GATE 2014 Examination

AE: Aerospace Engineering

Duration: 180 minutes Maximum Marks: 100

Read the following instructions carefully.

- 1. To login, enter your Registration Number and password provided to you. Kindly go through the various symbols used in the test and understand their meaning before you start the examination.
- 2. Once you login and after the start of the examination, you can view all the questions in the question paper, by clicking on the **View All Questions** button in the screen.
- 3. This question paper consists of **2 sections**, General Aptitude (GA) for **15 marks** and the subject specific GATE paper for **85 marks**. Both these sections are compulsory.
 - The GA section consists of **10** questions. Question numbers 1 to 5 are of 1-mark each, while question numbers 6 to 10 are of 2-mark each.
 - The subject specific GATE paper section consists of **55** questions, out of which question numbers 1 to 25 are of 1-mark each, while question numbers 26 to 55 are of 2-mark each.
- 4. Depending upon the GATE paper, there may be useful common data that may be required for answering the questions. If the paper has such useful data, the same can be viewed by clicking on the **Useful Common Data** button that appears at the top, right hand side of the screen.
- 5. The computer allotted to you at the examination center runs specialized software that permits only one answer to be selected for multiple-choice questions using a mouse and to enter a suitable number for the numerical answer type questions using the virtual keyboard and mouse.
- 6. Your answers shall be updated and saved on a server periodically and also at the end of the examination. The examination will **stop automatically** at the end of **180 minutes**.
- 7. In each paper a candidate can answer a total of 65 questions carrying 100 marks.
- 8. The question paper may consist of questions of **multiple choice type** (MCQ) and **numerical answer type**.
- 9. Multiple choice type questions will have four choices against A, B, C, D, out of which only **ONE** is the correct answer. The candidate has to choose the correct answer by clicking on the bubble (○) placed before the choice.
- 10. For numerical answer type questions, each question will have a numerical answer and there will not be any choices. For these questions, the answer should be entered by using the virtual keyboard that appears on the monitor and the mouse.
- 11. All questions that are not attempted will result in zero marks. However, wrong answers for multiple choice type questions (MCQ) will result in **NEGATIVE** marks. For all MCQ questions a wrong answer will result in deduction of ½ marks for a 1-mark question and ½ marks for a 2-mark question.
- 12. There is NO NEGATIVE MARKING for questions of NUMERICAL ANSWER TYPE.
- 13. Non-programmable type Calculator is allowed. Charts, graph sheets, and mathematical tables are **NOT** allowed in the Examination Hall. You must use the Scribble pad provided to you at the examination centre for all your rough work. The Scribble Pad has to be returned at the end of the examination.

Declaration by the candidate:

"I have read and understood all the above instructions. I have also read and understood clearly the instructions given on the admit card and shall follow the same. I also understand that in case I am found to violate any of these instructions, my candidature is liable to be cancelled. I also confirm that at the start of the examination all the computer hardware allotted to me are in proper working condition".

Q. 1 – Q. 5 carry one mark each.

Q.1 A student is required to demonstrate a high level of <u>comprehension</u> of the subject, especially in the social sciences.

The word closest in meaning to comprehension is

- (A) understanding
- (B) meaning
- (C) concentration
- (D) stability

Q.2 Choose the most appropriate word from the options given below to complete the following sentence.

One of his biggest _____ was his ability to forgive.

- (A) vice
- (B) virtues
- (C) choices
- (D) strength

Q.3 Rajan was not happy that Sajan decided to do the project on his own. On observing his unhappiness, Sajan explained to Rajan that he preferred to work independently.

Which one of the statements below is logically valid and can be inferred from the above sentences?

- (A) Rajan has decided to work only in a group.
- (B) Rajan and Sajan were formed into a group against their wishes.
- (C) Sajan had decided to give in to Rajan's request to work with him.
- (D) Rajan had believed that Sajan and he would be working together.
- Q.4 If $y = 5x^2 + 3$, then the tangent at x = 0, y = 3
 - (A) passes through x = 0, y = 0
- (B) has a slope of +1

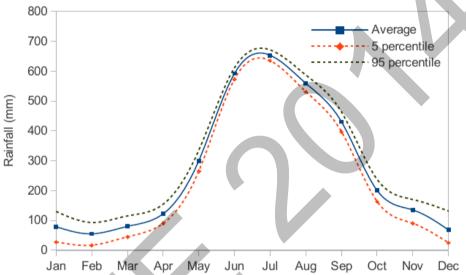
(C) is parallel to the *x*-axis

(D) has a slope of -1

Q.5 A foundry has a fixed daily cost of Rs 50,000 whenever it operates and a variable cost of Rs 800Q, where Q is the daily production in tonnes. What is the cost of production in Rs per tonne for a daily production of 100 tonnes?

