority queue, the
operation pqinsert(apq, x) inserts an item x into apq and pqmin delete(apq)
removes the smallest element from apq and returns it value. Applying the
function pqmindelete() successively, retrieves the elements in ascending order.

14.10 Lesson end activities

1. What is the difference between queue and stack?
2. Why we need queue?
3. What are all the operations on queue?
4. How to construct a queue?

 290

14.11 References

Ellis HoroWitz and Sartaj Sahni: Fundamentals of Data structure, Galgotia book source.
Ashok N Kamthane, Programming and Data structures, Pearson Education
M.Tanenbaum, Data structure using C, PHI pub.
http://www.mycplus.com/cplus
http://www.programmersheaven.com/download/
http://en.literateprograms.org/
http://www.cs.utk.edu/~plank/plank/classes/

 291

UNIT -V : SEARCHING TECHNIQUES

LESSON - 15

CONTENTS

15.0 Aims and objectives

15. 2 Linear Search

 15.2.1 Definition

 15.2.2 Characteristics of linear search

 15.2.3 Algorithm

 15.2.4 Implementation

15.3 Binary Search

 15.3.1 About Binary Search

 15.3.2. Implementation of Binary search using Recursion

 15.3.3. Implementation of Binary search without Recursion

 15.3.4 Sort key

 15.3.5 Correctness and testing

 15.3.5 Performance

15.4 Let us sum up

15.5 Points for discussion

15.6 Check your progress

15.7 Lesson-end Activities

15.8 References

 292

15.0 Aims and objectives

 the objective of this lesson is to make people to understand about importance of
various searching techniques and its implementation. This lesson will also helps reader to
know about two common searching techniques, such as, linear and binary searching.

15.1 Introduction : Searching

The task of searching is one of most frequent operations in computer
programming. It also provides an ideal ground for application of the data structures so far
encountered. There exist several basic variations of the theme of searching, and many
different algorithms have been developed on this subject. The basic 34 assumption in the
following presentations is that the collection of data, among which a given element is to
be searched, is fixed. We shall assume that this set of N elements is represented as an
array, say as

a: ARRAY N OF Item

Typically, the type item has a record structure with a field that acts as a key. The

task then consists of finding an element of a key field is equal to a given search argument
x. The resulting index i, satisfying a[i].key = x, then permits access to the other fields of
the located element. Since we are here interested in the task of searching only, and do not
care about the data for which the element was searched in the first place, we shall assume
that the type Item consists of the key only, i.e. is the key.

15. 2 Linear Search

15.2.1 Definition

 The linear search is a search algorithm, also known as sequential search, that is
suitable for searching a set of data for a particular value. It operates by checking every
element of a list one at a time in sequence until a match is found. Linear search runs in
O(N). If the data are distributed randomly, on average (N+1)/2 comparisons will be
needed. The best case is that the value is equal to the first element tested, in which case
only 1 comparison is needed. The worst case is that the value is not in the list (or is the
last item in the list), in which case N comparisons are needed.

15.2.2 Characteristics of linear search

The simplicity of the linear search means that if just a few elements are to be searched it
is less trouble than more complex methods that require preparation such as sorting the list
to be searched or more complex data structures, especially when entries may be subject to
frequent revision. Another possibility is when certain values are much more likely to be
searched for than others and it can be arranged that such values will be amongst the first
considered in the list.

 293

15.2.3 Algorithm

The following pseudocode describes the linear search technique.

For each item in the list:

 Check to see if the item you're looking for matches the item in the list.

 If it matches.
 Return the location where you found it (the index).
 If it does not match.
 Continue searching until you reach the end of the list.

If we get here, we know the item does not exist in the list. Return -1.

In computer implementations, it is usual to search the list in order, from element 1 to N
(or 0 to N - 1, if array indexing starts with zero instead of one) but a slight gain is
possible by the reverse order. Suppose an array A having elements 1 to N is to be
searched for a value x and if it is not found, the result is to be zero.

for i:=N:1:-1 do %Search from N down to 1. (The step is -1)
 if A[i] = x then QuitLoop i;
next i;
Return(i); %Or otherwise employ the value.

Implementations of the loop must compare the index value i to the final value to decide
whether to continue or terminate the loop. If this final value is some variable such N then
a subtraction (i - N) must be done each time, but in going down from N the loop
termination condition is for a constant, and moreover a special constant. In this case,
zero. Most computer hardware allows the sign to be tested, especially the sign of a value
in a register, and so execution would be faster. In the case where the loop was for arrays
indexed from zero, the loop would be for i:=N - 1:0:-1 do and the test on the index
variable would be for it negative, not zero.

The pseudocode as written relies on the value of the index variable being available when
the for-loop's iteration is exhausted, as being the value it had when the loop condition
failed, or a 'QuitLoop' was executed. Some compilers take the position that on exit from a
for-loop no such value is defined, in which case it would be necessary to copy the index
variable's value to a reporting variable before exiting the loop, or to use another control
structure such as a while loop, or else explicit code with go to statements in pursuit of the
fastest-possible execution.

15.2.4 Implementation

The following code example for the “C” programming language is a simple
implementation of a linear search.

 294

 int linearSearch(int a[], int valueToFind)
{
 //a[] is an array of integers to search.
 //valueToFind is the number that will be found.
 //The function returns the position of the value if found.
 //The function returns -1 if valueToFind was not found.
 for (int i=0; i<length; i++) {
 if (valueToFind == a[i]) {
 return i;
 }
 }
 return -1;
 }

The List module in the OCaml standard library defines a function called "mem" that
returns true if the given element is in the given list or false if not. This function could be
defined as:

let rec mem x = function
 [] -> false
 | h :: t -> h=x || mem x t

Mathematica's unusually powerful pattern matching allows linear search to be
implemented by a pattern match:

Mem[x_, {___, x_, ___}] := True
Mem[_, _] := False

Linear search can be used to search an unordered list. The more efficient binary search
can only be used to search an ordered list.

If more than a small number of searches are needed, it is advisable to use a more efficient
data structure. One approach is to sort and then use binary searches. Another common
one is to build up a hash table and then do hash lookups.

15.3 Binary Search

15.3.1 About Binary Search

 The most common application of binary search is to find a specific value in a
sorted list. To cast this in the frame of the guessing game (see Example below), realize
that we are now guessing the index, or numbered place, of the value in the list. This is
useful because, given the index, other data structures will contain associated information.
Suppose a data structure containing the classic collection of name, address, telephone
number and so forth has been accumulated, and an array is prepared containing the
names, numbered from one to N. A query might be: what is the telephone number for a
given name X. To answer this the array would be searched and the index (if any)
corresponding to that name determined, whereupon it would be used to report the
associated telephone number and so forth. Appropriate provision must be made for the

 295

name not being in the list (typically by returning an index value of zero), indeed the
question of interest might be only whether X is in the list or not.

If the list of names is in sorted order, a binary search will find a given name with far
fewer probes than the simple procedure of probing each name in the list, one after the
other in a linear search, and the procedure is much simpler than organising a hash table
though that would be faster still, typically averaging just over one probe. This applies for
a uniform distribution of search items but if it is known that some few items are much
more likely to be sought for than the majority then a linear search with the list ordered so
that the most popular items are first may do better.

The binary search begins by comparing the sought value X to the value in the middle of
the list; because the values are sorted, it is clear whether the sought value would belong
before or after that middle value, and the search then continues through the correct half in
the same way. Only the sign of the difference is inspected: there is no attempt at an
interpolation search based on the size of the differences.

