

F	Which are of the fo	lleuring contains ionis	an index and an and in sta	h a n da 2	
5.	a) NaOH	b) NaCl	covalent and co-ordinate c) NaCN	d) NaNC	
Ans:	•	5) 1401			
	$Na^+ [N \equiv C]^-$				
6.	Dialysis can be used to separate				
	a) glucose and fruct		b) protein and starch		
0	c) glucose and prote	ein	d) glucose and NaCl		
Ans		lution & protein is a co	lloid		
			noid		
7.		o-character of the hybri	id orbitals in graphite and	d diamond are	
	respectively	b) 50 and 75	a $(7 and 75$	d) 22 and 75	
Ans:	a) 33 and 25	b) 50 and 75	c) 67 and 75	d) 33 and 75	
AII3.		-idised – s – character	33% & p – character 679	6	
			25% & p – character 759		
8.	A gas expands from	a volume of 1m ³ to a	volume of 2 m ³ against a	an external pressure of	
	10^{5} Nm ⁻² .			1	
	The work done by t a) 10 ⁵ kJ	b) 10 ² kJ	c) 10 ² kJ	d) 10 ³ kJ	
Ans:					
	$W = Pexf (\Delta V)$				
	$= 10^5 (2-1) = 10^5 J$	oules = 10^2 kJ			
9.		volatile solute of molar ts vapour pressure by 2		ould be dissolved in 114 g	
	a) 10 g	b) 11.4 g	c) 9.8 g	d) 12.8 g	
Ans:			, 3	, 3	
	\mathbf{D}^0 \mathbf{D} \mathbf{X}				
	$\frac{P^{\circ} - P}{P^{\circ}} = \frac{40}{114}$				
	$\frac{111}{114} + \frac{1}{40}$				
	x				
	$\frac{20}{100} = \frac{40}{100}$				
	$100 1 + \frac{x}{40}$				
	x				
	20 _ 40				
	$100 \frac{40 + x}{40}$				
	20 x				
	$\frac{10}{100} = \frac{1}{40 + x}$				
	20(40+x) = 100x				
	800 + 20 x = 100 x				
	800 = 80 x				
	$x = \frac{800}{80} = 10 g$				
				•	

10. During the adsorption of a gas on the surface of a solid, which of the following is true? b) $\Delta G > O$, $\Delta H < O$, $\Delta S < O$ a) $\Delta G < O, \Delta H > O, \Delta S < O$ c) $\Delta G < O$, $\Delta H < O$, $\Delta S < O$ d) $\Delta G < O, \Delta H < O, \Delta S > O$ Ans: (c) For an adsorption of a gas on the surface of a solid, ΔH is –ve and ΔS is –ve. The reaction is spontaneous. : $\Delta G = -ve$ 11. The approximate time duration in hours to electroplate 30 g of calcium from molten calcium chlriode using a current of 5 amp is [At. Mass of Ca = 40] a) 8 c) 10 d) 16 b) 80 Ans: (a) W = Z It $t = \frac{W}{ZI}$ $t = \frac{W}{E} \times \frac{96500}{I} = \frac{30}{20} \times \frac{96500}{5}$ $t = \frac{28950}{60x60} = 8$ The pH of the solution obtained by mixing 100 ml of a solution of pH = 3 with 400 ml of a 12. solution of pH = 4 is a) 3 – log 2.8 b) 7 – log 2.8 c) 4 – log 2.8 d) $5 - \log 2.8$ Ans: (c) $[H^+] = \frac{100 \times 10^{-3} + 400 \times 10^{-4}}{2.8 \times 10^{-4}} = 2.8 \times 10^{-4}$ 500 $pH = -log 2.8 \times 10^{-4}$ pH = 4 - log 2.813. The equilibrium constant of the reaction: $A_{(s)} + 2B^{+}_{(aq)} \Rightarrow A^{2+}_{(aq)} + 2B_{(s)}$. $E^{o}_{cell} = 0.0295$ V is $\frac{2.303\,\text{RT}}{5} = 0.059$ b) 2×10^2 c) 3×10^2 d) 2 x 10⁵ a) 10 Ans: (a) 2.303 RT log $K_p = nFE^0$ $\log k_{p} = \frac{E^{0}xnF}{2.303RT} = \frac{0.0295x2}{0.0591} = 1$ $\log k_p = 1$ $k_{p} = 10$ An oxygen containing organic compound was found to contain 52% carbon and 13% of 14. hydrogen. Its vapour density is 23. The compound reacts with sodium metal to liberate hydrogen. A functional isomer of this compound is b) Ethanal a) Ethanol c) Methoxy Metane d) Methoxy Ethane Ans: (c) Mol. Mass = $2 \times V.D$ $= 2 \times 23 = 46$ molecular formula = C_2H_5OH by analysis of % C, % H & % O functional isomer of C₂H₅OH is CH₃ – O – CH₃