Q. 6 – Q. 10 carry two marks each.

Q.6 Find the odd one in the following group: ALRVX, EPVZB, ITZDF, OYEIK


- (A) ALRVX
- (B) EPVZB
- (C) ITZDF
- (D) OYEIK

Q.7 Anuj, Bhola, Chandan, Dilip, Eswar and Faisal live on different floors in a six-storeyed building (the ground floor is numbered 1, the floor above it 2, and so on). Anuj lives on an even-numbered floor. Bhola does not live on an odd numbered floor. Chandan does not live on any of the floors below Faisal's floor. Dilip does not live on floor number 2. Eswar does not live on a floor immediately above or immediately below Bhola. Faisal lives three floors above Dilip. Which of the following floor-person combinations is correct?

	Anuj	Bhola	Chandan	Dilip	Eswar	Faisal
(A)	6	2	5	1	3	4
(B)	2	6	5	1	3	4
(C)	4	2	6	3	1	5
(D)	2	4	6	1	3	5

GA 1/2

- Q.8 The smallest angle of a triangle is equal to two thirds of the smallest angle of a quadrilateral. The ratio between the angles of the quadrilateral is 3:4:5:6. The largest angle of the triangle is twice its smallest angle. What is the sum, in degrees, of the second largest angle of the triangle and the largest angle of the quadrilateral?
- Q.9 One percent of the people of country X are taller than 6 ft. Two percent of the people of country Y are taller than 6 ft. There are thrice as many people in country X as in country Y. Taking both countries together, what is the percentage of people taller than 6 ft?
 - (A) 3.0
- (B) 2.5
- (C) 1.5
- (D) 1.25
- Q.10 The monthly rainfall chart based on 50 years of rainfall in Agra is shown in the following figure. Which of the following are true? (*k* percentile is the value such that *k* percent of the data fall below that value)

- (i) On average, it rains more in July than in December
- (ii) Every year, the amount of rainfall in August is more than that in January
- (iii) July rainfall can be estimated with better confidence than February rainfall
- (iv) In August, there is at least 500 mm of rainfall
- (A) (i) and (ii)

(B) (i) and (iii)

(C) (ii) and (iii)

(D) (iii) and (iv)

END OF THE QUESTION PAPER

GA 2/2

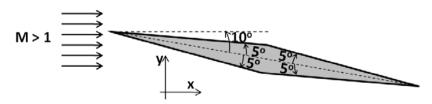
Q. 1 - Q. 25 carry one mark each.

- Q.1 For a real symmetric matrix [A], which of the following statements is true:
 - (A) The matrix is always diagonalizable and invertible.
 - (B) The matrix is always invertible but not necessarily diagonalizable.
 - (C) The matrix is always diagonalizable but not necessarily invertible.
 - (D) The matrix is always neither diagonalizable nor invertible.
- 0.2 The series $s = \sum_{1}^{\infty} \frac{m^2}{3^m} (x-2)^m$ converges for all x with $|x-2| \le R$ given by
 - (A) R = 0
- (B) R = 3
- (D) R = 1/3
- Q.3 The function given by $f(x) = \begin{cases} \sin(1/x), & x \neq 0 \\ 0, & x=0 \end{cases}$ is
 - (A) Unbounded everywhere

- (B) Bounded and continuous everywhere
- (C) Bounded but not continuous at x = 0
- (D) Continuous and differentiable everywhere
- Given the boundary-value problem $\frac{d}{dx}\left(x\frac{dy}{dx}\right) + ky = 0$, 0 < x < 1, with y(0) = y(1) = 0. Then the Q.4 solutions of the boundary-value problem for k = 1 (given by y_1) and k = 5 (given by y_5) satisfy:

$$(A) \int_0^1 y_1 y_5 dx = 0$$

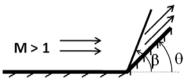
(B)
$$\int_0^1 \frac{dy_1}{dx} \frac{dy_5}{dx} dx = 0$$