15.3.2. Implementation of Binary search using Recursion

 The most straightforward implementation is recursive, which recursively searches
the subrange dictated by the comparison: In the following code, Multiple return
statements is a bad programming style

 BinarySearch(A[0..N-1], value, low, high)
 {
 if (high < low)
 return not_found
 mid = (low + high) / 2
 if (A[mid] > value)
 return BinarySearch(A, value, low, mid-1)
 else if (A[mid] < value)
 return BinarySearch(A, value, mid+1, high)
 else
 return mid
 }

It is invoked with initial low and high values of 0 and N-1.

15.3.3. Implementation of Binary search without Recursion

 We can eliminate the tail recursion above and convert this to an iterative
implementation:

 BinarySearch(A[0..N-1], value) {
 low = 0
 high = N - 1
 while (low <= high)

 296

 {
 mid = (low + high) / 2
 if (A[mid] > value)
 high = mid - 1
 else if (A[mid] < value)
 low = mid + 1
 else
 return mid
 }
 return not_found
 }

Some implementations may not include the early termination branch, preferring to check
at the end if the value was found, shown below. Checking to see if the value was found
during the search (as opposed to at the end of the search) may seem a good idea, but there
are extra computations involved in each iteration of the search. Also, with an array of
length N using the low and high indices, the probability of actually finding the value on
the first iteration is 1 / N, and the probability of finding it later on (before the end) is the
about 1 / (high - low). The following checks for the value at the end of the search:

 low = 0
 high = N
 while (low < high)
 {
 mid = (low + high)/2;
 if (A[mid] < value)
 low = mid + 1;
 else
 //can't be high = mid-1: here A[mid] >= value,
 //so high can't be < mid if A[mid] == value
 high = mid;
 }

 if (low < N) and (A[low] == value)
 return low
 else
 return not_found

This algorithm has two other advantages. At the end of the loop, low points to the first
entry greater than or equal to value, so a new entry can be inserted if no match is found.
Moreover, it only requires one comparison; which could be significant for complex keys
in languages which do not allow the result of a comparison to be saved.

In practice, one frequently uses a three-way comparison instead of two comparisons per
loop. Also, real implementations using fixed-width integers with modular arithmetic need
to account for the possibility of overflow. One frequently-used technique for this is to
compute mid, so that two smaller numbers are ultimately added:

 mid = low + ((high - low) / 2)

 297

Equal elements

 The elements of the list are not necessarily all unique. If one searches for a value
that occurs multiple times in the list, the index returned will be of the first-encountered
equal element, and this will not necessarily be that of the first, last, or middle element of
the run of equal-key elements but will depend on the positions of the values. Modifying
the list even in seemingly unrelated ways such as adding elements elsewhere in the list
may change the result.

To find all equal elements an upward and downward linear search can be carried out from
the initial result, stopping each search when the element is no longer equal. Thus, e.g. in a
table of cities sorted by country, we can find all cities in a given country.

 15.3.4 Sort key

A list of pairs (p,q) can be sorted based on just p. Then the comparisons in the algorithm
need only consider the values of p, not those of q. For example, in a table of cities sorted
on a column "country" we can find cities in Germany by comparing country names with
"Germany", instead of comparing whole rows. Such partial content is called a sort key.

15.3.5 Correctness and testing

 Binary search is one of the trickiest "simple" algorithms to program correctly. A
study has shown that an astounding 91.379 percent of professional programmers fail to
code a binary search correctly after a whole hour of working on it, and another study
shows that accurate code for it is only found in five out of twenty textbooks. (Kruse,
1999) Given this insight, it is important to remember that the best way to verify the
correctness of a binary search algorithm is to thoroughly test it on a computer. It is
difficult to visually analyze the code without making a mistake.

To that end, the following code will thoroughly test a binary search at every index for
many multiple lengths of arrays:

int offset, value, index, length;
bool passed=true;
for(offset=1; offset<5; offset++)
{ //tests with an offset between 1 and 2 for various amounts.
 for(length = 1; length < 2049; length++)
 { //make array longer on each iteration
 int A[length];
 for(int i = 0; i < length; i++)
 //init array values from 0 to length-1
 A[i] = i*offset;
 for(value = 0; value < length; value++)
 { //search for every array value
 index = binarySearch(A, value*offset);
 if (!(index==value))
 passed=false; //if this line executes, BUG in
 binary search

 298

 }
 }
}

In the above C test-code, if passed is ever false, then the binary search function has a bug.
Note that this code assumes that you are returning index of search value with array; in
addition it does not test for values not within the array, proper handling of duplicate
values within your array, or errors that could be caused by more randomly distributed
values. As such this should not be considered a complete proof of correctness, merely an
aid for testing.

15.3.5 Performance

 Binary search is a logarithmic algorithm and executes in O(log2(n)) time.
Specifically, 1 + log2N iterations are needed to return an answer. In most cases it is
considerably faster than a linear search. It can be implemented using recursion or
iteration, as shown above. In some languages it is more elegantly expressed recursively;
however, in some C-based languages tail recursion is not eliminated and the recursive
version requires more stack space.

Binary search can interact poorly with the memory hierarchy (i.e. caching), because of its
random-access nature. For in-memory searching, if the interval to be searched is small, a
linear search may have superior performance simply because it exhibits better locality of
reference. For external searching, care must be taken or each of the first several probes
will lead to a disk seek. A common technique is to abandon binary searching for linear
searching as soon as the size of the remaining interval falls below a small value such as 8
or 16.

When multiple binary searches are to be performed with the same key in related lists,
fractional cascading can be used to speed up successive searches after the first one.

15.4 Let us sum up

 In this lesson, I am sure that, you would clearly understand about the concept of
searching techniques, implementation importance and of searching techniques, the
concept of linear search, advantages and disadvantages, difference between linear search
and binary search, implementation with recursion and without recursion, complexities of
algorithm and importance of binary search.

 299

15.5 Points for discussion

 1. Why and where we need searching techniques?

 2. What are all the advantages and disadvantages of linear search?

 3. Define the term binary search.

 4. Differentiate linear search and binary search

15.6 Check your progress

 1. Define the term binary search.

 The binary search is one of the common searching technique, where it begins by
comparing the sought value X to the value in the middle of the list; because the values are
sorted, it is clear whether the sought value would belong before or after that middle
value, and the search then continues through the correct half in the same way. Only the
sign of the difference is inspected: there is no attempt at an interpolation search based on
the size of the differences.

 2. What is meant by sort key

 A list of pairs (p,q) can be sorted based on just p. Then the comparisons in the
algorithm need only consider the values of p, not those of q. For example, in a table of
cities sorted on a column "country" we can find cities in Germany by comparing country
names with "Germany", instead of comparing whole rows. Such partial content is called a
sort key.

15.7 Lesson end Activities

 1. Do we need these many searching techniques?

 2. Which searching technique you feel is effective?

15.8 References

Ellis HoroWitz and Sartaj Sahni: Fundamentals of Data structure, Galgotia book source.
Ashok N Kamthane, Programming and Data structures, Pearson Education
M.Tanenbaum, Data structure using C, PHI pub.
http://www.cs.utk.edu/~plank/plank/classes/
http://www.go4expert.com/forums/
http://www.cs.bu.edu/teaching/c/

 300

LESSON - 16 : SORTING TECHNIQUES

CONTENTS

16.0 Aims and Objectives

16.1 Introduction

16.2 Classification of sorting

16.3 Insertion

 16.3.1 Method

 16.3.2 Analysis of straight insertion.

 16.3.3 Analysis of binary insertion

16.4 Selection sort

 16.4.1 Definition

 16.4.2 Implementation

 16.4.3 Analysis of straight selection.

16.5 Let us Sum up

16.6 Points for discussion

16.7 Check your progress

16.8 Lesson-end Activities

16.9 References

16.0 Aims and Objectives

 The objective of this lesson is to give clear information about various sorting
teching, which will help the programmers to implement applications effectively using the
sorting techniques.