0. 100 ml of 0.1 M acetic acid is completely neutralized using a standard solution of NaOH.					
The volume of Ethane obtained at STP after the complete electrolysis of the resulting solution is					
a) 112 ml b) 56 ml c) 224 ml d) 560 ml					
Ans: (a)					
$CH_3COOH + NaOH \rightarrow CH_3COONa + H_2O 2CH_3COONa \rightarrow C_2H_6 + NaOH + CO_2 + H_2$					
0.1 0.1 0.01 0.005					
$\therefore \text{ No. of gram equivalent of CH}_3\text{COONa} = \frac{100\text{x0.1}}{1000} = 0.01$					
\therefore 0.01 mole of CH ₃ COONa gives 0.005 mole of C ₂ H ₆					
1 mole of $C_2H_6 = 22400 \text{ cm}^3$ at STP					
: 0.005 mole of $C_2H_6 = ?$					
:. Volume of $C_2H_6 = \frac{0.005x22400}{1} = 112 \text{ cm}^3$					
21. Saccharin, an artificial sweetner, is manufactured from					
a) Cellulose b) Toluene c) Cyclohexane d) Starch					
Ans: (b)					
 Which of the following is NOT TRUE for S_N¹ reaction? a) Favoured by polar solvents 					
b) 3° – alkyl halides generally react through S_{N}^{1} reaction					
c) The rate of reaction does not depend upon the molar concentration of the nucleophile					
d) 1° – alkyl halides generally react through S_N^1 reaction					
Ans: (d)					
1° alkyl halide react through S_{N}^{2} reaction					
 23. Oil of winter green is a) an ester b) a carboxylic acid c) an alcohol d) a ketone 					
Ans: (a)					
Methyl salicylate is an ester					
24. An organic compound 'A' burns with a sooty flame. It is negative towards Tollen's reagent					
test and positive for Borsche's reagent test. The compound 'A' is a) Benzaldehyde b) Acetophenone c) Acetone d) Salicylic acid					
Ans: (b)					
Aromatic compound, not an aldehyde but a carbonyl compound					
25. For a reaction : $A + B \rightarrow$ Products, the rate of the reaction at various concentrations given					
below :					
Expt No [A] [B] Rate (mol dm ⁻³ s ⁻					
1 0.2 0.2 2					
2 0.2 0.4 4					
3 0.2 0.4 36					
The rate law for the above reaction is					
a) $r = K[A]^{2}[B]$ b) $r = K[A][B]^{2}$ c) $r = K[A]^{3}[B]$ d) $r = K[A]^{2}[B]^{2}$					

31.	The number of moles of hydrogen that can back a) Linseed oil b) Groundnut oil	be added to 1 mole of an oil is the highest in c) Sunflower seed oil d) Mustard oil		
Ans:	, , , , , , , , , , , , , , , , , , , ,	-,		
	Linseed oil is highly unsaturated			
32.				
02.	a) lowering the temperature	b) adding a little alcohol		
	c) amalgamating sodium	d) adding a little acetic acid		
Ans:				
33.	All colloidal dispersions have			
00.	a) very high osmotic pressure	b) low osmotic pressure		
	c) no osmotic pressure	d) high osmotic pressure		
Ans:		d) high contour pressure		
/ 110.	Because colloidal dispersions do not contain	any dissolved ions		
34.	Silver iodide is used for producing artificial r	-		
04.	a) is easy to spray at high altitude			
	b) is easy to synthesize			
	c) has crystal structure similar to ice			
	d) is insoluble in water			
Ans:				
/ 110.		gl are used as artificial ice nuclei to form ice		
	crystals.			
35.	The equilibrium constant of a reaction is 0.0 the reaction at the same temperature is	08 at 298 K. The standard free energy change of		
	a) +11.96 kJ b) -11.96 kJ	c) -5.43 kJ d) -8.46 kJ		
Ans:	(a)			
	$\Delta G^0 = -2.303 \text{ RT log } k_p$			
	$= -2.303 \times 8.314 \times 298 \times \log 8 \times 10^{-3}$			
	$\Delta G^0 = +11.96 \text{ kJ}$			
36.	The function of potassium ethyl xanthate in	froth floatation process is to make the ore		
	a) attracted towards water	b) water repellant		
	c) lighter	d) heavier		
Ans:	(b)			
	Which increase the non wettability of ore pa	rticles		
37.	The correct order of electronegativities of N,	O, F & P is		
	a) F > N > P > O b) F > O > P > N	c) $F > O > N > P$ d) $N > O > F > P$		
Ans:	(c)			
	F > 0 > N > P			
38.	The s-block element used as a catalyst in th	e manufacture of Buna –S rubber is		
	a) Mg b) Ca	c) Ba d) Na		
Ans:	(d)			
	Sodium is used as a catalyst in the manufacture of Buna –S			