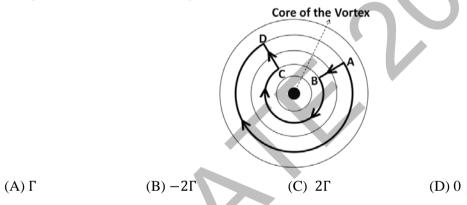

(C)
$$\int_0^1 y_1 y_5 dx \neq 0$$

(D)
$$\int_0^1 (y_1 y_5 + \frac{dy_1}{dx} \frac{dy_5}{dx}) dx = 0$$

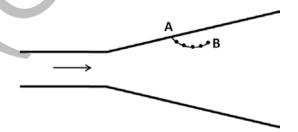
- Q.5 The value of $I = \int_0^1 1000 x^4 dx$, obtained by using Simpson's rule with 2 equally spaced intervals is,
 - (A) 200
- (B) 400
- (C) 180
- (D) 208
- For a NACA 5-digit airfoil of chord c, the designed lift coefficient and location of maximum Q.6 camber along the chord from the leading edge are denoted by C_L and X_m respectively. For *NACA12018* airfoil, which combination of C_L and X_m given below are correct?
 - (A) $C_L = 0.15$ and $X_m = 0.1c$ (C) $C_L = 0.12$ and $X_m = 0.18c$

(B) $C_L = 0.12$ and $X_m = 0.2c$

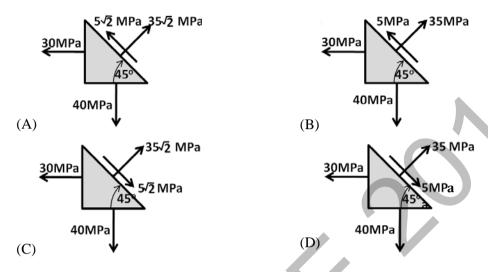

- (D) $C_L = 0.15$ and $X_m = 0.2c$
- 0.7 For inviscid, supersonic flow over a diamond shaped airfoil, shown in the figure, which statement is correct among the following?


- (A) The airfoil will experience zero lift and positive drag force
- (B) The airfoil will experience positive lift and zero drag force
- (C) The airfoil will experience negative lift and zero drag force
- (D) The airfoil will experience positive lift and positive drag force

GATE 2014


Q.8 Consider supersonic flow near a corner (at an angle $\boldsymbol{\theta}$ from the horizontal) with an attached oblique shock (at an angle $\boldsymbol{\beta}$ with horizontal) as shown in figure. If Mach number \boldsymbol{M} decreases gradually from a high supersonic value, which of the following statements is correct?

- (A) will decrease if the shock is a weak shock
- (B) will decrease if the shock is a strong shock
- (C) will increase for both weak and strong shocks
- (D) remains unchanged for both weak and strong shocks
- Q.9 The streamlines of a potential line vortex is concentric circles with respect to the vortex center as shown in figure. Velocity along these streamlines, outside the core of the vortex can be written as, $v_{\theta} = \frac{\Gamma}{2\pi r}$, where strength of the vortex is $\frac{\Gamma}{2\pi}$ and r is radial direction. The value of circulation along the curve shown in the figure is:


Q.10 To observe unsteady separated flow in a diverging channel, bubbles are injected at each 10ms interval at point A as shown in figure. These bubblesact as tracer particles and follow the flow faithfully. The curved line **AB** shown at any instant represents:

- (A) Streamline, streakline and pathline
- (A) Streamme, streamme and patimine
- (C) Only a pathline

- (B) Streamline and pathline
- (D) Only a streakline
- Q.11 It is desired to measure the Young's modulus and the Poisson's ratio of a given homogeneous, isotropic material. A bar of length 20cm and square cross-section $(10mm \times 10mm)$ of this material is subjected to a tensile load of 40kN. Under this load, length increases to 20.1cm while the cross-section reduces to $9.98mm \times 9.98mm$. Young's modulus and Poisson's ratio of the material are:
 - (A) 80GPa& 0.4 respectively
- (B) 40GPa& -0.4 respectively
- (C) 80GPa& -0.2 respectively
- (D) 40GPa& 0.2 respectively