16.1 Introduction : Sorting

The primary purpose of this chapter is to provide an extensive set of examples
illustrating the use of the data structures introduced in the preceding chapter and to show

 301

how the choice of structure for the underlying data profoundly influences the algorithms
that perform a given task. Sorting is also a good example to show that such a task may be
performed according to many different algorithms, each one having certain advantages
and disadvantages that have to be weighed against each other in the light of the particular
application.

Sorting is generally understood to be the process of rearranging a given set of

objects in a specific order. The purpose of sorting is to facilitate the later search for
members of the sorted set. As such it is an almost universally performed, fundamental
activity. Objects are sorted in telephone books, in income tax files, in tables of contents,
in libraries, in dictionaries, in warehouses, and almost everywhere that stored objects
have to be searched and retrieved. Even small children are taught to put their things "in
order", and they are confronted with some sort of sorting long before they learn anything
about arithmetic.

Hence, sorting is a relevant and essential activity, particularly in data processing.

What else would be easier to sort than data! Nevertheless, our primary interest in sorting
is devoted to the even more fundamental techniques used in the construction of
algorithms. There are not many techniques that do not occur somewhere in connection
with sorting algorithms. In particular, sorting is an ideal subject to demonstrate a great
diversity of algorithms, all having the same purpose, many of them being optimal in some
sense, and most of them having advantages over others. It is therefore an ideal subject to
demonstrate the necessity of performance analysis of algorithms. The example of sorting
is moreover well suited for showing how a very significant gain in performance may be
obtained by the development of sophisticated algorithms when
obvious methods are readily available.

16.2 Classification of sorting

The dependence of the choice of an algorithm on the structure of the data to be

processed -- an ubiquitous phenomenon -- is so profound in the case of sorting that
sorting methods are generally classified into two categories, namely, sorting of arrays and
sorting of (sequential) files. The two classes are often called internal and external sorting
because arrays are stored in the fast, high-speed, random-access "internal" store of
computers and files are appropriate on the slower, but more spacious "external" stores
based on mechanically moving devices (disks and tapes). The importance of this
distinction is obvious from the example of sorting numbered cards. Structuring the cards
as an array corresponds to laying them out in front of the sorter so that each card is
visible and individually accessible (see Fig. 2.1).

Structuring the cards as a file, however, implies that from each pile only the card

on the top is visible (see Fig. 2.2). Such a restriction will evidently have serious
consequences on the sorting method to be used, but it is unavoidable if the number of
cards to be laid out is larger than the available table.

 302

Before proceeding, we introduce some terminology and notation to be used
throughout this lesson. If we are given n items

a0, a1, ... , an-1

sorting consists of permuting these items into an array

ak0, ak1, ... , ak[n-1]

such that, given an ordering function f,

f(ak0)≤f(ak1)...≤f(ak[n-1])

Ordinarily, the ordering function is not evaluated according to a specified rule of

computation but is stored as an explicit component (field) of each item. Its value is called
the key of the item. As a consequence, the record structure is particularly well suited to
represent items and might for example be declared as follows:

TYPE Item = RECORD key: INTEGER;
(*other components declared here*)

END

The other components represent relevant data about the items in the collection;
the key merely assumes the purpose of identifying the items. As far as our sorting
algorithms are concerned, however, the key is the only relevant component, and there is
no need to define any particular remaining components. In the following discussions, we
shall therefore discard any associated information and assume that the type Item be
defined as INTEGER. This choice of the key type is somewhat arbitrary. Evidently, any
type on which a total ordering relation is defined could be used just as well.

A sorting method is called stable if the relative order if an item with equal keys
remains unchanged by the sorting process. Stability of sorting is often desirable, if items
are already ordered (sorted) according to some secondary keys, i.e., properties not
reflected by the (primary) key itself.

16.3 Insertion

16.3.1 Method

This method is widely used by card players. The items (cards) are conceptually
divided into a destination sequence a1 ... ai-1 and a source sequence ai ... an. In each step,
starting with i = 2 and incrementing i by unity, the i th element of the source sequence is
picked and transferred into the destination sequence by inserting it at the appropriate
place.

 303

Initial Keys: 44 55 12 42 94 18 06 67

i=1 44 55 12 42 94 18 06 67
i=2 12 44 55 42 94 18 06 67
i=3 12 42 44 55 94 18 06 67
i=4 12 42 44 55 94 18 06 67
i=5 12 18 42 44 55 94 06 67
i=6 06 12 18 42 44 55 94 67
i=7 06 12 18 42 44 55 67 94

Table 16.3.1 A Sample Process of Straight Insertion Sorting.

The process of sorting by insertion is shown in an example of eight numbers chosen at
random (see Table 16.3.1). The algorithm of straight insertion is

FOR i := 1 TO n-1 DO
 x := a[i];
insert x at the appropriate place in a0 ... ai

END

In the process of actually finding the appropriate place, it is convenient to
alternate between comparisons and moves, i.e., to let x sift down by comparing x with the
next item aj, and either inserting x or moving aj to the right and proceeding to the left.
We note that there are two distinct conditions that may cause the termination of the
sifting down process:

1. An item aj is found with a key less than the key of x.
2. The left end of the destination sequence is reached.

PROCEDURE Straight Insertion;
VAR i, j: INTEGER; x: Item;
BEGIN
FOR i := 1 TO n-1 DO
x := a[i]; j := i;

WHILE (j > 0) & (x < a[j-1] DO a[j] := a[j-1]; DEC(j) END ;
a[j] := x
END
END Straight Insertion

16.3.2 Analysis of straight insertion.

 The number Ci of key comparisons in the i-th sift is at most i-1, at least 1, and --
assuming that all permutations of the n keys are equally probable -- i/2 in the average.
The number Mi of moves (assignments of items) is Ci + 2 (including the sentinel).
Therefore, the total numbers of comparisons and moves are Cmin = n-1 Mmin = 3*(n-1)

 304

Cave = (n2 + n - 2)/4 Mave = (n2 + 9n - 10)/4

Cmax = (n2 + n - 4)/4 Mmax = (n2 + 3n - 4)/2

The minimal numbers occur if the items are initially in order; the worst case
occurs if the items are initially in reverse order. In this sense, sorting by insertion exhibits
a truly natural behavior. It is plain that the given algorithm also describes a stable sorting
process: it leaves the order of items with equal keys unchanged.

The algorithm of straight insertion is easily improved by noting that the

destination sequence a0 ... ai-1, in which the new item has to be inserted, is already
ordered. Therefore, a faster method of determining the insertion point can be used. The
obvious choice is a binary search that samples the destination sequence in the middle and
continues bisecting until the insertion point is found. The modified sorting algorithm is
called binary insertion.