39.	Which of the following is NOT a characteristic of a covalent compound?			
	a) Low melting point			
	b) No definite geometry			
	c) Insoluble in polar solvent			
	d) Small difference in electronegativity betw	veen the combining ator	ns	
Ans		· · · · · · · · · · · · · · · · · · ·		
	Covalent compounds have high melting poir	ITS		
40.	The volume of 0.1 M oxalic acid that can be	completely oxidized by	$^{\prime}$ 20 ml of 0 025 M KMnO $^{\prime}$	
40.	solution is		20 mm of 0.020 m RMm04	
	a) 125 ml b) 25 ml	c) 12.5 ml	d) 37.5 ml	
Ans	(c)			
	$V_1 N_1 = V_2 N_2$			
	Oxalic acid KMnO ₄	0.1 M = 0.2 N		
		Oxalic acid		
	$V_1 \ge 0.2 = 20 \ge 0.125$	0.025 = 0.125 N		
		KMnO ₄	7 X I	
	Volume of oxalic acid = 12.5 ml			
41.	A ligand is			
41.	a) Lewis acid	b) Bronsted acid		
	c) either a Lewis acid or a Lewis base	d) Lewis base		
Ans		,		
	A ligand donates a pair of electrons. Therefore	ore it is a Lewis base		
42.				
	binary solution of A and B contains A and B in the mole proportion of 1 : 2. The mole fraction of A in the vapour phase of the solution will be			
	a) 0.33 b) 0.2	c) 0.25	d) 0.52	
Ans		0) 0120	a) 0102	
	$P_A = X_A \times P_A^0$			
	$P_A = \frac{1}{3}x1 = \frac{1}{3}$			
	$P_{\rm B} = \frac{2}{3} \times 2 = \frac{4}{3}$			
	$r_{\rm B} = \frac{-3}{3}x^2 = \frac{-3}{3}$			
	1	267		
	$=\frac{3}{5}=0.2$			
	$= \frac{\frac{1}{3}}{\frac{5}{3}} = 0.2$			
43.	Which of the following statements is TRUE?			
	a) The total entropy of the universe remains	s constant		
	b) The total entropy of the universe is conti	• •		
	c) The total energy of the universe is contin	•		
	d) The total energy of the universe remains	constant		
Ans		nctant		
	The total energy of the universe remains co	IISTAIL		