- Q.12 In general, for any given solid subjected to arbitrary loading, which of the following statements is *always* true:
 - (A) Volume does not vary with loading
- (B) Mass does not vary with loading
- (C) Density does not vary with loading
- (D) Volume, mass and density vary with loading
- Q.13 Which one of the following objects with inclined face at 45°, subjected to the given stresses, are in static equilibrium:

- Q.14 A damped single degree of freedom system whose undamped natural frequency, $\omega_n = 10Hz$, is subjected to sinusoidal external force. Power is half of the maximum for the two frequencies of 60.9469 rad/s and 64.7168 rad/s. The damping factor associated with the vibrating system (in %) is
- Q.15 The boundary conditions for a rod with circular cross-section, under torsional vibration, are changed from fixed-free to fixed-fixed. The fundamental natural frequency of the fixed-fixed rod is k times that of fixed-free rod. The value of k is
 - (A) 1.5
- (B) π
- (C) 2.0
- (D) 0.5
- Q.16 Match the appropriate engine (in right column) with the corresponding aircraft (in left column) for most efficient performance of the engine.
 - a. Low speed transport aircraft
 - b. High subsonic civilian aircraft
 - c. Supersonic fighter aircraft
 - d. Hypersonic aircraft
 - (A) a iv, b iii, c i, d ii
 - (C) a i, b ii, c iv, d iii

- i. Ramjet
- ii. Turboprop
- iii. Turbojet
- iv. Turbofan
- (B) a ii, b i, c iii, d iv
- (D) a ii, b iv, c iii, d i
- Q.17 For a given fuel flow rate and thermal efficiency, the take-off thrust for a gas turbine engine burning aviation turbine fuel (considering fuel-air ratio *f*<<1) is
 - (A) Directly proportional to exhaust velocity
 - (B) Inversely proportional to exhaust velocity
 - (C) Independent of exhaust velocity
 - (D) Directly proportional to the square of the exhaust velocity

For a fifty percent reaction axial compressor stage, following statements are given: Q.18 I. Velocity triangles at the entry and exit of the rotor are symmetrical II. The whirl or swirl component of absolute velocity at the entry of rotor and entry of stator are same. Which of the following options are correct? (A) Both I and II are correct statements (B) I is correct but II is incorrect (D) Both I and II are incorrect (C) I is incorrect but II is correct 0.19 A small rocket having a specific impulse of 200s produces a total thrust of 98kN, out of which 10kN is the pressure thrust. Considering the acceleration due to gravity to be $9.8m/s^2$, the propellant mass flow rate in kg/s is (A) 55.1 (B) 44.9(C) 50(D) 60.2The thrust produced by a turbojet engine Q.20 (A) Increases with increasing compressor pressure ratio (B) Decreases with increasing compressor pressure ratio (C) Remains constant with increasing compressor pressure ratio (D) First increases and then decreases with increasing compressor pressure ratio The moment coefficient measured about the centre of gravity and about aerodynamic centre of a 0.21 given wing-body combination are 0.0065 and -0.0235 respectively. The aerodynamic centre lies 0.06 chord lengths ahead of the centre of gravity. The lift coefficient for this wing-body is The vertical ground load factor on a stationary aircraft parked in its hangar is: Q.22 (C) Not defined (A) 0(B) -1(D) 1 Under what conditionshould a glider be operated to ensure minimum sink rate? Q.23 (B) Minimum C_L/C_D (A) Maximum C_L/C_D (D) Minimum $C_D/C_L^{3/2}$ (C) Maximum C_D/C_L^{3/2} In most airplanes, the Dutch roll mode can be excited by applying O.24 (A) a step input to the elevators (B) a step input to the rudder (C) a sinusoidal input to the aileron (D) an impulse input to the elevators Considering R as the radius of the moon, the ratio of the velocities of two spacecraft orbiting moon Q.25 in circular orbit at altitudes \bar{R} and 2R above the surface of the moon is _____. Q. 26 - Q. 55 carry two marks each. Q.26 If $[A] = \begin{bmatrix} 3 & -3 \\ -3 & 4 \end{bmatrix}$. Then $\det(-[A]^2 + 7[A] - 3[I])$ is (A) 0(B) -324(C) 324(D) 6