PROCEDURE BinaryInsertion(VAR a: ARRAY OF Item; n: INTEGER);
VAR i, j, m, L, R: INTEGER; x: Item;
BEGIN
FOR i := 1 TO n-1 DO
x := a[i]; L := 1; R := i;
WHILE L < R DO
m := (L+R) DIV 2;
IF a[m] <= x THEN L := m+1 ELSE R := m END
END ;
FOR j := i TO R+1 BY -1 DO a[j] := a[j-1] END ;
a[R] := x
END
END BinaryInsertion

16.3.3 Analysis of binary insertion.

The insertion position is found if L = R. Thus, the search interval must in the end be of
length 1; and this involves halving the interval of length i log(i) times. Thus,
C = Si: 0≤In:�log(i)

 We approximate this sum by the integral Int (0:n-1) log(x) dx = n*(log n - c) + c
where c = log e = 1/ln 2 = 1.44269... . The number of comparisons is essentially
independent of the initial order of the items. However, because of the truncating character
of the division involved in bisecting the search interval, the true number of comparisons
needed with i items may be up to 1 higher than expected. The nature of this bias is such
that insertion positions at the low end are on the average located slightly faster than those
at the high end, thereby favoring those cases in which the items are originally highly out
of order. In fact, the minimum number of

 305

comparisons is needed if the items are initially in reverse order and the maximum if they
are already in order.Hence, this is a case of unnatural behavior of a sorting algorithm. The
number of comparisons is then approximately C ≈ n*(log n - log e �0.5)

Unfortunately, the improvement obtained by using a binary search method applies
only to the number of comparisons but not to the number of necessary moves. In fact,
since moving items, i.e., keys and associated information, is in general considerably more
time-consuming than comparing two keys, the improvement is by no means drastic: the
important term M is still of the order n2. And, in fact, sorting the already sorted array
takes more time than does straight insertion with sequential search.

This example demonstrates that an "obvious improvement" often has much less

drastic consequences than one is first inclined to estimate and that in some cases (that do
occur) the "improvement" may actually turn out to be a deterioration. After all, sorting by
insertion does not appear to be a very suitable method for digital computers: insertion of
an item with the subsequent shifting of an entire row of items by a single position is
uneconomical. One should expect better results from a method in which moves of items
are only performed upon single items and over longer distances. This idea leads to sorting
by selection.

16.4 Selection sort

16.4.1 Definition

Selection sort is the most conceptually simple of all the sorting algorithms. It
works by selecting the smallest (or largest, if you want to sort from big to small) element
of the array and placing it at the head of the array. Then the process is repeated for the
remainder of the array; the next largest element is selected and put into the next slot, and
so on down the line.

Because a selection sort looks at progressively smaller parts of the array each time (as it
knows to ignore the front of the array because it is already in order), a selection sort is
slightly faster than bubble sort, and can be better than a modified bubble sort.

16.4.2 Implementation

This method is based on the following principle:

1. Select the item with the least key.
2. Exchange it with the first item a0.
3. Then repeat these operations with the remaining n-1 items, then with n-2 items, until
only one item - the largest -- is left.

This method is shown on the same eight keys as in Table 16.6.1.

 306

Initial keys 44 55 12 42 94 18 06 67

06 55 12 42 94 18 44 67

06 12 55 42 94 18 44 67

06 12 18 42 94 55 44 67

06 12 18 42 94 55 44 67

06 12 18 42 44 55 94 67

06 12 18 42 44 55 94 67

06 12 18 42 44 55 67 94

Table 16.6.2.1 A Sample Process of Straight Selection Sorting.

The algorithm is formulated as follows:

FOR i := 0 TO n-1 DO
 assign the index of the least item of ai ... an-1 to k;
 exchange ai with ak
END

This method, called straight selection, is in some sense the opposite of straight

insertion: Straight insertion considers in each step only the one next item of the source
sequence and all items of the destination array to find the insertion point; straight
selection considers all items of the source array to find the one with the least key and to
be deposited as the one next item of the destination sequence..

Example 16.1
PROCEDURE Straight Selection;
 VAR i, j, k: INTEGER; x: Item;
BEGIN
 FOR i := 0 TO n-2 DO
 k := i; x := a[i];
 FOR j := i+1 TO n-1 DO

IF a[j] < x THEN k := j; x := a[k] END
 END ;
 a[k] := a[i]; a[i] := x
 END

 307

END Straight Selection

16.4.3 Analysis of straight selection.

Evidently, the number C of key comparisons is independent of the initial order of keys. In
this sense, this method may be said to behave less naturally than straight insertion. We
obtain

C = (n2 - n)/2

The number M of moves is at least

Mmin = 3*(n-1)

in the case of initially ordered keys and at most

Mmax = n2/4 + 3*(n-1)

if initially the keys are in reverse order. In order to determine Mavg we make the
following deliberations: The algorithm scans the array, comparing each element with the
minimal value so far detected and, if smaller than that minimum, performs an assignment.
The probability that the second element is less than the first, is 1/2; this is also the
probability for a new assignment to the minimum. The chance for the third element to be
less than the first two is 1/3, and the chance of the fourth to be the smallest is 1/4, and so
on. Therefore the total expected number of moves is Hn-1, where Hn is the n the
harmonic number

Hn = 1 + 1/2 + 1/3 + ... + 1/n

Hn can be expressed as

Hn = ln(n) + g + 1/2n - 1/12n2 + ...

where g = 0.577216... is Euler's constant. For sufficiently large n, we may ignore the
fractional terms and therefore approximate the average number of assignments in the i the
pass as

Fi = ln(i) + g + 1

The average number of moves Mavg in a selection sort is then the sum of Fi with i ranging
from 1 to n.

Mavg = n*(g+1) + (Si: 1≤in: ln(i))

By further approximating the sum of discrete terms by the integral

Integral (1:n) ln(x) dx = n * ln(n) - n + 1

 308

we obtain an approximate value

Mavg = n * (ln(n) + g)

16.5 Let us Sum up

 In this lesson, we discussed about sorting algorithms and its classifications,
Implementation of Insertion sort, algorithm for straight insertion algorithm and its
analysis, time and space complexities of sorting algorithm. We also discussed briefly
about selection sort, implementation and complexities of selection algorithm.

16.6 Points for discussion

1. Define the term sorting
2. Explain the general classification of sorting
3. How binary insertion differes from straight insertion?

 4. Explain the implementation of selection sort/

 1678 Check your progress

1. Explain the general classification of sorting

 The two classes are often called internal and external sorting because arrays are
stored in the fast, high-speed, random-access "internal" store of computers and files are
appropriate on the slower, but more spacious "external" stores based on mechanically
moving devices (disks and tapes). The importance of this distinction is obvious from the
example of sorting numbered cards.

2. Define selection sort.

Selection sort is the most conceptually simple of all the sorting algorithms. It

works by selecting the smallest (or largest, if you want to sort from big to small) element
of the array and placing it at the head of the array. Then the process is repeated for the
remainder of the array; the next largest element is selected and put into the next slot, and
so on down the line.

16.8 Lesson-end Activities

 1. Which sorting technique will be effective one?
 2. Do we need to arrange data before performing binary search?
 3. Compare binary search with linear search.