44.	5 ml of 0.4 N NaOH is mixed with 20 ml of 0	.1 N HCI. The pH of the	resulting solution will be	
	a) 6 b) 7	c) 8	d) 5	
Ans:	(b)			
	The mixture will form a neutral solution			
	∴ pH = 7			
45.	On adding which of the following, the pH of 20 ml of 0.1 N HCl will not alter?			
	a) 1 ml of 1 N HCl	b) 20 ml of distilled wa	ter	
	c) 1 ml of 0.1 N NaOH	d) 500 ml of HCl of pH	= 1	
Ans:	(d)			
	If pH = 1 then [H ⁺] = 0.1 M			
	0.1 N HCI = 0.1 M HCI			
	When two solutions of same strength are mi	xed pH does not change		
46.	Which one of the following has a potential m	ore than zero?		
	a) Pt, $\frac{1}{2}$ H ₂ (1 atm) HCl (1 M)	b) Pt, $\frac{1}{2}$ H ₂ (1 atm) H	CL (2 M)	
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-		
	c) Pt, $\frac{1}{2}$ H ₂ (1 atm) HCI (0.1 M)	d) Pt, $\frac{1}{2}$ H ₂ (1 atm) H	CI (0.5 M)	
Ans:	-	2		
AIIS.				
	Pt, $\frac{1}{2}$ H ₂ (1atm) / HCI (2M)			
47.	HCHO was treated with a reagent X. The pr	oduct formed upon hydi	rolysis in the presence of	
	an acid gave C_2H_5OH . The reagent X is			
	a) aqueous KOH b) alcoholic KOH	c) alcoholic KCN	d) CH ₃ MgI	
Ans:	(d)			
	$HCHO + CH_3MgI \to CH_3 - CH_2O MgI$			
	Mg $<$ I + CH ₃ CH ₂ OH $+$ H ₂ O / H ⁺			
	Mg $\left< H_2OH + CH_3CH_2OH + CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3CH_3$			
	OH			
48.	Benzylamine is a stronger base than aniline			
	a) The lone pair of electrons on the nitrogen	5		
	b) The lone pair of electrons on the nitrogen			
	c) The lone pair of electrons on the nitrogen		volved in resonance	
	d) Benzylamine has a higher molecular mass	s than aniline		
Ans:				
	The lone pair of electrons on the nitrogen at			
49.	The relative acidic strengths of benzoic a decreasing order:	acid, o-toluic acid and	p-toluic acid is of the	
	a) p-toluic acid > o-toluic acid > benzoic aci	d		
	b) o-toluic acid > p-toluic acid > benzoic aci			
	c) p-toluic acid > benzoic acid > o-toluic ac			
	d) o-toluic acid > benzoic acid > p-toluic aci			

Ans:	(d)			
71113.	$\log \frac{k_2}{k_1} = \frac{Ea}{2.303R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$			
	$\log 10 = \frac{Ea}{2.303R} \left[\frac{30}{300x270} \right]$			
	Ea = 2.303 R x 2.700 kJ			
54.	At 300 K, a gaseous reaction: $A \rightarrow B + C$			
	Was found to follow first order kinetics. Starting with pure A, the total pressure at the end 20 minutes was 100 mm of Hg. The total pressure after the completion of the reaction 180 mm of Hg. The partial pressure of A (in mm of Hg) is			
Ans:	a) 100 b) 90 c) 180 d) 80 (d)			
	$A \rightarrow B + C$ 1 2x			
	90 - x x x			
	Initial pressure = 90			
	90 - x + 2x = 100			
	90 + x = 100 Total no. of moles x = 10			
	$\therefore 90 - x = 80$			
	$p_{A} = 80$			
55.	From the Ellingham graphs on carbon, which of the following statements is FALSE?			
	a) CO_2 is more stable than CO at less than 983 K			
	b) CO reduces Fe ₂ O ₃ to Fe at less than 983 K			
	c) CO is less stable than CO_2 at more than 983 K			
	d) CO reduces Fe_2O_3 to Fe in the reduction zone of Blast furnace			
Ans:				
	CO is more stable than CO ₂ at more than 983 K			
56.	Which of the following is a negatively charged bidentate ligand?			
	a) Dimethyl glyoximato b) Cyano			
	c) Ethylene diamine d) Acetato			
Ans:	(a)			
57.	The secondary valency of platinum in tetra ammine dichloroplatinum (IV) chloride isa) +4b) +2c) 3d) 6			
Ans:				
	[Pt Cl ₂ (NH ₃) ₄] Cl ₂			
	secondary valency is 6			
		12		

58.		-	magnetic moment of 1.75		
~	a) Ti ³⁺	b) V ³⁺	c) Cr ³⁺	d) Fe ³⁺	
Ans:	(a) Ti ⁺³ : [Ar] 3d′ 4s ⁰				
	n = 1				
	$\mu = \sqrt{n(n+2)} = \sqrt{3} =$	= 1.732BM			
59.			ergy of C, N, O & F is		
Anc		b) C < N < 0	D < F c) C < O < N	< F d) F < O < N < C	
Ans		increases alo	and the period and nit	rogen has half filled elec	tronic
	configuration.		ing the period and the	logon has han third clos	
60.				t electron of sodium (Z = 11)) is
	a) 3, 1, 0, 1	b) 3, 1, 1, ¹ / ₂	c) 3, 2, 1, 1	d) 3, 0, 0, ¹ / ₂	
Ans:	(d)				
	For sodium $Z = 11$				
	$1s^2 2s^2 2p^6 3s^1$, Form = 3	or outermost el	ectron		
	I = 0				
	m = 0				
	$S = \frac{1}{2}$				
		P)			
					12