AE 4/11

Q.27

For the periodic function given by $f(x) = \begin{cases} -2, & -\pi < x < 0 \\ 2, & 0 < x < \pi \end{cases}$ with $f(x + 2\pi) = f(x)$, using

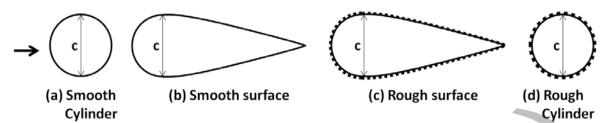
Fourier series, the sum $s = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$ converges to

- (A) 1
- (B) $\frac{\pi}{2}$ (C) $\frac{\pi}{4}$
- (D) $\frac{\pi}{5}$
- Q.28 Let Γ be the boundary of the closed circular region A given by $x^2 + y^2 \le 1$. Then $I = \int_{a}^{b} (3x^3 - 9xy^2) ds$ (where ds means integration along the bounding curve) is
 - $(A) \pi$
- (B) $-\pi$
- (C) 1
- (D) 0

Solution to the boundary-value problem Q.29

$$-9\frac{d^2u}{dx^2} + u = 5x, \ 0 < x < 3 \text{ with } u(0) = 0, \frac{du}{dx}\Big|_{x=3} = 0 \text{ is}$$

- (A) $u(x) = \frac{15e}{1+e^2} \left(e^{-x/3} e^{x/3} \right) + 5x$
- (B) $u(x) = \frac{15e}{1+e^2} \left(e^{-x/3} + e^{x/3} \right) + 5x$
- (C) $u(x) = -\frac{15\sin(x/3)}{\cos(1)} + 5x$
- (D) $u(x) = -\frac{15\sin(x/3)}{\cos(1)} \frac{5}{54}x^3$
- Q.30 The Laplace transform L(u(t))=U(s), for the solution u(t) of the problem $\frac{d^2u}{dt^2}+2\frac{du}{dt}+u=1, t>0$

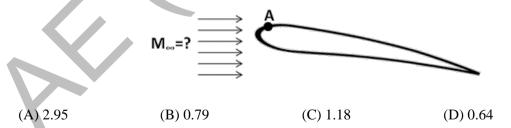

with initial conditions u(0) = 0, $\frac{du(0)}{dt} = 5$ is given by:

- (A) $\frac{6}{(s+1)^2}$ (B) $\frac{5s+1}{s(s+1)^2}$ (C) $\frac{1-5s}{s(s+1)^2}$ (D) $\frac{5s^2+1}{s(s+1)^2}$
- For a steady, incompressible two-dimensional flow, represented in Cartesian co-ordinates (x, y), a Q.31 student correctly writes the equation of pathline of any arbitrary particle as, $\frac{dx}{dt} = ax$ and $\frac{dy}{dt} = by$, where a and bare constants having unit of $(second)^{-1}$. If value of a is 5, the value of b is ____

AE

GATE 2014

Q.32 Figures (a) - (d) below show four objects. Dimensions and surface conditions of the objects are shown in the respective figures. All four objects are placed independently in a steady, uniform flow of same velocity and the direction of flow is from left to right as shown in (a). The flow field can be considered as 2-D, viscous and incompressible. Following statements are made regarding the drag that these objects experience.


- (i) Drag of object (a) is more than the drag of object (d)
- (ii) Drag of object (a) is less than the drag of object (d)
- (iii) Drag of object (b) is more than the drag of object (c)
- (iv) Drag of object (c) is more than the drag of object (b)
- (v) Drag of object (a) is more than the drag of object (b)

Choose the correct combination of statements from the options given above:

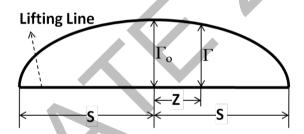
- (A) (i), (iii), (v)
- (B) (ii), (iv), (v)
- (C) (i), (iv), (v)
- (D) (i), (iii)
- Q.33 A student needs to find velocity across a stationary normal shock. He measures density and pressure across the shock as shown in the figure below. $1bar = 10^5 Pa$. (No shock table is needed for the calculations). The value of u_I in m/s is _____.

$$\begin{array}{c|c} p_1 = 1 \text{ bar} & p_2 = 29 \text{ bar} \\ \rho_1 = 1.2 \text{kg/m}^3 & \rho_2 = 6 \text{kg/m}^3 \\ u_1 & \longrightarrow u_2 \end{array}$$