 309

16.9 Suggested Readings/references/Sources

Ellis HoroWitz and Sartaj Sahni: Fundamentals of Data structure, Galgotia book source.
Ashok N Kamthane, Programming and Data structures, Pearson Education
M.Tanenbaum, Data structure using C, PHI pub.
http://www.programmersheaven.com/download/
http://en.literateprograms.org/
http://www.cs.utk.edu/~plank/plank/classes/
http://www.go4expert.com/forums/
http://www.cs.bu.edu/teaching/c/

 310

LESSON - 17 : BUBBLE SORT

CONTENTS

17.0 Aims and objectives

17.1 Bubble sort

 17.1.1 Introduction

 17.1.2 Algorithm for bubble sort

 17.1.3 Implementation of Source Code

17.2 Quick sort

 17.2.1 Definition

 17.2.2 Implementation

 17.2.3 Points on Quick sort

17.3 Program for quick sort

17.4 Let us Sum up

17.5 Points for discussion

17.6 Check your progress

17.7 Lesson-end Activities

17.8 References

17.0 Aims and objectives

In previous lesson, we discussed about fundamentals of sorting algorithms and

importance of insertion and selection algorithm. The aim of this lesson is to make the
readers to to get enough knowledge about some more sorting algorithms like bubble sort
and quick sort.

 311

17.1 Bubble sort

17.1.1 Introduction :

Bubble sort is a simple sorting algorithm. It works by repeatedly stepping through
the list to be sorted, comparing two items at a time and swapping them if they are in the
wrong order. The pass through the list is repeated until no swaps are needed, which
means the list is sorted. The algorithm gets its name from the way smaller elements
"bubble" to the top (i.e. the beginning) of the list via the swaps. Sort by comparing each
adjacent pair of items in a list in turn, swapping the items if necessary, and repeating the
pass through the list until no swaps are done.

17.1.2 Algorithm for bubble sort

This is probably the simplest way sort an array of objects. Unfortunately it is also

the slowest way! The basic idea is to compare two neighboring objects, and to swap
them if they are in the wrong order. Given an array a of numbers, with length n, here's a
snippet of C code for bubble sort:

Example 17.1
for (i=0; i<n-1; i++)
{
 for (j=0; j<n-1-i; j++)
 if (a[j+1] < a[j]) { /* compare the two neighbors */
 tmp = a[j]; /* swap a[j] and a[j+1] */
 a[j] = a[j+1];
 a[j+1] = tmp;
 }
}

As we can see, the algorithm consists of two nested loops. The index j in the inner loop
travels up the array, comparing adjacent entries in the array (at j and j+1), while the outer
loop causes the inner loop to make repeated passes through the array. After the first pass,
the largest element is guaranteed to be at the end of the array, after the second pass, the
second largest element is in position, and so on. That is why the upper bound in the inner
loop (n-1-i) decreases with each pass: we don't have to re-visit the end of the array.

17.1.3 Implementation of Source Code

void bubbleSort(int numbers[], int array_size)
{
 int i, j, temp;

 for (i = (array_size - 1); i >= 0; i--)
 {
 for (j = 1; j <= i; j++)

 312

 {
 if (numbers[j-1] > numbers[j])
 {
 temp = numbers[j-1];
 numbers[j-1] = numbers[j];
 numbers[j] = temp;
 }
 }
 }
}
Example 17.2

17.2 Quicksort

17.2.1 Definition

As one of the more advanced sorting, you might think that the Quicksort is
steeped in complicated theoretical background, but this is not so. Like Insertion Sort, this
sort has a fairly simple concept at the core, but is made complicated by the constraints of
the array structure.

The basic concept is to pick one of the elements in the array as a pivot value
around which the other elements will be rearranged. Everything less than the pivot is
moved left of the pivot (into the left partition). Similarly, everything greater than the
pivot goes into the right partition. At this point each partition is recursively quicksorted.

The Quicksort algorithm is fastest when the median of the array is chosen as the
pivot value. That is because the resulting partitions are of very similar size. Each partition
splits itself in two and thus the base case is reached very quickly.

17.2.2 Implementation
In practice, the Quicksort algorithm becomes very slow when the array passed to

it is already close to being sorted. Because there is no efficient way for the computer to
find the median element to use as the pivot, the first element of the array is used as the
pivot. So when the array is almost sorted, Quicksort doesn't partition it equally. Instead,
the partitions are lopsided like in Figure 17.2.2.1. This means that one of the recursion
branches is much deeper than the other, and causes execution time to go up. Thus, it is
said that the more random the arrangement of the array, the faster the Quicksort
Algorithm finishes.

 313

Figure 17.2.2.1: The ideal Quicksort on a random array.

 314

Figure 17.2.2.2: Quicksort on an already sorted array.

These are the steps taken to sort an array using QuickSort
Elements in underline indicate swaps.
Elements in bold indicate comparisons.

3 1 4 5 9 2 6 8 7

17.2.3 Points on Quick sort

 A "small" element is one whose value is less than or equal to the value of the
pivot. Likewise, a "large" element is one whose value is larger than that of the pivot. At
the beginning, the entire array is passed into the quicksort function and is essentially

 315

treated as one large partition. At this time, two indices are initialized: the left-to-right
search index, i, and the right-to-left search index, k. The value of i is the index of the first
element in the partition, in this case 0, and the value of k is 8, the index of the last
element in the partition. The relevance of these variables will be made apparent in the
code below.

3 1 4 5 9 2 6 8 7

 The first element in the partition, 3, is chosen as the pivot element, around
which two subpartitions will be created. The end goal is to have all the small elements at
the front of the partition, in no particular order, followed by the pivot, followed by the
large elements. To do this, quicksort will scan rightwards for the first large element.
Once this is found, it will look for the first small element from the right. These two will
then be swapped. Since i is currently set to zero, the pivot is actually compared to itself
in the search of the first large element.

3 1 4 5 9 2 6 8 7

 The search for the first large element continues rightwards. The value of i gets
incremented as the search moves to the right.

3 1 4 5 9 2 6 8 7

 Since 4 is greater than the pivot, the rightwards search stops here. Thus the
value of i remains 2.

3 1 4 5 9 2 6 8 7

 Now, starting from the right end of the array, quicksort searches for the first
small element. And so k is decremented with each step leftwards through the partition.

3 1 4 5 9 2 6 8 7
3 1 4 5 9 2 6 8 7
3 1 4 5 9 2 6 8 7

 Since 2 is not greater than the pivot, the leftwards search can stop.

3 1 2 5 9 4 6 8 7

 Now elements 4 and 2 (at positions 2 and 5, respectively) are swapped.

3 1 2 5 9 4 6 8 7

 Next, the rightwards search resumes where it left off: at position 2, which is
stored in the index i.

 316

3 1 2 5 9 4 6 8 7

 Immediately a large element is found, and the rightwards search stops with i
being equal to 3.

3 1 2 5 9 4 6 8 7

 Next the leftwards search, too, resumes where it left off: k was 5 so the element
at position 5 is compared to the pivot before k is decremented again in search of a small
element.

3 1 2 5 9 4 6 8 7

 This continues without any matches for some time...

3 1 2 5 9 4 6 8 7
3 1 2 5 9 4 6 8 7

 The small element is finally found, but no swap is performed since at this stage,
i is equal to k. This means that all the small elements are on one side of the partition and
all the large elements are on the other.

2 1 3 5 9 4 6 8 7

 Only one thing remains to be done: the pivot is swapped with the element
currently at i. This is acceptable within the algorithm because it only matters that the
small element be to the left of the pivot, but their respective order doesn't matter. Now,
elements 0 to (i - 1) form the left partition (containing all small elements) and elements k
+ 1 onward form the right partition (containing all large elements. Calling quickSort on
elements 0 to 1 The right partition is passed into the quicksort function.

2 1 3 5 9 4 6 8 7

 2 is chosen as the pivot. It is also compared to itself in the search for a small
element within the partition.

2 1 3 5 9 4 6 8 7

 The first, and in this case only, small element is found.

2 1 3 5 9 4 6 8 7

 Since the partition has only two elements, the leftwards search begins at the
second element and finds 1.

1 2 3 5 9 4 6 8 7

 317

 The only swap to be made is actually the final step where the pivot is inserted
between the two partitions. In this case, the left partition has only one element and the
right partition has zero elements. Calling quickSort on elements 0 to 0 Now that the left
partition of the partition above is quicksorted: there is nothing else to be done Calling
quickSort on elements 2 to 1 The right partition of the partition above is quicksorted. In
this case the starting index is greater than the ending index due to the way these are
generated: the right partition starts one past the pivot of its parent partition and goes until
the last element of the parent partition. So if the parent partition is empty, the indices
generated will be out of bounds, and thus no quicksorting will take place. Calling
quickSort on elements 3 to 8 The right partition of the entire array is now being
quicksorted 5 is chosen as the pivot.

1 2 3 5 9 4 6 8 7
1 2 3 5 9 4 6 8 7

 The rightwards scan for a large element is initiated. 9 is immediately found.

1 2 3 5 9 4 6 8 7

 Thus, the leftwards search for a small element begins...

1 2 3 5 9 4 6 8 7
1 2 3 5 9 4 6 8 7
1 2 3 5 9 4 6 8 7

 At last, 4 is found. Note k = 5.

1 2 3 5 4 9 6 8 7

 Thus the first large and small elements to be found are swapped.

1 2 3 5 4 9 6 8 7

 The rightwards search for a large element begins anew.

1 2 3 5 4 9 6 8 7

 Now that it has been found, the rightward search can stop.

1 2 3 5 4 9 6 8 7

 Since k was stopped at 5, this is the index from which the leftward search
resumes.

1 2 3 5 4 9 6 8 7

 318

1 2 3 4 5 9 6 8 7

 The last step for this partition is moving the pivot into the right spot. Thus the
left partition consists only of the element at 3 and the right partition is spans positions 5
to 8 inclusive.

 Calling quickSort on elements 3 to 3
 The left partition is quicksorted (although nothing is done.

 Calling quickSort on elements 5 to 8
 The right partition is now passed into the quicksort function.

1 2 3 4 5 9 6 8 7

 9 is chosen as the pivot.

1 2 3 4 5 9 6 8 7

 The rightward search for a large element begins.

1 2 3 4 5 9 6 8 7
1 2 3 4 5 9 6 8 7

 No large element is found. The search stops at the end of the partition.

1 2 3 4 5 9 6 8 7

 The leftwards search for a small element begins, but does not continue since
the search indices i and k have crossed.

1 2 3 4 5 7 6 8 9

 The pivot is swapped with the element at the position k: this is the last step in
splitting this partition into left and right subpartitions. Calling quickSort on elements 5 to
7 The left partition is passed into the quicksort function.

1 2 3 4 5 7 6 8 9

 6 is chosen as the pivot.

1 2 3 4 5 7 6 8 9

 The rightwards search for a large element begins from the left end of the
partition.

1 2 3 4 5 7 6 8 9

 319

 The rightwards search stops as 8 is found.

1 2 3 4 5 7 6 8 9
 The leftwards search for a small element begins from the right end of the
partition.

1 2 3 4 5 7 6 8 9

 Now that 6 is found, the leftwards search stops. As the search indices have
already crossed, no swap is performed.

1 2 3 4 5 6 7 8 9

 So the pivot is swapped with the element at position k, the last element
compared to the pivot in the leftwards search.

 Calling quickSort on elements 5 to 5
 The left subpartition is quicksorted. Nothing is done since it is too small.

 Calling quickSort on elements 7 to 7
 Likewise with the right subpartition.

 Calling quickSort on elements 9 to 8

 Due to the "sort the partition startitng one to the right of the pivot" construction
of the algorithm, an empty partition is passed into the quicksort function. Nothing is done
for this base case.

1 2 3 4 5 6 7 8 9

 Finally, the entire array has been sorted.

17.3 Program for quick sort

Example 17.3
// quickSort.c
#include <stdio.h>

void quickSort(int[], int, int);
int partition(int[], int, int);

void main()
{
 int a[] = { 7, 12, 1, -2, 0, 15, 4, 11, 9};

 int i;
 printf("\n\nUnsorted array is: ");

 320

 for(i = 0; i < 9; ++i)
 printf(" %d ", a[i]);

 quickSort(a, 0, 8);

 printf("\n\nSorted array is: ");
 for(i = 0; i < 9; ++i)
 printf(" %d ", a[i]);

}

void quickSort(int a[], int l, int r)
{
 int j;

 if(l < r)
 {
 // divide and conquer
 j = partition(a, l, r);
 quickSort(a, l, j-1);
 quickSort(a, j+1, r);
 }

}

int partition(int a[], int l, int r) {
 int pivot, i, j, t;
 pivot = a[l];
 i = l; j = r+1;

 while(1)
 {
 do ++i; while(a[i] <= pivot && i <= r);
 do --j; while(a[j] > pivot);
 if(i >= j) break;
 t = a[i]; a[i] = a[j]; a[j] = t;
 }
 t = a[l]; a[l] = a[j]; a[j] = t;
 return j;
}

17.4 Let us Sum up

 In this lesson, we discussed about the way to implement bubble sort algorithm,
advantages and disadvantages, the importance of quick sort, need and its implementation
and difference between bubble sort and quick sort. This lesson helps reader to implement
applications based on these two sorting algorithm.

 321

17.5 Points for discussion

1. How bubble sort differ from other sorting methods?
2. What will be the time complexity of quick sort?
3. What are the advantages and disadvantages of quick sort?
4. What is meant by pivot element?

17.6 Check your progress

1. Define quick sort?

 The basic concept is to pick one of the elements in the array as a pivot value
around which the other elements will be rearranged. Everything less than the pivot is
moved left of the pivot (into the left partition). Similarly, everything greater than the
pivot goes into the right partition. At this point each partition is recursively quicksorted.

2. Define bubble sort

Bubble sort is a simple sorting algorithm. It works by repeatedly stepping through
the list to be sorted, comparing two items at a time and swapping them if they are in the
wrong order. The pass through the list is repeated until no swaps are needed, which
means the list is sorted. The algorithm gets its name from the way smaller elements
"bubble" to the top (i.e. the beginning) of the list via the swaps. Sort by comparing each
adjacent pair of items in a list in turn, swapping the items if necessary, and repeating the
pass through the list until no swaps are done.

17.7 Lesson-end Activities

 1. What will be the time requirement of bubble sort?
 2. which sorting technique is generally suggestable?

17.8 References
Ellis HoroWitz and Sartaj Sahni: Fundamentals of Data structure, Galgotia book source.
Ashok N Kamthane, Programming and Data structures, Pearson Education
M.Tanenbaum, Data structure using C, PHI pub.
http://www.programmersheaven.com/download/
http://en.literateprograms.org/
http://www.cs.utk.edu/~plank/plank/classes/
http://www.go4expert.com/forums/
http://www.cs.bu.edu/teaching/c/

 322

LESSON - 18 : TREE AND HEAP STRUCTURES

CONTENTS

18.0 Aims and Objestives

18.1 Basic Concepts and Definitions

18.2 Representation of Tree

18.3 Linked list representation of trees

18.4 Implementation of trees

18.5 Traversal

 18.5.1 Preorder traversal

 18.5.2 In-order traversal

 18.5.3 Post order traversal

 18.5.4 Level-order traversal

18.6 HEAP

 18.6.1 Definition

 18.6.2 Procedure get an element from heap structures.

18.7 Let us sum up

18.8 Points for discussion

18.9 Check your progress

18.10 Lesson-end Activities

18.11 References

18.0 Aims and Objestives

The objective of this lesson is to make reader to understand above the concept and
applications of three and heap structures. This will help programmer to implement
various applications based on tree structures.