Q.34 For inviscid, compressible flow past a thin airfoil, shown in the figure, free-stream Mach number and pressure are denoted by \mathbf{M}_{∞} and \mathbf{p}_{∞} respectively. Ratio of pressure at point \mathbf{A} and \mathbf{p}_{∞} is 0.8 and specific heat ratio is 1.4. If the Mach number at point \mathbf{A} is 1.0 and rest of the flow field is subsonic, the value of \mathbf{M}_{∞} is

AE 6/11

- A student can measure free-stream velocity of a low-speed wind tunnel using a Q.35
 - Pitot tube alone aligned with the flow direction. i.
 - Pitot tube aligned with the flow direction with static pressure measurement at an ii. appropriate position on the tunnel wall.
 - Pitot tube aligned with the flow direction along with barometer pressure reading of the iii. outside ambient.
 - iv. Pitot static tube alone aligned with the flow direction.


Considering the above statements, which of the following options is correct?

- (A) (i) only
- (B) (i) & (ii)
- (C) (ii) & (iv)
- (D) (i), (iii) & (iv)
- Q.36 Induced velocity w at a point $z = z_1$ along the lifting line can be calculated using the formula $w(z_1) = -\frac{1}{4\pi} \int_{-s}^{s} \frac{d\Gamma}{dz} \frac{1}{z - z_1} dz.$

Given $\frac{\Gamma^2}{\Gamma_0^2} + \frac{z^2}{s^2} = 1$, where z, Γ_0 and sare given in figure below.

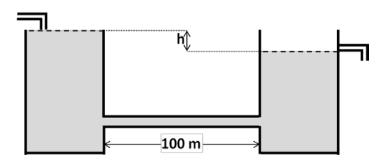
For the above semi-elliptic distribution of circulation, Γ , the downwash velocity at any point z_1 for symmetric flight can be obtained as, $w(z_1) = \frac{\Gamma_o}{4\pi s} [\pi + z_1 I]$, where $I = z_1 \int_{-s}^{s} \frac{dz}{\sqrt{s^2 - z^2}(z - z_1)}$.

Which of the following options is correct if the induced drag is D_i (given $\int_{-S}^{S} \sqrt{1 - \frac{z^2}{s^2}} dz = \frac{\pi s}{2}$)

(A)
$$I=0$$
 and $D_i = \frac{8\rho\Gamma_o^2}{\pi}$
(C) $I=0$ and $D_i = \frac{\pi\rho\Gamma_o^2}{8}$

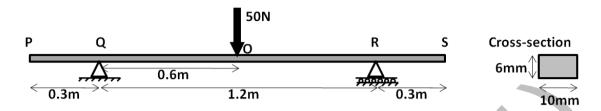
(B)
$$I = 1$$
 and $D_i = \frac{8\rho\Gamma_o^2}{\pi}$
(D) $I = 1$ and $D_i = \frac{\pi\rho\Gamma_o^2}{8}$

(C)
$$I=0$$
 and $D_i = \frac{\pi \rho \Gamma_0^2}{8}$

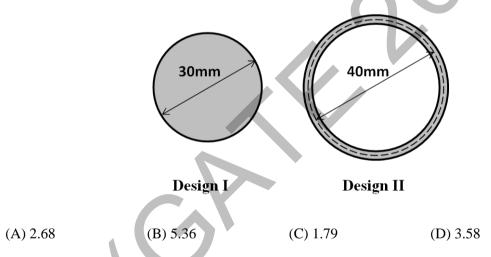

(D)
$$I=1$$
 and $D_i = \frac{\pi \rho \Gamma_0^2}{\Omega}$

Two overflowing water reservoirs are connected with a 100m long pipe of circular cross-section (of Q.37 radius, R = 0.02m), such that height difference h remains constant as shown in the figure below. The centerline velocity in the pipe is 10m/s. The velocity profile inside the pipe over the entire

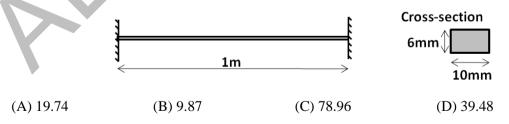
length is $u = -\frac{R^2}{4\mu} \frac{dp}{dx} \left[1 - \frac{r^2}{p^2} \right]$, where, $\frac{dp}{dx}$ is a constant pressure gradient along the pipe length,


x is measured from the left end of the pipe along its central axis and r is radial location inside the pipe with respect to its axis. (Given data: Density and kinematic viscosity of water are 1000kg/m³ and $1 \times 10^{-6} m^2$ /srespectively; acceleration due to gravity is $10 m/s^2$).