 323

18.1 Basic Concepts and Definitions

We have seen that sequences and lists may conveniently be defined in the
following way: A sequence (list) with base type T is either

1. The empty sequence (list).
2. The concatenation (chain) of a T and a sequence with base type T.

Hereby recursion is used as an aid in defining a structuring principle, namely,
sequencing or iteration. Sequences and iterations are so common that they are usually
considered as fundamental patterns of structure and behaviour. But it should be kept in
mind that they can be defined in terms of recursion, whereas the reverse is not true, for
recursion may be effectively and elegantly used to define much more sophisticated
structures.

18.2 Representation of Tree

 Trees are a well-known example. Let a tree structure be defined as follows: A tree
structure with base type T is either

1. The empty structure.
2. A node of type T with a finite number of associated disjoint tree structures of base type
 T, called subtrees.

From the similarity of the recursive definitions of sequences and tree structures it
is evident that the sequence (list) is a tree structure in which each node has at most one
subtree. The list is therefore also called a degenerate tree.

There are several ways to represent a tree structure. For example, a tree structure
with its base type T ranging over the letters is shown in various ways in Fig. 18.2.1.
These representations all show the same structure and are therefore equivalent. It is the
graph structure that explicitly illustrates the branching relationships which, for obvious
reasons, led to the generally used name tree. Strangely enough, it is customary to depict
trees upside down to show the roots of trees. The latter formulation, however, is
misleading, since the top node (A) is commonly called the root.

 324

Figure 18.2.1: Representation of tree structure by (a) nested sets,
(b) nested parentheses, (c) indented text, and (d) graph

An ordered tree is a tree in which the branches of each node are ordered. Hence
the two ordered trees in Fig 18.2.2 are distinct, different objects. A node y that is directly
below node x is called a (direct) descendant of x; if x is at level i, then y is said to be at
level i+1. Conversely, node x is said to be the (direct) ancestor of y. The root of a tree is
defined to be at level 0. The maximum level of any element of a tree is said to be its
depth or height.

 325

Figure : 18.2.2 Two distinct trees

If an element has no descendants, it is called a terminal node or a leaf; and an element
that is not terminal is an interior node. The number of (direct) descendants of an interior
node is called its degree. The maximum degree over all nodes is the degree of the tree.
The number of branches or edges that have to be traversed in order to proceed from the
root to a node x is called the path length of x. The root has path length 0, its direct
descendants have path length 1, etc. In general, a node at level i has path length i. The
path length of a tree is defined as the sum of the path lengths of all its components. It is
also called its internal path length. The internal path length of the tree shown in Fig., for
instance, is 36. Evidently, the average path length is

Pint = (Si: 1≤in: ni×i) / n

where ni is the number of nodes at level i. In order to define what is called the
external path length, we extend the tree by a special node wherever a subtree was missing
in the original tree. In doing so, we assume that all nodes are to have the same degree,
namely the degree of the tree. Extending the tree in this way therefore amounts to filling
up empty branches, whereby the special nodes, of course, have no further descendants.
The tree of Fig. 18.2.3 extended with special nodes is shown in Fig,in which the special
nodes are represented by squares. The external path length is now defined as the sum of
the path lengths over all special nodes. If the number of special nodes at level i is mi, then
the average external path length is

Pext = (Si: 1≤imi×i) / m

Fig. 18.2.3 Ternary tree extended with special nodes

In the tree shown in figure, the external path length is 120. The number of special
nodes m to be added in a tree of degree d directly depends on the number n of original

 326

nodes. Note that every node has exactly one edge pointing to it. Thus, there are m+n
edges in the extended tree. On the other hand, d edges are emanating from each original
node, none from the special nodes. Therefore, there exist d*n + 1 edges, the 1 resulting
from the edge pointing to the root. The two results yield the following equation between
the number m of special nodes and n of original nodes: d×n + 1 = m+n, or

m = (d-1)×n + 1

The maximum number of nodes in a tree of a given height h is reached if all nodes have d
subtrees, except those at level h, all of which have none. For a tree of degree d, level 0
then contains 1 node (namely, the root), level 1 contains its d descendants, level 2
contains the d2 descendants of the d nodes at level 2, etc.

This yields

Nd(h) = Si: 0≤i < h: di

as the maximum number of nodes for a tree with height h and degree d. For d = 2, we
obtain

N2(h) = 2h - 1

Of particular importance are the ordered trees of degree 2. They are called binary trees.
We define an ordered binary tree as a finite set of elements (nodes) which either is empty
or consists of a root (node) with two disjoint binary trees called the left and the right
subtree of the root. In the following sections we shall exclusively deal with binary trees,
and we therefore shall use the word tree to mean ordered binary tree. Trees with degree
greater than 2 are called multiway trees.

Familiar examples of binary trees are the family tree (pedigree) with a person's father and
mother as descendants , the history of a tennis tournament with each game being a node
denoted by its winner and the two previous games of the combatants as its descendants,
or an arithmetic expression with dyadic operators, with each operator denoting a branch
node with its operands as subtrees shown in firure 18.2.4.

figure 18.2.4 Tree representation of expression (a + b/c) * (d – e*f)

 327

18.3 Linked list representation of trees

We now turn to the problem of representation of trees. It is plain that the
illustration of such recursive structures in terms of branching structures immediately
suggests the use of our pointer facility. There is evidently no use in declaring variables
with a fixed tree structure; instead, we define the nodes as variables with a fixed
structure, i.e., of a fixed type, in which the degree of the tree determines the number of
pointer components referring to the node's subtrees. Evidently, the reference to the empty
tree is denoted by NIL. Hence, the tree of Figure 18.2.4 consists of components of a
type defined as follows and may then be constructed as shown in Figure 18.3.1.

TYPE Node = POINTER TO NodeDesc;
TYPE NodeDesc = RECORD op: CHAR; left, right: Node END

18.3.1 Linked list representation of tree structure

18.4 Implementation of trees

Before investigating how trees might be used advantageously and how to perform
operations on trees, we give an example of how a tree may be constructed by a program.
Assume that a tree is to be generated containing nodes with the values of the nodes being
n numbers read from an input file. In order to make the problem more challenging, let the
task be the construction of a tree with n nodes and minimal height. In order to obtain a
minimal height for a given number of nodes, one has to allocate the maximum possible
number of nodes of all levels except the lowest one. This can clearly be achieved by
distributing incoming nodes equally to the left and right at each node. This implies that
we structure the tree for given n as shown in Figure 18.4.1., for n = 1, ... , 7.

 328

Figure 18.4.1. Perfectly balanced trees

The rule of equal distribution under a known number n of nodes is best formulated
recursively:

1. Use one node for the root.
2. Generate the left subtree with nl = n DIV 2 nodes in this way.
3. Generate the right subtree with nr = n - nl - 1 nodes in this way.