If all other losses except the frictional losses at the pipe wall are neglected, the value of h in meter is ____.



AE


Q.38 A 1.8*m* long steel beam of rectangular cross section (10*mm*× 6*mm*) is simply supported with a length of 1.2*m* between the supports and an overhang of 0.3*m* on either side. Young's modulus for the material of the beam is 200*GPa*. For a 50*N* load applied at the center of the beam, magnitude of the slopeof the beam at tip *S* is ______.

Q.39 There are 2 designs proposed for a shaft of length *I*, with a torque carrying capacity of *T.Design I* is a solid circular cross-section shaft of diameter 30mm. Design II is a thin-walled circular shaft of average diameter 40mm. Thickness of the wall in Design II has to be determined such that maximum shear stress is the same in both the designs for the given torque *T*(so that same material can be used for manufacturing both the shafts). Ratio of mass of shaft using Design It is

Q.40 A structural member of rectangular cross-section $10mm \times 6mm$ and length 1m is made of steel (Young's modulus is 200GPa and coefficient of thermal expansion is 12×10^{-6} / ^{o}C). It is rigidly fixed at both the ends and then subjected to a gradual increase in temperature. Ignoring the three dimensional effects, the structural member will buckle if the temperature is increased by ΔT ^{o}C which is

Q.41 A gas cylinder (closed thin-walled cylindrical pressure vessel) of diameter 30cm and wall thickness 1mm is subjected to a design maximum internal pressure of 5bar (0.5MPa). The material used for manufacturing this cylinder has a failure stress of 260MPa. Assuming von Mises failure criterion, the factor of safety (with respect to maximum allowable stress) for this cylinder is

(A) 2.8

(B) 2.0


(C) 6.9

(D) 4.0

AE 8/11

GATE 2014 AEROSPACE- AE

A cantilevered beam is subjected to a parabolic distribution of shear traction at the right edge while Q.42 the top and bottom surfaces are traction free. To solve this problem, following Airy's stress function is proposed: $\phi = C_1xy + C_2xy^3 + C_3x^2y^2 + C_4x^3y$. This is an admissible Airy's function that would satisfy the bi-harmonic equation as well as the boundary conditions if and only


(A)
$$C_1 = 0, C_2 = \lambda, C_3 = 0, C_4 = \frac{\lambda}{3d^2}$$

(B)
$$C_1 = \lambda, C_2 = \frac{\lambda}{3d^2}, C_3 = 0, C_4 = 0$$

(C)
$$C_1 = 0, C_2 = 0, C_3 = \lambda, C_4 = -\frac{\lambda}{3d^2}$$

(B)
$$C_1 = \lambda, C_2 = \frac{\lambda}{3d^2}, C_3 = 0, C_4 = 0$$

(D) $C_1 = \lambda, C_2 = -\frac{\lambda}{3d^2}, C_3 = 0, C_4 = 0$

1kg mass is hanging from a spring of stiffness 500N/m attached to a massless, symmetric beam of Q.43 length 0.6m, moment of inertia about the bending axis $I = 8.33 \times 10^{-10} m^4$ and Young's modulus E=210GPa as shown in the figure. The fundamental natural frequency (in rad/s) of the system is

- (A) 3.24
- (B) 20.36
- (D) 3.56
- A single degree of freedom system is vibrating with initial (first cycle) amplitude of 5cm. The 0.44 viscous damping factor associated with the vibrating system is 2%. Vibration amplitude of the fifth cycle (in cm) is
 - (A) 1.65
- (B) 4.41
- (C) 2.67
- (D) 3.02
- Q.45 A cruise missile with an *ideal* ramjet engine is flying at Mach 4.0 at an altitude where the ambient temperature is 100K. Considerratio of specific heatsy = 1.4 and specific gas constant R = 287J/kgK. If the stagnation temperature in the combustion chamber is equal to 2310K, the speed of the exhaust gases (in m/s) is _
- A gas turbine engine is operating under the following conditions: Q.46

Stagnation temperature at turbine inlet 1350 K 10 bar Stagnation pressure at the turbine inlet Static temperature at turbine exit 800 K Velocity at turbine exit $200 \, m/s$ Total-to-total efficiency of turbine 0.96 1.33 γ (ratio of specific heats) C_P(specific heat at constant pressure) 1.147 *kJ/kgK*

The stagnation pressure (in bar) in the nozzle (considering isentropic nozzle) is equal to

AE 9/11 GATE 2014 AEROSPACE- AE

Q.47	Air at a stagnation temperature of $300K$ (ratio of specific heats, $\gamma = 1.4$ and specific gas constant R = $287 \ J/kgK$) enters the impeller of a centrifugal compressor in axial direction. The stagnation pressure ratio between the diffuser outlet and impeller inlet is 4.0. The impeller blade radius is 0.3 m and it is rotating at $15000 \ rev/min$. If the slip factor σ_s (Ratio of tangential component of air velocity at the blade tip to the blade tip speed) is 0.88, the overall efficiency (total-to-total) of the compressor (in %) is							
Q.48	A stationary two stage rocket with initial mass of $16000kg$, carrying a payload of $1000kg$, is fired in a vertical trajectory from the surface of the earth. Both the stages of the rocket have same specific impulse, I_{sp} , of $300s$ and same structural coefficient of 0.14. The acceleration due to gravity is $9.8m/s^2$. Neglecting drag and gravity effects and considering both the stages with same payload ratio, the terminal velocity attained by the payload in m/s is							
Q.49	An aircraft is flying at Mach 3.0 at an altitude where the ambient pressure and temperature are 50 kPa and 200 K respectively. If the converging-diverging diffuser of the engine (considered isentropic with ratio of specific heats, $\gamma = 1.4$ and specific gas constant $R = 287 J/kgK$) has a throat area of 0.05 m^2 , the mass flow rate through the engine in kg/s is							
	(A) 197	(B) 232	(C) 790	(D) 157				
Q.50	elocity of 2386 m/s. The							
	(A) 1.78	(B) 1.73	(C) 1.87	(D) 1.95				
Q.51		For a given airplane with a given wing loading executing a turn in the vertical plane, under what conditions will the turn radius be minimum and the turn rate be maximum?						
	 (A) Highest possible C_Land lowest possible load factor (B) Lowest possible C_Land lowest possible load factor (C) Lowest possible C_Land highest possible load factor (D) Highest possible C_Land highest possible load factor 							
Q.52	Lift-off distance for a given aircraft of weight W is S_{LO} . If the take-off weight is reduced by 10%, then the magnitude of percentage change in the lift-off distance (assume all other parameters to remain constant) is							
Q.53	Which of the following design parameters influence the maximum rate-of-climb for a jet-propelled airplane?							
	P. Wing loading Q. Maximum thrust-to R. Zero-lift drag coeffi S. Maximum lift-to-dra	cient						
	(A) P and Q alone	(B) P, Q, R and S	(C) P, Q and S alone	(D) Q, R, and S alone				

AE 10/11

GATE 2014 AEROSPACE- AE

- Q.54 Consider the following four statements regarding aircraft longitudinal stability:
 - P. $C_{M,cg}$ at zero lift must be positive
 - Q. $\partial C_{M,cg'}/\partial a_a$ must be negative (a_a is absolute angle of attack)
 - R. $C_{M,cg}$ at zero lift must be negative
 - S. Slope of C_L versus α_a must be negative

Which of the following combination is the necessary criterion for stick fixed longitudinal balance and static stability?

- (A) Q and R only
- (B) Q, R, and S only
- (C) P and Q only
- (D) Q and S only
- Q.55 Data for a light, single-engine, propeller driven aircraft in steady level flight at sea-level is as follows: velocity $V_{\infty} = 40m/s$, weight W = 13000N, lift coefficient $C_L = 0.65$, drag coefficient $C_D = 0.025 + 0.04C_L^2$ and power available $P_{av} = 100,000J/s$. The rate of climb possible for this aircraft under the given conditions (in m/s) is
 - (A) 7.20
- (B) 5.11
- (C) 6.32
- (D) 4.23

END OF THE QUESTION PAPER

AE 11/11