The rule is expressed as a recursive procedure which reads the input file and
constructs the perfectly balanced tree. We note the following definition: A tree is
perfectly balanced, if for each node the numbers of nodes in its left and right subtrees
differ by at most 1.

Example 18.1

TYPE Node = POINTER TO RECORD

key: INTEGER; left, right: Node
 END ;

VAR R: Texts.Reader; W: Texts.Writer; root: Node;

PROCEDURE tree(n: INTEGER): Node;
 VAR new: Node;

x, nl, nr: INTEGER;
BEGIN (*construct perfectly balanced tree with n nodes*)
 IF n = 0 THEN new := NIL

 329

 ELSE nl := n DIV 2; nr := n-nl-1;
 NEW(new); Texts.ReadInt(R, new.key);
 new.key := x; new.left := tree(nl); new.right := tree(nr)
 END ;
 RETURN new
END tree;

PROCEDURE PrintTree(t: Node; h: INTEGER);
 VAR i: INTEGER;
BEGIN (*print tree t with indentation h*)
 IF t # NIL THEN

PrintTree(t.left, h+1);
FOR i := 1 TO h DO Texts.Write(W, TAB) END ;
Texts.WriteInt(W, key, 6); Texts.WriteLn(W);
PrintTree(t.right, h+1)

 END
END PrintTree;

Assume, for example, the following input data for a tree with 21 nodes:

8 9 11 15 19 20 21 7 3 2 1 5 6 4 13 14 10 12 17 16 18

The call root := tree(21) reads the input dara while constructing the perfectly
balanced tree shown in Figure 18.4.1 . Note the simplicity and transparency of this
program that is obtained through the use of recursive procedures. It is obvious that
recursive algorithms are particularly suitable when a program is to manipulate
information whose structure is itself defined recursively. This is again manifested in the
procedure which prints the resulting tree: The empty tree results in no printing, the
subtree at level L in first printing its own left subtree, then the node, properly indented by
preceding it with L tabs, and finally in printing its right subtree.

Figure 18.4.1 :Tree generated by preceding program

 330

18.5 Traversal

Definition: A technique for processing the nodes of a tree in some order.

Pre-Order
Here the root of the subtree is processed first before going into the left then right
subtree.

In-Order
After the complete processing of the left subtree the root is processed followed by
the processing of the complete right subtree.

Post-Order
The root is processed only after the complete processing of the left and right
subtree.

Level-Order
Using a queue the tee is processed by levels. So first all nodes on level i are
processed from left to right before the first node of level i+1 is visited.

18.5.1 Preorder traversal

Definition: Process all nodes of a tree by processing the root, then recursively processing
all sub trees.

preorder(tree)
 begin
 if tree is null, return;

 print(tree.root);
 preorder(tree.left_subtree);
 preorder(tree.right_subtree);
 end

18.5.2 In-order traversal

Definition: Process all nodes of a tree by recursively processing the left sub tree, then
processing the root, and finally the right sub tree.

inorder(tree)
 begin
 if tree is null, return;

 331

 inorder(tree.left_subtree);
 print(tree.root);
 inorder(tree.right_subtree);
 end

18.5.3 Post order traversal

Definition: Process all nodes of a tree by recursively processing all sub trees, then finally
processing the root.

postorder(tree)
 begin
 if tree is null, return;

 postorder(tree.left_subtree);
 postorder(tree.right_subtree);
 print(tree.root);
 end

18.5.4 Level-order traversal

 Definition: Process all nodes of a tree by depth: first the root, then the children of
the root, etc. Equivalent to a breadth-first search from the root.

levelorderAux(tree, level)
 begin
 if tree is null, return;

 if level is 1, then
 print(tree.root);
 else if level greater than 1, then
 levelorderAux(tree.left_subtree, level-1);
 levelorderAux(tree.right_subtree, level-1);
 endif
 end

 levelorder(tree)
 begin
 for d = 1 to height(tree)
 levelorderAux(tree, d);
 endfor
 end

 332

18.6 HEAP

18.6.1 Definition

The data structure of the heapsort algorithm is a heap. The data sequence to be
sorted is stored as the labels of the binary tree. As shown later, in the implementation no
pointer structures are necessary to represent the tree, since an almost complete binary tree
can be efficently stored in an array.

The heap data structure is an array object which can be easily visualized as a
complete binary tree.There is a one to one correspondence between elements of the array
and nodes of the tree.The tree is completely filled on all levels except possibly the
lowest,which is filled from the left upto a point.All nodes of heap also satisfy the relation
that the key value at each node is at least as large as the value at its children.

18.6.2 Procedure get an element from heap structures.

 The following procedure will helps you to access an element from the heap
structure.

Step I: The user inputs the size of the heap(within a specified limit).The program
generates a corresponding binary tree with nodes having randomly generated key Values.

Step II: Build Heap Operation: Let n be the number of nodes in the tree and i be the key
of a tree. For this, the program uses operation Heapify.when Heapify is called both the
left and right subtree of the i are Heaps.The function of Heapify is to let i settle down to a
position(by swapping itself with the larger of its children,whenever the heap property is
not satisfied) till the heap property is satisfied in the tree which was rooted at (i).This
operationcalls.

Step III: Remove maximum element:The program removes the largest element of the
heap(the root) by swapping it with the last element.
Step IV: The program executes Heapify(new root) so that the resulting tree satisfies the
heap property.

Step V: Goto step III till heap is empty.

Example:

 333

Figure 18.1: Heap with n = 10 vertices

Observe that each leaf automatically has the heap property regardless of its label, since it
has no descendants.

The following description of heapsort refers to Figure 2 (a) - (e).

 (a) (b) (c)

 (d) (e)
 Figure 18.2: Retrieving the maximum element and restoring the heap

If the sequence to be sorted is arranged as a heap, the greatest element of the
sequence can be retrieved immediately from the root (a). In order to get the next-greatest
element, the rest of the elements have to be rearranged as a heap.

18.7 Let us sum up
 In this lesson, we discussed about fundamental information of tree structure, tree

traversal, representation and implementation of trees. We also discussed about heap
structure, rules for accessing an element from heap, representation of heap structures.

 334

18.8 Points for discussion

1. How to define tree structure?

2. What is ment by balanced tree?

3. Define the terms terminal node and depth of the tree

4. what is meny by heap?

18.9 Check your progress

1. Define the term tree.

 A tree structure with base type T is either

1. The empty structure.
2. A node of type T with a finite number of associated disjoint tree structures of base type
 T, called subtrees.

2. Define the terms ordered tree, ancestor and descendant.

An ordered tree is a tree in which the branches of each node are ordered. Hence
the two ordered trees in following figure are distinct, different objects. A node y that is
directly below node x is called a (direct) descendant of x; if x is at level i, then y is said to
be at level i+1. Conversely, node x is said to be the (direct) ancestor of y.

18.10 Lesson-end Activities

 1. How tree structure will differ from other structures?
 2. Where we can use this tree structure?

 3. How to identify leaf node?

 335

18.11 References

Ellis HoroWitz and Sartaj Sahni: Fundamentals of Data structure, Galgotia book source.
Ashok N Kamthane, Programming and Data structures, Pearson Education
M.Tanenbaum, Data structure using C, PHI pub.
http://www.programmersheaven.com/download/
http://en.literateprograms.org/
http://www.cs.utk.edu/~plank/plank/classes/
http://www.go4expert.com/forums/
http://www.cs.bu.edu/teaching/c/

